
Miniboxing and the MbArray API
Semester Project

Romain Beguet
École polytechnique fédérale de Lausanne, Switzerland

{�rst.last}@ep�.ch

1. Introduction
In modern programming languages, genericity allows abstracting
over types, enabling programmers to develop algorithms and data
structures regardless of the data being handled. This tremendeously
improves productivity and code reuse. Although generics offer a
uniform programming experience accross different types, the actual
data comes in different sizes and shapes. For example, we can
equally instantiate generic container for 1 bit boolean values, 32 bit
integer values, or even object types passed by reference. To resolve
the tension between the uniform types and non uniform nature of
data, compilers take two different approaches:

Homogeneous compilation imposes a common shape for all in-
coming data. Its most common implementation is called era-
sure, and is typically the scheme employed by languages that
target the Java Virtual Machine, such as Java, Scala or Kotlin,
which use an object representation even for primitive types.
The downside of this approach is that it affects runtime perfor-
mance: Primitive types such as integers or booleans need to be
encoded as objects when entering a generic context, in a process
called boxing, which negatively impacts performance.

Heterogeneous compilation duplicates and adapts the generic
code for each primitive type. This allows it to efficiently handle
data of different sizes and shapes. In Scala, this is implemented
through the specialization transformation.

While specialization is great for performance, the amount of low-
level code it generates makes it impractical. The reason is that
each generic class is duplicated 10 times, corresponding to the 9
primitive types in Scala plus an erased version that is used for ob-
jects. Furthermore, for classes with n type parameters, specializa-
tion generates the cartesian product of their specializations, pro-
ducing as many as 10n duplicates. This is where the miniboxing
approach comes in, reducing the amount of duplication down to
3n.
Miniboxing is a middle ground between heterogeneous and homo-
geneous approaches, encoding several primitive types into a larger
one and thus reducing the duplication factor, without paying the
price of boxing. In most benchmarks, miniboxing matches the per-
formance of specilization, while generating significantly less low-
level code.
In the context of generic programming, one of the problems is im-
plementing bulk storage, exposed in most languages through ar-
rays. Since imposing a homogeneous translation to bulk storage
would be terribly inefficient, the current approach is to use special-
ized arrays, even in generic code. However, in erasure-based homo-
geneous compilation, all generic type information is erased from
the low-level program, such that there is no way for it to know
which array to instantiate at runtime. This makes it necessary to
have special objects which carry the type information explicitly,

commonly known as reified types. In the case of Scala, these ob-
jects are called ClassTags:

1 scala> def foo[T] = new Array[T](10)
2 <console>:7: error: cannot find class tag for element

type T
3 def foo[T] = new Array[T](10)
4 ^

In practice, carrying class tags for generic code is expensive and
needs to be done transitively through the entire code base.
MbArray is an indexed sequence container that matches the perfor-
mance of raw arrays when used in miniboxed contexts. Also, unlike
arrays, MbArray creation does not require the presence of a class
tag, which makes it more versatile. The MbArray data structure
was created based on some underlying assumptions, which directly
impacts its performance and usability.
In this context, the contributions of this semester project are:

• Explicitly stating the underlying assumptions of the MbArray
bulk storage container.

• Developping benchmarks that challenge the underlying as-
sumptions of the MbArray data structure, and identifying which
of them are valid and which need to be revisited.

• Revisiting one of the underlying assumptions of MbArrays,
proposing an improved approach, and implementing it in prac-
tice.

• Validating the improved design using multiple benchmarks.

2. The Miniboxing Transformation
This section describes the miniboxing transformation, showing
why it is necessary, how it improves the program performance
and how it has an opportunistic nature.

2.1 Generics in Scala

Generics are crucial to productivity. They allow programmers to
design algorithms and data structures that operate identically re-
gardless of the data used, fostering code reuse. For example, a
Vector[T] can be instantiated for any type, whether for numbers,
strings or CPU threads. However, on the low level, data comes in
different shapes and sizes: from 1-bit booleans to 64-bit long in-
tegers, floating point numbers, characters, value classes [1, 3, 6]
and objects. In a Vector[Int], getters and setters receive integer
values of 32-bits while in Vector[Double] they receive 64-bit
double-precision floating-point numbers.
The current compilation scheme for generics is called erasure, and
is the simplest compilation scheme possible for generics. Erasure
requires all data, regardless of its type, to be passed in by reference,
pointing to a heap object. Let us take a simple example, a generic
identity method written in Scala:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148013362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 def identity[T](t: T): T = t
2 val five = identity(5)

When compiled, the source code corresponding to the low-level
bytecode for the method is:

1 def identity(t: Object) = Object

As the name suggests, the type parameter T was “erased” from the
method, leaving it to accept and return Objects. The problem with
this approach is that values of primitive types, such as integers,
need to be transformed into heap objects when passed to generic
code, so they are compatible with Object, in a process called
boxing. The process goes two-ways: the return of generic methods
needs to be unboxed back to a primitive type:

1 val five = identity(Integer.valueOf(5)).intValue()

Boxing primitive types requires heap allocation and garbage collec-
tion, both of which slow down program performance. Furthermore,
when values are stored in generic classes, such as Vector[T], they
need to be stored in the boxed format, thus inflating the heap mem-
ory requirements and slowing down execution. In practice, generic
methods can be as much as 10 times slower than their monomor-
phic (primitive) instantiations. This gave rise to a simple and effec-
tive idea: specialization.

2.2 Specialization

Specialization is a second approach used by the Scala compiler to
translate generics. It is triggered by the @specialized annotation
added to a type parameter:

1 def identity[@specialized T](t: T): T = t
2 val five = identity(5)

Based on the annotation, the specialization transformation creates
several versions of the identity method:

1 def identity(t: Object): Object = t
2 def identity_I(t: int): int = t
3 def identity_C(t: char): char = t
4 // ... and another 7 versions of the method

Having multiple methods, also called specialized variants or simply
specializations of the identitymethod, the compiler can optimize
the call to identity:

1 val five: int = identity_I(5)

This transformation side-steps the need for a heap object allocation,
improving the program performance. However, specialization is
not without limitations. As we have seen, it creates 10 versions
of the method for each type parameter. But what if a method has
2 type parameters? It creates 100 versions, and in general, for N
specialized type parameters, it creates 10N specialized variants,
the cartesian product covering all combinations. This prevents the
Scala library from using specialization extensively, since common
classes have between one and three type parameters. This led to the
next development, the miniboxing transformation.

2.3 Miniboxing

Taking a low level perspective, we can observe the fact that all
primitive types in the Scala programming language fit within 64
bits. This is the main idea that motivated the miniboxing transfor-
mation: instead of creating separate versions of the code for each
primitive type alone, we can create a single one, which stores 64-bit
encoded values, much like a tagged union [4]. But unlike a tagged
union, miniboxing can use the statically typed nature of the lan-

guage to avoid carrying tags with each value. Looking at the previ-
ous example:

1 def identity[@miniboxed T](t: T): T = t
2 val five = identity(5)

Since the type parameter is annotated with @miniboxed, the com-
piler1 translates the code to:

1 def identity(t: Object): Object = t
2 def identity_M(..., t: long): long = t
3 val five: int= minibox2int(identity_M(int2minibox(5)))

Alert readers will notice the minibox2int and int2minibox
transformations act exactly like the boxing coercions in the case
of erased generics. This is true, the values are being coerced to
the miniboxed representation, much like in the case of erasure, but
on the Java Virtual Machine platform our benchmarks have shown
that the miniboxing conversion cost is completely eliminated when
compiling the code to native x86 assembly. Further benchmarking
has shown that the code matches the performance of specialized
code within a 10% slowdown due to coercions [7].
There is an elipsis in the definition of the identity_M method,
which stands for what we call a type byte: a byte describing the
type encoded in the long integer, allowing the operations such as
toString, hashCode or equals to be executed correctly on en-
coded values, treating them as the original primitive (corresponding
to T) rather than long integers. Although the transformation looks
simple, there are many subtleties we have to take into account when
transforming the code [2, 7, 8].

3. Arrays
Arrays provide efficient memory usage and constant random access
time, thanks to the elements being stored in a contiguous fashion.
This is also optimal from a low level perspective as it cooperates
well with processor caches, thanks to the spatial locality of the
elements. For these reasons, arrays are commonly used as the
underlying storage in high level collections, and are the container
of choice for implementing performance-critical algorithms.
Since elements of an array are stored contiguously in memory, ac-
cessing an element requires knowing its size: assuming an integer
is encoded on 4 bytes, a compiler will know that the nth element
of an integer array stored at the address a can be accessed by de-
referencing the address a+ 4× n. Or, in the case of a higher-level
virtual machine, such as the JVM, to avoid tying the implementa-
tion to architecture details, each primitive array, such as int[] or
double[] has its own bytecodes to access and update elements,
which de-reference the correct address for the given architecture.
Unfortunately, while using primitive arrays offers optimal perfor-
mance and memory usage, it also makes it difficult to abstract
over the type of elements in the array: different types of elements
have different sizes so the compiler needs to generate different in-
structions for array access depending on its element type. In prac-
tice, abstracting over the elements in arrays is essential for writ-
ing generic data structures, so language developers proposed differ-
ent approaches to enable abstraction. One example is the template-
based way, used in C++ and .NET, where generics are instantiated
to primitive types, resolving their size before execution. On the
other hand, languages where generics are compiled with erasure,
such as Scala, lose the information necessary to resolve the object
size at runtime and need to employ more complex mechanisms.

1 This occurs in the presence of the miniboxing plugin attached to the Scala
compiler. In the rest of the paper we assume the miniboxing Scala complier
plugin is active unless otherwise noted. For more information on adding the
miniboxing plugin to the build please see http://scala-miniboxing.
org.



A naive solution, commonly used in dynamic language interpreters
which lack static information, is to convert all values stored in the
array to object references, through boxing. This fixes the size of
objects, since only references are stored in the array regardless of
the primitive type. However, compact storage and locality are lost,
since boxed primitives contain the additional object headers and
can be allocated anywhere on the heap.
A much better approach transforms the Scala code that accesses or
updates generic arrays. For example, the code:

1 def first[T](a: Array[T]): T = a(0)

Is transformed by the Scala compiler to:

1 def first(a: Object): Any =
2 a match {
3 case x: Array[Object] => x(0) // size = reference
4 case x: Array[Int] => x(0) // size = integer
5 case x: Array[Double] => x(0) // size = double
6 // and so on for all the primitive types of Scala
7 }

With this transformation, which is similar to the accessor tech-
nique presented at the beginning of the section, accessing generic
arrays becomes very involved: the program has to match over
the possible primitive arrays, and only then it can access the ele-
ment. This slows down program execution, but it also enforces a
strong invariant: a Scala value of type Array[Int] is always rep-
resented as the JVM primitive integer array, int[], and never as
Array[java.lang.Integer], which would require boxing the
primitive values. This invariant guarantees that, outside the generic
context, array access/update is efficient: an Array[Int] is always
represented as the JVM primitive int[] array, which allows Scala
to access and update elements without matching the array type.
Therefore, from a language perspective, programmers only pay the
extra overhead when using arrays with generics.
Another thing to notice is that the Array[T] type in the signa-
ture of first is transformed into Object: at the JVM level, prim-
itive arrays such as int[], float[] and Object[] have a single
common parent class, which is java.lang.Object. This explains
why there is a need to match the primitive array type: the Array
class offered by Scala does not really exist, it’s simply an abstrac-
tion over the primitive arrays offered by the JVM.

3.1 Instantiating Arrays

Although the array representation invariant looks like a good deal
so far, it introduces an unexpected problem: how to instantiate
generic arrays? Exactly like accessing or updating an array, instan-
tiating one must abide by the array invariant. Yet, with the era-
sure transformation, all traces of a generic type parameter T are
removed, transforming the code:

1 def newArray[T] = new Array[T](10)

into:

1 def newArray() = /* error: T is erased */

The newArray method should be able to produce any primitive
array, based on the type argument of newArray:

1 val a1: Array[Long] /* = long[] */ = newArray[Long]
2 val a2: Array[Char] /* = char[] */ = newArray[Char]

Reified types. To address this issue, Scala offers the ClassTag
mechanism, which can be used to provide runtime information
about a type parameter. This allows newArray to produce the
correct primitive type:

1 def newArray[T: ClassTag] = new Array[T](10)

is compiled to:

1 def newArray(tag: ClassTag) = tag.newArray(10)

Since the ClassTag object carries runtime information about the
type T, it can instantiate the correct primitive array. Still, this ap-
proach is rarely used in practice because ClassTags are expensive
to synthesize, propagate and store. To illustrate this, let us consider
the following code:

1 def foo[T] = bar[T]
2 def bar[T] = baz[T]
3 def baz[T] = new Vector[T](10)

If we want to create a generic Array instead of the Vector:

1 def baz[T] = new Array[T](10) // error: need ClassTag

But this requires baz to have a ClassTag passed in:

1 def baz[T: ClassTag] = new Array[T](10)

Therefore, to call method baz, the caller needs to pass in a
ClassTag object. When the call is made from non-generic code
(e.g. baz[Int]), the ClassTag is synthesized by the compiler
based on the type argument. This bears the cost of synthesis. And
there is another cost, of propagation: the baz method is also a
caller of bar, but since bar’s type parameter T is erased, the com-
piler can’t synthesize a ClassTag object. Instead, it must require
its callers to provide it:

1 def bar[T: ClassTag] = baz[T]

Similarly, foo must require the ClassTag object to be passed from
its callers, thus producing the following code:

1 def foo[T: ClassTag] = bar[T]
2 def bar[T: ClassTag] = baz[T]
3 def baz[T: ClassTag] = new Array[T](10)

This shows that generic code must be transitively modified to prop-
agate ClassTag objects in order to allow instantiating arrays, ex-
plaining the cost of propagation. Finally, when dealing with objects,
ClassTag objects have to be stored as fields in the object itself,
adding to the program’s memory footprint, explaining the storage
cost.
Breaking the invariant. Another way to deal with this issue, with-
out using ClassTags, is to always instantiate Array[AnyRef] and
force the compiler believe it is an Array[T]:

1 def baz[T] =
new Array[AnyRef](10).asInstanceOf[Array[T]]

This approach forces boxing all elements, so it is known to affect
performance. But, even worse, it breaks the array invariant: if the
type parameter T is instantiated by Int, the returned array has type
Array[Int] but its runtime type is Object[] instead of int[].
Therefore this approach can only be used when the array is guaran-
teed to not escape to outside code. In practice, this approach is used
to implement many of the generic collections in the Scala library.
Specialized arrays. When using Scala specialization, the methods
are duplicated and the type parameters are statically known. This
allows the array invariant to be used to efficiently access arrays:

1 def first[@specialized T](a: Array[T]): T = a(0)

This will yield multiple variants of first, the default – slow and
unoptimized – one, as well as nine fast specializations:



1 def first(a: Object): Object =
2 a match {
3 ... // all ten cases
4 }
5 def first_I(a: int[]): int = a(0)
6 def first_J(a: long[]): long = a(0)
7 // and 7 other specialized variants...

In this case, the generic (inefficient) version of the first method
is still called in two cases:

• from erased generic code;
• when the type parameter of first is instantiated by a reference

type;

Still, optimizing the specialized versions does not eliminate the
need for ClassTag objects:

1 def newArray[@specialized T]: Array[T] =
2 new Array[T](10)

Which is translated to:

1 def newArray: Object = // error: no ClassTag
2 def newArray_I: int[] = ...
3 def newArray_J: long[] = ...
4 // and 7 other specialized variants ...

Inside the generic version of newArray, T is erased, so there is no
way to instantiate the array anymore. And, as we have seen before,
we cannot assume that the generic newArray will always be called
with a reference type parameter:

1 def foo[T] = newArray[T]
2 val arr: Array[Int] = foo[Int]

Therefore, the only correct solution is to require newArray to
accept a ClassTag object, even before the specialized variants are
created:

1 def newArray[@specialized T: ClassTag]: Array[T] =
2 new Array[T](10)

Therefore, while specialization does reduce the overhead of acess-
ing primitive arrays, it does not eliminate the need for ClassTag
objects.
Recap. We have seen three ways to implement generic arrays:
• The ClassTag approach:

Advantage: Solves the array instantiation problem;
Disadvantage: Has to carry ClassTag objects;

• Breaking the invariant approach:
Advantage: Solves the array instantiation problem;
Disadvantages: Requires boxing primitives and arrays must
not escape;

• The specialization approach:
Advantage: Optimizes array accesses;
Disadvantage: Does not solve the generic array instantia-
tion problem.

4. Miniboxed arrays.
Would it be possible to combine the three approaches seen so
far to produce an alternative Array which does not have any of
the disadvantages? In this subsection we present how MbArray
achieves this, keeping the main advantages of each approach and
dropping their disadvantages.
MbArray is a generic class that wraps a Scala Array but is also able
to guarantee it does not escape, thus being similar to the “Break-
ing the invariant” approach. This allows programmers to instan-

tiate MbArray objects without the need for a ClassTag object.
It may seem this path will lead to boxing values in the array, but
this is not the case: thanks to the tight integration with miniboxing,
the MbArray class can reflectively decide what array to instanti-
ate: either an array of objects or a specialized variant containing
miniboxed values. Therefore, the underlying array does not box the
elements unless the type argument is erased at the instantiation site.

4.1 MbArray’s Underlying Assumptions

The MbArray class is implemented with several design decisions
in mind:

1. Instead of using ClassTags, use the miniboxed status to decide
which version of the array to create.

2. Wrap the array inside an object which doesn’t allow it to escape,
so that any inconsistent decision can’t be observed from the
outside.

3. Inside the array, use the miniboxed representation (long or
double) instead of the unboxed representation, as this side-
steps the need for the tag-based dispatch and the primitive
conversion in the access procedures.

The last point is explained in the next subsection.

4.2 MbArray Implementation

This subsection will give an insight into the implementation of
MbArrays.
Instantiation. An MbArray object is instantiated either by cloning
an already existing MbArray object through the clone method, or
by creating an empty array of a given size this way:

1 val ary = MbArray.empty[Int](3)

At compile time, when the miniboxing transformation operates,
every MbArray instantiation is rewired to one of the special-
ized constructors: mbArray_empty_L, mbArray_empty_J or
mbArray_empty_D, which will instantiate the specialized variants
of the MbArray:
• MbArray_L for object references;
• MbArray_J for integral types;
• MbArray_D for floating point types;

Of course, the instantiation will get rewired to an optimized con-
structor if and only if the instantiation is monomorphic or occurs in
a miniboxed context. For example, the instantiation from the code
snippet above will be transformed to:

1 val ary = mbArray_empty_J(3, MiniboxingConstants.INT)

On the other hand the following code cannot be rewired to a spe-
cialized constructor, since the instantiation occurs in a generic con-
text that is not miniboxed:

1 def makeArray[T] = MbArray.empty[T](3) // will
instantiate the generic MbArray where primitives
are boxed

This can be solved by annotating the type parameter T with the
@miniboxed annotation.
Access. Capitalizing on the tight integration with miniboxing, the
array access procedures are transformed in a very similar fashion
to optimistically access the underlying array directly, obtaining the
miniboxed value right away. This is an opportunistic approach:
there is a fast-path, when the storage type of the miniboxed class
and the MbArray object coincide, or a slow path, when they don’t.



But, thanks to the guidance from the performance advisories 2,
the latter case only occurs with the programmer’s consent, who
knowingly allows the program to take the slow path.
With this approach, the following code:

1 def first(a: MbArray[Int]): Int = a(0)

Is translated to:

1 def first(a: MbArray): Int =
2 minibox2int(mbArray_apply_J(a, 0))

Where the mbArray_apply_J method contains the optimistic as-
sumption that the MbArray is going to be the specialized version of
the MbArray class, containing an underlying array of long integers.
Here is the Scala code equivalent to the real implementation of the
mbArray_apply_J method (in Java):

1 def mbArray_apply_J[T](T_Type: Byte, a: MbArray[T],
idx: Int): Long =

2 a match {
3 case x: MbArray_J => x.apply_J(idx)
4 case x: MbArray_L => box2minibox(x.apply_L(idx))
5 }

There are two possibilities:

• Going through the fast path does not require boxing but only
a conversion from the miniboxed encoding to the unboxed in-
teger: x.apply_J(idx) directly retrieves the miniboxed value
from the underlying Array[Long]. This explains the third as-
sumption presented in subsection 4.1: since the value is already
in its miniboxed representation inside the storage, there is no
need to match over the type of the underlying array and to con-
vert the primitive value.

• On the other hand, the slow path accesses an array of objects
and transforms the boxed value into a miniboxed one, paying
the cost of handling the boxed value.

4.3 Conclusion

To conclude, the opportunistic nature of the MbArray coupled with
performance advisories and miniboxing integration, allows it to
have the following properties:
• Solves the array instantiation problem (no ClassTags);
• Stores miniboxed values, which are more efficient than boxing;
• Accesses elements efficiently (if advisories are heeded).

5. Benchmarking MbArrays
In high-level languages, arrays are rarely used explicitly in algo-
rithms, as they are usually provided with a limited API which only
offers basic operations such as element retrieval and update. In-
stead, as it has already been stated in the last section, arrays are
more often used as the underlying storage of more high-level col-
lections, such as ArrayBuffers and Vectors.
In order to measure performance improvements brought by MbArrays
combined with the miniboxing transformation in realistic scenar-
ios, I implemented the ArrayBuffer collection. It was imple-
mented in two ways: using the common Arrays with ClassTags,
and using MbArrays with miniboxing. Hence, the only differences
in the source code between the two versions appear:
In the class declaration:

2 Compiler warnings triggered by the miniboxing plugin when it detects
suboptimal code

1 // The MbArray version
2 class ArrayBuffer[@miniboxed T](var _size: Int)
3 extends ...
4

5 // The ClassTag version
6 class ArrayBuffer[T: ClassTag](var _size: Int)
7 extends ...

And where arrays are instantiated:

1 // The MbArray version
2 _array = MbArray.empty[T](_capacity)
3

4 // The ClassTag version
5 _array = new Array[T](_capacity)

5.1 High-level Overview of the ArrayBuffer

Quoting the official Scala documentation, an ArrayBuffer is:

An implementation of the Buffer class using an array to rep-
resent the assembled sequence internally. Append, update
and random access take constant time (amortized time).
Prepends and removes are linear in the buffer size.

On top of this, high-level features are provided with the implemen-
tation, such as foreach, map or filter. These methods are reg-
ularly used because they allow programmers to enhance their pro-
ductivity significantly. For this reason, these methods became the
actual subjects of the benchmarks.

5.2 ArrayBuffer implementation

In this subsection, I explain how the main features of the
ArrayBuffer are implemented. Note that code snippets are taken
from the miniboxed version.
Dynamic size. One of the properties of the ArrayBuffer data
structure is that elements can be added at any time, thus requiring
the ArrayBuffer to dynamically resize itself. For example:

1 val buf = new ArrayBuffer[Int](2)
2 buf(0) = 1
3 buf(1) = 2
4 buf.append(3) // buf now contains {1, 2, 3}

However, this feature is not proposed by default by the underlying
array: neither Array nor MbArray can be resized. Thus, a naive
way to implement append is to re-instantiate the underlying array
with a size n + 1 each time an element is appended, where n is
the previous size of the array, and to then copy the content of the
old array into the new one. While it is simple to implement, it has
major performance issues in case several append calls are done
sequentially to a decently large ArrayBuffer.
Instead, the growth strategy commonly employed is to allocate an
array of two times the size of the previous one, which ultimately
produces less garbage while considerably reducing the number of
full array copies that need to be done. Here is how the append
method was implemented:

1 def append(elem: T) = {
2 if (_size >= _capacity) {
3 val old = _array
4 _capacity *= 2
5 _array = MbArray.empty[T](_capacity)
6 ArrayBufferUtils.copyAll(old, _array);
7 }
8

9 _array(_size) = elem
10

11 _size += 1
12 }



In the code snippet above, _size represents the actual number
of elements that the ArrayBuffer contains, and _capacity the
maximum number of elements that the ArrayBuffer can contain
before having to resize itself.
Iterable. Iterating over the entire collection is an operation that is
recurrent in algorithms. These algorithms often want to make ab-
straction of the collection type that is used and only want to express
their need to traverse it. Iterable is a common interface which is
implemented by every collection that supports complete traversal.
It requires its implementations to provide access to an Iterator,
which will itself be used to iterate through the collection. To
achieve this, the ArrayBuffer implements the Iterable[T] in-
terface presented below:

1 trait Iterable[@miniboxed T] {
2 def iterator: Iterator[T]
3

4 def foreach(f: (T) => Unit) = {
5 val it = iterator
6 while (it.hasNext) {
7 f(it.next)
8 }
9 }

10 }
11

12 trait Iterator[@miniboxed T] {
13 def next: T
14 def hasNext: Boolean
15 }

Buildable. Occasionnally, algorithms also want to express their
need to build a new collection based on an existing one. In
the Scala Standard Library, this feature is exposed through the
CanBuildFrom mechanism [5]. Here, I decided to simplify (but
not too much) the design by proposing an interface which only al-
lows building the same type of collection. That is, a Collection[T]
can only build Collection[U]. Thanks to Scala’s ability to ab-
stract over type constructor, the interface could be implemented in
a straightforward manner:

1 trait Buildable[@miniboxed T, Container[_]] extends
Iterable[T] {

2 def builder[@miniboxed U]: Builder[U, Container]
3

4 def map[@miniboxed U](f: T => U) = {
5 val bd = builder[U]
6 val it = iterator
7 while (it.hasNext) {
8 bd.append(f(it.next))
9 }

10 bd.finalise
11 }
12

13 def filter(f: T => Boolean) = {
14 val bd = builder[T]
15 val it = iterator
16 while (it.hasNext) {
17 val elem = it.next
18 if (f(elem)) {
19 bd.append(elem)
20 }
21 }
22 bd.finalise
23 }
24 }
25

26 trait Builder[@miniboxed T, Container[_]] {
27 def append(x: T): Unit
28 def finalise: Container[T]
29 }

The Builder implementation for the ArrayBuffer is done the
following way:

Size ClassTag MbArray
300000 5.41 ms 5.92 ms
600000 9.92 ms 10.71 ms
900000 14.44 ms 13.63 ms
1200000 18.85 ms 22.49 ms
1500000 22.88 ms 24.30 ms

Table 1. The initial ScalaMeter benchmark’s outputs

1 class ArrayBufferBuilder[@miniboxed T] extends
Builder[T, ArrayBuffer] {

2

3 var innerBuf: ArrayBuffer[T] = new ArrayBuffer[T](0)
4

5 override def append(elem: T) = innerBuf.append(elem)
6 override def finalise = innerBuf
7 }

5.3 Benchmarking procedure

In order to benchmark run time performance of MbArrays, I created
two projects – one for each ArrayBuffer version – which use the
Scalameter library. The original benchmark implementation is the
following:

1 import org.scalameter.api._
2

3 import mbvector._
4

5 object MbVectorBenchmark extends
PerformanceTest.Quickbenchmark {

6 val sizes = Gen.range("size")(300000, 1500000,
300000)

7

8 override def executor = new
org.scalameter.execution.LocalExecutor(

9 Warmer.Default(),
10 Aggregator.average,
11 measurer)
12

13 val bufs = for {
14 size <- sizes
15 } yield new ArrayBuffer[Int](size)
16

17 performance of "ArrayBuffer" in {
18 measure method "map" in {
19 using(bufs) setUp {
20 b =>
21 b.map(_ + 1)
22 b.map(_ + 2)
23 } in {
24 b => b.map(_ + 1)
25 }
26 }
27 }
28 }

The program will bench 5 different ArrayBuffer configurations
corresponding to 5 different sizes of ArrayBuffers from 300’000
to 1’500’000 elements. For each configuration, ScalaMeter per-
forms multiple runs of the code being benchmarked and yields – in
our case – the average of each run. It is worth noting that before
each run, the ScalaMeter benchmarking procedure runs the code
multiple times in order to make sure the JVM has as little noise as
possible and that the JIT has compiled the methods.

5.4 The Numbers

Unfortunately, the numbers produced by running the benchmark
above did not look as good as we could have (rightfully) expected,
as it can be seen in figure 1. Surprisingly, the MbArray version
showed to be approximately 10% slower than the ClassTag ver-
sion, which is completely contradictory with what has been stated
earlier!



1 object Benchmark {
2

3 def vecSize = 10000000
4 def opCount = 20
5

6 def makeBuffer(size: Int, fill: Int => Int) = {
7 val vec = new ArrayBuffer[Int](size)
8 vec.map(fill)
9 }

10

11 def time(opName: String, count: Int, init: =>
ArrayBuffer[Int], operation: ArrayBuffer[Int] =>
Unit) = {

12 var i = 1
13 var total = 0L
14

15 println("ArrayBuffer. " + opName + " : ")
16

17 while (i <= count) {
18 var vec = init
19

20 println("--- next iteration")
21 val start = System.currentTimeMillis()
22 operation(vec)
23 val end = System.currentTimeMillis()
24 println("\t" + i + ". : " + (end - start) + "ms");
25

26 vec = null
27 System.gc()
28

29 total += end - start
30 i += 1
31 }
32

33 println("Total : " + total + "ms. Average " +
(total.toDouble / count) + ".\n")

34 }
35

36 def main(args: Array[String]) = {
37

38 time("map", opCount, {
39 makeBuffer(vecSize, i => 1)
40 }, {
41 _.map { _ * 2 }
42 })
43

44 }
45 }

Figure 1. Handmade implementation of the initial benchmark. The
benchmark is done on an ArrayBuffer of 10M elements

6. Challenging the Assumptions
In this section, I describe the steps that I followed in order to debug
the slowdown observed in the last section, that is, to identify its
cause.

6.1 Analyzing of the Numbers

First of all, I tried to tweak the parameters of the benchmark to try
deducing the cause of the slowdowns. As one could expect, mod-
ifying basic items such as the size of the ArrayBuffers did not
improve the numbers. Ultimately, I had to dig deeper into what
could cause the problem, and to this end rewrote the benchmark-
ing process by hand so that it would be easier to debug and to
experiment with the JVM flags. Usually, benchmarking is done
through a dedicated framework, such as ScalaMeter, but in this
particular case I needed to isolate the benchmark and be able to
run it directly. The handmade benchmark implementation can be
found in figure 1. Thinking back about the original problem, one
of the cause for the slowdown could have been that hot meth-
ods would not get inlined properly. Indeed, the miniboxing trans-
formation generally produces methods that are larger than their

generic counterparts, which can prevent inlining. This can be eas-
ily detected with a debug build of the HotSpot virtual machine and
the -XX:+PrintCompilation flag. Unfortunately it did not pay
off, as everything was inlined as expected. Another direction was
to obtain a breakdown of the time spent computing and collect-
ing garbage. Indeed, running the benchmark once more with the
-XX:+PrintGC option yielded a more interesting result: in the ver-
sion using MbArrays a GC cycle gets triggered during the bench-
mark iteration, whereas none happen for the ClassTag version:

1 12. : 255ms
2 [GC 328332K->641K(2009792K), 0.1071670 secs]
3 [Full GC 641K->641K(2009792K), 0.1344740 secs]
4 --- next iteration
5 13. : 249ms
6 [GC 328333K->641K(2009792K), 0.1078760 secs]
7 [Full GC 641K->641K(2009792K), 0.1345190 secs]
8 --- next iteration
9 14. : 250ms

10 [GC 328325K->641K(2009792K), 0.1071550 secs]
11 [Full GC 641K->641K(2009792K), 0.1355260 secs]

(a) ClassTag version

1 12. : 375ms
2 [GC 328502K->197268K(2067968K), 0.8788130 secs]
3 [Full GC 197268K->660K(2067968K), 0.2077410 secs]
4 --- next iteration
5 [GC 524954K->197396K(2066048K), 0.1963980 secs]
6 13. : 374ms
7 [GC 328512K->197268K(2071680K), 0.8838360 secs]
8 [Full GC 197268K->660K(2071680K), 0.2077530 secs]
9 --- next iteration

10 [GC 524953K->197364K(2069888K), 0.1962730 secs]
11 14. : 374ms
12 [GC 328466K->197268K(2075008K), 0.9097610 secs]
13 [Full GC 197268K->660K(2075008K), 0.2010080 secs]

(b) Miniboxed version

Figure 2. The initial benchmark’s outputs for ArrayBuffers of
10’000’000 elements

It is important to note that in the printouts above, the GC cycles that
are printed after the end of an iteration and the start of a new one
are triggered manually by a System.gc() and are not counted in
the time duration of an iteration.
We can thus infer the following:

• The ClassTag version spends no time collecting garbage dur-
ing the iteration, but collects 330MB in 242ms at the end of
it.

• The MbArray version spends up to 196ms collecting 330MB
of garbage during the iteration, and collects 330 additional
Megabytes at the end of the iteration in 1090ms.

Note that the benchmarks were executed enough times to trigger:

• JIT compilation with the server compiler (C2).
• Full inlining of the code being benchmarked, which enabled

escape analysis and therefore eliminates boxing even in generic
code.

Moreover, through profiling, we made sure no boxed values
(java.lang.Integer) were created. Thus, the only differences
in the low-level code are the array accessors: for the ClassTag
version, the accessors are ScalaRunTime.array_apply and
ScalaRunTime.array_update, while for the MbArray ver-
sion, they are mbArray_apply_J presented earlier as well as
mbArray_update_J.
We can therefore derive that the cause of the slowdown is due to
an overly high amount of garbage being produced by the version
using MbArrays.



6.2 Problem with the Current Design

In order to understand the cause for the high amount of garbage
being produced, it is necessary recall how MbArrays are currently
transformed by the miniboxing plugin.
Memorandum. As explained in subsection 4.2, when an MbArray
is instantiated in a context where its type argument is known to
be a primitive type, the miniboxing plugin transforms at compile
time the instantiation of the generic MbArray into one of its spe-
cialized version: MbArray_J for an integral type, or MbArray_D
for a floating point type. At first, it seemed like a good idea to have
only these two specialized versions since internally, the minibox-
ing plugin only deals with three representations: Object, long and
double, and therefore, storing the values as their miniboxed rep-
resentation avoids the array type dispatch and coercion costs that
would occur in the access procedures if they were stored as their
true representation. This corresponds to the third assumption pre-
sented in subsection 4.1.
Back-of-the-enveloppe Calculation. However, the GC printouts
from figure 2 show that using the miniboxed representations inter-
nally causes significantly more memory to be used when storing
integers. In order to confirm the nature of the additionnal memory
usage, we did the following calculation:
First, the total number of elements stored for each benchmark
iteration can be computed as follows:

1. The initial array is 10M elements large.

2. In the init function, we build another ArrayBuffer from
the initial one through mapping, which produces intermediate
ArrayBuffers of 1, 2, . . . 8M and finally 16M elements due to
the growth strategy employed, summing up to a total of 32M
elements.

3. Inside the benchmark code, we are mapping one more time,
thus adding another 32M elements ArrayBuffer

4. In total, we are storing 74M elements per iteration.

We can now separate the calculation for the two versions:

• For the ClassTag version, the elements stored are integers.
Therefore, since an integer is 4 bytes long, we are holding
74M × 4B = 296MB. Since we can safely consider a 30MB
overhead, we attain the same number that we find in practice in
figure 2(a): 330MB.

• For the MbArray version however, elements stored are not inte-
gers but longs. Since a long is 8 bytes long, we are holding 74M
× 8B = 592MB. Moreover, the miniboxing plugin introduces
an extra overhead on top of the 30MB due to having miniboxed
values of 64bits and type tags being passed around a lot, but also
due to miniboxed functions taking twice as much memory. We
can thus safely assume a 60MB overhead, giving us the amount
of memory that we find in practice in figure 2(b): 660MB.

Hence we can observe that for integers, the MbArary version of the
ArrayBuffer uses twice as much memory as the ClassTag ver-
sion. Even worse, for booleans, which only need one bit, storing
values in the long representation causes the heap fooprint to in-
crease 64 times. In turn, this leads to more GC cycles, which slow
down the program execution.

7. Redesigning MbArrays
After having exposed the flow in the current MbArray design that
slows down its performance, I present the approach I took in order
to address it.

7.1 The Goal

The goal is to keep the mechanisms in MbArrays that are work-
ing, but to decrease the memory needed for that. To this end,
the design change I opted for was adding more specializations to
the MbArrays: one for each primitive type that exists in Scala.
In other words, an MbArray[Boolean] would get transformed to
MbArray_B which uses a boolean[] internally instead of the pre-
vous long[], and so on equivalently for every of the 10 primitive
types that exist in Scala. Hopefully, this would result in less heap
memory wasted and therefore a higher GC throughput.

Size ClassTag Old
MbArray

New
MbArray

300000 5.41 ms 5.92 ms 4.84
600000 9.92 ms 10.71 ms 9.38
900000 14.44 ms 13.63 ms 12.02
1200000 18.85 ms 22.49 ms 18.18
1500000 22.88 ms 24.30 ms 21.26

Table 2. The initial ScalaMeter benchmark’s outputs, including
the new MbArray version’s results.

7.2 Design transformation

Adding the 7 other specializations was fairly straightforward: All
that had to be done was duplicating one of the two existing spe-
cialization for every new variants and changing the internal array
type Array[Long] to the ones adapted for the different specializa-
tion. Then, the code that handled MbArray instantiations, namely
MbArray_empty_J, MbArray_empty_D, MbArray_clone_J and
MbArray_clone_D, had to be modified in order to take into ac-
counts the new specializations. For example:

1 public static <T> MbArray<T> mbArray_empty_J(int size,
byte T_Tag) {

2 return new MbArray_J<T>(T_Tag, size);
3 }

Was transformed to:

1 public static <T> MbArray<T> mbArray_empty_J(int size,
byte T_Tag) {

2 switch(T_Tag) {
3 case MiniboxConstants.LONG:
4 return new MbArray_J<T>(size);
5 case MiniboxConstants.INT:
6 return new MbArray_I<T>(size);
7 case MiniboxConstants.SHORT:
8 return new MbArray_S<T>(size);
9 case MiniboxConstants.CHAR:

10 return new MbArray_C<T>(size);
11 case MiniboxConstants.BYTE:
12 return new MbArray_B<T>(size);
13 case MiniboxConstants.BOOLEAN:
14 return new MbArray_Z<T>(size);
15 case MiniboxConstants.UNIT:
16 return new MbArray_V<T>(size);
17 default:
18 return new MbArray_L<T>(size);
19 }
20 }

Similarly, the apply and update methods had to be changed. For
example:

1 public static <T> long mbArray_apply_J(MbArray<T>
mbArray, int index, byte T_Tag) {

2 if (mbArray instanceof MbArray_J<?>)
3 return ((MbArray_J<?>)mbArray).apply_J(index);
4 else
5 return MiniboxConversionsLong.box2minibox_tt(
6 mbArray.apply(index), T_Tag);
7 }

Became:



1 public static <T> long mbArray_apply_J(MbArray<T>
mbArray, int index, byte T_Tag) {

2 if (mbArray instanceof MbArray_J<?>)
3 return ((MbArray_J<?>)mbArray).apply_J(index);
4 else if (mbArray instanceof MbArray_I<?>)
5 return ((MbArray_I<?>)mbArray).apply_J(index);
6 else if (mbArray instanceof MbArray_S<?>)
7 return ((MbArray_S<?>)mbArray).apply_J(index);
8 else if (mbArray instanceof MbArray_C<?>)
9 return ((MbArray_C<?>)mbArray).apply_J(index);

10 else if (mbArray instanceof MbArray_B<?>)
11 return ((MbArray_B<?>)mbArray).apply_J(index);
12 else if (mbArray instanceof MbArray_Z<?>)
13 return ((MbArray_Z<?>)mbArray).apply_J(index);
14 else if (mbArray instanceof MbArray_V<?>)
15 return ((MbArray_V<?>)mbArray).apply_J(index);
16 else
17 return MiniboxConversionsLong.<T>box2minibox_tt(
18 mbArray.apply(index), T_Tag);
19 }

7.3 Re-benchmarking

Following the transformation, we re-benchmarked out example
programs using the new MbArray.
Initial benchmark. Table 2 shows that the new version performs
approximately at the same level as the ClassTag version on the
benchmark. Moreover, figure 3 (which shows the results of the
handmade version of the initial benchmark) shows how the new
MbArray version, just as the ClassTag version does not spend any
time collecting garbage during an iteration, from which follows a
200ms runtime performance gain over the old MbArray version. In
average, the new version is 15% faster than the old version in the
ScalaMeter benchmark and 215% on the handmade benchmark.
Unfortunately, as one can notice, even the new MbArray version
does not seem to be a lot faster than the ClassTag version on that
initial benchmark, only reaching a small 5% speedup.
Mapping to Floats. However, most of the benchmark do show
better numbers for the new MbArray version. For example, another
benchmark was developped, which shows that the version using
new MbArrays can be approximately 250% faster than the version
using ClassTags and 20% faster than the version using the old
MbArrays. This can be seen in table 3. The source code of this
benchmark is almost identical to the initial one, the only difference
being that instead of:

1 using(bufs) setUp {
2 b =>
3 b.map(_ + 1)
4 b.map(_ + 2)
5 } in {
6 b => b.map(_ + 1)
7 }

It is doing :

1 using(bufs) setUp {
2 b =>
3 b.map(_ + 1)
4 b.map(_ + 2)
5 } in {
6 b => b.map(_ + 1).map(_ + 2.5f).map(_ + 3)
7 }

Thus building ArrayBuffers containing Floats. Also, figure 4,
which corresponds to the handmade version of this new benchmark,
shows how the version using new MbArrays spends approximately
650% less time collecting garbage compared to the old version.
Mapping to Longs and Doubles. There is another case which
needs to be benchmarked, corresponding to the best case scenario
for old MbArrays: mapping to Longs and Doubles. The reason it
is the best scenario is that it is the one in which no extra memory is

1 12. : 255ms
2 [GC 328332K->641K(2009792K), 0.1071670 secs]
3 [Full GC 641K->641K(2009792K), 0.1344740 secs]
4 --- next iteration
5 13. : 249ms
6 [GC 328333K->641K(2009792K), 0.1078760 secs]
7 [Full GC 641K->641K(2009792K), 0.1345190 secs]
8 --- next iteration
9 14. : 250ms

10 [GC 328325K->641K(2009792K), 0.1071550 secs]
11 [Full GC 641K->641K(2009792K), 0.1355260 secs]

(a) ClassTag version

1 12. : 375ms
2 [GC 328502K->197268K(2067968K), 0.8788130 secs]
3 [Full GC 197268K->660K(2067968K), 0.2077410 secs]
4 --- next iteration
5 [GC 524954K->197396K(2066048K), 0.1963980 secs]
6 13. : 374ms
7 [GC 328512K->197268K(2071680K), 0.8838360 secs]
8 [Full GC 197268K->660K(2071680K), 0.2077530 secs]
9 --- next iteration

10 [GC 524953K->197364K(2069888K), 0.1962730 secs]
11 14. : 374ms
12 [GC 328466K->197268K(2075008K), 0.9097610 secs]
13 [Full GC 197268K->660K(2075008K), 0.2010080 secs]

(b) Old Miniboxed version

1 12. : 176ms
2 [GC 328350K->659K(2009792K), 0.0973560 secs]
3 [Full GC 659K->659K(2009792K), 0.1256140 secs]
4 --- next iteration
5 13. : 171ms
6 [GC 328351K->659K(2009792K), 0.0933540 secs]
7 [Full GC 659K->659K(2009792K), 0.1280840 secs]
8 --- next iteration
9 14. : 169ms

10 [GC 328343K->659K(2009792K), 0.0974840 secs]
11 [Full GC 659K->659K(2009792K), 0.1259070 secs]

(c) New Miniboxed version

Figure 3. The initial benchmark’s outputs for ArrayBuffers of
10’000’000 elements, including the new MbArray version’s results.

Size ClassTag Old
MbArray

New
MbArray

300000 22.68 ms 11.65 ms 9.47 ms
600000 45.77 ms 23.28 ms 18.23 ms
900000 57.04 ms 29.02 ms 24.13 ms
1200000 93.44 ms 44.66 ms 35.91 ms
1500000 104.33 ms 50.88 ms 42.67 ms

Table 3. ScalaMeter benchmark outputs with a benchmark map-
ping to Floats

wasted by the old MbArray implementation. Here is the benchmark
code:

1 using(bufs) setUp {
2 b =>
3 b.map(_ + 1L)
4 b.map(_ + 2L)
5 } in {
6 b => b.map(_ + 1L).map(_ + 2.5).map(_ + 1.5)
7 }

Results for this benchmark can be seen in table 4, which show
that we did not lose any run time performance by changing the
design, even in the case where it is the most advantageous for the
old version.



1 [GC (Allocation Failure) 331636K->115092K(1009152K),
0.0104412 secs]

2 [GC (Allocation Failure) 385428K->164252K(1009152K),
0.0112601 secs]

3 [GC (Allocation Failure) 434588K->172444K(1013248K),
0.0017833 secs]

4 [GC (Allocation Failure) 448412K->197004K(1008640K),
0.0060402 secs]

5 [GC (Allocation Failure) 472972K->328108K(1007616K),
0.0329832 secs]

6 [GC (Allocation Failure) 596396K->344492K(1008128K),
0.0032716 secs]

7 [GC (Allocation Failure) 591721K->393652K(998400K),
0.0084239 secs]

8 9. : 685ms (GC : 73ms)

(a) ClassTag version

1 [GC (Allocation Failure) 397484K->197233K(1046016K),
0.0108102 secs]

2 [GC (Allocation Failure) 525167K->361081K(1046528K),
0.0241026 secs]

3 [GC (Allocation Failure) 691468K->557697K(1046528K),
0.0297168 secs]

4 [Full GC (Ergonomics) 557697K->328273K(1046528K),
0.0269909 secs]

5 9. : 425ms (GC : 91ms)

(b) Old Miniboxed version

1 [GC (Allocation Failure) 408657K->164465K(1045504K),
0.0138936 secs]

2 9. : 325ms (GC : 14ms)

(c) New Miniboxed version

Figure 4. Results for handmade benchmark mapping over Array-
Buffers of 10’000’000 elements to Floats

Size ClassTag Old
MbArray

New
MbArray

300000 24.62 ms 11.99 ms 11.24 ms
600000 46.37 ms 22.94 ms 22.48 ms
900000 57.63 ms 28.12 ms 28.43 ms
1200000 90.35 ms 44.57 ms 43.40 ms
1500000 105.27 ms 49.72 ms 50.16 ms

Table 4. ScalaMeter benchmark outputs. Mapping ArrayBuffers
of Long and Doubles.

7.4 JVM Memory

It is also worth noting that the overall speed difference increases at
the advantage of the new MbArrays when less memory is assigned

to the JVM. For example, running any of the ScalaMeter bench-
mark on a JVM which has less than 400MB completely crashes the
version using the old MbArrays by throwing an OutOfMemory ex-
ception. When the amount of memory assigned is between 400MB
and 512MB, the old MbArray version runs but performs really
bad compared to the two other versions, spending a considerable
amount of time in the GC. Finally, when more than 512MB is as-
signed, we obtain the numbers that have been shown so far (Tables
2, 3 and 4) as well as figures 3 and 4), since each of these bench-
marks have been ran on a JVM to which was assigned at least 1GB.

7.5 Conclusion

In every cases, the version using new MbArrays is either faster
(tables 2 or 3) than or as fast (table 4) as the version using old
MbArrays. Futhermore, although it is in some cases running as
equivalently fast as the ClassTag version – as shows benchmark
2 –, it is actually in most cases faster than the ClassTag version,
which is demonstrated by benchmarks results of tables 3 and 4.

References
[1] Scala SIP-15: Value Classes. URL http://docs.scala-lang.org/

sips/completed/value-classes.html.

[2] A. Genêt, V. Ureche, and M. Odersky. Improving the Performance of Scala
Collections with Miniboxing (EPFL-REPORT-200245). Technical report, EPFL,
2014. URL http://scala-miniboxing.org/.

[3] J. Gosling. The Evolution of Numerical Computing in Java - preliminary
discussion on value classes. URL http://web.archive.org/web/
19990202050412/http://java.sun.com/people/jag/FP.html#
classes.

[4] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes. The Implementation of Lua
5.0. Journal of Universal Computer Science, 11(7), 2005.

[5] A. Moors. Type Constructor Polymorphism for Scala: Theory and Practice (Type
constructor polymorfisme voor Scala: theorie en praktijk). PhD thesis, Informatics
Section, Department of Computer Science, Faculty of Engineering Science, 2009.
URL https://lirias.kuleuven.be/handle/1979/2642. Joosen,
Wouter and Piessens, Frank (supervisors).

[6] J. Rose. Value Types and Struct Tearing . URL https://web.archive.
org/web/20140320141639/https://blogs.oracle.com/jrose/
entry/value_types_and_struct_tearing.

[7] V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the Speed to Code
Size Tradeoff in Parametric Polymorphism Translations. In OOPSLA, 2013.

[8] V. Ureche, E. Burmako, and M. Odersky. Late Data Layout: Unifying Data
Representation Transformations. In OOPSLA ’14. ACM, 2014.


