
=
Improving the Interoperation between Generics Translations

Vlad Ureche Milos Stojanovic Romain Beguet Nicolas Stucki Martin Odersky
École polytechnique fédérale de Lausanne, Switzerland

{first.last}@epfl.ch

Abstract

Generics on the Java platform are compiled using the erasure trans-
formation, which only supports by-reference values. This causes
slowdowns when generics operate on primitive types, such as inte-
gers, as they have to be transformed into reference-based objects.

Project Valhalla is an effort to remedy this problem by specializing
classes at load-time so they can efficiently handle primitive values.
In its current early prototype1, the Valhalla compilation scheme
limits the interaction between specialized and erased generics, thus
preventing certain useful code patterns from being expressed.

Scala has been using compile-time specialization for 6 years and
has three generics compilation schemes working side by side. In
Scala, programmers are allowed to write code that freely exercises
the interaction between the different compilation schemes, at the
expense of introducing subtle performance issues. Similar perfor-
mance issues can affect Valhalla-enabled bytecode, whether the
code was written in Java or translated from other JVM languages.

In this context we explain how we help programmers avoid these
performance regressions in the miniboxing transformation: (1) by
issuing actionable performance advisories that steer programmers
away from performance regressions and (2) by providing alterna-
tives to the standard library constructs that use the miniboxing en-
coding, thus avoiding the conversion overhead.

Keywords generics, specialization, miniboxing, backward com-
patibility, data representation, performance, Java, bytecode, JVM

1. Introduction

Generics on the Java platform are compiled using the erasure trans-
formation [12], which allows them to be fully backward compati-
ble with pre-generics bytecode. Unfortunately, this also means that
they only handle by-reference values (objects) and not primitive
types. Thus, primitive values such as bytes and integers have to
be converted to heap objects each time they interact with gener-
ics. This conversion, known as boxing, compromises the execution
performance and increases the heap footprint, forcing Java to lag
behind lower-level languages such as C or C++.

1 As of August 2015 [19, 20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPPJ ’15, September 08 - 11, 2015, Melbourne, FL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3712-0/15/09. . . $15.00.
http://dx.doi.org/10.1145/2807426.2807436

The performance drawbacks of erasure are currently being ad-
dressed in Project Valhalla2, an important undertaking led by the
Java platform architects and aimed at providing unboxed generics
for Java and other JVM languages. The updated bytecode format
in Project Valhalla will include the necessary type information to
allow load-time class specialization, effectively creating different
versions of classes that directly support primitive types. This load-
time transformation approach is also employed by the .NET frame-
work [21, 36] in order to implement generics.

Unlike .NET generics, which are always specialized, the current
design of Project Valhalla, as of August 2015, makes it an explicit
goal to have specialization as an opt-in transformation. This will
allow the ecosystem to evolve smoothly from erased to specialized
generics, allowing both erased and specialized classes to work side
by side. However, in the current early prototype, there are still some
restrictions: (1) erased code cannot handle specialized instances in
a generic manner and, (2) abstracting over specialized classes using
wildcard types [19, 20] pays the cost of boxing primitive types. This
is shown in the following example:

1 // The Box class is specialized by virtue of its type
2 // parameter T being annotated with the "any" prefix:
3 public class Box<any T> {
4 ...
5 T getValue() { ... }
6 }
7

8 // The getBoxValue method is compiled with erasure
9 // since U is not marked with the "any" prefix:

10 static <U> U getBoxValue(Box<U> box) {
11 return box.getValue();
12 }
13

14 // (1) erased code cannot handle specialized class
15 // instances (the code will not compile):
16 getBoxValue(new Box<int>(5));
17

18 // (2) abstracting over a specialized class leads to
19 // boxing the value (any acts as a wildcard type):
20 Box<any> box = new Box<int>(5);
21 System.out.println(box.getValue()); // boxes the value

These two code patterns could easily be rewritten to make the
code compile and to avoid the overhead of boxing. For the first
pattern, adding the any prefix to the type parameter U of method
getBoxValue would make it specialized as well, allowing it to
handle the incoming argument. In the second pattern, the wildcard,
which is equivalent to extending Box<?> to value types, could be
replaced by the exact type, Box<int>, eliminating the overhead of
boxing. Yet, in the general case, not all code can be changed at will,
due to interactions, backward compatibility or because it resides in
external libraries. Thus, a better solution would be to have erased
and specialized generics interoperate, ideally without the overhead.

2 The Valhalla Project is still in its infancy, but early prototypes are openly
available and the hard goals have been clearly defined in [18, 25, 26].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148013238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Scala programming language, which also compiles to JVM
bytecode, has had compile-time specialization for 6 years [13,
14] and currently has three mechanisms for compiling generics:
erasure, specialization and a new arrival, miniboxing [31]. In Scala,
all three generics compilation schemes can be freely mixed:

1 // The Mbox class is miniboxed by virtue of the type
2 // parameter annotation (but could be specialized
3 // as well, using @specialized):
4 class Mbox[@miniboxed T](value: T) {
5 def getValue(): T = ...
6 }
7

8 // The getMboxValue method is erased:
9 def getMboxValue[U](mbox: Mbox[U]): U = mbox.getValue()

10

11 // (1) erased code can handle specialized instances:
12 getMboxValue(new Mbox[Int](5))
13 // (2) programmers can abstract over specializations:
14 val mbox: Mbox[_] = new Mbox[Int](5)
15 println(mbox.getValue())

Despite the uniform behavior, Scala does pay a hefty price for be-
ing able to freely mix code using the three generics compilation
schemes: calls between different compilation schemes require box-
ing primitive values. The reason is that only boxed primitive values
are understood by all three transformations. Furthermore, as we
will see later on, instantiating a miniboxed (or specialized) class
from erased code leads to the erased version being instantiated in-
stead of its miniboxed (or specialized) equivalent, in turn leading
to unexpected performance regressions.

In this paper, we show how we completely eliminate the unexpected
slowdowns in the miniboxing transformation and, as a side effect,
allow programmers to easily and robustly use miniboxing to speed
up their programs. The underlying property we are after is that,
inside hot loops and performance-sensitive parts of the program,
all generic code uses the same compilation scheme, in this case,
miniboxing. This way, primitive types are always passed using the
same data representation, whether that’s the miniboxed encoding
(for miniboxing) or the unboxed representation (for specialization).

We show two approaches for harmonizing the compilation scheme
across performance-sensitive code:

Issuing actionable performance advisories when compilation
schemes do not match, allowing the programmer to harmonize
them. For example, when a generic method takes a miniboxed
class as a parameter and tries to call methods on it, we automati-
cally generate performance advisories:

1 scala> def getMboxValue[U](mbox: Mbox[U]): U =
2 | mbox.getValue()
3 <console>:9: warning: The following code could benefit

from miniboxing if the type parameter U of method
getMboxValue would be marked as "@miniboxed U":

4 mbox.getValue()
5 ^

Another problem that occurs frequently concerns library evolution:
as a new compilation scheme arrives, it is best if all libraries start
using it as soon as possible. However, backward compatibility
prohibits changing the compilation scheme for the standard library,
as it would break old bytecode. In Scala, we had this problem
because many of the core language constructs, such as functions
and tuples use specialization instead of miniboxing. Similarly, Java
has as many as 20 manual specializations for the arity 1 lambda,
such as IntConsumer, IntPredicate and so on. Replacing these
by a single specialized functional interface would be desirable, but
is realistically impossible. We present a solution for this:

Efficiently bridging the gap between compilation schemes. In the
case of miniboxing, which is a compiler plugin, we were not able
to change the Scala standard library functions and tuples to use the
miniboxing scheme. Instead, we describe the approaches we use to
efficiently communicate to the existing library classes, and, where
necessary, to replace them by miniboxed equivalents.

With this, the paper makes four key contributions to the Java com-
munity and, in the general sense, to the field of compiling object-
oriented languages with generics:

• Describing the problems involved in mixing different generics
compilation schemes (§2);

• Describing a general mechanism for harmonizing the compila-
tion scheme (§3);

• Describing the approaches we use to fast-path communication
between different generic compilation schemes (§4);

• Validating the approach using the miniboxing plugin (§5).

The evaluation section (§5) shows that warnings not only help avoid
performance regressions, but can also guide developers into further
improving their program’s performance.

2. Compilation Schemes for Generics

This section describes the different compilation schemes for gener-
ics in Scala. We mainly use Scala for the examples, but the dis-
cussion can be applied to Java as well. Differences between Scala
specialization and Project Valhalla are pointed out along the way.

2.1 Erasure in Scala

The current compilation scheme for generics in both Java and Scala
is called erasure, and is the simplest compilation scheme possible
for generics. Erasure requires all data, regardless of its type, to
be passed in by reference, pointing to heap objects. Let us take a
simple example, a generic identity method written in Scala:

1 def identity[T](t: T): T = t
2 val five = identity(5)

When compiled, the bytecode for the method is3:

1 def identity(t: Object): Object = t

As the name suggests, the type parameter T was “erased” from the
method, leaving it to accept and return Object, T’s upper bound.
The problem with this approach is that values of primitive types,
such as integers, need to be transformed into heap objects when
passed to generic code, so they are compatible with Object.This
process, called boxing goes two ways: the argument of method
identity needs to be boxed while the return value needs to be
unboxed back to a primitive type:

1 val five = identity(Integer.valueOf(5)).intValue()

Boxing primitive types requires heap allocation and garbage col-
lection, both of which degrade program performance. Furthermore,
when values are stored in generic classes, such as Vector[T], they
need to be stored in the boxed format, thus inflating the heap mem-
ory requirements and slowing down execution. In practice, generic
methods can be as much as 10 times slower than their monomor-
phic (primitive) instantiations. This gave rise to a simple and effec-
tive idea: specialization.

3 Throughout the paper, we show the source-equivalent of bytecode. The
context clarifies whether we are showing source code or compiled bytecode.

2.2 Specialization

Specialization [13, 14] is the second approach used by the Scala
compiler to translate generics and, for methods, is similar to Project
Valhalla. It is triggered by the @specialized annotation:

1 def identity[@specialized T](t: T): T = t
2 val five = identity(5)

Based on the annotation, the specialization transformation creates
several versions of the identity method:

1 def identity(t: Object): Object = t
2 def identity_I(t: int): int = t
3 def identity_C(t: char): char = t
4 // ... and another 7 versions of the method

Having multiple methods, also called specialized variants or simply
specializations of the identitymethod, the compiler can optimize
the call to identity:

1 val five: int = identity_I(5)

This transformation side-steps the need for a heap object allocation,
improving the program performance. However, specialization is
not without limitations. As we have seen, it creates 10 versions
of the method for each type parameter: the reference-based version
plus 9 specializations (Scala has the 8 primitive types in Java plus
the Unit primitive type, which corresponds to Java’s void). And
it gets worse: in general, for N specialized type parameters, it
creates 10N specialized variants, the Cartesian product covering
all combinations.

Lacking Project Valhalla’s virtual machine support, Scala special-
ization generates the specialized variants during compilation and
stores them as bytecode. This prevents the Scala library from using
specialization extensively, since many important classes have one,
two or even three type parameters. This led to the next develop-
ment, the miniboxing transformation.

2.3 Miniboxing

Taking a low level perspective, we can observe the fact that all
primitive types in the Scala programming language fit within 64
bits. This is the main idea that motivated the miniboxing transfor-
mation [31]: instead of creating separate versions of the code for
each primitive type alone, we can create a single one, which stores
64-bit encoded values, much like C’s untagged union. The previous
example:

1 def identity[@miniboxed T](t: T): T = t
2 val five = identity(5)

Is compiled4 to the following bytecode:

1 def identity(t: Object): Object = t
2 def identity_M(..., t: long): long = t
3 val five: int= minibox2int(identity_M(int2minibox(5)))

Alert readers will notice the minibox2int and int2minibox
transformations act exactly like the boxing coercions in the case
of erased generics. This is true: the values are being coerced to the
miniboxed representation, much like boxing in the case of erasure.
Yet, our benchmarks on the Java Virtual Machine platform have

4 In the rest of the paper we assume the miniboxing Scala complier plugin
is active unless otherwise noted. For more information on adding the mini-
boxing plugin to the build please see http://scala-miniboxing.org.

shown that the miniboxing conversion cost is completely elimi-
nated when just-in-time compiling to native 64-bit code. Further
benchmarking has shown that the code matches the performance
of specialized code within a 10% slowdown due to coercions [31],
compared to a 10x slowdown in the case of boxing.

There is an ellipsis in the definition of the identity_M method,
which stands for what we call a type byte: a byte describing the type
encoded in the long integer, allowing operations such as toString,
hashCode or equals to be executed correctly on encoded values:

1 def string[@miniboxed T](t: T): String = t.toString

In order to transform this method, we need to treat the primitive
value as its original type (corresponding to T) rather than a long
integer. To do so, we use the type byte:

1 def string(t: Object): String = t.toString
2 def string_M(T_Type: byte, t: long): String =
3 minibox2string(T_Type, t)

Then, when the programmer makes a call to string:

1 string[Boolean](true)

It automatically gets transformed in the compiler pipeline to:

1 string_M(BOOL, bool2minibox(true))

Knowing the type byte, the minibox2string can do its magic:
decoding the long integer into a “true” or “false” string, depending
on the encoded value. Although seemingly simple, the code trans-
formation to implement the miniboxing transformation is actually
rather tricky [17, 32, 33].

So far, we have only looked at methods, but transforming classes
poses even greater challenges.

2.4 Class Transformation in Project Valhalla

Project Valhalla takes a straight-forward approach to specialization:
classes are duplicated and all previous references to the type param-
eters are transformed. Given the linked list node class:

1 public class Node<any T> {
2 T head;
3 Node<T> tail;
4

5 public Node(T head, Node<T> tail) {
6 this.head = head;
7 this.tail = tail;
8 }
9

10 public T head() {
11 return this.head;
12 }
13

14 public Node<T> tail() {
15 return this.tail;
16 }
17 }

When specializing the Node class for the int primitive type,
Project Valhalla employs its custom classloader to clone and adapt
the bytecode for class Node. Among other transformations, it re-
places references to T by int [18]:

1 // Node_{T=int} corresponds to Node<int> in the code:
2 public class Node_{T=int} implements Node_any {
3 int head;
4 Node_{T=int} tail;
5 // ... continued on the next page

1 public Node(int head, Node_{T=int} tail) {
2 this.head = head;
3 this.tail = tail;
4 }
5

6 public int head() {
7 return this.head;
8 }
9

10 public Node_{T=int} tail() {
11 return this.tail;
12 }
13 }

The load-time translation produces Node_{T=int}, which handles
unboxed int values. The fact that Node_{T=int} is not a subclass
of Node negatively impacts the interoperation with erasure. Let us
take an example method, compiled with erasure:

1 static <U> U getNodeTail(Node<U> spec) {
2 return spec.tail();
3 }

The corresponding bytecode is:

1 static Object getNodeTail(Node spec) {
2 return spec.tail();
3 }

Since Node_{T=int} is not a subclass of Node, the getNodeTail
method cannot handle specialized instantiations of Node as ar-
guments, forcing the compiler to reject code patterns such as
getNodeTail(new Node<int>(...)). This limits the interac-
tion between erased and specialized generics and prevents many
useful code patterns from being expressed. In turn, it prolongs the
time necessary to adopt specialization: if a single generic library
is compiled with erasure, its clients need to use erasure as well,
otherwise they would not be able to use that library.

Acknowledging the importance of allowing erased methods to han-
dle specialized instances, a solution was later introduced: In the
initial prototype, as of December 2014, the only common parent
of classes Node and Node_{T=int} was Object. However, as of
August 2015, the translation has been improved to automatically in-
troduce the Node_any interface which serves as a common super-
type of Node and its specializations (e.g. Node_{T=int}). Aside
from simplifying the translation from JVM languages to Valhalla
bytecode, this change also enables programmers to abstract over
specialized classes:

1 // Node<any> acts as the Node<?> wildcard, except for
2 // the fact that it also accepts specialized versions:
3 Node<any> node = new Node<int>(5, null);
4 System.out.println(node.getValue());

This example is translated to the following bytecode:

1 Node_any node = new Node_{T=int}(5, null);
2 System.out.println(node.getValue()/* of type Object */)

The Node_any interface is called an “erased view”, since it enables
accessing the specialized class in a uniform, erased-like manner.
Since there is no mechanism to return either a reference or a
primitive type (corresponding to the any wildcard), the call to
getValue() boxes the value returned. Thus, the call introduces a
silent performance regression, which is the cost of interoperability.

The miniboxing translation allows erased, specialized and mini-
boxed code to freely interact, enabling both code patterns above,
at the expense of adding even more boxing operations.

2.5 Class Transformation in Miniboxing

Scala specialization [13, 14] introduced a better class translation,
which is compatible to erased generics. Miniboxing [31] inherited
and adapted this scheme, addressing two of its major drawbacks,
namely the double fields and broken inheritance. For this reason,
we will present the miniboxed class translation scheme directly.

The main challenge of interoperating with erased generics is to pre-
serve the inheritance relation while providing specialized variants
of the class, where fields are encoded as miniboxed long integers
instead of Objects. Let us take the linked list node class again, this
time written in Scala:

1 class Node[@miniboxed T](val head:T, val tail:Node[T])

The Scala compiler desugars the class to (some aspects omitted):

1 class Node[@miniboxed T](_head: T, _tail: Node[T]) {
2 def head: T = this._head // getter for _head
3 def tail: Node[T] = this._tail // getter for _tail
4 }

There are three subtleties in the Node translation:

• First, there should be two versions of the class: one where
_head is miniboxed, called Node_M and another one where
_head is an Object, called Node_L;

• Then, types like Node[_], which corresponds to Java’s wild-
card Node<any> can be instantiated by both classes, so the two
need to share a common interface, the “erased view”;

• Finally, this shared interface has to contain the specialized ac-
cessors corresponding to both classes (so both classes should
implement all the methods).

Given these constraints, miniboxing compiles Node to an interface:

1 interface Node {
2 def head(): Object // reference-based accessor
3 def head_M(...): long // specialized accessor, which
4 // is not present in the
5 // Valhalla translation
6 def tail: Node[T]
7 }

Note that the tail method does not have a second version, as it
doesn’t accept or return primitive values. Then, we have the two
specialized variants of class Node:

1 class Node_L(_head: Object, _tail: Node) impl Node {
2 def head(): Object = this._head
3 def head_M(...): long = box2minibox(..., head)
4 def tail(): Node[T] = this._tail
5 }
6

7 class Node_M(..., _head: long, _tail: Node) ... {
8 def head(): Object = minibox2box(..., head_M(...))
9 def head_M(...): long = this._head

10 def tail(): Node[T] = this._tail
11 }

As before, the ellipsis corresponds to the type bytes. With this
translation, code that instantiates the Node class is automatically
transformed to use one of the two variants. For example:

1 new Node[Int](4, null)

Is automatically transformed to:

1 new Node_M[Int](INT, int2minibox(4), null)

And, when Node is instantiated with a miniboxed type parameter:

1 def newNode[@miniboxed T](t: T) =
2 new Node[T](t, null)

The code is translated to:

1 def newNode(t: Object) =
2 new Node_L(t, null)
3 def newNode_M(T_Type: byte, t: long) =
4 new Node_M(T_Type, t, null)

The translation hints at an optimization that can be done: given a
value of type Node[T] where T is either a primitive or known to be
miniboxed, the compiler can call head_M instead of head, skipping
a conversion. The following code:

1 val n = new Node[Int](3, null)
2 n.head

Is translated to:

1 val n = new Node_M(..., 3, null)
2 n.head_M(...)

The rewrite also occurs when the type argument is miniboxed:

1 def getFirst[@miniboxed T](n: Node[T]) = n.head

This method is translated to:

1 def getFirst(n: Node): Object =
2 n.head // using reference accessor
3 def getFirst_M(T_Type: byte, n: Node) =
4 n.head_M(T_Type) // using miniboxed accessor

At this point, you may be wondering why the getFirst bytecode
receives a parameter of type Node instead of Node_L, or, respec-
tively, Node_M. The reason is interoperability with erased generics.

2.6 Interoperating with Erased Generics

So far, we have seen the following two invariants:

• we call the head_M accessor on receivers of type Node[T]
where T is either miniboxed or is a primitive type, optimistically
assuming the receiver is an instance of class Node_M;

• otherwise, we call the head accessor, assuming the receiver is
an instance of class Node_L.

Unfortunately, interoperating with erased generics violates both
invariants. Consider the following method:

1 def newNodeErased[T](head: T) =
2 new Node[T](head, null)

During the compilation of this method, using to erased generics, the
compiler is forced to make a static (compile-time) choice: Which
class to instantiate for the new Node[T]?

Since newNodeErased can be called with both (boxed) primitives
and objects, the only valid choice is Node_L, which can handle
both cases. Contrarily, Node_M can’t handle references, since object
pointers are not directly accessible in the JVM. Thus, we have:

1 def newNodeErased(head: Object) =
2 new Node_L(head, null)

Which allows the erased generics to invalidate the invariants:

1 val n: Node[Int] = newNodeErased[Int](3)
2 n.head // n: Node[Int] => call head_M

1 val n: Node = newNodeErased(...) // retuns a Node_L
2 n.head_M(INT) // assumption: receiver has type Node_M

This way, the call to head_M occurs on a Node_L instance. The
symmetric case can also occur, calling head on a Node_M class.
And, what is worse, we can end up with a Node_L class storing a
primitive value, which means it will be boxed.

Fortunately, by never promising more than the erased view, Node,
the compilation scheme is robust enough to handle the mix-up. This
allows correctly compiling both patterns in the Valhalla example:

1 def getNodeTail[T](t: Node[T]): Node[T] = t.tail
2 getNodeTail(new Node[Int](5, null))
3 val node: Node[_] = new Node[Int](5, null)
4 node.tail()

By producing the following bytecode:

1 def getNodeTail(t: Node): Node = t.tail()
2 getNodeTail(new Node_M(...)) // Node_M impls Node
3 val node: Node = new Node_M(...) // Node_M impls Node
4 node.tail() // call through the Node interface

Comparing to Valhalla bytecode, the Node interface corresponds to
Valhalla’s Node_any interface, the “erased view”. Yet, by replacing
references to Node[T] by the erased view (instead of the Node_L
class) miniboxing allows better interoperation.

3. Performance Advisories

The previous section has shown that, when used globally, mini-
boxed generics provide two key invariants that ensure primitive val-
ues are always passed using the miniboxed (long integer) encoding:

• Instantiations of miniboxed classes use the most specific variant
(e.g. a value of type Node[Int] has runtime class Node_M);

• Methods called on a miniboxed class use the most specific
specialization available (e.g. a runtime class Node_M always
receives calls to the miniboxed head_M accessor)

The presence of erasure and wildcard-type abstractions (such as
Node[_]) leads to violations of these two invariants: the reference
variant of a miniboxed class may be instantiated in place of a mini-
boxed variant or the method called may not be the most specific one
available. In both cases, the compilation scheme is resilient, pro-
ducing correct results, at the expense of performance regressions,
caused by boxing primitive types.

There key to avoiding these subtle performance regressions is to
intercept the class instantiations and method calls that violate the
invariant and report actionable advisories to the users, in the form of
compiler warnings. Luckily, all the information necessary to detect
invariant violations is available during compilation.

3.1 Performance Advisories Overview

Advisories are most commonly triggered by interacting with erased
or specialized generics, but can also be caused by technical or
design limitations. There are as many as ten different performance
advisories implemented in the miniboxing plugin, but in order to
focus on the concept, we will only look at the three most common
advisories, two of which are caused by the interaction with erased
generics. To show exactly how the slowdowns occur, we can take
the following piece of code:

1 def foo[@miniboxed T](t: T): T = bar(t)
2 def bar[@miniboxed U](u: U): U = baz(u)
3 def baz[@miniboxed V](v: V): V = v

The code is compiled to:

1 def foo(t: Object): Object = bar(t)
2 def bar(u: Object): Object = baz(u)
3 def baz(v: Object): Object = v
4 def foo_M(..., t: long): long = bar_M(..., t)
5 def bar_M(..., u: long): long = baz_M(..., u)
6 def baz_M(..., v: long): long = v

The translation shows that once execution entered the miniboxed
path, by calling foo_M, it goes through without any boxing, only
passing the value in the encoded (miniboxed) representation. Now
let’s see what happens if the @miniboxed annotation is removed:

1 def foo[@miniboxed T](t: T): T = bar(t)
2 def bar[T](u: U): U = baz(u)
3 def baz[@miniboxed V](v: V): V = v

The bytecode produced is:

1 def foo(t: Object): Object = bar(t)
2 def bar(u: Object): Object = baz(u)
3 def baz(v: Object): Object = v
4 def foo_M(..., t: long): long =

box2minibox(bar(minibox2box(t))) // boxing :(
5 def baz_M(..., v: long): long = v

Two problems occur here:

• When method foo_M is called, it does not have a miniboxed
version of bar to call further on, so it calls the erased one;

• When method bar is called, although baz has a miniboxed
version, it cannot be called as the type information was erased.

These two problems correspond to the main two performance advi-
sories: forward and backward warnings. A third one, related to data
representation ambiguity, will be shown below.

Forward advisories. The first advisory (compiler warning) re-
ceived by the programmer is also called a forward warning:

1 test.scala:7: warning: The method bar would benefit
from miniboxing type parameter U, since it is
instantiated by miniboxed type parameter T of
method foo:

2

3 def foo[@miniboxed T](t: T): T = bar(t)
4 ^

This advisory pushes the miniboxed representation from caller to
callee when the arguments need to be boxed before being passed.

Backward advisories. The miniboxing annotation is also propa-
gated from callee to caller:

1 test.scala:8: warning: The following code could
benefit from miniboxing specialization if the type
parameter U of method bar would be marked as
"@miniboxed U" (it would be used to instantiate
miniboxed type parameter V of method baz):

2

3 def bar[U](u: U): U = baz(u)
4 ^

Ambiguity advisories. Scala allows types to abstract over both
primitives and objects. For example, wildcard types (known as ex-
istentials in Scala) can abstract over any type in the language. Any
is the top of the Scala type system hierarchy, with two subclasses:
AnyVal is the superclass of all value types (and thus primitives)
while AnyRef is the superclass of all reference types, correspond-
ing to Java’s Object. Therefore, existentials, Any and AnyVal are

not specific enough to pick a primitive or a reference representa-
tion. In this case, we issue a warning and box the values:

1 test.scala:12: warning: Using the type argument "Any"
for the miniboxed type parameter T of method foo is
not specific enough, as it could mean either a
primitive or a reference type. Although method foo
is miniboxed, it won’t benefit from specialization:

2 foo[Any](5)
3 ^

With these actionable warnings, even a novice programmer, not
familiar to the miniboxing transformation, can still achieve the
same performance as an expert manually sifting through the gen-
erated bytecode. We have several examples where programmers
achieved speedups over 2x just by following the miniboxing advi-
sories [2, 4, 6]. We will now explain the intuition behind generating
performance advisories.

3.2 Unification: Intuition

The reason we chose to present the “forward”, “backward” and
“ambiguity” advisories is because, although they are only three of
the ten cases, they are the warnings a typical programmer is most
likely to encounter. They appear in all cases where a specialized
variant of either a method or class needs to be chosen:

• Calling a miniboxed method;
• Instantiating a miniboxed class;
• Calling the method of a miniboxed class;
• Extending a miniboxed class or trait;

The one element common to all these cases is the need to pick the
best matching miniboxed variant for the given type arguments. For
example, given the method foo defined previously, for a call to
foo[Int](4), the compiler needs to find the best variant of foo
and redirect the code to it. In this case, since the type argument of
method foo is Int, which is a primitive type, and since the type
parameter T in the definition of foo is marked as miniboxed, it will
pick the foo_M variant, which uses the miniboxed representation.
This operation is called unification, and we have unified the type
parameter of foo, namely T, and a type argument, Int. The unifi-
cation algorithm is also responsible for issuing advisories.

Let us now focus on a more formal definition.

3.3 Unification: Formalization

Let us call the original method or class O, with the type parameters
F1 to Fn and VO the set of specialized variants corresponding to
O. Each specialized variant V∈VO corresponds to a mapping from
the type parameters to a representation in the set of {miniboxed,
reference, erased}. Let us inverse this mapping, to produce another
mapping from type parameters and representations to the special-
ized variants. Let’s call it VS.

Then the unification algorithm can be reduced to choosing the
corresponding V∈VO, for a term of type O[T1, .., Tn]. This can
be done following the algorithm in Figure 1.

Let us take an example to illustrate this:

1 class C[@miniboxed M, N] // M is mboxed, N is erased
2 class D[L] extends C[L, Int]

When deciding which specialized variant of the miniboxed class C
to use as class D’s parent, we have:

• the original class O = C;
• the type parameters F1 = M and F2 = N;

• the set of variants VO = {C_M, C_L};
• the inverse mapping VS = {M: miniboxed and N: erased → C_M,
M: reference and N: erased → C_L}

Now, applying the unification algorithm in Figure 1 for the type
parameter F1 = M coupled with the type argument T1 = L, it issues
a forward warning followed by outputting (M: reference). Then,
applying it to F2 = N and T2 = Int, it issues a backward warning
and outputs (N: erased). From the two bindings, we obtain the
specialized variant C_L to be a parent of D. Indeed, this is what
happens in practice:

1 scala> class C[@miniboxed M, N]
2 defined class C
3

4 scala> class D[L] extends C[L, Int]
5 <console>:8: warning: The following code could benefit

from miniboxing specialization if the type
parameter L of class D would be marked as
"@miniboxed L" (it would be used to instantiate
miniboxed type parameter M of class C):

6 class D[L] extends C[L, Int]
7 ^
8 <console>:8: warning: The class C would benefit from

miniboxing type parameter N, since it is
instantiated by a primitive type:

9 class D[L] extends C[L, Int]
10 ^
11 defined class D
12

13 scala> classOf[D[_]].getSuperclass
14 res7: Class[_ >: D[_]] = class C_L

Now it is easy to guess where the forward and backward names
come from: the direction in which the miniboxing transformation
propagates between the type parameter and the type argument.

3.4 Unification: Implementation
The performance advisories are tightly coupled with the unification
algorithm, which decides the variant that should be used for trans-
forming the code. The processing is done one step at a time, with
a type parameter and type argument pair. We will now show some
issues that an implementer must be careful about.

Owner chain status. Since methods and classes in Scala can be
nested in any order, we must be careful to propagate the status of
the type parameters in the owner chain. In the following example:

1 def a[@miniboxed A] = {
2 def b[@miniboxed B] = {
3 // need to be aware the representation of
4 // type parameters A and B when deciding
5 // which variant of C to instantiate:
6 new C[A, B]()
7 }
8 ...
9 }

When deciding which miniboxed variant of class C to instantiate,
we need to be aware of the nested methods we are located in as
we duplicate and specialize the code: if we’re in method b_M inside
method a_M, we can rely on values of type A and B to be miniboxed.
Contrarily, if we are in method b inside method a, values of type A
and B are references.

Caching warnings. Instead of issuing warnings right away, they
are being cached and later de-duplicated. The reason is that issuing
too many warnings diminishes their value. Aside from the three
advisories shown, there are special advisories dealing with the
specialization transformation in Scala and certain library constructs
that we show in the next section. Thus, we define an ordering of
advisory priority and, if multiple warnings are cached, we only
issue the most important ones.

Figure 1: The unification algorithm for picking the data representa-
tion of a type parameter.

Suppressing warnings. In certain scenarios, programmers are
aware of their sub-optimal erased generic code but, due to compati-
bility requirements with other JVM programs or due to the fact that
code lies outside the hot path, they chose not to change it. In these
situations, they need to suppress the warnings, because instead of
improving visibility, they might obscure other more important per-
formance regressions in the program. However, a coarse-grained
approach such as turning off all warnings is not desirable either,
as it completely voids the benefit of advisories. For this scenario,
the miniboxing transformation provides the @generic annotation,
which can suppress performance advisories:

1 scala> def zoo[@miniboxed T](t: T) = t
2 defined method zoo
3

4 scala> zoo[Any @generic](3) // no ambiguity warning
5 res1: Any = 3
6

7 scala> def boo[@generic T](t: T) = t
8 defined method boo
9

10 scala> boo[Int](3) // no backward warning
11 res2: Int = 3

Libraries. In other cases boxing is caused by the interaction
with erased generics from libraries. In this case, the default de-
cision is not to warn, unless the programmer specifically sets the
-P:minibox:warn-all compiler flag:

1 scala> 3 :: Nil
2 <console>:8: warning: The method List.:: (located in

scala-library.jar) would benefit from miniboxing
type parameter B, since it is instantiated by a
primitive type:

3 3 :: Nil
4 ^
5 res0: List[Int] = List(3)

As we will see in the benchmarking section (§5), the performance
advisories allow programmers who are not familiar with the trans-
formation to make the same changes an expert would do.

4. Interoperating with Existing Libraries

There is a clear parallel between the manual lambda specializations
that are already in the Java Standard Library and thus cannot be
eliminated and the specialized constructs in the Scala Standard
Library, which cannot be replaced by a compiler plugin. Project
Valhalla brings the ability to specialize generics to Java, while
miniboxing brings a new compilation scheme for Scala generics.
What is common between the two cases is the hard requirement
that the new transformations work well with the existing constructs,
which use different compilation schemes. This is the problem of
interoperating with existing libraries.

In this section we will show how performance regressions occur
when miniboxed code interacts with the Scala standard library,
which uses either erased generics or the original specialization
transformation. To counter these performance regressions, we show
three approaches to efficiently bridge the gap between the minibox-
ing and specialization compilation schemes. Although this section
mostly focuses on the interoperation between miniboxing and spe-
cialization, the techniques are general and can be applied to Java
lambdas and Valhalla as well.

4.1 The Interoperation Problem

When interacting with the library from miniboxed code, the pro-
grammers forget the fact that library constructs, such as tuples and

functions, do not share the same compilation scheme. Thus, they
expect the same performance and flexibility as when using mini-
boxed classes. However, calling specialized code from miniboxed
methods and vice-versa is not easy. For example:

1 def spec[@specialized T](t: T): String = t.toString
2 def mbox[@miniboxed T](t: T): String = spec(t)

The code is translated to:

1 def spec(t: Object): String = t.toString
2 def spec_I(t: int): String = Integer(t).toString
3 def spec_J(t: long): String = Long(t).toString
4 ... // other 7 specialized variants
5 def mbox(t: Object): String = spec(t)
6 def mbox_M(T_Type: byte, t: long): String = ...

The reference-based mbox and spec methods can directly call each
other, since there is a 1 to 1 correspondence. The problem is that,
unlike these two methods, none of the specialized variants have a
1 to 1 correspondence to mbox_M. This only leaves the reference-
based methods as candidates for the direct interoperation between
miniboxing and specialization.

Although it may seem like mbox_M could directly invoke spec_J,
since the argument types match, this would be incorrect, as the
value t in mbox_M can be any primitive type, encoded as a long,
whereas t in spec_J can only be a long integer. Thus, if we were
to call spec_J from mbox_M passing an encoded boolean, instead
of returning either “true” or “false”, it would return the encoded
value of the boolean.

The mbox_M method has one more piece of information: T_Type,
the type byte describing the encoded primitive. In theory, the mini-
boxed method could use this type byte to dispatch the right special-
ized counterpart:

1 def mbox_M(T_Type: byte, t: long): String =
2 T_Type match {
3 case INT => spec_I(minibox2int(t))
4 case LONG => spec_M(minibox2long(t))
5 ...
6 }

Although this indirect approach seems to work and can easily be
automated, it is actually a step in the wrong direction: the mini-
boxing transformation would be introducing extra overhead with-
out offering the programmer any feedback on how and why this
happens. Furthermore, when multiple type parameters are special-
ized, all 10N possible combinations would have to be added to the
match, making it very large. This is likely to confuse the Java Vir-
tual Machine inlining heuristics, causing severe performance re-
gressions.

It may seem like the other way around would be easier: allowing
specialized code to call miniboxed methods without performing a
switch. However this is not the case because, having been devel-
oped first, specialization is not aware of miniboxing. Thus, when
calling miniboxed methods, specialization invokes the reference
version, boxing the arguments and unboxing the returned value.

With this in mind, our decision was to go with simplicity and
symmetry: the bridge between miniboxing and specialization goes
through boxing. To allow transparency, miniboxing issues perfor-
mance advisories about specialized code that should be miniboxed:

1 scala> def mbox[@miniboxed T](t: T): String = spec(t)
2 <console>:8: warning: Although the type parameter T of

method spec is specialized, miniboxing and
specialization communicate among themselves by
boxing (thus, inefficiently) for all classes ...

1 ... other than FunctionX and TupleX. If you want to
maximize performance, consider switching from
specialization to miniboxing:

2 def mbox[@miniboxed T](t: T): String = spec(t)
3 ^

This solution works well with most of the code that lies within
the programmer’s control, including for the case where 3rd party
libraries distribute both a specialized and a miniboxed version.
However, the one library which cannot have multiple versions and
happens to use specialization is the Scala standard library. The
two most wide-spread constructs affected by this are Tuples and
Functions, both of which are specialized. This makes the following
function a worst-case scenario for vanilla miniboxing:

1 def tupleMap[@miniboxed T,
2 @miniboxed U](tup: (T, T), f: T => U) =
3 (f(tup._1), f(tup._2))

Despite the annotations, with the vanilla miniboxing transforma-
tion, all versions of the tupleMap method use reference-based tu-
ple accessors and function applications, leading to slow paths irre-
versibly creeping into miniboxed code. For many applications, this
is a no-go, so our task was to eliminate these slowdowns. In the fol-
lowing subsection we present three possible approaches and show
where each works best.

4.2 Eliminating the Interoperation Overhead

We show three approaches to eliminating the boxing overhead
when calling specialized code from miniboxed classes or methods.

Accessors. The simplest answer to the problem of inter-operating
with specialization is to switch on the type byte, as shown previ-
ously. To avoid confusing the Java Virtual Machine inlining heuris-
tics, we can extract the operation into a static method, that we call
separately. This approach needs to be implemented both for acces-
sors, allowing the specialized values to be extracted directly into
the miniboxed encoding and for constructors, allowing miniboxed
code to instantiate specialized classes without boxing. This is the
approach taken for Tuple classes (§4.3);

Transforming objects. The accessors approach allows us to pay a
small overhead with each access. This is a good trade-off when the
constructs are only accessed a couple of times during their lifetime,
which is the case for tuples. In other cases, such as functions, the
apply method is presumably called many times during the object
lifetime, making it worthwhile to completely eliminate the over-
head. In this case, a better approach is to replace the Function
objects by MiniboxedFunctions, introducing conversions be-
tween them where necessary. This way, the apply method ex-
posed by MiniboxedFunction can be called directly, and this
can compensate for a potentially greater cost of constructing the
MiniboxedFunction object. This way, switching on the type
bytes is done only once, when converting the function, and then
amortizes over the function lifetime (§4.4);

New API. In some cases, the API and guarantees are hardcoded
into the platform. This is the case for the Scala Array class, for
which the original miniboxing plugin chose the accessors approach
[31]. However, a better tradeoff is achieved by defining a new
MbArray class with a similar API but different guarantees. This
approach will be briefly mentioned in the Arrays subsection (§4.5).

The next sections discuss the three methods above.

4.3 Tuple Accessors

The Scala programming language offers a very concise and nat-
ural syntax for library tuples, allowing users to write (3,5) in-

stead of the desugared new Tuple2[Int, Int](3,5). Simi-
larly, it allows programmers to write (Int, Int) instead of
Tuple2[Int, Int]. If we were to introduce miniboxed tuples,
we would not be able to use the syntactic sugar to express pro-
grams, losing the support of many programmers. Instead, a better
choice is to efficiently access specialized Scala tuples.

Although we don’t have statistically significant data, our experi-
ence suggests that Tuple classes have their components accessed
only a few times during their life. Therefore, both for compatibility
reasons and to avoid costly conversions, we decided to allow the
Tuple class to remain unchanged, instead focusing on providing
accessors and constructors that use the miniboxed encoding.

The optimized tuple accessors are written by hand and are explic-
itly given the type byte:

1 def tuple1_accessor_1[T](T_Tag: Byte, tp: Tuple1[T]) =
2 T_Tag match {
3 case INT =>
4 // the call to _1 will be rewritten to a call
5 // to the specialized variant _1_I, which
6 // returns the integer in the unboxed format:
7 int2minibox(tp.asInstanceOf[Tuple1[Int]]._1)
8 ...
9 }

Once the tuple is cast to a Tuple1[Int], the specialization trans-
formation kicks in and transforms the call to _1 into a specialized
call to _1_I, the integer variant. Since the int2minibox conver-
sion also takes an unboxed integer, the overhead of boxing is com-
pletely eliminated.

The specialized constructors are motivated by two observations:
(1) allocating tuples in the miniboxed code without special support
requires boxing and, even worse (2) the tuples created use the
reference-based variant of the specialized class, thus voiding the
benefits of having added tuple accessors. The code for the tuple
constructors is also written by hand and is very similar to the
accessor code: it dispatches on the type tags to create tuples of
primitive types, which specialization can rewrite to the optimized
variants. It’s quite a bit of code, but we copy-pasted and adapted it.

Introducing accessors and constructors is done by the minibox-
ing plugin when encountering a tuple access followed by a conver-
sion to the miniboxed representation or when the tuple constructor
is invoked with all the arguments being transformed from the mini-
boxed representation to the boxed one. There are two reasons this
step needs to be automated:

• By default, programmers do not have access to the type bytes
directly, as this would allow them to introduce unsoundness
in the type system (they can inspect their representation using
miniboxing reflection, but this is outside the scope);

• One of the reasons tuples are useful is their great integration
with the language, allowing a very concise syntax. Asking pro-
grammers to use anything other than this syntax would be as
bad as developing our own, no-syntax-sugar miniboxed tuple.

With these three changes, benchmarks show a 2x speedup when
accessing tuples and a 5% slowdown compared to the equivalent
code which accesses the tuples directly. The benchmark we used
was a tuple quicksort algorithm (§5). Pretty neat, huh?

With the three elements above, accessors, constructors and the au-
tomatic code rewriting we create a direct bridge between special-
ized tuples and miniboxed classes. Unfortunately, as we’ve seen be-
fore, adding such accessors has to be a carefully-weighted, context-
specific decision, so automating it would not provide much benefit.
For example, this choice would not be suitable for functions.

4.4 Functions

Like tuples, functions in Scala have a concise and natural syntax,
which ultimately desugars to one of the FunctionX traits, where
X is the function arity. For example:

1 val f: Int => Int = (x: Int) => x + 1

Desugars to:

1 val f: Function1[Int, Int] = {
2 class $anon extends Function1[Int, Int] {
3 def apply(x: Int): Int = x + 1
4 }
5 new $anon()
6 }

Since Function objects are specialized, the code is compiled to:

1 val f: Function1[Int, Int] = {
2 class $anon extends Function1_II {
3 def apply_II(x: int): int = x + 1
4 def apply(x: Object): Object = // call apply_II
5 }
6 new $anon()
7 }

When interoperating with miniboxed code, functions can only use
the reference-based apply, introducing performance regressions.

In our early experiments on transforming the Scala collections hier-
archy using the miniboxing transformation [17], we were proposing
an alternative miniboxed function trait, called MbFunction, and
were performing desugaring by hand. The performance obtained
was good, but desugaring by hand was too tedious. Later on, we
received a suggestion from Alexandru Nedelcu stating that, since
functions in Scala are specialized, we should be able to interface
directly, thus benefiting from the desugaring build into Scala with-
out paying for the boxing overhead.

Our initial approach used accessors, but we soon learned that
switching on as many as 3 type bytes with each function application
incurs a significant overhead. Instead, we decided to re-introduce
MbFunctionX within the code compiled by the miniboxing plugin,
where X is the arity and can range between 0 and 2 (Scala includes
functions with arities up to 22, but arities above 2 are no longer
specialized). Yet, this time the MbFunctionX objects would be
introduced automatically.

Code transformation. The miniboxing plugin automatically trans-
forms FunctionX to MbFunctionX:

• All references to FunctionX are converted to MbFunctionX;
• Function definitions create MbFunctionX instead of FunctionX;

For example, the code:

1 def choice[@miniboxed T](seed: Int): (T, T) => T =
2 (t1: T, t2: T) => if (seed % 2 == 0) t1 else t2
3

4 val function: Int => Int = choice(Random.nextInt)
5 List((1,2), (3,4), (5,6)).map(function)

Is transformed into:

1 def choice(seed: int): MbFunction2 =
2 new AbstractMbFunction2_LL {
3 def apply(t1: Object, t2: Object) = ...
4 val functionX: Function2 = ...
5 }

1 def choice_M(T_Type: byte, seed: int): MbFunction2 =
2 new AbstractMbFunction2_MM {
3 def apply_MM(..., t1: long, t2: long) = ...
4 val functionX: Function2 = ...
5 }
6

7 val function: MbFunction2 = choice_M(...)
8 List((1,2), (3,4), (5,6)).map(function.functionX)

Explaining how the code transformation works is beyond the scope
of this paper and has been thoroughly studied in previous litera-
ture [32, 33]. The result is that, within miniboxed code, only the
MbFunctionX representation is used. FunctionX is only refer-
enced in a limited number of cases:

• When miniboxed code needs to pass a function to pre-miniboxing
code (which uses the FunctionX representation);

• When miniboxed code receives a function from pre-miniboxing
code (using the FunctionX representation);

• When a miniboxed class or method extends a pre-miniboxed
entity that takes FunctionX arguments;

• When an MbFunctionX value is assigned to supertypes of
FunctionX, it needs to be converted;

Conversions can occur in both directions, from FunctionX ob-
jects to MbFunctionX and back.

Converting FunctionX objects to their miniboxed counterparts is
done using switches that allow the newly created MbFunctionX to
directly call the unboxed apply, fără boxing:

1 def function0_bridge[R](R_Tag: Byte, f:
Function0[R]): MiniboxedFunction0[R] =

2 (R_Tag match {
3 case INT =>
4 val f_cast = f.asInstanceOf[Function0[Int]]
5 new MbFunction0[Int] {
6 def functionX: Function0[Unit] = f_cast
7 def apply(): Int = f_cast.apply()
8 }
9 ...

10 }).asInstanceOf[MiniboxedFunction0[R]]

In the above code, f is statically known to be of type Function[Int],
thanks to the type byte. This allows the code to introduce f_cast,
which in turn allows the specialization transformation to rewrite
the call from the reference-based apply to the unboxed apply_I.
On its side, miniboxing instantiates MbFunction0_M instead of
MbFunction0 and moves the code to the specialized apply_M
method. With these rewrites, the anonymous MbFunction instance
can call the underlying function without boxing:

1 new MbFunction0_M {
2 def T_Type: byte = INT
3 // fast path for function application:
4 def apply_M(): long = int2minibox(f_cast.apply())
5 // fast path for conversion:
6 val functionX: Function0 = f_cast
7 }

Converting MbFunctionX objects to FunctionX easy, since each
MbFunctionX object contains its FunctionX counterpart in the
functionX field.

By transforming the function representation, we have eliminated
the overhead of calling functions completely. Furthermore, using
the previous two strategies to minimize the conversion overhead,
we enabled function-heavy applications to achieve speedups be-
tween 2 and 14x [1, 33]. Tare frate!

Benchmark Generic Miniboxed
Builder 161.61 s 53.56 s
Map 98.43 s 49.38 s
Fold 87.98 s 46.14 s
Reverse 27.97 s 33.84 s

Table 1: RRB-Vector operations for 5M elements.

4.5 Arrays

The array transformation [9] is beyond the scope of this paper, but
we included it as a good example for using performance advisories.

The Array bulk storage in Scala makes certain assumptions that
are not compatible with miniboxing, leading to performance re-
gressions in some corner cases. To address this limitation, we in-
troduced a new type of array, dubbed MbArray, which integrates
very well within the miniboxing transformation. However, since
the MbArray guarantees do not match the ones offered by Scala
arrays, we cannot automate the transformation. Instead, we issue
performance advisories to inform programmers about MbArray:

1 scala> def newArray[@miniboxed T: ClassTag] =
2 | new Array[T](100)
3 <console>:8: warning: Use MbArray instead of Array to

eliminate the need for ClassTags and benefit from
seamless interoperability with the miniboxing
specialization. For more details about MbArrays,
please check the following link:
http://scala-miniboxing.org/arrays.html

This concludes the three approaches to interoperating with the
specialized Scala library.

5. Benchmarks
In this section we show three different scenarios where minibox-
ing has significantly improved performance of user programs. We
specifically avoid mentioning benchmarking methodology, as each
of the experiments was ran on a different setup. Yet, all three ex-
amples show a clear trend: the techniques explained in the paper
improve both performance and the programmer experience.

The RRB-Vector data structure [22, 29] is an improvement over
the immutable Vector, allowing it to perform well for data paral-
lel operations. Currently, the immutable Vector collection in the
Scala library offers very good asymptotic performance over a wide
range of sequential operations, but fails to scale well for data paral-
lel operations. The problem is the overhead of merging the partial
results obtained in parallel, due to the rigid Radix-Balanced Tree,
the Vector’s underlying structure. Contrarily, the RRB-Vector
structure uses Relaxed Radix-Balanced (RRB) Trees, which allow
merges to occur in effectively constant time while preserving the
sequential operation performance. This enables the RRB-Vector to
scale linearly with the number of cores when executing data parallel
operations. Thanks to its improved performance, the RRB-Vector
data structure is slated to replace the Vector implementation in the
Scala library in a future release.

Benchmark Generic Miniboxed Miniboxed
some all

advisories advisories
heeded heeded

1st run 4192 ms 3082 ms 1346 ms
2nd run 4957 ms 2998 ms 1187 ms
3rd run 4755 ms 3017 ms 1178 ms
4th run 3969 ms 2535 ms 1094 ms
5th run 4073 ms 2615 ms 1163 ms

Table 2: Speedups based on performance advisories, PNWScala

Transformation Running time
Generic 684.4 ms
Miniboxed (no tuple support) 726.8 ms
Miniboxed (with tuple support) 323.2 ms
Specialized 322.5 ms
Monomorphic 318.1 ms

Table 3: Sorting 1M tuples using quicksort.

The original RRB-Vector implementation used erased generics. To
show that performance advisories can indeed guide developers into
improving performance, we asked a Scala developer who was not
familiar with the RRB-Vector code base to switch the compila-
tion scheme to miniboxing. Before handing in the code, we re-
moved the parallel execution support [5], reducing the code base
by 30%. Then, the developer compiled the code with the minibox-
ing plugin, which produced 28 distinct warnings. These warnings
guided the addition of @miniboxed annotations where necessary
and the introduction of MbArray objects instead of Scala arrays.
By following the performance advisories, in less than 30 minutes
of work, our developer managed to improve the performance of the
RRB-Vector operations by up to 3x. A counter-intuitive effect was
that it took three rounds of compiling and addressing the warnings
before the improvement was visible: each iteration introduced more
@miniboxed annotations, in turn triggering new warnings, as new
methods could benefit from the annotation.

Table 1 shows the performance improvements measured on four
key operations of the RRB-Vector: creating the structure element
by element using a builder and invoking bulk data operations: map,
fold and reverse. The ScalaMeter framework [24] was used
as a benchmarking harness on a quad-core Intel Core i7-4600U
processor running at 2.10GHz with 12GB of RAM, on OpenJDK7.

The numbers show speedups between 1.9 and 3x for the builder,
map and fold benchmarks. This can be explained by the fact
that, in the erased version, each element required at least a box-
ing operation, and thus a heap allocation. On the other hand, the
reverse operation does not require any boxing so there is no
speedup achieved. Nevertheless, introducing the miniboxing trans-
formation does not lead to significant slowdowns.

If we consider the RRB-Vector development time, which took
four months of work and resulted in ~3K lines of source code, the
performance advisories issued by the miniboxing plugin allowed a
new developer, with no knowledge of the code base, to deploy the
miniboxing transformation in a negligible period of 30 minutes,
producing speedups of up to 3x.

Image processing. Performance advisories can be used to improve
the performance of Scala programs without any previous knowl-
edge of how the transformation works. This was shown at the PN-
WScala 2014 developer conference [3], where Vlad Ureche pre-
sented how the miniboxing plugin guides the programmer into im-
proving the performance of a mock-up image processing library by
as much as 4x [4]. The presentation was recorded and the perfor-
mance numbers are included in Table 2 for quick reference.

Tuple accessors have been tested by implementing a tuple sorting
benchmark using a generic quicksort algorithm. Table 3 shows the
results for sorting 1 million tuples based on their first element. We
used different transformations for the generic quicksort algorithm:
first, we benchmarked the erased generics performance, which, as
expected, were slow. Surprisingly, the miniboxed version without
tuple support was even worse, 7% slower than erased generics.
Then, adding tuple accessor support to the miniboxing transfor-
mation improved the performance by 2x, making it comparable to
the original specialization transformation and to the monomorphic
(non-generic, hand specialized) version of the quicksort algorithm.

6. Related Work
The most significant related work lies in the area of run-time pro-
filers which can offer feedback at the language level. We would
like to point the work of St-Amour on optimization feedback [27]
and feature-based profiling [28]. Profiling has existed for a long
time at lower levels, such as at the Java Virtual Machine level, with
profilers such as YourKit [8] or the Java VisualVM [7] or the x86
assembly, with processor hardware counters.

The area of opportunistic optimizations has seen an enormous
growth thanks to dynamic languages such as JavaScript, Python and
Ruby, which require shape analysis and optimistic assumptions on
the object format to maximize execution speed. We would like to
highlight the work of Mozilla on their *Monkey JavaScript VMs
[16], Google’s V8 JavaScript VM and the PyPy Python virtual
machine [10, 11]. While this is just a short list of highlights, the
Truffle compiler [34, 35] is now a general approach to writing
interpreters that make optimistic assumptions, allowing maximum
performance to be achieved by partially evaluating the interpreter
for the program at hand, essentially obtaining a compiled program
thanks to the first Futamura projection [15].

In the area of data representation, this work assumes familiarity
with specialization [13] and miniboxing [2, 31]. The program trans-
formation which enables the functions to be transformed into mini-
boxed functions is thoroughly discussed in [32, 33]. There has been
previous work on miniboxing Scala collections [17] and on unify-
ing specialization and reified types [30]. We have also seen a re-
vived interest in specialization in the Java community, thanks to
project Valhalla, which aims at providing specialization and value
class support at the virtual machine level [18, 25]. In the Java 8
Micro Edition functions are also represented differently [23].

7. Conclusion
This paper shows several approaches to allowing different gener-
ics compilations schemes to interoperate without incurring perfor-
mance regressions:

• Harmonizing the generics compilation scheme thanks to action-
able performance advisories;

• Bridging the gap between library constructs that use different
generics compilation schemes, specifically:

The accessor approach;
The replacement approach;
The advisory-based approach.

The implementation results are validated using the miniboxing plu-
gin, which automates the approaches described, showing perfor-
mance improvements between 2x and 4x.

Acknowledgements
The authors are grateful to the following people who motivated
the development of the features described in the paper: Alexandru
Nedelcu, Aymeric Genet and Aggelos Biboudis (Functions), Philip
Stutz, Stu Hood, Iulian Dragos and Rex Kerr (warnings), Julien
Truffaut (tuple accessors). We are thankful to Vincent St-Amour
for the ground-breaking work on program optimization advisories.

We would like to thank Brian Goetz, Maurizio Cimadamore and
the PPPJ reviewers for their helpful comments and suggestions.

References
[1] ildl Compiler Plugin Documentation. URL https://github.com/

miniboxing/ildl-plugin/wiki.

[2] The Miniboxing plugin website. URL http://scala-miniboxing.org.

[3] PNWScala Conference, . URL http://pnwscala.org.

[4] PureImage Library Optimization, . URL http://scala-miniboxing.
org/example_pureimage.html.

[5] RRB-Vector benchmarks. URL https://github.com/
milosstojanovic/miniboxing-plugin/tree/rrbvector/
tests/lib-bench/src/miniboxing/benchmarks/rrbvector.

[6] Optimistic Respecialization Attempt 6. URL http://io.pellucid.com/
blog/optimistic-respecialization-attempt-6.

[7] Java VisualVM. URL https://visualvm.java.net/.

[8] YourKit Profiler. URL https://www.yourkit.com/java/profiler/.

[9] R. M. Beguet. Miniboxing and the MbArray API. Technical report, EPFL, 2015.
https://infoscience.epfl.ch/record/208957.

[10] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-level: PyPy’s
Tracing JIT Compiler. In ICOOLPS. ACM, 2009.

[11] C. F. Bolz, L. Diekmann, and L. Tratt. Storage Strategies for Collections in
Dynamically Typed Languages. In OOPSLA. ACM, 2013.

[12] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: Adding Genericity to the Java Programming Language. In OOPSLA.
ACM, 1998.

[13] I. Dragos. Compiling Scala for Performance. PhD thesis, École Polytechnique
Fédérale de Lausanne, 2010.

[14] I. Dragos and M. Odersky. Compiling Generics Through User-Directed Type
Specialization. In ICOOOLPS, Genova, Italy, 2009.

[15] Y. Futamura. Partial Evaluation of Computation Process–An Approach to a
Compiler-Compiler. Higher-Order and Symbolic Computation, 1999. .

[16] A. Gal. Trace-based Just-in-time Type Specialization for Dynamic Languages.
In PLDI. ACM, 2009.

[17] A. Genêt, V. Ureche, and M. Odersky. Improving the Performance of Scala
Collections with Miniboxing (EPFL-REPORT-200245). Technical report, EPFL,
2014. URL http://scala-miniboxing.org/.

[18] B. Goetz. State of the Specialization, 2014. URL http://web.archive.
org/web/20140718191952/http://cr.openjdk.java.net/
~briangoetz/valhalla/specialization.html.

[19] B. Goetz. Announcement, July 2015. URL https://web.archive.
org/web/20150808172443/http://mail.openjdk.java.net/
pipermail/valhalla-dev/2015-July/001245.html.

[20] B. Goetz. Description, August 2015. URL https://web.archive.
org/web/20150808172447/http://mail.openjdk.java.net/
pipermail/valhalla-dev/2015-August/001295.html.

[21] A. Kennedy and D. Syme. Design and Implementation of Generics for the .NET
Common Language Runtime. In PLDI, 2001.

[22] V. U. N. Stucki, P. Bagwell and T. Rompf. RRB Vector: A Practical General
Purpose Immutable Sequence. ICFP, 2015.

[23] O. Pliss. Closures on Embedded JVM. JVM Languages Summit, Santa Clara,
CA, august 2014.

[24] A. Prokopec. ScalaMeter. URL http://axel22.github.com/
scalameter/.

[25] J. Rose. Value Types and Struct Tearing , . URL https://web.
archive.org/web/20140320141639/https://blogs.oracle.
com/jrose/entry/value_types_and_struct_tearing.

[26] J. Rose. Value Types in the VM, . URL http://web.archive.org/web/
20131229122932/https://blogs.oracle.com/jrose/entry/
value_types_in_the_vm.

[27] V. St-Amour, S. Tobin-Hochstadt, and M. Felleisen. Optimization Coaching:
Optimizers Learn to Communicate with Programmers. In OOPSLA’12, 2012. .

[28] V. St-Amour, L. Andersen, and M. Felleisen. Feature-Specific Profiling. In
CC’15, 2015. .

[29] N. Stucki. Turning Relaxed Radix Balanced Vector from Theory into Practice
for Scala Collections (Master Thesis). Master’s thesis, EPFL, 2015.

[30] N. Stucki and V. Ureche. Bridging islands of specialized code using macros and
reified types. In SCALA. ACM, 2013.

[31] V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the Speed to Code
Size Tradeoff in Parametric Polymorphism Translations. In OOPSLA, 2013.

[32] V. Ureche, E. Burmako, and M. Odersky. Late Data Layout: Unifying Data
Representation Transformations. In OOPSLA ’14. ACM, 2014.

[33] V. Ureche, A. Biboudis, Y. Smaragdakis, and M. Odersky. Automating Ad hoc
Data Representation Transformations. In OOPSLA. ACM, 2015.

[34] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer. Self-
Optimizing AST interpreters. In DLS. ACM, 2012.

[35] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One VM to Rule Them All. In Onward!
ACM, 2013.

[36] D. Yu, A. Kennedy, and D. Syme. Formalization of Generics for the .NET
Common Language Runtime. In POPL, POPL ’04. ACM, 2004.

