Abortable Linearizable Modules

Rachid Guerraoui Viktor Kuncak Giuliano Losa May 27, 2015

Abstract

We define the Abortable Linearizable Module automaton (ALM for short) and prove its key composition property using the IOA theory of HOLCF. The ALM is at the heart of the Speculative Linearizability framework. This framework simplifies devising correct speculative algorithms by enabling their decomposition into independent modules that can be analyzed and proved correct in isolation. It is particularly useful when working in a distributed environment, where the need to tolerate faults and asynchrony has made current monolithic protocols so intricate that it is no longer tractable to check their correctness. Our theory contains a typical example of a refinement proof in the I/O-automata framework of Lynch and Tuttle.

Contents

1	Intr	troduction	
2		inition and properties of the longest common postfix of et of lists	3
3	The	e ALM Automata specification	3
	Proof that the composition of two instances of the ALM automaton behaves like a single instance of the ALM au-		
	tom	naton	7
	4.1	A case split useful in the proofs	7
	4.2	Invariants of a single ALM instance	9
	4.3	Invariants of the composition of two ALM instances	9
	4.4	Proofs of invariance	11
	4.5	The refinement proof	29
5	Cor	nclusion	46

1 Introduction

Linearizability [2] is a key design methodology for reasoning about implementations of concurrent abstract data types in both shared memory and message passing systems. It presents the illusion that operations execute sequentially and fault-free, despite the asynchrony and faults that are often present in a concurrent system, especially a distributed one.

However, devising complete linearizable objects is very difficult, especially in the presence of process crashes and asynchrony, requiring complex algorithms (such as Paxos [3]) to work correctly under general circumstances, and often resulting in bad average-case behavior. Concurrent algorithm designers therefore resort to speculation, i.e. to optimizing existing algorithms to handle common scenarios more efficiently. More precisely, a speculative systems has a fall-back mode that works in all situations and several optimization modes, each of which is very efficient in a particular situation but might not work at all in some other situation. By observing its execution, a speculative system speculates about which particular situation it will be subject to and chooses the most efficient mode for that situation. If speculation reveals wrong, a new speculation is made in light of newly available observations. Unfortunately, building speculative system ad-hoc results in protocols so complex that it is no longer tractable to prove their correctness.

We present an I/O-automaton [4] specification, called ALM (a shorthand for Abortable Linearizable Module), which can be used to build a speculative linearizable algorithm out of independent modules that implement the different modes of the speculative algorithm. The ALM is at the heart of the Speculative Linearizability framework [1].

The ALM automaton produces traces that are linearizable with respect to a generic type of object. Moreover, the composition of two instances of the ALM automaton behaves like a single instance. Hence it is guaranteed that the composition of any number of instances of the ALM automaton is linearizable.

The properties stated above greatly simplify the development and analysis of speculative systems: Instead of having to reason about an entanglement of complex protocols, one can devise several modules with the property that, when taken in isolation, each module refines the ALM automaton. Hence complex protocols can be divided into smaller modules that can be analyzed independently of each other. In particular, it allows to optimize an existing protocol by creating separate optimization modules, prove each optimization correct in isolation, and obtain the correctness of the overall protocol from the correctness of the existing one.

In this document we define the ALM automaton and prove the Composition Theorem, which states that the composition of two instances of the ALM automaton behaves as a single instance of the ALM automaton. We use a refinement mapping to establish this fact.

2 Definition and properties of the longest common postfix of a set of lists

```
theory LCP
imports Main \sim /src/HOL/Library/Sublist
begin
definition common-post fix-p :: ('a list) set => 'a list => bool
   - Predicate that recognizes the common postfix of a set of lists
  — The common postfix of the empty set is the empty list
  common-postfix-p \equiv \lambda \ xss \ xs \ . \ if \ xss = \{\} \ then \ xs = [] \ else \ ALL \ xs' \ . \ xs' \in xss
\longrightarrow suffixed xs xs'
definition l-c-p-pred :: 'a list set <math>\Rightarrow 'a list => bool

    Predicate that recognizes the longest common postfix of a set of lists

  l-c-p-pred \equiv \lambda xss xs . common-postfix-p xss xs \wedge (ALL xs' . common-postfix-p
xss xs' \longrightarrow suffixeq xs' xs
definition l-c-p:: 'a list set <math>\Rightarrow 'a list
  — The longest common postfix of a set of lists
 where
 l\text{-}c\text{-}p \equiv \lambda \ \textit{xss} . THE \textit{xs} . l\text{-}c\text{-}p\text{-}pred \ \textit{xss} \ \textit{xs}
lemma l-c-p-ok: l-c-p-pred xss (l-c-p xss)
    - Proof that the definition of the longest common postfix of a set of lists is
consistent
lemma l-c-p-lemma:
  — A useful lemma
 (ls \neq \{\} \land (\forall l \in ls . (\exists l' . l = l' @ xs))) \longrightarrow suffixeq xs (l-c-p ls)
lemma l-c-p-common-postfix: common-postfix-p xss (l-c-p xss)
  using l-c-p-ok[of xss] by (auto simp add:l-c-p-pred-def)
lemma l-c-p-longest: common-postfix-p xss xs \longrightarrow suffixeq xs (l-c-p xss)
  using l-c-p-ok[of xss] by (auto simp add:l-c-p-pred-def)
end
```

3 The ALM Automata specification

```
theory ALM imports ^{\sim\sim}/src/HOL/HOLCF/IOA/meta-theory/IOA LCP begin
```

typedecl client

```
— A non-empty set of clients
typedecl data
    – Data contained in requests
datatype request =
  — A request is composed of a sender and data
  Req client data
definition request-snd :: request \Rightarrow client
  where request-snd \equiv \lambda \ r. \ case \ r \ of \ Req \ c \rightarrow c
type-synonym \ hist = request \ list

    Type of histories of requests.

{\bf datatype}\,\, ALM\text{-}action =
   — The actions of the ALM automaton
  Invoke client request
    Commit client nat hist
   Switch client nat hist request
   Initialize nat hist
   Linearize nat hist
  | Abort nat
datatype phase = Sleep \mid Pending \mid Ready \mid Aborted

    Executions phases of a client

definition linearizations :: request set <math>\Rightarrow hist set
  — The possible linearizations of a set of requests
  linearizations \equiv \lambda \ reqs \ . \{h \ . \ set \ h \subseteq reqs \land distinct \ h\}
definition postfix-all :: hist \Rightarrow hist set \Rightarrow hist set
   - appends to the right the first argument to every member of the history set
 where
 \textit{postfix-all} \equiv \lambda \ \textit{h} \ \textit{hs} \ . \ \{\textit{h'} \ . \ \exists \ \textit{h''} \ . \ \textit{h'} = \textit{h''} \ @ \ \textit{h} \ \land \ \textit{h''} \in \textit{hs} \}
definition
  ALM-asig :: nat \Rightarrow nat \Rightarrow ALM-action signature
  — The action signature of ALM automata
  — Input actions, output actions, and internal actions
  where
  ALM-asig \equiv \lambda \ id1 \ id2 . (
    \{act : \exists c r h .
             act = Invoke \ c \ r \mid act = Switch \ c \ id1 \ h \ r\},
    \{act : \exists chrid'.
             id1 <= id' \land id' < id2 \land act = Commit \ c \ id' \ h
             | act = Switch \ c \ id2 \ h \ r \},
    \{act : \exists h .
             act = Abort id1
             \mid act = Linearize id1 h
```

```
| act = Initialize id1 h \} )
{f record}\ ALM\text{-}state =
  — The state of the ALM automata
 pending :: client \Rightarrow request
  — Associates a pending request to a client process
  initHists :: hist set
  — The set of init histories submitted by clients
  phase :: client \Rightarrow phase

    Associates a phase to a client process

  hist :: hist
  — Represents the chosen linearization of the concurrent history of the current
instance only
  aborted :: bool
  initialized :: bool \\
definition pendingReqs :: ALM\text{-}state \Rightarrow request set
   — the set of requests that have been invoked but that are not yet in the hist
parameter
  where
  pendingReqs \equiv \lambda \ s \ . \ \{r \ . \ \exists \ c \ .
     r = pending \ s \ c
     \land r \notin set (hist s)
     \land phase s \ c \in \{Pending, Aborted\}\}
definition initValidRegs :: ALM\text{-}state \Rightarrow request set
   — any request that appears in an init hist after the longest common prefix or
that is pending
  where
  initValidReqs \equiv \lambda s \cdot \{r .
     (r \in pendingReqs \ s \ \lor (\exists \ h \in initHists \ s \ . \ r \in set \ h))
     \land r \notin set (l\text{-}c\text{-}p (initHists s))
definition
  ALM-trans :: nat \Rightarrow nat \Rightarrow (ALM-action, ALM-state)transition set
  — the transitions of the ALM automaton
  where
  ALM-trans \equiv \lambda \ id1 \ id2 \ . \{trans \ .
   let s = fst \ trans; \ s' = snd \ (snd \ trans); \ a = fst \ (snd \ trans) \ in
     case a of Invoke c r \Rightarrow
      if phase s \ c = Ready \land request\text{-snd} \ r = c \land r \notin set \ (hist \ s)
      then s' = s(pending := (pending s)(c := r),
                 phase := (phase \ s)(c := Pending)
      else\ s'=s
   |Linearize\ i\ h \Rightarrow
      initialized\ s\ \land\ \neg\ aborted\ s
      \land h \in postfix\text{-}all \ (hist \ s) \ (linearizations \ (pendingReqs \ s))
```

```
\wedge s' = s(|hist| := h|)
    |Initialize i h \Rightarrow
      (\exists c . phase \ s \ c \neq Sleep) \land \neg \ aborted \ s \land \neg \ initialized \ s
      \land h \in postfix-all \ (l-c-p \ (initHists \ s)) \ (linearizations \ (initValidRegs \ s))
      \wedge s' = s(hist := h, initialized := True)
    |Abort i \Rightarrow
      \neg aborted \ s \land (\exists \ c \ . \ phase \ s \ c \neq Sleep)
      \land s' = s(|aborted := True)
    |Commit\ c\ i\ h \Rightarrow
      phase s \ c = Pending \land pending \ s \ c \in set \ (hist \ s)
      \land h = drop While (\lambda r . r \neq pending s c) (hist s)
      \land s' = s \ (phase := (phase \ s)(c := Ready))
    |Switch\ c\ i\ h\ r \Rightarrow
      if i = id1
      then if phase s c = Sleep
        then s' = s (initHists := \{h\} \cup (initHists s),
                     phase := (phase \ s)(c := Pending),
                     pending := (pending \ s)(c := r)
        else\ s'=s
      else if i = id2
        then\ aborted\ s
             \land phase s \ c = Pending \land r = pending s \ c
             \wedge (if initialized s
                then (h \in postfix-all\ (hist\ s)\ (linearizations\ (pendingReqs\ s\ )))
               else (h \in postfix-all (l-c-p (initHists s)) (linearizations (initValidReqs
s))))
             \land s' = s(phase := (phase s)(c := Aborted))
        else False }
definition ALM-start :: nat \Rightarrow ALM-state set
  — the set of start states
  ALM-start \equiv \lambda \ id \ . \{s \ .
    \forall c . phase \ s \ c = (if \ id \neq 0 \ then \ Sleep \ else \ Ready)
    \wedge hist s = []
    \land \neg aborted s
    \land (if id \neq 0 then \neg initialized s else initialized s)
    \land initHists \ s = \{\}\}
definition ALM-ioa :: nat \Rightarrow nat \Rightarrow (ALM-action, ALM-state)ioa
   — The ALM automaton
  where
  ALM-ioa \equiv \lambda \ (id1::nat) \ id2.
     (ALM-asig id1 id2,
      ALM-start id1,
```

```
ALM\text{-}trans\ id1\ id2, \{\}, \, \{\}\}  \text{type-synonym}\ compo\text{-}state = ALM\text{-}state \times ALM\text{-}state   \text{definition}\ compose ALMs ::\ nat \Rightarrow nat \Rightarrow (ALM\text{-}action,\ compo\text{-}state)\ ioa   -\text{the composition of two ALMs}   \text{where}   compose ALMs \equiv \lambda\ id1\ id2\ .   hide\ (ALM\text{-}ioa\ 0\ id1\ ||\ ALM\text{-}ioa\ id1\ id2)   \{act\ .\ EX\ c\ tr\ r\ .\ act = Switch\ c\ id1\ tr\ r\}
```

end

4 Proof that the composition of two instances of the ALM automaton behaves like a single instance of the ALM automaton

```
theory CompositionCorrectness imports ALM begin declare split-if-asm [split] declare Let-def [simp]
```

4.1 A case split useful in the proofs

```
definition in-trans-cases-fun :: nat => nat => (ALM-state *ALM-state) =>
(ALM\text{-}state * ALM\text{-}state) => bool

    Helper function used to decompose proofs

in-trans-cases-fun == \% id1 id2 s t .
  (EX ca ra. (fst s, Invoke ca ra, fst t): ALM-trans 0 id1 & (snd s, Invoke ca ra,
snd\ t): ALM-trans id1\ id2)
 (EX ca h ra. (fst s, Switch ca id1 h ra, fst t): ALM-trans 0 id1 & (snd s, Switch
ca\ id1\ h\ ra,\ snd\ t): ALM-trans\ id1\ id2)
 |(EX \ c \ id' \ h. \ fst \ t = fst \ s \ \& \ (snd \ s, \ Commit \ c \ id' \ h, \ snd \ t) : ALM-trans \ id1 \ id2
& id1 <= id' \& id' < id2)
 |(EX\ c\ h\ r.\ fst\ t=fst\ s\ \&\ (snd\ s,\ Switch\ c\ id2\ h\ r,\ snd\ t):ALM-trans\ id1\ id2)|
  |(EX \ h \ . \ fst \ t = fst \ s \ \& \ (snd \ s, \ Linearize \ id1 \ h, \ snd \ t) : ALM-trans \ id1 \ id2)|
  | (fst \ t = fst \ s \ \& (snd \ s, \ Abort \ id1, \ snd \ t) : ALM-trans \ id1 \ id2) |
  \mid (EX \ h. \ fst \ t = fst \ s \ \& \ (snd \ s, \ Initialize \ id1 \ h, \ snd \ t) : ALM-trans \ id1 \ id2)
 (EX\ ca\ ta\ ra.\ (fst\ s,\ Switch\ ca\ 0\ ta\ ra,\ fst\ t): ALM-trans\ 0\ id1\ \&\ snd\ t=snd
  |(EX\ ca\ id'\ h.\ (fst\ s,\ Commit\ ca\ id'\ h,\ fst\ t): ALM-trans\ 0\ id1\ \&\ snd\ t=snd
s \& id' < id1)
  |(EX \ h \ . (fst \ s, Linearize \ 0 \ h, fst \ t) : ALM-trans \ 0 \ id1 \ \& \ snd \ t = snd \ s)|
 (EX h. (fst s, Initialize 0 h, fst t) : ALM-trans 0 id1 & snd t = snd s)
```

```
((fst\ s,\ Abort\ 0,\ fst\ t):ALM-trans\ 0\ id1\ \&\ snd\ t=snd\ s)
\mathbf{lemma} \quad compose ALMs E \colon

    A rule for decomposing proofs

 assumes id1 \approx 0 and id1 < id2 and in-trans-comp:s - (a::ALM-action) -- compose ALMs
id1 id2 \rightarrow t
 shows decomp: in-trans-cases-fun id1 id2 s t
proof -
  from in-trans-comp and \langle id1 \rangle = 0 and \langle id1 \langle id2 \rangle
 have a : \{act : EX \ c \ r \ h \ id' : 0 \le id' \& \ id' \le id' \le id' \& \ (
     act = Invoke \ c \ r
     | act : \{Switch \ c \ 0 \ h \ r, \ Switch \ c \ id1 \ h \ r, \ Switch \ c \ id2 \ h \ r\}
       act : \{Linearize \ 0 \ h, \ Linearize \ id1 \ h\}
       act : {Initialize 0 h, Initialize id1 h}
       act: {Abort 0, Abort id1}
      act : \{Commit \ c \ id' \ h\}
     )} by (auto simp add: composeALMs-def trans-of-def hide-def ALM-ioa-def
par-def actions-def asig-inputs-def asig-outputs-def asig-internals-def asig-of-def ALM-asig-def)
  with this obtain c \ r \ h \ id' where 0 \le id' \& \ id' \le id2 \& \ a : \{ \ act \ .
     act = Invoke \ c \ r
     | act : {Switch c 0 h r, Switch c id1 h r, Switch c id2 h r}
       act: \{Linearize\ 0\ h,\ Linearize\ id1\ h\}
       act: \{Initialize\ 0\ h,\ Initialize\ id1\ h\}
      act: \{Abort\ \theta,\ Abort\ id1\}
     | act : \{Commit \ c \ id' \ h\}
    } by auto
 moreover from in-trans-comp and \langle id1 \rangle = 0 and \langle id1 \langle id2 \rangle
   = Commit\ c\ id'\ h\ \&\ id' < id1)) \Longrightarrow ((fst\ s,\ a,\ fst\ t): ALM-trans\ 0\ id1\ \&\ snd\ s
= snd t
   and
    (a = Linearize id1 \ h \mid a = Abort id1 \mid a = Initialize id1 \ h \mid a = Switch \ c \ id2)
h r \mid (a = Commit \ c \ id' \ h \ \& \ id1 <= id' \& \ id' < id2)) \Longrightarrow (fst \ s = fst \ t \ \& \ (snd))
s, a, snd t): ALM-trans id1 id2)
   (a = Switch \ c \ id1 \ h \ r \mid a = Invoke \ c \ r) \Longrightarrow ((fst \ s, \ a, fst \ t) : ALM-trans \ 0 \ id1)
& (snd \ s, \ a, \ snd \ t) : ALM-trans \ id1 \ id2)
   by (auto simp add: composeALMs-def trans-of-def hide-def ALM-ioa-def par-def
actions-def asig-inputs-def asig-outputs-def asig-internals-def asig-of-def ALM-asig-def)
 ultimately show ?thesis unfolding in-trans-cases-fun-def apply simp by(metis
linorder-not-less)
qed
lemma my-rule:||id1 \neq 0; id1 < id2; s -a -- composeALMs id1 id2 -> t;
[|in\text{-}trans\text{-}cases\text{-}fun\ id1\ id2\ s\ t|] ==> P] by (auto intro: composeALMsE[where
s=s and t=t and a=a
lemma my-rule2:[0 < id1; id1 < id2; s - a - - composeALMs id1 id2 - > t;
[|in\text{-}trans\text{-}cases\text{-}fun\ id1\ id2\ s\ t|] ==> P| by (auto intro: composeALMsE[where
```

```
s=s and t=t and a=a
```

4.2 Invariants of a single ALM instance

```
definition P1a :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool
 where
  — In ALM 1, a pending request of client c has client c as sender
  P1a == \% s. let s1 = fst s; s2 = snd s in
              ALL c. phase s1 c \in \{Pending, Aborted\} \longrightarrow request-snd (pending)
s1 \ c) = c
definition P1b :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool
  where
  — In ALM 2, a pending request of client c has client c as sender
 P1b == \% s. let s1 = fst s; s2 = snd s in
              ALL c . phase s2\ c \neq Sleep \longrightarrow request-snd\ (pending\ s2\ c) = c
definition P2 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool where
  P2 == \% s. let s1 = fst s; s2 = snd s in
      (\forall c . phase s2 c = Sleep) \longrightarrow (\neg initialized s2 \land hist s2 = [])
definition P3 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool where
  P3 == \% s. let s1 = fst s; s2 = snd s in
       \forall c : (phase \ s2 \ c = Ready \longrightarrow initialized \ s2)
definition P4::(ALM\text{-}state*ALM\text{-}state) \Rightarrow bool
 — The set of init histories of ALM 2 is empty when no client ever invoked anything
  P4 == \% s. let s1 = fst s; s2 = snd s in
     (\forall c. phase s2 c = Sleep) = (initHists s2 = \{\})
definition P5 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool
  — In ALM 1 a client never sleeps
 where
  P5 == \% s. let s1 = fst s; s2 = snd s in
      \forall c . phase s1 c \neq Sleep
```

4.3 Invariants of the composition of two ALM instances

```
definition P6::(ALM\text{-}state*ALM\text{-}state)\Rightarrow bool
— Non-interference accross instances

where
P6 == \% \ s \ . \ let \ s1 = fst \ s; \ s2 = snd \ s \ in
( \sim aborted \ s1 \ --> (ALL \ c \ . \ phase \ s2 \ c = Sleep)) \ \& \ (ALL \ c \ . \ phase \ s1 \ c \ \sim = Aborted = (phase \ s2 \ c = Sleep))
definition P7::(ALM\text{-}state*ALM\text{-}state) \Rightarrow bool
— Before initialization of the ALM 2, pending requests are the same as in ALM 1 and no new requests may be accepted (phase is not Ready)
```

```
where
```

P7 == % s. let s1 = fst s; s2 = snd s in

ALL c . phase s1 c = Aborted $\land \neg$ initialized s2 \longrightarrow (pending s2 c = pending s1 c \land phase s2 c \in {Pending, Aborted})

definition $P8 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool$

— Init histories of ALM 2 are built from the history of ALM 1 plus pending requests of ALM 1

where

 $P8 == \% \ s$. let $s1 = fst \ s$; $s2 = snd \ s$ in $\forall \ h \in initHists \ s2$. $h \in postfix-all \ (hist \ s1) \ (linearizations \ (pendingReqs \ s1))$

definition $P9 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool$

— ALM 2 does not abort before ALM 1 aborts

where

$$P9 == \% \ s$$
 . let $s1 = fst \ s$; $s2 = snd \ s$ in aborted $s2 \longrightarrow aborted \ s1$

definition $P10 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool$

— ALM 1 is always initialized and when ALM 2 is not initialized its history is empty

where

$$P10 == \% \ s \ . \ let \ s1 = fst \ s; \ s2 = snd \ s \ in$$
 $initialized \ s1 \ \land \ (\neg \ initialized \ s2 \longrightarrow (hist \ s2 = []))$

definition $P11 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool$ where

— After ALM 2 has been invoked and before it is initialized, any request found in init histories after their longest common prefix is pending in ALM 1

```
P11 == \% s. let s1 = fst s; s2 = snd s in
```

 $((\exists \ c \ . \ phase \ s2 \ c \neq Sleep) \ \land \ \neg \ initialized \ s2) \ \longrightarrow \ initValidReqs \ s2 \subseteq pendingReqs \ s1$

definition $P12:: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool$ where

— After ALM 2 has been invoked and before it is initialized, the longest common prefix of the init histories of ALM 2 is buit from appending a set of request pending in ALM 1 to the history of ALM 1

```
P12 == \% s. let s1 = fst s; s2 = snd s in
```

 $(\exists \ c \ . \ phase \ s2 \ c \neq Sleep) \longrightarrow (\exists \ rs \ . \ l\text{-}c\text{-}p \ (initHists \ s2) = rs \ @ \ (hist \ s1)$ $\land \ set \ rs \subseteq pendingReqs \ s1 \ \land \ distinct \ rs)$

definition $P13 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool$ where

— After ALM 2 has been invoked and before it is initialized, any history that may be chosen at initialization is a valid linearization of the concurrent history of ALM 1

$$P13 == \% s$$
. let $s1 = fst s$; $s2 = snd s$ in

```
s2) (linearizations (initValidRegs s2)) \subseteq postfix-all (hist s1) (linearizations (pendingRegs
s1))
definition P14 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool
      The history of ALM 1 is a postfix of the history of ALM 2 and requests
appearing in ALM 2 after the history of ALM 1 are not in the history of ALM 1
  P14 == \% s. let s1 = fst s; s2 = snd s in
       (hist \ s2 \neq [] \lor initialized \ s2) \longrightarrow (\exists \ rs \ .
         hist \ s2 = rs \ @ (hist \ s1)
         \land set rs \cap set (hist s1) = \{\})
definition P15 :: (ALM\text{-}state * ALM\text{-}state) \Rightarrow bool
  where
  — A client that hasn't yet invoked ALM 2 has no request committed in ALM 2
except for its pending request
  P15 == \% s. let s1 = fst s; s2 = snd s in
      \forall r . let c = request-snd \ r \ in \ phase \ s2 \ c = Sleep \land r \in set \ (hist \ s2) \longrightarrow (r)
\in set (hist s1) \lor r \in pendingRegs s1)
        Proofs of invariance
4.4
lemma invariant-imp: [invariant \ ioa\ P; \ \forall \ s \ .\ P\ s \longrightarrow Q\ s] \implies invariant \ ioa\ Q
by (simp add:invariant-def)
declare phase.split [split]
declare phase.split-asm [split]
declare ALM-action.split [split]
declare ALM-action.split-asm [split]
lemma drop While-lemma: \forall ys . xs = ys @ zs \land hd zs = x \land zs \neq [] \land x \notin set
ys \longrightarrow drop While (\lambda x' . x' \neq x) xs = zs
   — A useful lemma about truncating histories
proof (induct xs, force)
  \mathbf{fix} \ a \ xs
  assume \forall ys . xs = ys @ zs \land hd zs = x \land zs \neq [] \land x \notin set ys \longrightarrow drop While
(\lambda x'. \ x' \neq x) \ xs = zs
 show \forall ys. a \# xs = ys @ zs \land hd zs = x \land zs \neq [] \land x \notin set ys \longrightarrow drop While
(\lambda x'. \ x' \neq x) \ (a \# xs) = zs
  proof (rule allI, rule impI, cases a = x)
   assume a \# xs = ys @ zs \land hd zs = x \land zs \neq [] \land x \notin set ys and a = x
   hence x \# xs = ys @ zs and x \notin set ys and hd zs = x and zs \neq [] by auto
   from \langle x \# xs = ys @ zs \rangle and \langle x \notin set ys \rangle have ys = [] by (metis\ list.sel(1))
hd-append hd-in-set)
   with \langle a = x \rangle and \langle x \# xs = ys @ zs \rangle show drop While (\lambda x', x' \neq x) (a \# xs)
= zs by auto
 next
```

 $((\exists c. phase \ s2 \ c \neq Sleep) \land \neg initialized \ s2) \longrightarrow postfix-all \ (l-c-p \ (initHists))$

```
\mathbf{fix} \ ys
   assume a \# xs = ys @ zs \land hd zs = x \land zs \neq [] \land x \notin set ys and a \neq x
   hence a \# xs = ys @ zs and hd zs = x and zs \neq [] and x \notin set ys by auto
   obtain ys' where xs = ys' @ zs and x \notin set ys'
   proof -
     from \langle a \# xs = ys @ zs \rangle and \langle hd zs = x \rangle and \langle a \neq x \rangle obtain ys' where ys
= a \# ys' apply clarify by (metis Cons-eq-append-conv list.sel(1))
     moreover with \langle x \notin set \ ys \rangle have x \notin set \ ys' by auto
     moreover from \langle ys = a \# ys' \rangle and \langle a \# xs = ys @ zs \rangle have xs = ys' @ zs
     ultimately show (\bigwedge ys'. [xs = ys' @ zs; x \notin set ys'] \Longrightarrow thesis) \Longrightarrow thesis
by auto
   qed
   with \forall ys \ . \ xs = ys \ @ \ zs \land hd \ zs = x \land zs \neq [] \land x \notin set \ ys \longrightarrow drop While
(\lambda x'. \ x' \neq x) \ xs = zs and (hd \ zs = x) and (zs \neq []) have drop While \ (\lambda x'. \ x' \neq x)
x) xs = zs by auto
   with \langle a \neq x \rangle show drop While (\lambda x', x' \neq x) (a \# xs) = zs by auto
 qed
qed
lemma P2-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
id2) P2
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P2 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P2-def)
\mathbf{next}
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P2 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - -composeALMs id1 id2 ->
(s1', s2')
 from (0 < id1) and (id1 < id2) and in-trans-comp show P2 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
    thus P2 (s1', s2') using \langle P2 (s1, s2) \rangle and \langle 0 < id1 \rangle and \langle id1 < id2 \rangle ap-
ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P2-def) done
 qed
qed
lemma P5-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P5 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P5-def)
next
```

```
fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P5 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - - composeALMs id1 id2 ->
(s1', s2')
 from (0 < id1) and (id1 < id2) and in-trans-comp show P5 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P5 (s1', s2') using \langle P5 (s1, s2) \rangle and \langle 0 < id1 \rangle and \langle id1 < id2 \rangle ap-
ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P5-def) done
 qed
qed
lemma P6-invariant: ||id1 \neq 0|; id1 < id2|| ==> invariant (composeALMs id1)
id2) P6
proof (rule invariantI, rule-tac [2] impI)
 \mathbf{fix} \ s
 assume s: starts-of (composeALMs id1 id2) and id1 \neq 0
 thus P6 s by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P6-def)
next
 \mathbf{fix} \ s \ t \ a
 assume P6 s
 assume id1 \neq 0 and id1 < id2 and s - a - - composeALMs id1 id2 - > t
 thus P6 t
 proof (rule my-rule)
   assume in-trans-cases-fun id1 id2 s t
   thus P6 t using \langle P6 s \rangle and \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle apply(auto simp add:
in-trans-cases-fun-def) apply (simp-all add: ALM-trans-def P6-def) apply (metis
phase.simps(12) phase.simps(4) phase.simps(5)) apply (metis phase.simps(12)
phase.simps(5)) apply (force simp\ add: ALM-trans-def P6-def) apply (force simp\ add)
add: ALM-trans-def P6-def) apply (force simp add: ALM-trans-def P6-def) ap-
ply (force simp add: ALM-trans-def P6-def) apply (force simp add: ALM-trans-def
P6-def) apply (force simp add: ALM-trans-def P6-def) done
 qed
qed
lemma P9-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
id2) P9
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2) : starts-of (composeALMs id1 id2)
 thus P9 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P9-def)
\mathbf{next}
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P9 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - - composeALMs id1 id2 ->
(s1', s2')
```

```
have P6 (s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
   with \langle reachable\ (composeALMs\ id1\ id2)\ (s1,\ s2)\rangle and \langle \theta < id1\rangle and \langle id1 <
id2) and P6-invariant show P6 (s1, s2) unfolding invariant-def by auto
 qed
 from (0 < id1) and (id1 < id2) and in-trans-comp show P9 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P9 (s1', s2') using \langle P9 (s1, s2) \rangle and \langle P6 (s1, s2) \rangle and \langle 0 < id1 \rangle and
\langle id1 < id2 \rangle apply (auto simp add: in-trans-cases-fun-def) apply (auto simp add:
ALM-trans-def P9-def P6-def) done
 qed
qed
lemma P10-invariant: [|id1 < id2; id1 \sim 0|] ==> invariant (composeALMs)
id1 id2) P10
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P10 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P10-def)
next
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P10 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - -composeALMs id1 id2 ->
(s1', s2')
 from (0 < id1) and (id1 < id2) and in-trans-comp show P10 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P10 (s1', s2') using \langle P10 \ (s1, s2) \rangle and \langle 0 < id1 \rangle and \langle id1 < id2 \rangle ap-
ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P10-def) done
 qed
qed
lemma P3-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
id2) P3
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P3 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P3-def)
\mathbf{next}
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P3 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - - composeALMs id1 id2 ->
(s1', s2')
```

```
have P10 (s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
   with \langle reachable\ (composeALMs\ id1\ id2)\ (s1,\ s2)\rangle and \langle \theta < id1\rangle and \langle id1 <
id2> and P10-invariant show P10 (s1, s2) unfolding invariant-def by auto
 qed
  from (0 < id1) and (id1 < id2) and in-trans-comp show P3 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P3 (s1', s2') using \langle P3 (s1, s2) and \langle P10 (s1, s2) and \langle 0 < id1 \rangle and
\langle id1 < id2 \rangle apply (auto simp add: in-trans-cases-fun-def) apply (auto simp add:
ALM-trans-def P3-def P10-def) done
 qed
qed
lemma P7-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
id2) P7
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P7(s1, s2) by (simp \ add: starts-of-def \ composeALMs-def \ hide-def \ ALM-ioa-def
par-def ALM-start-def P7-def)
next
 fix s1 s2 s1' s2' act
  assume reachable (composeALMs id1 id2) (s1, s2) and P7 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - -composeALMs id1 id2 ->
(s1', s2')
 have P6 (s1, s2) and P10 (s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
   with \langle reachable \ (composeALMs \ id1 \ id2) \ (s1, s2) \rangle and \langle 0 < id1 \rangle and \langle id1 < id1 \rangle
id2) and P6-invariant and P10-invariant show P6 (s1, s2) and P10 (s1, s2)
unfolding invariant-def by auto
 qed
 from \langle 0 < id1 \rangle and \langle id1 < id2 \rangle and in-trans-comp show P7 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P7 (s1', s2') using \langle P7(s1, s2) \rangle and \langle P6(s1, s2) \rangle and \langle 0 < id1 \rangle and
\langle id1 < id2 \rangle
   proof (auto simp add: in-trans-cases-fun-def)
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s1, s2)
Invoke ca ra, s1') \in ALM-trans 0 id1 and (s2, Invoke \ ca \ ra, \ s2') <math>\in ALM-trans
id1 id2
     thus P7 (s1', s2') by (auto simp add: ALM-trans-def P7-def)
   next
     fix ca h ra
```

```
Switch ca id1 h ra, s1') \in ALM-trans 0 id1 and (s2, Switch ca id1 h ra, s2') \in
ALM-trans id1 id2
    thus P7 (s1', s2') by (auto simp add: ALM-trans-def P7-def P6-def)
   next
    fix c id' h
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and (s2, Commit \ c \ id')
h, s2' \in ALM-trans id1 id2 and id1 \leq id' and id' < id2
     thus P7(s1, s2') using \langle P10(s1, s2) \rangle by (auto simp add: ALM-trans-def
P7-def P10-def)
   \mathbf{next}
    fix c h r
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s2, s2)
Switch c id2 h r, s2') \in ALM-trans id1 id2
    thus P7 (s1, s2') by (auto simp add: ALM-trans-def P7-def)
   next
    \mathbf{fix} h
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s2, s2)
Linearize id1\ h,\ s2') \in ALM-trans id1\ id2
    thus P7 (s1, s2') by (simp add: ALM-trans-def P7-def)
   next
    \mathbf{fix} h
    assume P7(s1, s2) and P6(s1, s2) and 0 < id1 and id1 < id2 and (s2, s2)
Initialize id1\ h,\ s2') \in ALM-trans id1\ id2
    thus P7 (s1, s2') by (auto simp add: ALM-trans-def P7-def)
   next
    fix ca ta ra
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s1, s2)
Switch ca 0 ta ra, s1') \in ALM-trans 0 id1
    thus P7 (s1', s2) by (auto simp add: ALM-trans-def P7-def)
   next
    fix ca id' h
     assume P7 (s1, s2) and P6 (s1, s2) and id1 < id2 and (s1, Commit \ ca)
id'h, s1') \in ALM-trans 0 id1 and id' < id1
    thus P7 (s1', s2) by (auto simp add: ALM-trans-def P7-def)
   next
    \mathbf{fix} h
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s1, s2)
Linearize 0 h, s1' \in ALM-trans 0 id1
    thus P7 (s1', s2) by (auto simp add: ALM-trans-def P7-def)
   \mathbf{next}
    \mathbf{fix} h
    assume P7(s1, s2) and P6(s1, s2) and 0 < id1 and id1 < id2 and (s1, s2)
Initialize 0 h, s1' \in ALM-trans 0 id1
    thus P7 (s1', s2) by (auto simp add: ALM-trans-def P7-def)
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s2, s2)
Abort id1, s2' \in ALM-trans id1 id2
    thus P7(s1, s2') by (auto simp add: ALM-trans-def P7-def)
```

assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s1, s2)

```
next
    assume P7 (s1, s2) and P6 (s1, s2) and 0 < id1 and id1 < id2 and (s1, s2)
Abort 0, s1' \in ALM-trans 0 id1
    thus P7 (s1', s2) by (auto simp add: ALM-trans-def P7-def)
   ged
 \mathbf{qed}
qed
lemma P4-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
id2) P4
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P4 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P4-def)
next
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P4 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - -composeALMs id1 id2 ->
(s1', s2')
 have P6 (s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
   with \langle reachable \ (composeALMs \ id1 \ id2) \ (s1, s2) \rangle and \langle \theta < id1 \rangle and \langle id1 < id1 \rangle
id2) and P6-invariant show P6 (s1, s2) unfolding invariant-def by auto
 from (0 < id1) and (id1 < id2) and in-trans-comp show P4 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P4 (s1', s2') using \langle P4 (s1, s2) \rangle and \langle \theta < id1 \rangle and \langle id1 < id2 \rangle ap-
ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P4-def) done
 qed
qed
lemma P8-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
id2) P8
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P8 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P8-def)
next
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P8 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - - composeALMs id1 id2 ->
(s1', s2')
 have P6 (s1, s2) and P10 (s1, s2) and P5 (s1, s2) and P4 (s1, s2)
```

```
from in-trans-comp and \langle reachable \ (composeALMs \ id1 \ id2) \ (s1, \ s2) \rangle have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
    with \langle reachable\ (composeALMs\ id1\ id2)\ (s1,\ s2)\rangle and \langle \theta < id1\rangle and \langle id1\rangle
< id2) and P6-invariant and P10-invariant and P5-invariant and P4-invariant
show P6 (s1, s2) and P10 (s1, s2) and P5 (s1, s2) and P4 (s1, s2) unfolding
invariant-def by auto
 qed
 from (0 < id1) and (id1 < id2) and in-trans-comp show P8 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P8 (s1', s2') using \langle P8 (s1, s2) \rangle and \langle 0 < id1 \rangle and \langle id1 < id2 \rangle
   proof (auto simp add: in-trans-cases-fun-def)
     fix ca ra
      assume P8 (s1, s2) and 0 < id1 and id1 < id2 and in-invoke-1:(s1, s2)
Invoke ca ra, s1') \in ALM-trans 0 id1 and in-invoke-2:(s2, Invoke ca ra, s2') \in
ALM-trans id1 id2
     show P8 (s1', s2')
     proof (cases s1' = s1)
      assume s1' = s1
        with in-invoke-2 and \langle P8 \ (s1, s2) \rangle show ?thesis by (auto simp add:
ALM-trans-def P8-def)
     next
       assume s1' \neq s1
       with in-invoke-1 have pendingRegs s1 \subseteq pendingRegs \ s1' by (force simp
add:pendingRegs-def ALM-trans-def)
          moreover from in-invoke-1 have hist s1' = hist s1 by (auto simp
add:ALM-trans-def)
        moreover from in\text{-}invoke\text{-}2 have initHists\ s2' = initHists\ s2 by (auto
simp\ add:ALM-trans-def)
      moreover note \langle P8 (s1, s2) \rangle
          ultimately show ?thesis by (auto simp add: ALM-trans-def P8-def
linearizations-def postfix-all-def)
     qed
   next
     fix ca h ra
    assume P8 (s1, s2) and 0 < id1 and id1 < id2 and in-switch-1:(s1, Switch
ca id1 h ra, s1') \in ALM-trans 0 id1 and in-switch-2:(s2, Switch ca id1 h ra, s2')
\in ALM-trans id1 id2
     show P8 (s1', s2')
     proof (auto simp add:P8-def)
      \mathbf{fix} \ h1
      assume h1 \in initHists \ s2'
      show h1 \in postfix-all \ (hist \ s1') \ (linearizations \ (pendingReqs \ s1'))
      proof (cases h1 \in initHists s2)
        assume h1 \in initHists \ s2
            moreover from in-switch-1 and \langle \theta \rangle = id1 have hist s1' = hist
s1 and pendingRegs s1' = pendingRegs s1 by (auto simp add:ALM-trans-def
pendingReqs-def)
```

proof -

```
moreover note \langle P8 (s1, s2) \rangle
        ultimately show h1 \in postfix-all \ (hist \ s1') \ (linearizations \ (pendingReqs
s1')) by (auto simp add:P8-def)
      next
        assume h1 \notin initHists \ s2
         with \langle h1 \in initHists \ s2' \rangle and in\text{-switch-2 have } h1 = h by (auto simp
add:ALM-trans-def)
        with in-switch-1 and (0 < id1) and (P10 (s1, s2)) have h1 \in postfix-all
(hist s1) (linearizations (pendingReqs s1)) by (auto simp add:ALM-trans-def P10-def)
            moreover from in-switch-1 and \langle \theta \rangle = id1 have hist s1' = hist
s1 and pendingReqs s1' = pendingReqs s1 by (auto simp add:ALM-trans-def
pendingReqs-def)
        ultimately show ?thesis by auto
      qed
     qed
   next
     \mathbf{fix} \ c \ id' \ h
    assume P8 (s1, s2) and 0 < id1 and (s2, Commit\ c\ id'\ h, s2') \in ALM-trans
id1 id2 and id1 \leq id' and id' < id2
     thus P8 (s1, s2') by (auto simp add: ALM-trans-def P8-def)
   next
     \mathbf{fix} \ c \ h \ r
    assume P8 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Switch\ c\ id2\ h\ r,
s2') \in ALM-trans id1 id2
     thus P8 (s1, s2') by (auto simp add: ALM-trans-def P8-def)
   next
     \mathbf{fix} h
     assume P8 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Linearize id1 h,
s2') \in ALM-trans id1 id2
     thus P8 (s1, s2') by (auto simp add: ALM-trans-def P8-def)
   next
     \mathbf{fix} \ h
     assume P8 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Initialize id1 h,
s2') \in ALM-trans id1 id2
     thus P8 (s1, s2') by (auto simp add: ALM-trans-def P8-def)
     fix ca ta ra
     assume P8 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Switch \ ca \ 0 \ ta
ra, s1' \in ALM-trans 0 id1
     thus P8 (s1', s2) using \langle P5 (s1, s2) \rangle by (auto simp add: ALM-trans-def
P8-def P5-def)
   \mathbf{next}
     fix ca id' h
   assume P8 (s1, s2) and in\text{-}commit\text{-}1:(s1, Commit \ ca \ id'\ h, \ s1') \in ALM\text{-}trans
     from in-commit-1 have pendingReqs s1' = pendingReqs s1 and hist s1' =
hist s1 by (auto simp add:pendingRegs-def ALM-trans-def)
      with \langle P8 \ (s1, s2) \rangle show P8 \ (s1', s2) by (auto simp add: ALM-trans-def
```

P8-def pendingReqs-def)

```
next
     \mathbf{fix} h
     assume P8 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Linearize 0 h,
s1') \in ALM-trans 0 id1
    thus P8 (s1', s2) using \langle P6 (s1, s2) \rangle and \langle P4 (s1, s2) \rangle by (auto simp add:
ALM-trans-def P8-def P6-def P4-def)
   next
     assume P8 (s1, s2) and \theta < id1 and id1 < id2 and (s2, Abort id1, s2')
\in ALM-trans id1 id2
     thus P8 (s1, s2') by (auto simp add: ALM-trans-def P8-def)
   next
     \mathbf{fix} \ h
     assume P8 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Initialize 0 h,
s1') \in ALM-trans 0 id1
     thus P8 (s1', s2) using \langle P10 \ (s1, s2) \rangle by (auto simp add: ALM-trans-def
P8-def P10-def)
   next
     assume P8 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Abort 0, s1') \in
ALM-trans 0 id1
   thus P8 (s1', s2) by (auto simp add: ALM-trans-def P8-def pendingRegs-def)
   qed
 qed
qed
lemma P12-invariant: ||id1 < id2; id1 \neq 0|| ==> invariant (composeALMs id1)
id2) P12
proof clarify
 assume id1 < id2 and \theta < id1
 with P8-invariant and P4-invariant have invariant (composeALMs id1 id2) (\lambda
(s1, s2). P8 (s1, s2) \land P4 (s1, s2)) by (auto simp add:invariant-def)
 moreover have \forall s . P8 s \land P4 s \longrightarrow P12 s
 proof auto
   fix s1 s2
   assume P8 (s1, s2) and P4 (s1, s2)
    hence initHists-prop: \forall h \in initHists s2 . (\exists h'. h = h' @ (hist s1) \land
set h' \subseteq pendingRegs \ s1 \land distinct \ h' by (auto simp add:P8-def postfix-all-def
linearizations-def)
   show P12 (s1, s2)
   proof (simp add:P12-def, rule impI)
     assume \exists c : phase s2 \ c \neq Sleep
     with \langle P4 \ (s1, s2) \rangle have initHists s2 \neq \{\} by (auto simp add:P4-def)
     with l-c-p-lemma[of initHists s2 hist s1] and initHists-prop
      obtain rs where l-c-p (initHists s2) = rs @ hist s1 by (auto simp add:
suffixeq-def)
     moreover have set rs \subseteq pendingReqs s1
     proof -
       from \langle initHists \ s2 \neq \{\} \rangle obtain h where h \in initHists \ s2 by auto
         with initHists-prop obtain h' where h = h' \otimes (hist \ s1) \wedge set \ h' \subseteq
pendingReqs s1 by auto
```

```
moreover from l-c-p-common-postfix[of\ initHists\ s2] and \langle h\in initHists\ s2\rangle
obtain h'' where h = h'' \otimes (l\text{-}c\text{-}p \text{ (initHists s2)}) by (auto simp add:common-postfix-p-def
suffixeq-def)
       moreover note \langle l\text{-}c\text{-}p \text{ } (initHists \ s2) = rs \ @ \ hist \ s1 \rangle
       ultimately show ?thesis by auto
     qed
     moreover have distinct rs
     proof -
       from \langle initHists \ s2 \neq \{\} \rangle obtain h where h \in initHists \ s2 by auto
        with initHists-prop obtain h' where h = h' \otimes (hist \ s1) and distinct h'
by auto
       with l-c-p-common-postfix[of\ initHists\ s2]\ and\ \langle h\in initHists\ s2\rangle and \langle l-c-p
(initHists\ s2) = rs\ @\ hist\ s1) obtain h'' where h' = h'' @ rs apply (auto\ simp
add:common-postfix-p-def suffixeq-def) by (metis \langle h = h' \otimes hist \ s1 \rangle append-assoc
append-same-eq)
       with \langle distinct \ h' \rangle show ?thesis by auto
     qed
      ultimately show \exists rs. \ l\text{-}c\text{-}p \ (initHists \ s2) = rs @ \ hist \ s1 \land set \ rs \subseteq pend
ingReqs \ s1 \ \land \ distinct \ rs \ \mathbf{by} \ auto
   qed
  qed
  ultimately show ?thesis by (auto intro:invariant-imp)
lemma P11-invariant: ||id1 < id2; id1 \neq 0|| ==> invariant (composeALMs id1)
id2) P11
proof clarify
 assume id1 < id2 and \theta < id1
 with P8-invariant and P12-invariant and P6-invariant and P7-invariant have
invariant (composeALMs id1 id2) (\lambda (s1, s2) . P8 (s1, s2) \wedge P12 (s1, s2) \wedge P6
(s1, s2) \land P7(s1, s2)) by (auto simp add:invariant-def)
  moreover have \forall s . P8 s \land P12 s \land P6 s \land P7 s \longrightarrow P11 s
  proof auto
   fix s1 s2
   assume P8 (s1, s2) and P12 (s1, s2) and P6 (s1, s2) and P7 (s1, s2)
   show P11 (s1, s2)
   proof (simp add:P11-def initValidRegs-def, auto)
     \mathbf{fix} \ x \ c \ h
     assume phase s2\ c \neq Sleep
     with \langle P12 \ (s1, s2) \rangle and \langle P8 \ (s1, s2) \rangle have initHists-prop: \forall h \in initHists \ s2
. (\exists h'. h = h' @ (hist s1) \land set h' \subseteq pendingReqs s1) and lcp-prop: \exists rs. l-c-p
(initHists\ s2) = rs\ @\ (hist\ s1)\ by (auto\ simp\ add:P12-def\ P8-def\ postfix-all-def
linearizations-def)
     assume x \notin set (l\text{-}c\text{-}p (initHists s2)) and h \in initHists s2 and x \in set h
     from initHists-prop and (h \in initHists \ s2) obtain h' where h = h' @ (hist
s1) and set h' \subseteq pendingReqs s1 by auto
     moreover from lcp-prop obtain rs where l-c-p (initHists s2) = rs @ (hist
s1) by auto
     moreover note \langle x \notin set \ (l\text{-}c\text{-}p \ (initHists \ s2)) \rangle and \langle x \in set \ h \rangle
```

```
ultimately have x \in set \ h' by auto
     with \langle set \ h' \subseteq pendingReqs \ s1 \rangle show x \in pendingReqs \ s1 by auto
   \mathbf{next}
     \mathbf{fix} \ x \ c \ h
     assume phase s2\ c \neq Sleep and \neg initialized s2
      with \langle P12 \ (s1, s2) \rangle have lcp\text{-}prop:\exists rs . l-c-p \ (initHists \ s2) = rs @ \ (hist
s1) by (auto simp add:P12-def P8-def postfix-all-def linearizations-def)
     assume x \notin set (l\text{-}c\text{-}p (initHists s2)) and x \in pendingRegs s2
     from \langle x \notin set (l\text{-}c\text{-}p (initHists s2)) \rangle and lcp\text{-}prop \text{ have } x \notin set (hist s1) \text{ by}
auto
     moreover obtain c' where phase s1 c' = Aborted and x = pending s1 c'
       from \langle x \in pendingReqs \ s2 \rangle and \langle P6 \ (s1, \ s2) \rangle obtain c' where phase \ s1 \ c'
= Aborted and x = pending \ s2 \ c' by (force simp add:pendingReqs-def P6-def)
       moreover with \langle \neg initialized s2 \rangle and \langle P7 (s1, s2) \rangle have x = pending s1
c' by (auto simp add:P7-def)
        ultimately show (\bigwedge c'. [phase s1 c' = Aborted; x = pending s1 <math>c'] \Longrightarrow
thesis) \implies thesis by auto
     ultimately show x \in pendingRegs\ s1 by (auto simp\ add:pendingRegs\ def)
   qed
 qed
  ultimately show ?thesis by (auto intro:invariant-imp)
lemma P1a-invariant: [|id1 < id2; id1 \neq 0|] ==> invariant (composeALMs id1)
id2) P1a
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2) : starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P1a (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P1a-def)
next
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P1a (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - - composeALMs id1 id2 ->
(s1', s2')
 have P5 (s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
    with \langle reachable \ (composeALMs \ id1 \ id2) \ (s1, \ s2) \rangle and \langle \theta < id1 \rangle and \langle id1 < id1 \rangle
id2) and P5-invariant show P5 (s1, s2) unfolding invariant-def by auto
 qed
 from (0 < id1) and (id1 < id2) and in-trans-comp show P1a (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
    thus P1a (s1', s2') using \langle P1a (s1, s2) \rangle and \langle P5 (s1, s2) \rangle and \langle 0 < id1 \rangle
and \langle id1 \langle id2 \rangle apply(auto simp add: in-trans-cases-fun-def) apply (auto simp
```

```
add: ALM-trans-def P1a-def P5-def) done
 qed
qed
lemma P1b-invariant: ||id1 < id2; id1 \neq 0|| ==> invariant (composeALMs id1)
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P1b (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P1b-def)
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P1b (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - - composeALMs id1 id2 ->
(s1', s2')
 have P1a (s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
   with \langle reachable\ (composeALMs\ id1\ id2)\ (s1,\ s2)\rangle and \langle 0 < id1\rangle and \langle id1 <
id2) and P1a-invariant show P1a (s1, s2) unfolding invariant-def by auto
  qed
 from \langle 0 < id1 \rangle and \langle id1 < id2 \rangle and in-trans-comp show P1b (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P1b (s1', s2') using \langle P1b \ (s1, s2) \rangle and \langle P1a \ (s1, s2) \rangle and \langle 0 < id1 \rangle
and \langle id1 \langle id2 \rangle apply (auto simp add: in-trans-cases-fun-def) apply (auto simp
add: ALM-trans-def P1b-def P1a-def) done
 qed
qed
lemma P13-invariant: ||id1 < id2; id1 \neq 0|| ==> invariant (composeALMs id1)
id2) P13
proof clarify
 assume id1 < id2 and 0 < id1
 with P11-invariant and P12-invariant have invariant (composeALMs id1 id2)
(\lambda (s1, s2) \cdot P11 (s1, s2) \wedge P12 (s1, s2)) by (auto simp add:invariant-def)
  moreover have \forall s . P11 s \land P12 s \longrightarrow P13 s
  proof auto
   fix s1 s2
   assume P11 (s1, s2) and P12 (s1, s2)
   show P13 (s1, s2)
   proof (simp add:P13-def, rule impI)
     assume (\exists c . phase s2 c \neq Sleep) \land \neg initialized s2
   with \langle P12 \ (s1, s2) \rangle and \langle P11 \ (s1, s2) \rangle obtain rs where initValidReqs-prop: initValidReqs
s2 \subseteq pendingRegs \ s1 and l\text{-}c\text{-}p (initHists s2) = rs @ (hist \ s1) and set \ rs \subseteq s2
pendingRegs s1 and distinct rs by (auto simp add:P12-def P11-def postfix-all-def
linearizations-def)
```

```
moreover from \langle l\text{-}c\text{-}p \text{ } (initHists \ s2) = rs @ (hist \ s1) \rangle have initValidRegs \ s2
\cap set rs = \{\} by (auto simp add:initValidReqs-def)
   ultimately show postfix-all (l-c-p (initHists s2)) (linearizations (initValidReqs
s2) \subseteq postfix-all \ (hist \ s1) \ (linearizations \ (pendingReqs \ s1)) by (force \ simp \ add:
postfix-all-def linearizations-def)
   qed
 qed
 ultimately show ?thesis by (auto intro:invariant-imp)
lemma P14-invariant: ||id1 < id2; id1 \neq 0|| ==> invariant (composeALMs id1)
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P14 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P14-def)
next
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P14 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - - composeALMs id1 id2 ->
(s1', s2')
 have P6 (s1, s2) and P13 (s1, s2) and P10 (s1, s2) and P2 (s1, s2) and P4
(s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
   with \langle reachable \ (composeALMs \ id1 \ id2) \ (s1, s2) \rangle and \langle \theta < id1 \rangle and \langle id1 < id1 \rangle
id2) and P6-invariant and P13-invariant and P10-invariant and P4-invariant
and P2-invariant show P6 (s1, s2) and P13 (s1, s2) and P10 (s1, s2) and P2
(s1, s2) and P4 (s1, s2) unfolding invariant-def by auto
 qed
 from \langle 0 < id1 \rangle and \langle id1 < id2 \rangle and in-trans-comp show P14 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P14 (s1', s2') using \langle P14 (s1, s2) \rangle and \langle 0 < id1 \rangle and \langle id1 < id2 \rangle
   proof (auto simp add: in-trans-cases-fun-def)
     fix ca ra
     assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Invoke\ ca\ ra,
s1') \in ALM-trans 0 id1 and (s2, Invoke\ ca\ ra,\ s2') \in ALM-trans id1 id2
     thus P14 (s1', s2') by (auto simp add: ALM-trans-def P14-def)
   next
     fix ca h ra
     assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Switch \ ca \ id1)
h \ ra, \ s1' \in ALM-trans 0 id1 and (s2, Switch ca id1 h \ ra, \ s2' \in ALM-trans id1
     thus P14 (s1', s2') by (auto simp add: ALM-trans-def P14-def)
   next
     fix c id' h
```

```
assume P14 (s1, s2) and 0 < id1 and (s2, Commit\ c\ id'\ h, s2') \in ALM-trans
id1 id2 and id1 \leq id' and id' < id2
     thus P14 (s1, s2') by (auto simp add: ALM-trans-def P14-def)
   \mathbf{next}
     fix c h r
     assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Switch \ c \ id2 \ h
r, s2' \in ALM-trans id1 id2
     thus P14 (s1, s2') by (auto simp add: ALM-trans-def P14-def)
   next
     \mathbf{fix} h
    assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Linearize id1 h,
s2') \in ALM-trans id1 id2
   thus P14 (s1, s2') by (auto simp add: ALM-trans-def P14-def linearizations-def
postfix-all-def pendingReqs-def)
   next
     \mathbf{fix} h
    assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Initialize id1 h,
s2') \in ALM-trans id1 id2
   thus P14 (s1, s2') using \langle P13 (s1, s2) \rangle apply (auto simp add: ALM-trans-def
P14-def P13-def linearizations-def postfix-all-def pendingReqs-def) prefer 2 apply
force apply blast done
   \mathbf{next}
     assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Abort id1, s2')
\in ALM-trans id1 id2
     thus P14 (s1, s2') by (auto simp add: ALM-trans-def P14-def)
   next
     fix ca ta ra
     assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Switch \ ca \ 0 \ ta)
ra, s1' \in ALM-trans 0 id1
     thus P14 (s1', s2) by (auto simp add: ALM-trans-def P14-def)
   next
     fix ca id' h
      assume P14 (s1, s2) and id1 < id2 and (s1, Commit\ ca\ id'\ h,\ s1') \in
ALM-trans 0 id1 and id' < id1
    thus P14 (s1', s2) by (auto simp add: ALM-trans-def P14-def)
   next
     \mathbf{fix} h
    assume P14 (s1, s2) and 0 < id1 and id1 < id2 and in\text{-}lin:(s1, Linearize)
0 h, s1' \in ALM-trans 0 id1
    from in-lin have \neg initialized s2 and hist s2 = [] using \langle P6 (s1, s2) \rangle and \langle P2 \rangle
(s1, s2) and \langle P10 \ (s1, s2) \rangle and \langle P2 \ (s1, s2) \rangle by (auto simp add: ALM-trans-def
P14-def P6-def P10-def P2-def P2-def)
     thus P14 (s1', s2) by (auto simp add:P14-def)
   next
     \mathbf{fix} h
     assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Initialize 0 h,
s1') \in ALM-trans 0 id1
     thus P14 (s1', s2) using \langle P10 (s1, s2) \rangle by (auto simp add: ALM-trans-def
```

P14-def P10-def)

```
next
    assume P14 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Abort 0, s1') \in
ALM-trans 0 id1
     thus P14 (s1', s2) by (auto simp add: ALM-trans-def P14-def)
   ged
 \mathbf{qed}
qed
lemma P15-invariant: ||id1 < id2; id1 \neq 0|| ==> invariant (composeALMs id1)|
id2) P15
proof (rule invariantI, auto)
 fix s1 s2
 assume (s1, s2): starts-of (composeALMs\ id1\ id2) and 0 < id1
 thus P15 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P15-def)
next
 fix s1 s2 s1' s2' act
 assume reachable (composeALMs id1 id2) (s1, s2) and P15 (s1, s2) and \theta
id1 and id1 < id2 and in-trans-comp:(s1, s2) - act - -composeALMs id1 id2 ->
 have P13 (s1, s2) and P1b (s1, s2) and P6 (s1, s2) and P1a (s1, s2) and
P5 (s1, s2) and P10 (s1, s2)
 proof -
    from in-trans-comp and (reachable (composeALMs id1 id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1', s2') by (auto intro: reachable.reachable-n)
   with \langle reachable\ (composeALMs\ id1\ id2)\ (s1,\ s2)\rangle\ {\bf and}\ \langle \theta < id1\rangle\ {\bf and}\ \langle id1 <
id2) and P13-invariant and P1b-invariant and P1a-invariant and P6-invariant
and P5-invariant and P10-invariant show P13 (s1, s2) and P1b (s1, s2) and
P6 (s1, s2) and P1a (s1, s2) and P5 (s1, s2) and P10 (s1, s2) unfolding
invariant-def by auto
 qed
 from (0 < id1) and (id1 < id2) and in-trans-comp show P15 (s1', s2')
 proof (rule my-rule2)
   assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
   thus P15 (s1', s2') using \langle P15 (s1, s2) \rangle and \langle 0 < id1 \rangle and \langle id1 < id2 \rangle
   proof (auto simp add: in-trans-cases-fun-def)
     fix ca ra
     assume P15 (s1, s2) and in\text{-}invoke1:(s1, Invoke\ ca\ ra,\ s1') \in ALM\text{-}trans\ 0
id1 and in-invoke2:(s2, Invoke\ ca\ ra,\ s2') \in ALM-trans\ id1\ id2
     show P15 (s1', s2')
     proof -
       { assume s1' = s1
         with \langle P15 \ (s1, s2) \rangle and in\text{-}invoke1 and in\text{-}invoke2 and \langle \theta < id1 \rangle and
\langle id1 < id2 \rangle
        have ?thesis by (auto simp add:ALM-trans-def P15-def)
       } note case1 = this
       { assume s1' \neq s1
        with in\text{-}invoke1 and in\text{-}invoke2 and \langle P6 \ (s1, s2) \rangle have s2' = s2 apply
(auto\ simp\ add:ALM-trans-def\ P6-def)\ by (metis\ phase.simps(12)\ phase.simps(4))
```

```
with \langle s1' \neq s1 \rangle and \langle P15 (s1, s2) \rangle and in-invoke1 have ?thesis by (force
simp add:P15-def ALM-trans-def pendingReqs-def)
       } note case2 = this
       from case1 and case2 show ?thesis by auto
     ged
   \mathbf{next}
     fix ca h ra
     assume P15 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Switch \ ca \ id1)
h \ ra, \ s1' \in ALM-trans 0 id1 and (s2, Switch ca id1 h \ ra, \ s2' \in ALM-trans id1
   thus P15 (s1', s2') by (auto simp add: ALM-trans-def P15-def pendingRegs-def)
   next
     fix c id'h
   assume P15 (s1, s2) and 0 < id1 and (s2, Commit\ c\ id'\ h, s2') \in ALM-trans
id1 id2 and id1 < id' and id' < id2
     thus P15 (s1, s2') by (auto simp add: ALM-trans-def P15-def)
   next
     \mathbf{fix} \ c \ h \ r
     assume P15 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Switch \ c \ id2 \ h
r, s2' \in ALM-trans id1 id2
     thus P15 (s1, s2') by (auto simp add: ALM-trans-def P15-def)
   \mathbf{next}
     \mathbf{fix} \ h
     assume in\text{-}lin:(s2, Linearize id1 h, s2') \in ALM\text{-}trans id1 id2
     show P15 (s1, s2')
     proof (auto simp add:P15-def)
       assume phase s2' (request-snd r) = Sleep and r \in set (hist s2') and r \notin s2'
pendingRegs s1
       show r \in set (hist s1)
       proof -
            from \langle phase \ s2' \ (request-snd \ r) = Sleep \rangle and in-lin have phase \ s2
(request-snd \ r) = Sleep \ by \ (auto \ simp \ add:ALM-trans-def)
      with \langle P1b \ (s1, s2) \rangle have r \notin pendingReqs s2 by (auto simp \ add:pendingReqs-def
P1b-def)
        with in-lin and \langle r \in set \ (hist \ s2') \rangle have r \in set \ (hist \ s2) by (auto simp
add:ALM-trans-def postfix-all-def linearizations-def)
          with \langle phase \ s2 \ (reguest-snd \ r) = Sleep \rangle and \langle P15 \ (s1, \ s2) \rangle and \langle r \notin Sleep \rangle
pendingReqs s1> show ?thesis by (auto simp add:P15-def)
       qed
     qed
   next
     assume P15 (s1, s2) and 0 < id1 and id1 < id2 and (s2, Abort id1, s2')
\in ALM-trans id1 id2
     thus P15 (s1, s2') by (auto simp add: ALM-trans-def P15-def)
   \mathbf{next}
     \mathbf{fix} h
     assume in-init:(s2, Initialize id1 h, s2') \in ALM-trans id1 id2
     show P15 (s1, s2')
```

```
proof (auto simp add:P15-def)
       assume phase s2' (request-snd r) = Sleep and r \in set (hist s2') and r \notin
pendingRegs s1
       show r \in set (hist s1)
       proof -
         from in-init and \langle P13 \ (s1, s2) \rangle
         have hist s2' \in postfix\text{-}all \ (hist \ s1) \ (linearizations \ (pendingReqs \ s1)) by
(auto simp add:ALM-trans-def P13-def)
        with \langle r \in set \ (hist \ s2') \rangle have r \in set \ (hist \ s1) \ \lor \ r \in pendingReqs \ s1 by
(auto simp add: postfix-all-def linearizations-def)
         with \langle r \notin pendingReqs \ s1 \rangle show ?thesis by auto
       qed
     qed
   next
     assume (s1, Switch \ ca \ 0 \ ta \ ra, \ s1') \in ALM-trans 0 \ id1
      hence s1' = s1 using \langle P5 \ (s1, s2) \rangle by (auto simp add: ALM-trans-def
P5-def)
     thus P15 (s1', s2) using \langle P15 (s1, s2) \rangle by auto
   next
     \mathbf{fix}\ ca\ id\ '\ h
      assume P15 (s1, s2) and id1 < id2 and (s1, Commit\ ca\ id'\ h,\ s1') \in
ALM-trans 0 id1 and id' < id1
   thus P15 (s1', s2) by (auto simp add: ALM-trans-def P15-def pendingRegs-def)
   next
     \mathbf{fix} \ h
     assume P15 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Linearize 0 h,
s1') \in ALM-trans 0 id1
    thus P15 (s1', s2) by (auto simp add: ALM-trans-def P15-def pendingRegs-def
postfix-all-def)
   next
     \mathbf{fix} h
     assume (s1, Initialize\ 0\ h,\ s1') \in ALM-trans 0\ id1
      hence s1' = s1 using \langle P10 \ (s1, s2) \rangle by (auto simp add: ALM-trans-def
P10-def)
     thus P15 (s1', s2) using \langle P15 (s1, s2) \rangle by auto
     assume P15 (s1, s2) and 0 < id1 and id1 < id2 and (s1, Abort 0, s1') \in
ALM-trans 0 id1
   thus P15 (s1', s2) by (auto simp add: ALM-trans-def P15-def pendingReqs-def)
   qed
 qed
qed
```

4.5 The refinement proof

```
definition ref-mapping :: (ALM-state * ALM-state) => ALM-state

— The refinement mapping between the composition of two ALMs and a single
```

```
ALM
 where
 ref-mapping \equiv \lambda \ (s1, s2).
    (pending = \lambda c. (if phase s1 c \neq Aborted then pending s1 c else pending s2 c),
     initHists = \{\},
     phase = \lambda c. (if phase s1 c \neq Aborted then phase s1 c else phase s2 c),
     hist = (if \ hist \ s2 = [] \ then \ hist \ s1 \ else \ hist \ s2),
     aborted = aborted s2,
     initialized = True
theorem composition: ||id1 \neq 0; id1 < id2|| ==> ((composeALMs id1 id2) =<|
(ALM-ioa \ 0 \ id2))
   - The composition theorem
proof -
 assume id1 \neq 0 and id1 < id2
 show composeALMs id1 id2 =<| ALM-ioa 0 id2
 proof (simp add: ioa-implements-def, rule conjI, rule-tac[2] conjI)
   show same-input-sig:inp\ (composeALMs\ id1\ id2) = inp\ (ALM-ioa\ 0\ id2)
   — First we show that both automata have the same input and output signature
    using \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle by (simp add: composeALMs-def hide-def
hide-asig-def ALM-ioa-def asig-inputs-def asig-outputs-def asig-of-def ALM-asig-def
par-def asig-comp-def, auto)
   from \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle
   show same-output-sig:out\ (composeALMs\ id1\ id2) = out\ (ALM-ioa\ 0\ id2)
      - Then we show that output signatures match
    by (simp add: asiq-inputs-def asiq-outputs-def asiq-of-def composeALMs-def
hide-def hide-asig-def ALM-ioa-def ALM-asig-def par-def asig-comp-def, auto)
   show traces (composeALMs\ id1\ id2) <= traces\ (ALM-ioa\ 0\ id2)
     — Finally we show trace inclusion
   proof (rule trace-inclusion[where f = ref-mapping])
      - We use the mapping ref-mapping, defined before
    from same-input-sig and same-output-sig show ext (composeALMs id1 id2)
= ext (ALM-ioa \ 0 \ id2)
      — First we show that they have the same external signature
      by (simp add: externals-def)
   next
     show is-ref-map ref-mapping (composeALMs id1 id2) (ALM-ioa 0 id2)
       — Then we show that ref-mapping-comp is a refinement mapping
       apply (simp add: is-ref-map-def, auto, rename-tac s1 s2) prefer 2 apply
(rename-tac s1 s2 s1' s2' act)
     proof -

    First we show that start states correspond

      fix s1 s2
      assume (s1, s2): starts-of (composeALMs\ id1\ id2)
        thus ref-mapping (s1, s2): starts-of (ALM-ioa 0 id2) using \langle id1 \neq
0) and (id1 < id2) by (simp\ add:\ ALM-ioa-def\ ALM-start-def\ starts-of-def
composeALMs-def hide-def par-def ref-mapping-def)
     next
```

```
fix s1 s2 s1' s2' act
    assume reachable:reachable (composeALMs id1 id2) (s1, s2) and in-trans-comp:(s1,
s2) - act - - composeALMs id1 id2 -> (s1', s2')
We make the invariants available for later use
        have P6 (s1, s2) and P6 (s1', s2') and P9 (s1, s2) and P7 (s1, s2)
and P10 (s1, s2) and P4 (s1, s2) and P5 (s1, s2) and P13 (s1, s2) and P1a
(s1, s2) and P14 (s1, s2) and P14 (s1', s2') and P15 (s1, s2) and P2 (s1, s2)
and P3 (s1, s2)
      proof -
       from reachable and in-trans-comp have reachable (composeALMs id1 id2)
(s1', s2') by (rule reachable.reachable-n)
        with P6-invariant and P9-invariant and P2-invariant and P7-invariant
and P10-invariant and P4-invariant and P5-invariant and P13-invariant and
P1a-invariant and P14-invariant and P15-invariant and P3-invariant \langle id1 \neq 0 \rangle
and \langle id1 < id2 \rangle and reachable
        show P6 (s1, s2) and P6 (s1', s2') and P9 (s1, s2) and P7 (s1, s2)
and P10 (s1, s2) and P4 (s1, s2) and P5 (s1, s2) and P13 (s1, s2) and P1a
(s1, s2) and P14 (s1, s2) and P14 (s1', s2') and P15 (s1, s2) and P2 (s1, s2)
s2) and P3 (s1, s2) by (auto simp add: invariant-def)
      qed
      let ?t = ref-mapping (s1, s2)
      let ?t' = ref-mapping (s1', s2')
      show EX ex. move (ALM-ioa 0 id2) ex ?t act ?t'
          - the main part of the proof
      proof (simp add: move-def, auto)
        assume act : ext (ALM-ioa \ 0 \ id2)
        hence act : \{act : EX \ c \ r : act = Invoke \ c \ r \mid (EX \ t : act = Switch \ c \ 0 \ t \} \}
r)} Un \{act \cdot EX \ c \ tr \cdot (EX \ id' \cdot 0 \le id' \ \& \ id' \le id' \ \& \ act = Commit \ c \ id' \ tr)\}
\{(EX\ r\ .\ act = Switch\ c\ id2\ tr\ r)\}\ by \{(EX\ r\ .\ act = Switch\ c\ id2\ tr\ r)\}\ by \{(EX\ r\ .\ act = Switch\ c\ id2\ tr\ r)\}\ 
externals-def asig-inputs-def asig-outputs-def asig-of-def)
        with in-trans-comp show EX ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) &
Finite ex & laststate (?t, ex) = ?t' & mk-trace (ALM-ioa\ 0\ id2)$ex = [act!]
          — If act is an external action of the composition, then there must be an
execution of the spec with matching states and forming trace "act"
           apply auto
        proof -
          \mathbf{fix} \ c \ r
            assume in-invoke:(s1, s2) -Invoke c r--composeALMs id1 id2->
(s1', s2')
            — If the current action is Invoke
        show EX ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) & Finite ex & laststate
(?t, ex) = ?t' \& mk\text{-}trace (ALM\text{-}ioa 0 id2) \$ex = [Invoke c r!]
          proof -
           let ?ex = [(Invoke \ c \ r, \ ?t')!]
           have Finite ?ex by auto
           moreover have laststate (?t, ?ex) = ?t' by (simp add: laststate-def)
```

— Then we show the main property of a refinement mapping

```
moreover have mk-trace (ALM-ioa 0 id2)$(?ex) = [Invoke\ c\ r!]
by (simp add: mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def
ALM-ioa-def ALM-asig-def)
           moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
           proof -
             {
               assume s1' \neq s1 \& s2' \neq s2

    contradiction

           with in-invoke and \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle and \langle P6 (s1', s2') \rangle have
?thesis apply (simp add: is-exec-frag-def composeALMs-def trans-of-def hide-def
ALM-ioa-def ALM-asig-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def
asig-of-def) apply(auto simp add:ALM-trans-def P6-def) done
             }
             moreover
               assume s1' = s1 and s2' = s2
               with in-invoke have pre-s1:^{\sim}(phase s1 c = Ready & request-snd r
= c \& r \notin set (hist s1) and pre-s2:\sim(phase s2 \ c = Ready \& request-snd \ r = c
& r \notin set (hist s2) using [[hypsubst-thin]] apply (auto simp add: is-exec-frag-def
compose ALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def\ asig-inputs-def\ asig-internals-def\ asig-of-def)\ \mathbf{apply}(simp-all\ add:ALM-trans-def)
apply (drule-tac[!] \ arg-cong[\mathbf{where} \ f = phase]) apply simp-all apply (metis
phase.simps(8) fun-upd-idem-iff) apply (metis phase.simps(8) fun-upd-idem-iff)
apply (metis phase.simps(8) fun-upd-idem-iff) apply (metis phase.simps(8) fun-upd-idem-iff)
done
               hence \sim (phase ?t c = Ready \& request-snd <math>r = c \& r \notin set (hist
(2t)) using (P14 (s1, s2)) by (auto simp add:ref-mapping-def P14-def)
             hence ?thesis using \langle id1 \neq 0 \rangle and \langle s1' = s1 \rangle and \langle s2' = s2 \rangle apply
(simp add: is-exec-frag-def composeALMs-def trans-of-def hide-def ALM-ioa-def
ALM-asig-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def
asig-of-def) apply(simp-all add:ALM-trans-def) apply force done
             }
             moreover
               assume s1' \neq s1 and s2' = s2
           with in-invoke have pre-s1:phase s1 c = Ready \& request-snd r = c \& r
\notin set (hist s1) and trans-s1: s1' = s1 (pending := (pending s1)(c := r), phase :=
(phase\ s1)(c:=Pending) apply (simp-all\ add:\ is-exec-frag-def\ composeALMs-def
trans-of-def hide-def ALM-ioa-def ALM-asiq-def par-def actions-def asiq-outputs-def
asig-inputs-def asig-internals-def asig-of-def) apply(simp-all add:ALM-trans-def
ref-mapping-def) done
              have pre-t: phase ?t\ c = Ready\ \&\ request-snd\ r = c\ \&\ r \notin set\ (hist
?t)
               proof -
                  from pre-s1 have phase ?t \ c = Ready \& request-snd \ r = c by
(auto simp add:ref-mapping-def)
                 moreover have r \notin set (hist ?t)
                 proof (cases hist s2 = [])
```

```
assume hist s2 = []
                                with pre-s1 show ?thesis by (auto simp add:ref-mapping-def)
                                assume hist s2 \neq []
                                show r \notin set (hist ?t)
                                proof auto
                                   assume r \in set (hist ?t)
                                         with \langle hist \ s2 \neq [] \rangle have r \in set \ (hist \ s2) by (auto simp
add:ref-mapping-def)
                                        moreover from pre-s1 and \langle P6 \ (s1, s2) \rangle have phase s2
(request-snd \ r) = Sleep \ by \ (force \ simp \ add:P6-def)
                                   moreover note \langle P15 \ (s1, s2) \rangle
                                    ultimately have r \in set (hist s1) \lor r \in pendingReqs s1 by
(auto simp add:P15-def)
                                   with pre-s1 have r \in pendingRegs s1 by auto
                                      with \langle P1a \ (s1, s2) \rangle and pre-s1 show False by (auto simp
add:pendingRegs-def P1a-def)
                                qed
                             qed
                             ultimately show ?thesis by auto
                      moreover from pre-s1 and trans-s1 and (s2' = s2) have trans-t:?t'
= ?t(pending := (pending ?t)(c := r), phase := (phase ?t)(c := Pending)) by
(auto simp add:ref-mapping-def fun-eq-iff)
                                    ultimately have ?thesis apply (simp add: is-exec-frag-def
compose ALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply(simp add:ALM-trans-def)
done
                       }
                       moreover
                          assume s1' = s1 and s2' \neq s2
                                    with in-invoke and \langle id1 \neq 0 \rangle have pre-s2: phase s2 c =
Ready & request-snd r = c \& r \notin set (hist s2) and trans-s2: s2' = s2 (pending :=
(pending \ s2)(c := r), \ phase := (phase \ s2)(c := Pending) apply (simp-all \ add: r)
is-exec-frag-def composeALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def is-exec-frag-def is-exe-frag-def is-exe-frag-def is-exe-frag-def is-exe-frag-def 
par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def)
apply(simp-all add:ALM-trans-def ref-mapping-def) done
                             from pre-s2 and \langle P6 (s1, s2) \rangle have aborted-s1-c:phase s1 c =
Aborted by (auto simp add: P6-def)
                        with pre-s2 and \langle P3 (s1, s2) \rangle and \langle P14 (s1, s2) \rangle have pre-t:phase
?t c = Ready \& request-snd \ r = c \& r \notin set \ (hist ?t) \ apply \ (auto simp add:
fun-eq-iff ref-mapping-def P3-def P14-def) done
                              moreover have trans-t:?t' = ?t(pending := (pending ?t)(c := 
r), phase := (phase ?t)(c := Pending) using aborted-s1-c and (s1' = s1) and
trans-s2 apply(force simp add: fun-eq-iff ref-mapping-def) done
                                    ultimately have ?thesis apply (simp add: is-exec-frag-def
compose ALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
```

```
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply(simp add:ALM-trans-def)
done
             ultimately show ?thesis by auto
           ultimately show ?thesis by (auto intro: exI[where x=?ex])
          qed
        next
          fix c r h
         assume in-switch:(s1, s2) -Switch c 0 h r--composeALMs id1 id2->
(s1', s2')
           — If we get a switch 0 input (nothing happens)
        show EX ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) & Finite ex & laststate
(?t, ex) = ?t' \& mk\text{-trace } (ALM\text{-}ioa \ 0 \ id2)\$ex = [Switch \ c \ 0 \ h \ r!]
          proof -
           let ?ex = [(Switch \ c \ 0 \ h \ r, \ ?t')!]
           have Finite ?ex by auto
           moreover have laststate (?t, ?ex) = ?t' by (simp add: laststate-def)
            moreover have mk-trace (ALM-ioa 0 id2)$(?ex) = [Switch \ c \ 0 \ h \ r!]
by (simp add: mk-trace-def externals-def asiq-inputs-def asiq-outputs-def asiq-of-def
ALM-ioa-def ALM-asig-def)
           moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
           proof -
                 from in-switch and \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle and \langle P5 (s1, 0) \rangle
s2) have s1'=s1 and s2'=s2 and \bigwedge c . phase s1 c \neq Sleep apply (simp-all
add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
a sig-inputs-def\ a sig-internals-def\ a sig-of-def\ ALM-ioa-def\ ALM-a sig-def)\ \mathbf{apply} (simp-all\ alg)
add: ALM-trans-def P5-def) done
              hence ?t = ?t' and \land c. phase ?t c \neq Sleep using \langle P6 \ (s1, s2) \rangle
by (auto simp add:ref-mapping-def P6-def)
             thus ?thesis by (simp add:is-exec-frag-def ALM-ioa-def trans-of-def
ALM-trans-def)
           qed
           ultimately show ?thesis by (auto intro: exI[where x=?ex])
          qed
        next
          fix c h r
        assume in-switch: (s1, s2) -Switch c id2 h r--composeALMs id1 id2->
(s1', s2')
            — The case when the system switches to a third, new, instance
          show EX ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) &
           Finite ex & laststate (?t, ex) = ?t' & mk-trace (ALM-ioa 0 id2)$ex =
[Switch\ c\ id2\ h\ r!]
          proof -
           let ?ex = [(Switch \ c \ id2 \ h \ r, \ ?t')!]
           have Finite ?ex by auto
           moreover have laststate (?t, ?ex) = ?t' by (simp add: laststate-def)
```

```
\label{eq:moreover_have} \textbf{moreover have} \ mk\text{-}trace \ (ALM\text{-}ioa \ 0 \ id2)\$(?ex) = [Switch \ c \ id2 \ h \ r!] \\ \textbf{by} \ (simp \ add: \ mk\text{-}trace\text{-}def \ externals\text{-}def \ asig\text{-}inputs\text{-}def \ asig\text{-}outputs\text{-}def \ asig\text{-}of\text{-}def \ ALM\text{-}ioa\text{-}def \ ALM\text{-}asig\text{-}def)} \\
```

```
moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
            proof -
                from in-switch and \langle id1 < id2 \rangle have s1' = s1 apply (simp-all
add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) done
             from \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle in-switch have pre-s2:aborted s2 &
phase s2\ c = Pending \& r = pending s2\ c \& (if initialized s2\ then (h \in postfix-all
(hist\ s2)\ (linearizations\ (pendingReqs\ s2)))\ else\ (h:postfix-all\ (l-c-p\ (initHists\ s2))
(linearizations (init ValidRegs s2)))) and trans-s2: s2' = s2 (phase := (phase s2)(c
:= Aborted) apply (simp-all add: composeALMs-def trans-of-def hide-def par-def
actions-def asiq-outputs-def asiq-inputs-def asiq-internals-def asiq-of-def ALM-ioa-def
ALM-asig-def) apply(auto simp add:ALM-trans-def) done
              from pre-s2 have s1-aborted:phase s1 c = Aborted using \langle P6 (s1, aborted) \rangle
s2) apply(auto simp add: P6-def) done
             have pre-t:aborted ?t \& phase ?t c = Pending \& initialized ?t \& h :
postfix-all (hist ?t) (linearizations (pendingReqs ?t)) & r = pending ?t c
                 from s1-aborted and pre-s2 have aborted ?t & pending ?t c = r
and phase ?t c = Pending and initialized ?t by (auto simp add: ref-mapping-def
fun-eq-iff)
              moreover have h: postfix-all \ (hist ?t) \ (linearizations \ (pendingRegs
?t))
               proof -
                     from pre-s2 have (if initialized s2 then (h : postfix-all (hist
s2) (linearizations (pendingRegs s2))) else (h : postfix-all (l-c-p (initHists s2))
(linearizations (initValidReqs s2)))) by auto
                 thus ?thesis
                 proof auto
                    assume case1-1:initialized s2 and case1-2:h : postfix-all (hist
s2) (linearizations (pendingReqs s2))
                  hence suffixed (hist s1) (hist s2) using \langle P14 \ (s1, s2) \rangle by (auto
simp add:P14-def suffixeq-def)
                   show h \in postfix-all (hist ?t) (linearizations (pendingRegs ?t))
                   proof -
                    have hist ?t = hist s2
                    proof (cases hist s2 = [])
                      assume hist \ s2 = []
                      show hist ?t = hist s2
                      proof -
                         from \langle hist \ s2 = [] \rangle and \langle suffixeq \ (hist \ s1) \ (hist \ s2) \rangle have
hist \ s1 = [] by (auto simp \ add:suffixeq-def)
                        with \langle hist \ s2 = [] \rangle show hist ?t = hist \ s2 by (auto simp
add: ref-mapping-def)
                      qed
                    next
```

```
assume hist s2 \neq []
                       thus hist ?t = hist \ s2 by (simp \ add:ref-mapping-def)
                     moreover have pendingRegs \ s2 \le pendingRegs \ ?t
                     proof (simp add: pendingReqs-def, clarify)
                           assume pending s2 c \notin set (hist s2) and phase s2 c =
Pending \lor phase s2 \ c = Aborted
                         moreover with \langle P6 \ (s1, s2) \rangle have phase s1 \ c = Aborted
by (auto simp add:P6-def)
                       moreover note \langle suffixeq (hist s1) (hist s2) \rangle
                          ultimately show \exists ca. pending s2 c = pending ?t ca \land
pending s2\ c \notin set\ (hist\ ?t) \land (phase\ ?t\ ca = Pending \lor phase\ ?t\ ca = Aborted)
apply (simp add:ref-mapping-def suffixeq-def) by (metis prefixeq-Nil prefixeq-def
self-append-conv2)
                     qed
                     moreover note case1-2
                    ultimately show ?thesis by (auto simp add: linearizations-def
postfix-all-def)
                   qed
                 next
                  assume case2-1:\neg initialized s2 and case2-2:h: postfix-all (l-c-p)
(initHists s2)) (linearizations (initValidReqs s2))
                     from case2-1 and \langle P10 \ (s1, s2) \rangle have hist s2 = [] by (auto
simp add:P10-def)
                   have h: postfix-all \ (hist \ s1) \ (linearizations \ (pendingRegs \ s1))
                   proof -
                     from pre-s2 have phase s2 c \neq Sleep by auto
                     moreover note \langle P13 \ (s1, s2) \rangle and case2-1 and case2-2
                     ultimately show ?thesis by (auto simp add:P13-def)
                    moreover from \langle hist \ s2 = [] \rangle have hist \ ?t = hist \ s1 by (auto
simp add:P10-def ref-mapping-def)
                   moreover have pendingReqs ?t = pendingReqs s1
                   proof auto
                     \mathbf{fix} \ r
                     assume r \in pendingReqs ?t
                   with this obtain c' where r = pending ?t c' and r \notin set (hist
?t) and phase ?t c' \in \{Pending, Aborted\} by (auto simp add:pendingRegs-def)
                     show r \in pendingReqs s1
                     proof (cases phase s1 \ c' = Aborted)
                       assume phase s1 c' = Aborted
                     with \langle phase ?t c' \in \{Pending, Aborted\} \rangle and \langle r = pending ?t
c' have phase s2 c' \in \{Pending, Aborted\} and r = pending s2 c' by (auto simp
add:ref-mapping-def)
                          with \langle P6 \ (s1, s2) \rangle and case2-1 and \langle P7 \ (s1, s2) \rangle and
\langle hist \ ?t = hist \ s1 \rangle and \langle r \notin set \ (hist \ ?t) \rangle have phase s1 \ c' = Aborted and r = aborted
pending s1 c' and r \notin set (hist s1) apply (auto simp add: P6-def P7-def) apply
force apply force done
```

```
thus ?thesis by (auto simp add:pendingRegs-def)
                                        next
                                            assume phase s1 c' \neq Aborted
                                            with \langle r = pending ?t c' \rangle and \langle r \notin set (hist ?t) \rangle and \langle phase \rangle
?t \ c' \in \{Pending, Aborted\} \} and \langle hist \ ?t = hist \ s1 \rangle show ?thesis by \langle auto \ simp \ auto \ auto \ simp \ auto \ simp \ auto \ auto \ auto \ simp \ auto \
add:ref-mapping-def pendingRegs-def)
                                        qed
                                      \mathbf{next}
                                        \mathbf{fix} \ r
                                        assume r \in pendingReqs s1
                                       with this obtain c where r = pending s1 c and phase s1 c \in
\{Pending, Aborted\} and r \notin set (hist s1) by (auto simp add:pendingReqs-def)
                                   with \langle hist \ s2 = [] \rangle and \langle \neg \ initialized \ s2 \rangle and \langle P7 \ (s1, \ s2) \rangle show
r \in pendingRegs ?t by (auto simp add:ref-mapping-def pendingRegs-def P7-def)
                                     qed
                                           ultimately show ?thesis by (auto simp add: postfix-all-def
linearizations-def)
                                  qed
                              qed
                              ultimately show ?thesis by auto
                          moreover have trans-t: ?t' = ?t(phase := (phase ?t)(c := Aborted))
using s1-aborted and \langle s1' = s1 \rangle and trans-s2 by (auto simp add:ref-mapping-def
fun-eq-iff)
                                  ultimately show ?thesis using \langle id1 < id2 \rangle apply (simp add:
is-exec-fraq-def composeALMs-def trans-of-def hide-def ALM-ioa-def ALM-asiq-def
par-def actions-def asiq-outputs-def asiq-inputs-def asiq-internals-def asiq-of-def)
apply(simp\ add:ALM-trans-def)\ done
                       ultimately show ?thesis by (auto intro: exI[where x=?ex])
                    qed
                 next
                    fix c h id'
                  assume in-commit:(s1, s2) - Commit c id' h-composeALMs id1 id2 \longrightarrow
(s1', s2') and id' < id2
                        — Case when the composition commits a request
                    show \exists ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) \land Finite ex \land laststate
(?t, ex) = ?t' \land mk\text{-trace } (ALM\text{-ioa } 0 id2) \cdot ex = [Commit \ c \ id' \ h!]
                    proof -
                       let ?ex = [(Commit\ c\ id'\ h,\ ?t')!]
                       have Finite ?ex by auto
                       moreover have laststate (?t, ?ex) = ?t' by (simp\ add: laststate-def)
                                moreover have mk-trace (ALM-ioa 0 id2)$(?ex) = [Commit c]
id' h! using \langle id' < id2 \rangle by (simp add: mk-trace-def externals-def asig-inputs-def
asig-outputs-def asig-of-def ALM-ioa-def ALM-asig-def)
                       moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
                       proof -
```

```
{
                 assume id' < id1
                 with in-commit have s2' = s2 and pre-s1:phase s1 c = Pending
\land pending s1 c \in set (hist s1) \land h = dropWhile (\lambda r . r \neq pending s1 c) (hist
s1) and trans-s1:s1' = s1 (phase := (phase s1)(c := Ready)) apply (simp-all
add: composeALMs-def trans-of-def hide-def par-def actions-def asiq-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply(auto
simp add:ALM-trans-def) done
                from pre-s1 have s1-not-aborted-c:phase s1 c \neq Aborted by auto
                have pre-t:phase ?t \ c = Pending \& pending <math>?t \ c \in set \ (hist \ ?t) \land h
= drop While (\lambda r \cdot r \neq pending ?t c) (hist ?t)
                proof (cases hist s2 = [])
                  assume hist \ s2 = []
                   with pre-s1 and \langle phase \ s1 \ c \neq Aborted \rangle show ?thesis by (auto
simp add: ref-mapping-def)
                next
                  assume hist s2 \neq []
              hence initialized s2 using \langle P10 \ (s1, s2) \rangle by (auto simp add:P10-def)
               from pre-s1 and (phase s1 c \neq Aborted) have phase ?t c = Pending
and pending it c = pending \ s1 \ c and pending \ s1 \ c \in set \ (hist \ s1) by (auto simp
add:ref-mapping-def)
                  moreover have pending ?t \ c \in set \ (hist \ ?t)
                  proof -
                    from (initialized s2) and (P14 (s1, s2)) obtain rs3 where hist
s2 = rs3 \otimes (hist \ s1) by (auto simp add:P14-def)
                     with \langle pending \ s1 \ c \in set \ (hist \ s1) \rangle and \langle hist \ s2 = rs3 \ @ \ (hist \ s2) \rangle
s1) and (pending ?t c = pending s1 c) show pending ?t c \in set (hist ?t) by (auto
simp add:ref-mapping-def suffixeq-def)
                  ged
                  moreover have h = drop While (\lambda r . r \neq pending ?t c) (hist ?t)
                  proof -
                     from \langle pending \ s1 \ c \in set \ (hist \ s1) \rangle obtain rs1 \ rs2 where hist
s1 = rs2 \otimes rs1 and hd rs1 = pending s1 c and rs1 \neq [] and pending s1 c \notin set
rs2 by (metis\ list.sel(1)\ in-set-conv-decomp-first\ list.simps(3))
                   with \langle pending ?t c = pending s1 c \rangle and drop While-lemma[of hist]
s1 rs1 pending s1 c] and pre-s1 have h = rs1 by auto
                    moreover have drop While (\lambda \ r \ . \ r \neq pending ?t \ c) (hist ?t) =
rs1
                    proof -
                    from \langle initialized \ s2 \rangle and \langle P14 \ (s1, \ s2) \rangle obtain rs3 where hist
s2 = rs3 \otimes (hist \ s1) and set \ rs3 \cap set \ (hist \ s1) = \{\} by (auto simp \ add: P14-def)
                      with \langle pending \ s1 \ c \in set \ (hist \ s1) \rangle and \langle hist \ s1 = rs2 \ @ \ rs1 \rangle
have hist s2 = rs3 \otimes rs2 \otimes rs1 and pending s1 c \notin set rs3 by auto
                     with \langle pending \ s1 \ c \notin set \ rs2 \rangle obtain rs4 where hist \ s2 = rs4
```

thus ?thesis using $\langle hist \ s2 \neq [] \rangle$ and $\langle pending \ ?t \ c = pending$

with $\langle hd rs1 = pending s1 c \rangle$ and $\langle rs1 \neq [] \rangle$ and drop While-lemma[of]

hist s2 rs1 pending s1 c have drop While (λr . $r \neq pending s1$ c) (hist s2) = rs1

@ rs1 and $pending s1 c \notin set rs4$ by auto

by auto

```
s1 c by (auto simp add:ref-mapping-def)
                  qed
                  ultimately show ?thesis by auto
                 ultimately show ?thesis by auto
                  moreover from \langle s2' = s2 \rangle and s1-not-aborted-c and trans-s1
have trans-t:?t'=?t (phase:=(phase?t)(c:=Ready)) by (simp\ add:fun-eq-iff
ref-mapping-def)
                  ultimately have ?thesis using \langle id1 < id2 \rangle apply (simp add:
is-exec-frag-def composeALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def
par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def)
apply(simp\ add:ALM-trans-def)\ done
             moreover
               assume id1 < id'
               with in-commit have s1' = s1 and pre-s2: phase s2 c = Pending
\land pending s2 c \in set (hist s2) \land h = dropWhile (\lambda r . r \neq pending s2 c) (hist
s2) and trans-s2:s2'=s2 (phase:=(phase\ s2)(c:=Ready)) apply (simp-all
add: composeALMs-def trans-of-def hide-def par-def actions-def asiq-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply(auto
simp add:ALM-trans-def) done
               from pre-s2 and \langle P6 \ (s1, s2) \rangle have facts:aborted s1 & phase s1 c
= Aborted & hist s2 \neq [] by (force simp add:P6-def)
                 with pre-s2 have pre-t:phase ?t c = Pending \land pending ?t c \in
set (hist ?t) \wedge h = drop While (\lambda r . r \neq pending ?t c) (hist ?t) by (auto simp
add:ref-mapping-def)
                     moreover from \langle s1' = s1 \rangle and facts and trans-s2 have
trans-t:?t'=?t \ (phase := (phase ?t)(c := Ready)) by (auto simp add:fun-eq-iff
ref-mapping-def)
                  ultimately have ?thesis using \langle id1 < id2 \rangle apply (simp add:
is-exec-frag-def composeALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def
par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def)
apply(simp\ add:ALM-trans-def)\ done
             ultimately show ?thesis using \langle id' < id2 \rangle by force
           ultimately show ?thesis by (auto intro: exI[where x=?ex])
          qed
        qed
            - We finished the case when the composition takes an action that is in
the external signature of the spec
      next
        assume act \notin ext (ALM-ioa \ 0 \ id2)
          — Now the case when the composition takes an action that is not in the
external signature of the spec
          with in-trans-comp and \langle id1 < id2 \rangle and \langle id1 \neq 0 \rangle have act : \{act \}
. act = Abort \ 0 \mid act = Abort \ id1 \mid (EX \ c \ r \ h \ . \ act = Linearize \ 0 \ h \mid act =
```

```
id1 h)} by (auto simp add: composeALMs-def hide-def hide-asig-def ALM-ioa-def
ALM-asig-def externals-def asig-inputs-def asig-outputs-def asig-internals-def asig-of-def
trans-of-def par-def actions-def)
         with in-trans-comp show \exists ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) \land
Finite ex \wedge laststate (?t, ex) = ?t' \wedge mk-trace (ALM-ioa 0 id2) \cdot ex = nil
        proof auto
         assume in-abort:(s1, s2) -Abort 0-composeALMs id1 id2 \longrightarrow (s1', s2')
              - The case where the first Abastract aborts
       moreover with \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle and \langle P6 (s1, s2) \rangle and \langle P2 (s1, s2) \rangle
(s2) have \forall c is phase s1 c \neq Aborted and hist s2 = [] and \forall c is phase s2 c = Sleep
apply (simp-all add: composeALMs-def trans-of-def hide-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def)
apply(auto simp add:fun-eq-iff ALM-trans-def ref-mapping-def P6-def P2-def) done
          moreover note \langle id1 \neq 0 \rangle
            ultimately have ?t' = ?t apply (simp-all add: composeALMs-def
trans-of-def hide-def par-def actions-def asiq-outputs-def asiq-inputs-def asiq-internals-def
asig-of-def ALM-ioa-def ALM-asig-def) apply(auto simp add:fun-eq-iff ALM-trans-def
ref-mapping-def) done
          thus ?thesis
          proof simp
            let ?ex = nil
            have Finite ?ex by auto
            moreover have last state (?t, ?ex) = ?t by (simp \ add: \ last state - def)
               moreover have mk-trace (ALM-ioa 0 id2)·?ex = nil using (id1)
< id2> by (simp add: mk-trace-def externals-def asiq-inputs-def asiq-outputs-def
asig-of-def ALM-ioa-def ALM-asig-def)
            moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex) by (auto simp
add:is-exec-frag-def)
            ultimately show \exists ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) \land Finite
ex \wedge laststate \ (?t, ex) = ?t \wedge mk\text{-}trace \ (ALM\text{-}ioa \ 0 \ id2) \cdot ex = nil \ \mathbf{by} \ (auto \ intro:
exI[\mathbf{where} \ x = ?ex])
          qed
        next
           assume in-abort:(s1, s2) -Abort id1-composeALMs id1 id2 \longrightarrow (s1', s2)
s2')
            — The case where the second ALM aborts
          show ?thesis
          proof -
            let ?ex = [(Abort \ \theta, \ ?t')!]
            have Finite ?ex by auto
            moreover have laststate (?t, ?ex) = ?t' by (simp \ add: \ laststate - def)
             moreover have mk-trace (ALM-ioa 0 id2)·?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
            moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
           from in-abort and \langle id1 \neq 0 \rangle have s1' = s1 and pre-s2: aborted s2 &
(\exists c. phase s2 \ c \neq Sleep) and trans-s2:s2' = s2(|aborted:=True|) apply (simp-all)
```

Linearize $id1 \ h \mid act = Switch \ c \ id1 \ h \ r \mid act = Initialize \ 0 \ h \mid act = Initialize$

```
add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply(auto
simp \ add:ALM-trans-def) done
               from pre-s2 and \langle P6 (s1, s2) \rangle have pre-t: aborted ?t & (\exists c.
phase ?t \ c \neq Sleep) apply (force simp add:ref-mapping-def P6-def) done
                   moreover from trans-s2 and \langle s1' = s1 \rangle have trans-t:?t' =
?t(|aborted:=True|) by (auto simp add: fun-eq-iff ref-mapping-def)
                   ultimately show ?thesis apply (simp add: is-exec-frag-def
compose ALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def\ asig-inputs-def\ asig-internals-def\ asig-of-def)\ \mathbf{apply}(simp\ add:ALM-trans-def)
done
            ultimately show ?thesis by (auto intro: exI[where x=?ex])
          qed
        next
          \mathbf{fix} h
          assume in-lin:(s1, s2) -Linearize 0 h-composeALMs id1 id2\longrightarrow (s1', s2')
s2'
            — If the composition executes Linearize 0
          show ?thesis
          proof -
            let ?ex = [(Linearize \ 0 \ h, \ ?t')!]
            have Finite ?ex by auto
            moreover have laststate (?t, ?ex) = ?t' by (simp\ add: laststate-def)
            moreover have mk-trace (ALM-ioa 0 id2)·?ex = nil by (simp add:
mk-trace-def externals-def asiq-inputs-def asiq-outputs-def asiq-of-def ALM-ioa-def
ALM-asig-def)
            moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
            proof -
                from in-lin and \langle id1 \neq 0 \rangle have s2' = s2 and pre-s1:initialized
s1 \& \sim aborted \ s1 \& h \in postfix-all \ (hist \ s1) \ (linearizations \ (pendingRegs \ s1))
and trans-s1:s1' = s1 (hist := h, initialized := True) apply (simp-all add:
compose ALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def asig-inputs-def
asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply(auto simp add:ALM-trans-def)
done
               have pre-t:initialized ?t & \sim aborted ?t & h \in postfix-all (hist ?t)
(linearizations (pendingReqs ?t))
              proof -
               from pre-s1 have \sim aborted s1 by auto
                with \langle P9 \ (s1, s2) \rangle have \sim aborted ?t and initialized ?t by (auto
simp add:ref-mapping-def P9-def)
              moreover have h \in postfix-all \ (hist ?t) \ (linearizations \ (pendingReqs))
?t))
               proof -
                  from \langle \neg \ aborted \ s1 \rangle have hist ?t = hist \ s1 using \langle P6 \ (s1, \ s2) \rangle
and \langle P2 (s1, s2) \rangle by (auto simp add: P6-def P2-def ref-mapping-def)
                 moreover have pendingRegs s1 \subseteq pendingRegs ?t
                 proof auto
                  \mathbf{fix} \ x
```

```
assume x \in pendingReqs s1
                   moreover note \langle \neg \ aborted \ s1 \rangle and \langle P6 \ (s1 \ ,s2) \rangle
                    ultimately obtain c where x = pending s1 c and phase s1
c = Pending \text{ and } pending s1 \ c \notin set \ (hist s1) \text{ by } (auto simp add:pendingReqs-def)
P6-def)
                 thus x \in pendingReqs ?t using \langle hist ?t = hist s1 \rangle by (force simp)
add:ref-mapping-def pendingReqs-def)
                 qed
              moreover from pre-s1 have h \in postfix-all\ (hist\ s1)\ (linearizations
(pendingReqs s1)) by auto
                     ultimately show ?thesis by (auto simp add: postfix-all-def
linearizations-def)
               ultimately show ?thesis by auto
             moreover have trans-t: ?t' = ?t(hist := h, initialized := True)
             proof -
               have hist ?t' = hist s1'
               proof -
                 from pre-s1 have \sim aborted s1 by auto
                with \langle P6 (s1, s2) \rangle and \langle P2 (s1, s2) \rangle have hist s2 = [] by (auto
simp add:P6-def P2-def)
               with \langle s2' = s2 \rangle show ?thesis by (auto simp add:ref-mapping-def)
               qed
               with trans-s1 have hist ?t' = h by auto
                    thus ?thesis using \langle s2' = s2 \rangle and trans-s1 by (auto simp
add:ref-mapping-def fun-eq-iff)
             ged
                   ultimately show ?thesis apply (simp add: is-exec-frag-def
compose ALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply(auto simp add:ALM-trans-def)
done
           ultimately show ?thesis by (auto intro: exI[where x=?ex])
          qed
        next
          \mathbf{fix} h
         assume in-lin:(s1, s2) -Linearize id1 h-composeALMs id1 id2 \longrightarrow (s1', s2')
s2')
            — If the composition executes Linearize id1
          let ?ex = [(Linearize id1 h, ?t')!]
          have Finite ?ex by auto
          moreover have laststate (?t, ?ex) = ?t' by (simp \ add: \ laststate - def)
           moreover have mk-trace (ALM-ioa 0 id2) \cdot ?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
          moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
          proof -
            from in-lin and (id1 \neq 0) have s1' = s1 and pre-s2: initialized s2
```

```
\land \neg aborted \ s2 \land h \in postfix-all \ (hist \ s2) \ (linearizations \ (pendingRegs \ s2)) and
trans-s2: s2' = s2 (hist := h) apply (simp-all\ add:\ composeALMs-def\ trans-of-def
hide-def\ par-def\ actions-def\ asig-outputs-def\ asig-inputs-def\ asig-internals-def\ asig-of-def\ asig-inputs-def\ asig-i
ALM-ioa-def ALM-asiq-def) apply(auto simp add:ALM-trans-def) done
                           have pre-t:initialized ?t \land \neg aborted ?t \land h \in postfix-all (hist ?t)
(linearizations (pendingReqs ?t))
                      proof -
                            have ¬ aborted ?t and initialized ?t using pre-s2 by (auto simp
add:ref-mapping-def)
                         moreover have h \in postfix-all \ (hist ?t) \ (linearizations \ (pendingReqs))
?t))
                             from pre-s2 have initialized s2 by auto
                               hence suffixed (hist s1) (hist s2) using \langle P14 \ (s1, s2) \rangle by (auto
simp add:P14-def suffixeq-def)
                            hence hist ?t = hist \ s2 by (auto simp add:ref-mapping-def)
                             moreover have pendingRegs s2 \subseteq pendingRegs ?t
                            proof auto
                                \mathbf{fix} \ x
                                assume x \in pendingReqs \ s2
                                           from this obtain c where x = pending \ s2 \ c and phase
s2\ c \in \{Pending, Aborted\} and pending\ s2\ c \notin set\ (hist\ s2) by (auto simp
add:pendingReqs-def)
                               with \langle P6 \ (s1, s2) \rangle and \langle hist \ ?t = hist \ s2 \rangle show x \in pendingRegs
 ?t by (force simp add:ref-mapping-def P6-def pendingRegs-def)
                            ged
                          moreover from pre-s2 have h \in postfix-all (hist s2) (linearizations)
(pendingReqs s2)) by auto
                                        ultimately show ?thesis by (auto simp add:postfix-all-def
linearizations-def)
                         ultimately show ?thesis by auto
                      qed
                      moreover have trans-t: ?t' = ?t(|hist| := h)
                      proof -
                         from pre-s2 and trans-s2 have initialized s2' by auto
                          hence suffixed (hist s1') (hist s2') using \langle P14 \ (s1', s2') \rangle by (auto
simp add:P14-def suffixeq-def)
                          hence hist ?t' = hist s2' by (auto simp add:ref-mapping-def)
                                     with trans-s2 and \langle s1' = s1 \rangle show ?thesis by (auto simp
add:ref-mapping-def fun-eq-iff)
                ultimately show ?thesis apply (simp add: is-exec-frag-def composeALMs-def
trans-of-def\ hide-def\ ALM-ioa-def\ ALM-asig-def\ par-def\ actions-def\ asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def) apply(auto simp add:ALM-trans-def)
done
                   ged
                   ultimately show ?thesis by (auto intro: exI[where x=?ex])
```

```
\mathbf{next}
          \mathbf{fix} \ c \ r \ h
         assume in-switch:(s1, s2) -Switch c id1 h r-composeALMs id1 id2 \longrightarrow
(s1', s2')
            — If the composition switches internally
          show ?thesis
          proof -
           let ?ex = nil
           have Finite ?ex by auto
           moreover have laststate (?t, ?ex) = ?t by (simp \ add: \ laststate-def)
            moreover have mk-trace (ALM-ioa 0 id2)·?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
           moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex) by (auto simp
add:is-exec-frag-def)
           moreover have ?t' = ?t
           proof -
                 from in-switch and \langle id1 \neq 0 \rangle have pre-s1:aborted s1 \wedge phase
s1\ c = Pending \land r = pending\ s1\ c \land (if\ initialized\ s1\ then\ (h \in postfix-all\ (hist
s1) (linearizations (pendingRegs s1))) else (h : postfix-all (l-c-p (initHists s1))
(linearizations (initValidRegs s1)))) and trans-s1: s1' = s1 (phase := (phase s1)(c
:= Aborted) apply (simp-all add: composeALMs-def trans-of-def hide-def par-def
actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def
ALM-asig-def) apply(auto simp add:ALM-trans-def) done
               have pre-s2:phase \ s2 \ c = Sleep and trans-s2: \ s2' = s2 (initHists
:= \{h\} \cup (initHists\ s2),\ phase := (phase\ s2)(c := Pending),\ pending := (pending)
s2)(c := r)
             proof -
               from pre-s1 have phase s1 c = Pending by auto
            with \langle P6 (s1, s2) \rangle have phase s2 c = Sleep apply (simp\ add: P6-def)
by (metis\ phase.simps(10))
           with in-switch and \langle id1 \neq 0 \rangle and \langle id1 < id2 \rangle show phase s2 \ c = Sleep
and s2' = s2 (initHists := \{h\} \cup (initHists s2), phase := (phase s2)(c := Pend-
ing), pending := (pending s2)(c := r) apply (simp-all add: composeALMs-def
trans-of-def\ hide-def\ par-def\ actions-def\ asig-outputs-def\ asig-inputs-def\ asig-internals-def
asig-of-def ALM-ioa-def ALM-asig-def) apply(auto simp add:ALM-trans-def P6-def)
done
             qed
                 from pre-s1 and pre-s2 and trans-s1 and trans-s2 and (P1a
(s1, s2) have pending ?t c = pending ?t' c & initHists ?t = initHists ?t' & hist
?t = hist ?t' \& aborted ?t = aborted ?t' \land phase ?t' c = phase ?t c by (simp)
add:ref-mapping-def fun-eq-iff P1a-def)
             moreover note pre-s1 and pre-s2 and trans-s1 and trans-s2
          ultimately show ?thesis by (force simp add:ref-mapping-def fun-eq-iff)
           ultimately show ?thesis by (auto intro: exI[where x=?ex])
          ged
        next
          \mathbf{fix} h
```

```
(s1', s2')
        hence False using \langle P10 \ (s1, s2) \rangle apply (simp-all add: composeALMs-def
trans-of-def\ hide-def\ par-def\ actions-def\ asig-outputs-def\ asig-inputs-def\ asig-internals-def
asig-of-def ALM-ioa-def ALM-asig-def) apply(auto simp add:ALM-trans-def P10-def)
done
          thus ?thesis by auto
        next
          \mathbf{fix} \ h
         assume in-initialize:(s1, s2) -Initialize id1 h-composeALMs id1 id2 \longrightarrow
(s1', s2')
           — If the second ALM of the composition initializes
          let ?ex = [(Linearize id1 h, ?t')!]
          have Finite ?ex by auto
          moreover have laststate (?t, ?ex) = ?t' by (simp\ add: laststate-def)
            moreover have mk-trace (ALM-ioa 0 id2)·?ex = nil by (simp add:
mk-trace-def externals-def asiq-inputs-def asiq-outputs-def asiq-of-def ALM-ioa-def
ALM-asig-def)
          moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
          proof -
          from in-initialize and \langle id1 \neq 0 \rangle have s1' = s1 and pre-s2: (\exists c. phase)
s2\ c \neq Sleep) \land \neg\ aborted\ s2\ \land \neg\ initialized\ s2\ \land\ h \in postfix-all\ (l-c-p\ (initHists
s2)) (linearizations (initValidReqs s2)) and trans-s2:s2'=s2 (hist := h, initialized
:= True) apply (simp-all add: composeALMs-def trans-of-def hide-def par-def
actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def
ALM-asig-def) apply(auto simp add:ALM-trans-def) done
              have pre-t:initialized ?t \land \neg aborted ?t \land h \in postfix-all (hist ?t)
(linearizations (pendingReqs ?t))
            proof -
                  from pre-s2 have initialized ?t \land \neg aborted ?t by (auto simp
add:ref-mapping-def)
             moreover have h \in postfix-all \ (hist ?t) \ (linearizations \ (pendingReqs))
?t))
              proof -
              from pre-s2 have h \in postfix-all\ (l-c-p\ (initHists\ s2))\ (linearizations
(initValidRegs s2)) and \neg initialized s2 and \exists c. phase s2 c \neq Sleep by auto
                 with \langle P13 \ (s1, s2) \rangle have h \in postfix-all \ (hist s1) \ (linearizations)
(pendingRegs s1)) by (auto simp add:P13-def)
               moreover from \langle \neg initialized \ s2 \rangle and \langle P10 \ (s1, \ s2) \rangle have hist ?t
= hist s1 by (auto simp add:ref-mapping-def P10-def)
               moreover have pendingReqs s1 \subseteq pendingReqs ?t
               proof auto
                 \mathbf{fix} \ x
                 assume x \in pendingReqs s1
                       from this obtain c where x = pending s1 c and phase
s1 \ c \in \{Pending, Aborted\} and pending \ s1 \ c \notin set \ (hist \ s1) by (auto simp
add:pendingRegs-def)
                 show x \in pendingReqs ?t
                 proof (cases phase s1 c = Pending)
```

assume in-initialize:(s1, s2) -Initialize $0 \ h$ -composeALMs $id1 \ id2 \longrightarrow$

```
assume phase s1 c = Pending
                with \langle x = pending \ s1 \ c \rangle and \langle pending \ s1 \ c \notin set \ (hist \ s1) \rangle and \langle hist \rangle
?t = hist \ s1 show ?thesis by (force simp add:ref-mapping-def pendingReqs-def)
                    assume phase s1 c \neq Pending
                       with \langle phase \ s1 \ c \in \{Pending, Aborted\} \rangle have phase \ s1 \ c =
Aborted by auto
                  with \langle \neg initialized s2 \rangle and \langle P6 (s1, s2) \rangle and \langle P7 (s1, s2) \rangle have
pending s2\ c = pending\ s1\ c and phase s2\ c \in \{Pending, Aborted\} by (auto simp
add:P6-def\ P7-def)
                with \langle x = pending \ s1 \ c \rangle and \langle pending \ s1 \ c \notin set \ (hist \ s1) \rangle and \langle hist \rangle
?t = hist \ s1 and \langle P6 \ (s1, s2) \rangle show ?thesis by (auto simp add:ref-mapping-def
pendingReqs-def P6-def)
                  qed
                qed
                       ultimately show ?thesis by (auto simp add:postfix-all-def
linearizations-def)
              qed
              ultimately show ?thesis by auto
            moreover have trans-t: ?t' = ?t(|hist| := h)
            proof -
               from pre-s2 have \exists c . phase s2 c \neq Sleep by auto
              with trans-s2 have initialized s2' and \exists c . phase s2' c \neq Sleep by
auto
               hence suffixed (hist s1') (hist s2') using \langle P14 \ (s1', s2') \rangle by (auto
simp add:P14-def suffixeq-def)
              hence hist ?t' = hist \ s2' by (auto simp add:ref-mapping-def)
                     with trans-s2 and \langle s1' = s1 \rangle show ?thesis by (auto simp
add:ref-mapping-def fun-eq-iff)
             qed
         ultimately show ?thesis apply (simp add: is-exec-frag-def composeALMs-def
trans-of-def\ hide-def\ ALM-ioa-def\ ALM-asig-def\ par-def\ actions-def\ asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def) apply(auto simp add:ALM-trans-def)
done
          ultimately show ?thesis by (auto intro: exI[where x=?ex])
         qed
       qed
     qed
   qed
 qed
qed
end
```

5 Conclusion

In this document we have defined the ALM automaton (a shorthand for Aboratable Linearizable Modules) and we have proved that the composition of two instances of the ALM automaton behaves like a single instance of the ALM automaton. This theorem justifies the compositional proof technique presented in [1].

References

- [1] R. Guerraoui, V. Kuncak, and G. Losa. Speculative linearizability. Technical report, EPFL, 2011. Accepted for publication at PLDI 2012, available at http://lara.epfl.ch/w/slin.
- [2] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463– 492, 1990.
- [3] L. Lamport and K. Marzullo. The part-time parliament. *ACM Transactions on Computer Systems*, 16:133–169, 1998.
- [4] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly, 2:219–246, 1989.