
Early Deciding Synchronous Renaming

in O(log f) Rounds or Less

Dan Alistarh1, Hagit Attiya2,�, Rachid Guerraoui3, and Corentin Travers4,��

1 EPFL
alistarh@epfl.ch

2 Technion
hagit@cs.technion.ac.il

3 EPFL
guerraoui@epfl.ch
4 Univ. Bordeaux
travers@labri.fr

Abstract. Renaming is a fundamental problem in distributed comput-
ing, in which a set of n processes need to pick unique names from a names-
pace of limited size. In this paper, we present the first early-deciding upper
bounds for synchronous renaming, in which the running time adapts to the
actual number of failures f in the execution. We show that, surprisingly,
renaming can be solved in constant time if the number of failures f is lim-
ited to O(

√
n), while for general f ≤ n−1 renaming can always be solved

inO(log f) communication rounds. In the wait-free case, i.e. for f = n−1,
our upper boundsmatch theΩ(logn) lower bound of Chaudhuri et al. [13].

1 Introduction

Unique names, or identifiers, are a fundamental prerequisite for solving a variety
of problems in distributed computing. While in many settings unique names are
available, they often come from a very large, practically unbounded namespace,
which reduces their usefulness. The renaming problem [4], in which a set of
processes need to be assigned names from a namespace of small size, is one of
the fundamental problems in distributed computing, and a significant amount
of work, e.g. [1,2,4,6,7,8,9,10,17,18], studied its solvability and complexity in
fault-prone distributed systems.

Much of the work on the renaming problem, whether in shared-memory [1,6] or
in message-passing systems [4], has focused on the asynchronous case, in which
the processes’ steps or messages may be delayed arbitrarily by the scheduler.
However, real world systems experience long periods where delays are bounded,
and inter-process communication is synchronous, even though processes may
still fail by crashing. The complexity of renaming in such a synchronous set-
ting, where processes communicate by message-passing, was investigated by
Chaudhuri et al. [13] and Okun [19]. In brief, they found that for n processes,

� Supported in part by the Israel Science Foundation (grant number 1227/10).
�� Additional supports from the ANR projects ALADDIN and DISPLEXITY.

G. Even and M.M. Halldórsson (Eds.): SIROCCO 2012, LNCS 7355, pp. 195–206, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148013191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

196 D. Alistarh et al.

up to n− 1 of which may fail by crashing, there exist algorithms that assign a
tight namespace of names 1, . . . , n names in O(log n) rounds of communication.
Chaudhuri et al. [13] also showed a matching lower bound.

The analysis in these papers only focused on the case where themaximum num-
ber of processes, n − 1, may fail by crashing during an execution. However, the
Ω(log n) lower bound of [13] does not exclude algorithms that terminate faster
when the actual number of failures f in the execution is less than n − 1. Such
speculative algorithms, also known as early deciding, are known to exist for con-
sensus [20] and set agreement [12]. Early-deciding protocols achieve consensus in
O(f) communication rounds [15], and k-set agreement in O(fk) rounds [16].

It is therefore natural to ask what is the time complexity of early deciding
synchronous renaming in a message-passing system. The answer to this question
does not appear trivial: for example, a successful strategy for renaming [13] was
for each process to obtain a new bit from its name by running a simple one
round symmetry-breaking protocol–after Θ(log n) rounds, each process has a
unique name from 1 to n. However, it is hard to speed up this approach to
obtain more bits for the process’s name in rounds where there are few failures,
without breaking name uniqueness. Another approach [4], where each process
proposes a name in each round based on what every other process proposed in
previous rounds, until there are no collisions, turns out to be very difficult to
analyze when the adversary has a limited budget of f failures.

In this paper, we overcome these challenges, and present the first early-
deciding upper bounds for renaming. In short, we find that the complexity of the
problem is strongly coupled with the relation between n, the number of processes
and f , the failure budget of the adversary. We show that there exists an algo-
rithm that ensures a tight namespace of n names, and terminates in a constant
number of rounds in every execution where f ∈ O(

√
n), and, in O(log f) rounds,

otherwise. The existence of a constant-time renaming algorithm for non-trivial
f is surprising, since the early-deciding bounds for consensus [15] and set agree-
ment [16] are linear in f irrespective of the relation with the total number of
processes n.

Our second result is an algorithm that improves on the constants in the asymp-
totic notation, terminating in log f +5 rounds, and assigning names from 1 to 2n.

The first algorithm is a slight modification of a result by Okun [19]. His
protocol is based on a novel connection between synchronous renaming and the
approximate agreement problem [14]. In brief, processes assign temporary ranks
to each process identifier that they receive, and perform approximate agreement
to converge on an approximate rank for each initial process identifier, within
a carefully chosen approximation factor. Each process returns this approximate
rank, rounded to the nearest integer, as its name: the protocol ensures that,
upon termination, the approximate ranks are far enough apart so that no two
processes decide on the same rank. Okun [19] showed that this protocol ensures
a tight namespace, preserves the order of the initial identifiers, and terminates
in O(log n) rounds in all executions.

Early Deciding Synchronous Renaming 197

Our main contribution is analyzing this protocol for general f , and showing
that it terminates in constant time if f ∈ O(

√
n), and in O(log f) rounds oth-

erwise. Our analysis characterizes the optimal adversarial strategy for arbitrary
values of the parameters n and f—we achieve this by carefully bounding the
approximation factor of the approximate agreement protocols relative to the
number of failures that the adversary expends in each round, showing that this
factor goes down fast, and the algorithm terminates very quickly, if the adversary
does not fail a significant fraction of the processes in each round.

The second renaming algorithm we present is simpler, and achieves better
constants in the asymptotic notation, while relaxing the size of the namespace
to 2n. The protocol is split in two phases: In the first phase, each process identifies
a set of names it is interested in, whose size is proportional to the number of
failures that the adversary expends in the phase. In the second phase, processes
proceed to progressively halve the size of the set of names they are interested
in, until each set is a singleton. At this point, each process may adopt the single
name in its set. The key technical difficulty is in assigning each process the
“right” set of names at the end of the first phase, so that there are always
enough names for the set of participants. To ensure this, we need to relax the
total size of the namespace that processes are interested in to be of size 2n. The
halving procedure in the second phase is similar to the O(log n) round algorithm
by Chaudhuri et al. [13].

We therefore show that the time complexity of early-deciding renaming is
upper bounded by O(log f) synchronous rounds for general f , and can be con-
stant for non-trivial f ∈ O(

√
n). Both algorithms are adaptive, since they do not

know the number of participants n in advance; they also adapt to the number
of failures f in the execution.

Roadmap. We present the problem statement and the model in Section 2,
and give an overview of related work in Section 3. In Section 4, we present
the analysis of the tight renaming algorithm, while the second algorithm can be
found in Section 5. We conclude with a discussion of open questions in Section 6.

2 Model and Problem Statement

Model. We consider a standard synchronous message passing system with n
processes p1, . . . , pn. Initially, processes have unique identifiers from a namespace
of unbounded size. Time is divided into rounds, and the processes’ clocks are
synchronized. Each round proceeds as a sequence of send, receive, and process
steps, in which processes may send and receive messages, and perform local
computation if necessary. We assume that at most t < n processes may fail
by crashing. If crashed, a process stops taking further steps in the execution; a
process may fail to send any subset of its messages in rounds in which it crashes.

Let f denote the number of failures in the current execution. We focus on
early-deciding algorithms, that adapt their time complexity to the actual number
of failures in the execution, i.e. whose running time is a function of f only.

198 D. Alistarh et al.

Renaming. The renaming problem [4] requires that each correct process even-
tually returns a name, and that the names returned should be unique. The size of
the resulting namespace should only depend on the parameters n. The tight re-
naming problem requires that the size of the namespace be exactly n; otherwise,
we say that the solution is loose.

Approximate Agreement. Consider a small real number ε > 0. In the ε-
approximate agreement problem [14], each process pi starts with a proposal vi,
which is a real number. An approximate agreement algorithm must satisfy the
following properties: (1) Each correct process eventually decides a value di; (2)
For any correct processes pi and pj , |di − dj| ≤ ε; (3) For any correct process p�,
there are processes pi and pj with initial values vi and vj , such that vi ≤ d� ≤ vj .

Notation. Throughout this paper, log denotes the logarithm base two. More-
over, we write log f instead of �log f�. To simplify notation, we assume that
f ≥ 1, which allows us to consider running times of O(log f) rounds.

3 Related Work

The renaming problem was introduced in [4], where the authors also provide
a wait-free solution using (2n − 1) names in an asynchronous message-passing
system, and show that at least (n + 1) names are required in the wait-free
case. This lower bound on the namespace size for the case of asynchronous
solutions was improved to (2n − 2) by Herlihy and Shavit [17], and Rajsbaum
and Castañeda [11]. (This lower bound holds when n is a power of a prime
number.)

Considerable research has analyzed the upper and lower bounds for renaming
in asynchronous setting, in particular in shared memory e.g., [1,2,6,7,8,9,18]. For
a detailed description of these results, we refer the reader to e.g., [1].

On the other hand, there has been relatively little work on the complexity
of synchronous renaming. Herlihy et al. [13] considered wait-free renaming in
a synchronous message-passing system, identical to the one we consider in this
paper. They prove a lower bound of Ω(logn) rounds on the time complexity of
the problem in runs where t = n−1 processes may crash, and provide a matching
algorithm that achieves tight renaming with time complexity �logn�+3 in every
execution. In contrast, our algorithms are early deciding, in that they adapt to
the actual number of failures f in the current execution, deciding in O(log f)
rounds. On the other hand, the lower bound argument of Herlihy et al. [13]
applies to our algorithms as well1, implying a lower bound of Ω(log n) rounds in
executions where f = n− 1.

In [19], Okun presents a synchronous message-passing algorithm for tight re-
naming algorithm with O(log n) time complexity. His algorithm is based on a

1 While the original lower bound of Herlihy et al. [13] applies only to comparison-based
algorithms, an argument by Attiya et al. [5] generalizes this bound to a wider class
of algorithms, which includes the ones in this paper.

Early Deciding Synchronous Renaming 199

procedure proposei(vi, ε) ;1

di ← vi;2

for each round r ≥ 0 do3

broadcast(di);4

δ ← max� �=j(|d� − dj |);5

if δ ≤ ε then return di;6

else di ← arithmetic average of all values dj received;7

Fig. 1. The Approximate Agreement algorithm

novel connection between renaming and approximate agreement. In brief, pro-
cesses perform approximate agreement on the rank of each initial identifier, until
they are certain that no two processes obtain the same rank. In this paper, we
extend this technique by providing a new analysis for minor variation of his al-
gorithm, proving that its running time is in fact O(log f) in executions with f
failures, which is asymptotically optimal.

4 A Tight Renaming Algorithm

In this section, we analyze the tight renaming algorithm of Okun [19] and prove
that it terminates in O(log f) rounds, where f < n is the number of processes
that the adversary crashes in the current execution. We begin with a short
description of the algorithm; a detailed exposition can be found in the original
paper [19].

Algorithm Overview. The algorithm is based on a novel connection between
renaming and the approximate agreement problem. First, a simple synchronous
approximate agreement (AA) algorithm is introduced. Then, the algorithm runs
in parallel at most n separate instances of this approximate agreement algorithm,
one for each process in the system. The goal is to agree on an approximate rank
for each process’s initial identifier, which will be the value decided by the corre-
sponding approximate agreement algorithm, rounded to the nearest integer. The
key ingredient is to run the approximate agreement algorithm for long enough
to ensure that the decision values of the AA protocols corresponding to each
initial identifier are sufficiently spaced, ensuring that the rank decided for each
process is unique.

The Approximate Agreement Algorithm. The algorithm, whose pseu-
docode appears in Figure 1, proceeds as follows. Each process starts with an
initial value vi and a desired approximation factor ε, which bounds the maxi-
mum desired skew between decided values. The process maintains an estimate di
of its decision value, which is updated in every round to the arithmetic average
of all values received. Once all the estimates received in a round are within at
most ε of each other, the process returns its current estimate.

200 D. Alistarh et al.

procedure renamei(vi) ;1

/* Phase one */
for each round r = 1, 2, 3 do2

broadcast(vi);3

Cr ← the number of distinct identifiers received in round r;4

n← C1;5

V ← the set of identifiers received in round 3;6

ε← 1
10C2

;7

/* Phase two */
for each round r ≥ 4 do8

for every identifier id ∈ V do9

Participate in id’s instance of the approximate agreement algorithm,10

with initial value C2 · rankV (id) , until the algorithm returns;11

/* rankV (id) is the rank of id in the set V , in increasing order */

/* Upon completion of all the approximate agreement algorithms */
namei ← final value in vi’s instance of the approximate agreement algorithm,12

rounded to the nearest integer;
return namei;13

Fig. 2. The Tight Renaming Algorithm

The Renaming Algorithm. Each process pi starts with an initial name vi.
The algorithm, whose pseudocode appears in Figure 2, has two phases.

The first phase contains the first three rounds, in which processes exchange
their identifiers, in order to identify the parameter n and the relative ranks of
their identifiers.

In the second phase, which starts at round four, based on the information
computed so far, each process proposes a rank for each participating process to
a separate instance of the approximate agreement algorithm in Figure 1. Notice
that all these agreement instances run in parallel; all messages by a process in
a round (one for each AA protocol in which it participates) are packaged into
a single composite message, which each process sends in each round. The ap-
proximation factor for all these agreement instances is 1/(10C2), where C2 is the
number of distinct identifiers the process received in round 2 of the first phase.
(This factor is chosen such that no two identifiers may receive the same final
rank from the approximate agreement instances when rounded to the nearest
integer.) The algorithm terminates when all the approximate agreement algo-
rithms terminate, ensuring the desired approximation factor.

Name Uniqueness. We give a brief overview of the mechanism ensuring name
uniqueness; a complete analysis can be found in [19]. Recall that, for each initial
identifier id, each process p proposes the rank of id multiplied by C2/C3 as the
initial value in id’s instance of the AA protocol. Obviously, the processes’ ranks
for the same identifier may be distinct (as a consequence of failures in the first
phase). However, a key observation is that they will be distinct in a consistent

Early Deciding Synchronous Renaming 201

way: if p proposes rank 6 for id α, and rank 7 for id β > α, then another process q
proposing rank 7 for id α will have to propose rank at least 8 for id β. Analyzing
the AA protocol, this will imply that, given any process p, its decision values for
distinct ids α < β will be at distance at least 1 from each other [19, Theorem 3].

This mechanism might still allow the possibility that two distinct processes
decide on the same name when rounding their AA decision value to the nearest
integer. This is handled by multiplying the initial ranks with C2/C3. This ratio
is higher than 1 only when a processor observes crashes between the second
and third rounds, and the algorithm ensures that for any ids α and β, their
corresponding decision values at any two processes p and q are at distance > 1
from each other [19, Lemma 3]. In turn, this implies that no two processes may
decide the same name.

Analysis. Our key observation is that the variant of the synchronous approx-
imate agreement algorithm of Okun [19] presented in Figure 1 guarantees the
required approximation factor of 1/(10C2) in a constant number of rounds when
f >

√
n/2, and O(log f) rounds, otherwise. In turn, this implies that the renam-

ing algorithm terminates within three additional rounds.
To prove this, we first introduce some notation. Let σ(S) be the diameter of

a set S, i.e. maxa,b∈S(|a− b|).
For any round r > 0 in the execution of the approximate agreement algorithm,

let Ur be the multiset of distinct values that processes that are active (i.e., send
at least one message) in round r have in the beginning of the round.

Let fr be the number of processes that crash in round r; for convenience,
denote f0 = 0. Denote by δr the fraction of processes that crash in round r
from among the processes that did not crash before round r; that is, δr =
fr/(n−∑r−1

i=0 fi).
We first state the following lemma, bounding the diameter of the set Ur+1

depending on the diameter of Ur and the fraction of processes that crash in
round r; its proof follows [19, Lemma 1].

Lemma 1. σ(Ur+1) ≤ 2δr+1

1−δr+1
· σ(Ur).

The next lemma bounds the number of rounds needed for the approximate agree-
ment algorithm of Figure 1 to achieve a maximum diameter of ε = 1/(10n) for
the set of decisions corresponding to each initial value, when starting with pro-
posal sets of diameter ≤ n. The bound depends on f , the number of failures
that the adversary expends in total, and on the number of failures fi which the
adversary expends in each round i ≥ 1.

Lemma 2. Consider an execution of the approximate agreement algorithm of
Figure 1, starting with an initial set of diameter σ(U1) ≤ n, in which at most f
processes crash. Let R be the number of rounds needed for the algorithm to reach
a diameter ε ≤ 1/(10n). The following claims hold:

– If f ≤ √
n/2, then R is a constant.

– If
√
n/2 < f ≤ n− 1, then R ≤ 5 log f + 10.

202 D. Alistarh et al.

Proof. We assume n ≥ 6; the claim can be checked for n ≤ 5 by calculation.
The first case is when f ≤ √

n/2. In this case, notice that the fraction of
processes that fail in any round of the protocol is at most

√
n/n, i.e. δr ≤ √

n/n,
for all r ≥ 1. In turn, by Lemma 1, the diameter of the set of values for the
current instance of approximate agreement is reduced by at least 2δr/(1− δr) ≤
1/(

√
n− 0.5) in each round r. Therefore, after the first 10 rounds, the diameter

of this set is at most

n

(
√
n− 0.5)10

≤ 1

10n
, for any n ≥ 6.

Therefore the maximum diameter the end of round 10 is ≤ 1/(10n), as claimed.
In the second case, we assume that f >

√
n/2. First, notice that δr, the

fraction of active processes that crash in a round r, can be greater than 1/2 in
at most �log2(f + 1)� + 1 distinct rounds. Therefore, any execution of at least
5�log2(f +1)�+10 rounds contains at least 4�log2(f +1)�+9 rounds r in which
δr < 1/2. Lemma 1 implies that the diameter of the set Ur at the end of these
rounds is at most

n

24�log2(f+1)�+9
≤ n

29 · (f + 1)4
≤ 1

10n
for all n ≥ 1,

where the last step uses the fact that f ≥ √
n/2. Therefore, in this case, the

number of rounds necessary to obtain a maximum diameter of at most 1/(10n)
is O(log f).

We conclude that the resulting renaming algorithm is early deciding, terminating
in a constant number of rounds, when f ≤ √

n/2, andO(log f) rounds, otherwise.

Theorem 1. For any f , 0 ≤ f ≤ n − 1, let 	f = constant if f ≤ √
n/2, and

	f = 5 log(f + 1) + 10, otherwise. Then the renaming algorithm in Figure 2
is a tight order-preserving renaming algorithm with time complexity O(f) and
message complexity O(n2	f) in executions where f processes fail by crashing.

Proof. We focus on early decision, since the other properties follow from The-
orem 4 of [19]. First, recall that the initial value v for each approximate agree-
ment algorithm is computed locally by each process as rankV (α) · C2/C3. Since
rankV (α)/C3 ≤ 1, by the definition of C2, we obtain that all initial values are
between 1 and n. This also implies that our desired approximation factor ε is at
most 1/(10n).

Lemma 2 implies that all instances of approximate agreement that the renam-
ing algorithm executes in parallel terminate in O(f) rounds, with an approxi-
mation factor ε ≤ 1/(10n). We obtain that the renaming algorithm terminates
in O(f) rounds, as claimed.

Early Deciding Synchronous Renaming 203

5 A Loose Renaming Algorithm with Improved Round
Complexity

In this section, we present a loose renaming algorithm that terminates in log f1+5
rounds and uses at most 2n names, where n is the number of participating pro-
cesses and f1 the number of failures that occur in the first round. Our algorithm
extends the non-early deciding renaming algorithm by Chaudhuri, Herlihy, and
Tuttle [13]. The latter algorithm is tight; its round complexity, however, depends
solely on n and not on the number of failures among the participating processes.
Specifically, the namespace when n processes participate is [1, n] and the algo-
rithm terminates in log n + 2 rounds. In the following, the algorithm of [13] is
called the CHT-renaming algorithm.

Algorithm Overview. The pseudo-code of the algorithm appears in Figure 3.
It contains two phases.

In the first phase, which consists of the two first rounds (line 1-line 7), each
process selects an interval of names in which it wishes to pick its final name.
The size of each interval is upper-bounded by 4f1, where f1 is the number of
processes that fail during the first round. The second phase (line 8-line 16) con-
sists of a variant of the CHT-renaming algorithm. Processes use this procedure
to progressively shrink the interval of names they are interested in, until obtain-
ing an interval of size 1. The algorithm ensures that no two processes obtain
the same interval of size 1, i.e. a single name. Thus, each process can decide the
unique name in its final interval. Moreover, it guarantees that in each round, pro-
cesses holding the largest intervals reduce their interval by one half. Therefore
our algorithm terminates in O(log f1) rounds.

We begin with a brief description of the CHT-renaming algorithm and then
explain how each process selects an initial interval of names.

Definitions and Notations. Before describing the algorithm in more details,
we introduce some notations, extending those in [13]. An interval I of positive
integers is well-formed if I is of the form [d2j + 1, (d + 1)2j] for some positive
integers d, j. Note that for every pair I, J of well-formed intervals, I∩J 	= ∅ =⇒
I ⊆ J ∨J ⊆ I. Given a set I of well-formed intervals, we say that interval I ∈ I
is maximal in I if for every J ∈ I, either I ∩ J = ∅ or J ⊆ I.

The CHT-Renaming Algorithm. Each process p maintains a well-formed
interval of names I, which are the names p is interested in. In each round, process
p sends its id and the interval it currently holds I. The intervals intersecting with
I that p receives are stored in the set I (line 10). p also stores the set of ids of
the processes that are conflicting with p, that is, processes that hold an interval
intersecting with I in the set P (line 11). If I is maximal in I (line 12), I is
split in half, and p picks the bottom half or the top half of I, denoted bot(I)
and top(I) respectively, as its new interval (line 13-line 14). More precisely, the

new interval of p is bot(I) if the rank of p’s identity in P is smaller than |I|
2 .

Otherwise, p selects top(I) as its new interval. Finally, if p observes that every

204 D. Alistarh et al.

procedure renamei(idi) ;1

/* Round 1 */
broadcast(idi);2

rk← the rank of id among the id received in round 1;3

/* Round 2 */
broadcast(idi, rk);4

let rk max = largest rank received; for each j, 1 ≤ j ≤ rk max do5

hj ← |{〈id′, rk′〉 : rk′ = j}| ;
est f ← max{(∑j∈I hj)− |I | : I ⊆ [1, rk max]};6

let j =
log(est f)� and d such that d · 2j + 1 ≤ rk ≤ (d+ 1) · 2j ;7

I ← [d · 2j+1 + 1, (d+ 1) · 2j+1] ;8

/* Round 3, 4, . . .: CHT-renaming protocol [13] */
repeat9

broadcast(id, I) ;10

I ← {I ′ : 〈id′, I ′〉 received and I ∩ I ′ = ∅} ;11

P ← {id′ : 〈id′, I ′〉 received and I ∩ I ′ = ∅} ;12

if ∀I ′ ∈ I, I ′ ⊆ I then13

let bot(I) and top(I) the bottom half and top half of I respectively;14

if rank(id,P) ≤ |I|
2

then I ← bot(I) else I ← top(I)15

until ∀I ′ ∈ I, |I ′| = 1 ;16

return namei where I = [namei, namei] ;17

Fig. 3. The Loose Renaming Protocol

interval sent in the round has size 1, it decides the unique name in its interval.
Since in each round the size of maximal interval is at least divided by 2, the
algorithm terminates after O(log c) rounds, where c is the size of the largest
initial maximal interval.

Name uniqueness relies on the following invariant, which is satisfied by the
set of intervals I[r] held by the processes at the beginning of each round r:

Invariant 1. For every I ∈ I[r], if m processes hold an interval I ′ ⊆ I, then
m ≤ |I|. In particular, this means that I is large enough to allow processes with
an interval I ′ ⊆ I to decide distinct names in the interval I.

In the original CHT-renaming, the initial interval of each process p is of the form
[1, 2b], where 2b is the least power of 2 larger than or equal to the number of
participating processes from which p has received a message in the first round.
The invariant above is thus initially true. In our algorithm, initial intervals are
selected differently, but the invariant is still satisfied.

Selection of Initial Intervals. In the first round, process p broadcasts its id,
and ranks its id among the ids it receives (line 2). Let rkp be the rank obtained
by p. If, among the ids of the participating processes, the rank of the id of p is
i, and f1 is the number of failures that occur in the first round, then

i− f1 ≤ rkp ≤ i. (1)

Early Deciding Synchronous Renaming 205

This is because p may miss at most f1 messages from processes with id smaller
than i. In the second round, p sends its rank together with its id. It then esti-
mates, based on the ranks it receives, the number of failures that occur in the
first round. To that end, p evaluates for each interval of names I the difference
between the number of processes ranked in I and the size of I (line 4-line 5). The
estimate est f of the number of failures is then the maximum over all differences.
More precisely,

est f = max
I⊆[1,rk max]

∑

i∈I

hi − |I|.

where rk max is the largest rank received by p and hi is—to the knowledge of
p—the number of processes that rank their id i in the first round. The estimation
est f is upper-bounded by f1, the number f1 of failures that occur in the first
round. To see why, consider an interval I = [a, b]. We have:
∑

i∈I

hi ≤ |{q : a ≤ rkq ≤ b}| ≤ |{q : a− f1 ≤ rank(idq, P) ≤ b}| ≤ |I|+ f1, (2)

where P is the set of participating processes and rank(idq , P) is the rank of idq
among the ids of the processes in P . The last inequality follows from Equation 1.

Finally, p selects a well-formed interval. This is performed in two steps. First,
p chooses two integers d, j such that the well-formed interval [d2j + 1, (d +
1)2j] contains rkp, and 2j is the least power of 2 larger than or equal to est f .
However, by equation (2), at most 2j + est f ≤ 2j+1 processes may have their
rank contained in [d2j+1, (d+1)2j]. Then, in order to satisfy Invariant 1, p selects
the interval I = [d2j+1 + 1, (d+ 1)2j+1] as its initial interval. Since a process p′

that selects an interval ⊆ I has its rank rkp′ contained in [d2j + 1, (d + 1)2j],
at most 2j+1 = |I| processes select intervals I ′ ⊆ I. Invariant 1 is thus satisfied,
which preserves the correctness of the CHT-renaming algorithm. Finally, notice
that the size of each initial interval is at most 4f1, where f1 is the number of
failures in the first round. Hence the total running time is O(log f1) rounds.

The proof of correctness can be found in a companion technical report [3].

6 Discussion

This paper presents the first early-deciding upper bounds for synchronous re-
naming. We show that, surprisingly, renaming can be solved in constant number
of rounds if the number of failures f is limited to O(

√
n), while in the general

case, renaming can always be solved in O(log f) communication rounds. In the
wait-free case, i.e. for f = n− 1, this upper bound is matched asymptotically by
the Ω(log n) lower bound of Chaudhuri et al. [13]. It remains an open question
whether this is tight for other values of f .

References

1. Alistarh, D., Aspnes, J., Censor-Hillel, K., Gilbert, S., Zadimoghaddam, M.:
Optimal-time adaptive strong renaming, with applications to counting. In: PODC
2011: Proceedings of the 30th Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 239–248 (2011)

206 D. Alistarh et al.

2. Alistarh, D., Aspnes, J., Gilbert, S., Guerraoui, R.: The complexity of renaming.
In: FOCS 2011: Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science, pp. 718–727 (2011)

3. Alistarh, D., Attiya, H., Guerraoui, R., Travers, C.: Early deciding synchronous
renaming in O(log f) rounds or less. Technical report, INRIA (2012),
http://hal.inria.fr/hal-00687555/en/

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. Journal of the ACM 37(3), 524–548 (1990)

5. Attiya, H., Djerassi-Shintel, T.: Time bounds for decision problems in the presence
of timing uncertainty and failures. Journal of Parallel and Distributed Comput-
ing 61(8), 1096–1109 (2001)

6. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM Journal on Computing 31(2), 642–664 (2001)

7. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC
2093: Proceedings of the Twelfth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 41–51. ACM, New York (1993)

8. Brodsky, A., Ellen, F., Woelfel, P.: Fully-adaptive algorithms for long-lived renam-
ing. Distributed Computing 24(2), 119–134 (2011)

9. Burns, J.E., Peterson, G.L.: The ambiguity of choosing. In: PODC 1989: Proceed-
ings of the Eighth Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 145–157. ACM, New York (1989)

10. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming:
The upper bound. Journal of the ACM 59(1) (March 2012)

11. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming:
The lower bound. Distributed Computing 22(5-6), 287–301 (2010)

12. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation 105(1), 132–158 (1993)

13. Chaudhuri, S., Herlihy, M., Tuttle, M.R.: Wait-free implementations in message-
passing systems. Theoretical Computer Science 220(1), 211–245 (1999)

14. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. Journal of the ACM 33, 499–516 (1986)

15. Dolev, D., Reischuk, R., Raymond Strong, H.: Early stopping in byzantine agree-
ment. Journal of the ACM 37(4), 720–741 (1990)

16. Gafni, E., Guerraoui, R., Pochon, B.: The complexity of early deciding set agree-
ment. SIAM Journal on Computing 40, 63–78 (2011)

17. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(2), 858–923 (1999)

18. Moir, M., Anderson, J.H.: Fast, Long-Lived Renaming (Extended Abstract). In:
Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 141–155. Springer,
Heidelberg (1994)

19. Okun, M.: Strong order-preserving renaming in the synchronous message passing
model. Theoretical Computer Science 411(40-42), 3787–3794 (2010)

20. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM 27(2), 228–234 (1980)

http://hal.inria.fr/hal-00687555/en/

	Early Deciding Synchronous Renamingin O(log f) Rounds or Less
	Introduction
	Model and Problem Statement
	Related Work
	A Tight Renaming Algorithm
	A Loose Renaming Algorithm with Improved Round Complexity
	Discussion
	References

