View metadata, citation and similar papers at core.ac.uk

-

brought to you by .. CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Abortable Linearizable Modules

Rachid Guerraoui Viktor Kuncak Giuliano Losa

May 27, 2015

Abstract

We define the Abortable Linearizable Module automaton (ALM for
short) and prove its key composition property using the IOA theory
of HOLCF. The ALM is at the heart of the Speculative Linearizabil-
ity framework. This framework simplifies devising correct speculative
algorithms by enabling their decomposition into independent modules
that can be analyzed and proved correct in isolation. It is particularly
useful when working in a distributed environment, where the need to
tolerate faults and asynchrony has made current monolithic protocols
so intricate that it is no longer tractable to check their correctness.
Our theory contains a typical example of a refinement proof in the
I/O-automata framework of Lynch and Tuttle.

Contents
1 Introduction
2 Definition and properties of the longest common postfix of

a set of lists
The ALM Automata specification

Proof that the composition of two instances of the ALM
automaton behaves like a single instance of the ALM au-
tomaton

4.1 A case split useful in the proofs
4.2 Invariants of a single ALM instance
4.3 Invariants of the composition of two ALM instances
4.4 Proofs of invariance
4.5 The refinement proof L.

Conclusion

= ©© -

46

https://core.ac.uk/display/148013188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Linearizability [2] is a key design methodology for reasoning about imple-
mentations of concurrent abstract data types in both shared memory and
message passing systems. It presents the illusion that operations execute
sequentially and fault-free, despite the asynchrony and faults that are often
present in a concurrent system, especially a distributed one.

However, devising complete linearizable objects is very difficult, espe-
cially in the presence of process crashes and asynchrony, requiring complex
algorithms (such as Paxos [3]) to work correctly under general circumstances,
and often resulting in bad average-case behavior. Concurrent algorithm de-
signers therefore resort to speculation, i.e. to optimizing existing algorithms
to handle common scenarios more efficiently. More precisely, a speculative
systems has a fall-back mode that works in all situations and several opti-
mization modes, each of which is very efficient in a particular situation but
might not work at all in some other situation. By observing its execution,
a speculative system speculates about which particular situation it will be
subject to and chooses the most efficient mode for that situation. If specu-
lation reveals wrong, a new speculation is made in light of newly available
observations. Unfortunately, building speculative system ad-hoc results in
protocols so complex that it is no longer tractable to prove their correctness.

We present an I/O-automaton [4] specification, called ALM (a shorthand
for Abortable Linearizable Module), which can be used to build a specula-
tive linearizable algorithm out of independent modules that implement the
different modes of the speculative algorithm. The ALM is at the heart of
the Speculative Linearizability framework [1].

The ALM automaton produces traces that are linearizable with respect
to a generic type of object. Moreover, the composition of two instances of
the ALM automaton behaves like a single instance. Hence it is guaranteed
that the composition of any number of instances of the ALM automaton is
linearizable.

The properties stated above greatly simplify the development and anal-
ysis of speculative systems: Instead of having to reason about an entangle-
ment of complex protocols, one can devise several modules with the prop-
erty that, when taken in isolation, each module refines the ALM automaton.
Hence complex protocols can be divided into smaller modules that can be
analyzed independently of each other. In particular, it allows to optimize
an existing protocol by creating separate optimization modules, prove each
optimization correct in isolation, and obtain the correctness of the overall
protocol from the correctness of the existing one.

In this document we define the ALM automaton and prove the Compo-
sition Theorem, which states that the composition of two instances of the
ALM automaton behaves as a single instance of the ALM automaton. We
use a refinement mapping to establish this fact.

2 Definition and properties of the longest common
postfix of a set of lists

theory LCP
imports Main ~~ /src/ HOL/ Library/ Sublist
begin

definition common-postfiz-p :: ('a list) set => 'a list => bool

— Predicate that recognizes the common postfix of a set of lists

— The common postfix of the empty set is the empty list

where

common-postfiz-p = X xzss xs . if zss = {} then zs =[] else ALL zs' . xs’ € xss
— suffizeq xs xs’

definition I-c-p-pred :: 'a list set = 'a list => bool

— Predicate that recognizes the longest common postfix of a set of lists

where

l-c-p-pred = X xss xs . common-postfiz-p xss xs N\ (ALL xs’ . common-postfiz-p
xss s’ — suffiveq xs’ xs)

definition l-c-p:: 'a list set = 'a list
— The longest common postfix of a set of lists
where
l-c-p = X xss . THE zs . l-c-p-pred zss xs

lemma [-c-p-ok: l-c-p-pred zss (I-c-p zss)

— Proof that the definition of the longest common postfix of a set of lists is
consistent
lemma [-c-p-lemma:

— A useful lemma

(Is£{3ANIlels. 3U.1=1"Quas))) — suffizeq s (I-c-p Is)

lemma [-c-p-common-postfiz: common-postfiz-p xss (l-c-p zss)
using [-c-p-ok[of zss] by (auto simp add:l-c-p-pred-def)

lemma [-c-p-longest: common-postfiz-p xss xs — suffizeq s (I-c-p ss)
using l-c-p-ok|of xss] by (auto simp add:l-c-p-pred-def)

end

3 The ALM Automata specification
theory ALM

imports ~~/src/HOL/HOLCF |IOA/meta-theory/IOA LCP
begin

typedecl client

— A non-empty set of clients
typedecl data
— Data contained in requests
datatype request =
— A request is composed of a sender and data
Req client data

definition request-snd :: request = client
where request-snd = X\ r. case r of Req ¢ - = ¢

type-synonym hist = request list
— Type of histories of requests.

datatype ALM-action =
— The actions of the ALM automaton
Invoke client request
| Commit client nat hist
| Switch client nat hist request
| Initialize nat hist
| Linearize nat hist
| Abort nat

datatype phase = Sleep | Pending | Ready | Aborted
— Executions phases of a client

definition linearizations :: request set = hist set
— The possible linearizations of a set of requests
where
linearizations = X\ reqs . {h . set h C regs A distinct h}

definition postfiz-all :: hist = hist set = hist set

— appends to the right the first argument to every member of the history set
where

postfiz-all = X h hs . {h/ .3 A" . h'=h""@Qh A h" € hs}

definition
ALM-asig :: nat = nat = ALM-action signature
— The action signature of ALM automata
— Input actions, output actions, and internal actions

where
ALM-asig = X id1 id2 . (
{act . F crh.

act = Invoke c r | act = Switch c id1 h r},
{act .3 chrid .
idl <=14d' N id’ < id2 N act = Commit ¢ id’ h
| act = Switch ¢ id2 h r},
{act .3 h .
act = Abort id1
| act = Linearize id1 h

| act = Initialize id1 h})

record ALM-state =

— The state of the ALM automata

pending :: client = request

— Associates a pending request to a client process

initHists :: hist set

— The set of init histories submitted by clients

phase :: client = phase

— Associates a phase to a client process

hist :: hist

— Represents the chosen linearization of the concurrent history of the current
instance only

aborted :: bool

imatialized :: bool

definition pendingReqs :: ALM-state = request set
— the set of requests that have been invoked but that are not yet in the hist
parameter
where
pendingReqgs = XA s . {r .3 c.
r = pending s ¢
A1 & set (hist s)
A phase s ¢ € {Pending, Aborted}}

definition initValidReqs :: ALM-state = request set
— any request that appears in an init hist after the longest common prefix or
that is pending
where
initValidRegs = As . {r .
(r € pendingReqs s V (3 h € initHists s . r € set h))
A r & set (l-c-p (initHists s))}

definition
ALM-trans :: nat = nat = (ALM-action, ALM-state)transition set
— the transitions of the ALM automaton
where
ALM-trans = X id1 id2 . {trans .
let s = fst trans; s’ = snd (snd trans); a = fst (snd trans) in

case a of Invoke ¢ v =
if phase s ¢ = Ready N request-snd v = ¢ A r ¢ set (hist s)
then s’ = s(pending := (pending s)(c := r),
phase := (phase s)(c¢ := Pending)))
else s' = s

| Linearize i h =
initialized s N\ — aborted s
A h € postfiz-all (hist s) (linearizations (pendingReqs s))

A s' = s(hist := h))

|Initialize © h =
(3 ¢ . phase s ¢ # Sleep) N — aborted s N\ — initialized s
A h € postfiz-all (I-c-p (initHists s)) (linearizations (initValidReqs s))
A s’ = s(hist := h, initialized := True|)

|Abort i =

— aborted s A (3 ¢ . phase s ¢ # Sleep)
A s’ = s(aborted:= Truel)

| Commit ¢ i h =
phase s ¢ = Pending A pending s ¢ € set (hist s)
A h = dropWhile (X r . r # pending s ¢) (hist s)
A s’ = s (phase := (phase s)(c := Ready)))

|Switch ¢ i h r =
if i = idl
then if phase s ¢ = Sleep
then s’ = s (initHists :== {h} U (initHists s),
phase := (phase s)(c¢ := Pending),
pending := (pending s)(c :=)|
else s' = s
else if i = id2
then aborted s
A phase s ¢ = Pending N\ v = pending s ¢
A (if initialized s
then (h € postfiz-all (hist s) (linearizations (pendingReqs s)))
else (h € postfiz-all (I-c-p (initHists s)) (linearizations (initValidReqs

5))))
A s’ = s(phase := (phase s)(c := Aborted)])
else False }

definition ALM-start :: nat = ALM-state set

— the set of start states

where

ALM-start = X id . {s .
YV ¢ . phase s ¢ = (if id # 0 then Sleep else Ready)
A hist s =[]
A — aborted s
A (if id # 0 then — initialized s else initialized s)
A initHists s = {}}

definition ALM-ioa :: nat = nat = (ALM-action, ALM-state)ioa
— The ALM automaton
where
ALM-ioa = X (id1::nat) id2 .
(ALM-asig id1 id2,
ALM-start id1,

ALM-trans id1 id2,
A

type-synonym compo-state = ALM-state x ALM-state

definition composeALMs :: nat = nat = (ALM-action, compo-state) ioa
— the composition of two ALMs
where
composeALMs = X id1 id2 .
hide (ALM-ioa 0 idl || ALM-ioa id1 id2)
{act . EX c tr v . act = Switch c idl tr r}

end

4 Proof that the composition of two instances of
the ALM automaton behaves like a single in-
stance of the ALM automaton

theory CompositionCorrectness
imports ALM
begin

declare split-if-asm [split]
declare Let-def [simp]

4.1 A case split useful in the proofs

definition in-trans-cases-fun :: nat => nat => (ALM-state x ALM-state) =>
(ALM-state + ALM-state) => bool

— Helper function used to decompose proofs

where
in-trans-cases-fun == % id1 id2 s t .

(EX ca ra. (fst s, Invoke ca ra, fst t) : ALM-trans 0 id1 & (snd s, Invoke ca ra,
snd t) : ALM-trans id1 id2)

| (EX ca b ra. (fst s, Switch ca idl h ra, fst t) : ALM-trans 0 id1 & (snd s, Switch
ca idl h ra, snd t) : ALM-trans id1 id2)

| (EX cid' h. fst t = fst s & (snd s, Commit ¢ id’ h, snd t) : ALM-trans id1 id2
& idl <= id' & id' < id?)

| (EX chr. fstt=fsts& (snd s, Switch ¢ id2 h r, snd t) : ALM-trans id1 id2)

| (EX h . fstt = fst s & (snd s, Linearize idl h, snd t) : ALM-trans id1 id2)

| (fst t = fst s & (snd s, Abort idl, snd t) : ALM-trans id1 id2)

| (EX h. fst t = fst s & (snd s, Initialize id1 h, snd t) : ALM-trans id1 id2)

| (EX ca ta ra. (fst s, Switch ca 0 ta ra, fst t) : ALM-trans 0 id1 & snd t = snd
s)

| (EX ca id’ h. (fst s, Commit ca id’ h, fst t) : ALM-trans 0 id1 & snd t = snd
s & id’ < idl)

| (EX h . (fst s, Linearize 0 h, fst t) : ALM-trans 0 id1 & snd t = snd s)

| (EX h. (fst s, Initialize 0 h, fst t) : ALM-trans 0 idl & snd t = snd s)

| ((fst s, Abort 0, fst t) : ALM-trans 0 id1 & snd t = snd s)

lemma compose ALMSE:
— A rule for decomposing proofs
assumes id! ~= 0 and id! < id2 and in-trans-comp:s —(a:: ALM-action)——composeALMs
id1 id2—> t
shows decomp: in-trans-cases-fun id1 id2 s t
proof —
from in-trans-comp and <idl ~= 0) and «dl < id2)
have a : {act . EXcrhid' . 0 <=1id' & id' < id2 & (
act = Invoke c r
| act : {Switch ¢ 0 h r, Switch ¢ id1 h r, Switch ¢ id2 h r}
| act : {Linearize 0 h, Linearize idl h}
| act : {Initialize 0 h, Initialize id1 h}
| act : {Abort 0, Abort id1}
| act : {Commit ¢ id" h}
)} by (auto simp add: composeALMs-def trans-of-def hide-def ALM-ioa-def
par-def actions-def asig-inputs-def asig-outputs-def asig-internals-def asig-of-def ALM-asig-def)
with this obtain ¢ r h id’ where 0 <= id' & id’ < id2 & a : { act .
act = Invoke c r
| act : {Switch ¢ 0 h r, Switch ¢ id1 h r, Switch c id2 h r}
| act : {Linearize 0 h, Linearize id1 h}
| act : {Initialize 0 h, Initialize id1 h}
| act : {Abort 0, Abort id1}
| act : {Commit ¢ id" h}
} by auto
moreover from in-trans-comp and «dl ~= () and «idl < id2)
have
(@ = Linearize 0 h | a = Abort 0 | a = Initialize 0 h | a = Switch ¢ O h r | (a
= Commit cid' h & id' < id1)) = ((fst s, a, fst t) : ALM-trans 0 idl & snd s
= snd t)
and
(a = Linearize id1 h | a = Abort idl | a = Initialize id1 h | a = Switch ¢ id2
hr| (a = Commit cid h & idl <= id’ & id' < id2)) = (fst s = fst ¢t & (snd
s, a, snd t) : ALM-trans id1 id2)
and
(a = Switch ¢ idl h r | a = Invoke ¢ r) = ((fst s, a, fst t) : ALM-trans 0 id!
& (snd s, a, snd t) : ALM-trans idl id2)
by (auto simp add: composeALMs-def trans-of-def hide-def ALM-ioa-def par-def
actions-def asig-inputs-def asig-outputs-def asig-internals-def asig-of-def ALM-asig-def)
ultimately show ?thesis unfolding in-trans-cases-fun-def apply simp by (metis
linorder-not-less)
qged

lemma my-rule:[|id] # 0; idl < id2; s —a——composeALMs idl id2—> t;
[|in-trans-cases-fun id1 id2 s t|] ==> P|] ==> P by (auto intro: composeALMsE|[where
s=s and t=t and a=a])

lemma my-rule2:[|0 < idl; idl < id2; s —a——composeALMs idl id2—> t;
[|in-trans-cases-fun id1 id2 s t|] ==> P|] ==> P by (auto intro: composeALMsE|[where

s=s and t=t and a=a])

4.2 Invariants of a single ALM instance

definition Pla :: (ALM-state x ALM-state) = bool
where
— In ALM 1, a pending request of client ¢ has client ¢ as sender
Pla == % s . let s1 = fst s; 2 = snd s in
ALL c . phase s1 ¢ € {Pending, Aborted} ——> request-snd (pending
slc)=c

definition P1b :: (ALM-state * ALM-state) = bool
where
— In ALM 2, a pending request of client ¢ has client ¢ as sender
P1b == % s . let s1 = fst s; s2 = snd s in
ALL c . phase s2 ¢ # Sleep ——> request-snd (pending s2 ¢) = ¢

definition P2 :: (ALM-state * ALM-state) = bool where
P2 == % s . let s1 = fst s; s2 = snd s in
(V ¢ . phase s2 ¢ = Sleep) — (= initialized s2 A hist s2 = |])

definition P3 :: (ALM-state * ALM-state) = bool where
P8 == % s . let s1 = fst s; s2 = snd s in
YV ¢ . (phase s2 ¢ = Ready — initialized s2)

definition P/ :: (ALM-state * ALM-state) = bool
where
— The set of init histories of ALM 2 is empty when no client ever invoked anything

Pl ==% s . let s1 = fst s; s2 = snd s in
(Y ¢ . phase s2 ¢ = Sleep) = (initHists s2 = {})

definition P5 :: (ALM-state x+ ALM-state) = bool
— In ALM 1 a client never sleeps
where
P5 ==% s . let s1 = fst s; s2 = snd s in
Y ¢ . phase s1 ¢ # Sleep

4.3 Invariants of the composition of two ALM instances

definition P6 :: (ALM-state * ALM-state) = bool
— Non-interference accross instances
where
P6 == % s . let s1 = fst s; s2 = snd s in
(™ aborted s1 ——> (ALL c . phase s2 ¢ = Sleep)) & (ALL c . phase
s1 ¢ ~= Aborted = (phase s2 ¢ = Sleep))

definition P7 :: (ALM-state * ALM-state) = bool
— Before initialization of the ALM 2, pending requests are the same as in ALM
1 and no new requests may be accepted (phase is not Ready)

where
P7==% s .let s1 = fst s; s2 = snd s in
ALL c . phase s1 ¢ = Aborted N\ — initialized s2 — (pending s2 ¢ =
pending sl ¢ A phase s2 ¢ € {Pending, Aborted})

definition P8 :: (ALM-state x ALM-state) = bool
— Init histories of ALM 2 are built from the history of ALM 1 plus pending
requests of ALM 1
where
P8 == % s . let s1 = fst s; s2 = snd s in
Y h € initHists s2 . h € postfiz-all (hist s1) (linearizations (pendingReqs
s1))

definition P9 :: (ALM-state * ALM-state) = bool
— ALM 2 does not abort before ALM 1 aborts
where
P9 == % s . let s1 = fst s; s2 = snd s in
aborted s2 —> aborted sl

definition P10 :: (ALM-state « ALM-state) = bool
— ALM 1 is always initialized and when ALM 2 is not initialized its history is
empty
where
P10 == % s . let s1 = fst s; s2 = snd s in
initialized s1 A (— indtialized s2 — (hist s2 = []))

definition P11 :: (ALM-state x ALM-state) = bool
where
— After ALM 2 has been invoked and before it is initialized, any request found
in init histories after their longest common prefix is pending in ALM 1
P11 == % s . let s1 = fst s; s2 = snd s in
((3 ¢ . phase s2 ¢ # Sleep) N — initialized s2) — initValidReqs s2 C
pendingReqs sl1

definition P12:: (ALM-state x ALM-state) = bool

where

— After ALM 2 has been invoked and before it is initialized, the longest common
prefix of the init histories of ALM 2 is buit from appending a set of request pending
in ALM 1 to the history of ALM 1

P12 == % s . let s1 = fst s; s2 = snd s in

(3 ¢ . phase s2 ¢ # Sleep) — (3 rs . l-c-p (initHists s2) = rs Q (hist s1)

A set rs C pendingRegs s1 A distinct rs)

definition P13 :: (ALM-state x ALM-state) = bool

where

— After ALM 2 has been invoked and before it is initialized, any history that
may be chosen at initialization is a valid linearization of the concurrent history of
ALM 1

P18 == % s . let s1 = fst s; s2 = snd s in

10

((3 ¢ . phase s2 ¢ # Sleep) A — initialized s2) — postfiz-all (I-c-p (initHists
$2)) (linearizations (initValidRegs s2)) C postfiz-all (hist s1) (linearizations (pendingReqs

s1))

definition P14 :: (ALM-state x ALM-state) = bool
where
— The history of ALM 1 is a postfix of the history of ALM 2 and requests
appearing in ALM 2 after the history of ALM 1 are not in the history of ALM 1
P1) == % s . let s1 = fst s; s2 = snd s in
(hist s2 # [] V initialized s2) — (3 rs .
hist s2 = rs @ (hist s1)
A set rs N set (hist s1) = {})

definition P15 :: (ALM-state x ALM-state) = bool
where
— A client that hasn’t yet invoked ALM 2 has no request commited in ALM 2
except for its pending request
P15 == % s . let s1 = fst s; s2 = snd s in
YV r . let ¢ = request-snd r in phase s2 ¢ = Sleep N 1 € set (hist s2) — (r
€ set (hist s1) V r € pendingRegs s1)

4.4 Proofs of invariance

lemma invariant-imp: [invariant ioa P; ¥ s . P s — Q s] = invariant ioa Q
by (simp add:invariant-def)

declare phase.split [split]

declare phase.split-asm [split]
declare ALM-action.split [split]
declare ALM-action.split-asm [split]

lemma drop While-lemma: ¥V ys . s = ys Q zs AN hd zs =z N zs # [| AN ¢ & set
ys — dropWhile (A ¢’ .z’ # z) s = zs
— A useful lemma about truncating histories
proof (induct zs, force)
fix a xs
assume V ys . xs = ys Q@ zs A hd zs =z A zs £ [| AN & ¢ set ys — drop While
Mz’ x' # z) 25 = zs
showV ys . a# 1s=ysQzs ANhdzs =z N zs £ || Az & set ys — drop While
M’ 2" # z) (a # xs) = zs
proof (rule alll, rule impl, cases a = x)
fix ys
assume a # s = ys Qzs Ahdzs =x ANzs #[| ANz ¢ setys and a =z
hence z # xzs = ys Q zs and z ¢ set ys and hd zs = z and zs # [| by auto
from @ # xs = ys @ z9) and (« ¢ set ys) have ys = [| by (metis list.sel(1)
hd-append hd-in-set)
with (¢ = 2 and @ # xs = ys Q z9) show dropWhile (Az'. ' # z) (a # xs)
= 25 by auto
next

11

fix ys
assume a # s = ys Q zs Ahdzs =x AN zs #[| ANz ¢ set ys and a # ©
hence a # zs = ys Q zs and hd zs = z and zs # || and z ¢ set ys by auto
obtain ys’ where zs = ys’ Q zs and x ¢ set ys’
proof —
from (a # zs = ys @ z¢) and (hd zs = 1) and <a # 2> obtain ys’ where ys
= a # ys' apply clarify by (metis Cons-eq-append-conv list.sel(1))
moreover with « ¢ set ys) have z ¢ set ys’ by auto
moreover from (ys = a # ys" and (a # zs = ys @ zs) have zs = ys’ Q 2s
by auto
ultimately show (Ays’. [zs = ys’' @Q zs; © ¢ set ys'] = thesis) = thesis
by auto
qed
with V ys . zs = ys @ zs A hd zs = x N 2zs £ [| A x & set ys — drop While
(A’ 2’ # x) s = z9» and (hd zs =) and (zs # []» have drop While (Az’. o’ #
x) s = zs by auto
with (a # z) show dropWhile (Az'. ' # z) (a # xs) = zs by auto
qed

qed
lemma P2-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) P2
proof (rule invariantl, auto)
fix s1 s2

assume (s!, s2) : starts-of (composeALMs id1 id2) and 0 < idl
thus P2 (s1, s2) by (simp add: starts-of-def composeA LMs-def hide-def ALM-ioa-def
par-def ALM-start-def P2-def)
next
fix s1 52 s1' 52’ act
assume reachable (composeALMs id1 id2) (s1, s2) and P2 (sI, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1', s2")
from <0 < id1> and Gd! < id2) and in-trans-comp show P2 (s1’, s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1’, s27)
thus P2 (s1', s2’) using (P2 (s1, s2)) and 0 < id]) and dl < id2) ap-
ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P2-def) done
qed
qed

lemma P5-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) PS5
proof (rule invariantl, auto)

fix s1 s2

assume (s1, s2) : starts-of (composeALMs id1 id2) and 0 < idl

thus P5 (s1, s2) by (simp add: starts-of-def composeA LMs-def hide-def ALM-ioa-def
par-def ALM-start-def P5-def)

next

12

fix s1 s2 s1' 52’ act
assume reachable (composeALMs idl id2) (s, s2) and P5 (s1, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1') s2")
from (0 < id1> and Gdl < id2) and in-trans-comp show P5 (s1', s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
thus P5 (s1/, s2') using P5 (s, s2)» and 0 < idl) and «d! < id2) ap-
ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P5-def) done
qed
qed

lemma P6-invariant: [|idl # 0 ; idl < id2|] ==> invariant (composeALMs id1
id2) P6
proof (rule invariantl, rule-tac [2] impI)

fix s

assume s : starts-of (composeALMs id1 id2) and idl # 0

thus P6 s by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P6-def)
next

fix sta

assume P6 s

assume id! # 0 and id! < id2 and s —a——composeALMs idl id2—> t

thus P6 ¢

proof (rule my-rule)

assume in-trans-cases-fun idl id2 s t
thus P6 t using (P6) and (idl # () and «d! < id2) apply(auto simp add:

in-trans-cases-fun-def) apply (simp-all add: ALM-trans-def P6-def) apply (metis
phase.simps(12) phase.simps(4) phase.simps(5)) apply (metis phase.simps(12)
phase.simps(5)) apply (force simp add: ALM-trans-def P6-def) apply (force simp
add: ALM-trans-def P6-def) apply (force simp add: ALM-trans-def P6-def) ap-
ply (force simp add: ALM-trans-def P6-def) apply (force simp add: ALM-trans-def
P6-def) apply (force simp add: ALM-trans-def P6-def) done

qed
qed

lemma P9Y-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) P9
proof (rule invariantl, auto)

fix s s2

assume (s1, s2) : starts-of (composeALMs id1 id2)

thus P9 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P9-def)
next

fix s s2 s1' s2' act

assume reachable (composeALMs idl id2) (s1, s2) and P9 (s1, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(sl, s2) —act——composeALMs id1 id2—>
(s1', s2")

13

have P6 (s1, s2)
proof —
from in-trans-comp and (reachable (composeALMs idl id2) (s1, s2) have
reachable (composeALMs id1 id2) (s1’, s2') by (auto intro: reachable.reachable-n)
with (reachable (composeALMs idl id2) (s1, s2) and (0 < idl) and «dl <
1d2) and P6-invariant show P6 (s1, s2) unfolding invariant-def by auto
qed
from (0 < id1]> and (dl < id2) and in-trans-comp show P9 (s1’', s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
thus P9 (s1’, s2’) using (P9 (s1, s2)) and (P6 (s1, s2)) and (0 < idl> and
(id1 < id2) apply(auto simp add: in-trans-cases-fun-def) apply (auto simp add:
ALM-trans-def P9-def P6-def) done
qed
qed

lemma Pl10-invariant: [|id] < id2; idl ~= 0|] ==> invariant (composeALMs
id1 id2) P10
proof (rule invariantl, auto)

fix sl s2

assume (s1, s2) : starts-of (composeALMs idl id2) and 0 < idl

thus P10 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P10-def)
next

fix s s2 s1' s2' act

assume reachable (composeALMs id1 id2) (sl, s2) and P10 (s, s2) and 0 <
id1 and idl < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1', s2")

from (0 < id]> and (idl < id2) and in-trans-comp show P10 (s1’, s2)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2’)
thus P10 (s1', s2') using (P10 (s, s2)» and 0 < idI) and «dl < id2) ap-

ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P10-def) done

qed
qed

lemma PS-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) P3
proof (rule invariantl, auto)

fix sl s2

assume (s1, s2) : starts-of (composeALMs idl id2) and 0 < idl

thus P3 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P3-def)
next

fix s s2 s1' s2' act

assume reachable (composeALMs idl id2) (s1, s2) and P3 (s1, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(sl, s2) —act——composeALMs id1 id2—>
(s1', s2")

14

have P10 (s1, s2)
proof —
from in-trans-comp and (reachable (composeALMs idl id2) (s1, s2) have
reachable (composeALMs id1 id2) (s1’, s2') by (auto intro: reachable.reachable-n)
with (reachable (composeALMs idl id2) (s1, s2) and (0 < idl) and «dl <
1d2) and P10-invariant show P10 (s1, s2) unfolding invariant-def by auto
qed
from (0 < id1]> and (dl < id2) and in-trans-comp show P3 (s1', s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2)
thus P3 (s1’, s2’) using (P3 (s1, s2)) and <P10 (s, s2)) and 0 < idl» and
(id1 < id2) apply(auto simp add: in-trans-cases-fun-def) apply (auto simp add:
ALM-trans-def P3-def P10-def) done
qed
qed

lemma P7-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) P7
proof (rule invariantl, auto)
fix s1 s2
assume (s1, s2) : starts-of (composeALMs idl id2) and 0 < idl
thus P7 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P7-def)
next
fix s s2 s1' s2' act
assume reachable (composeALMs idl id2) (s1, s2) and P7 (s1, s2) and 0 <
id1 and idl < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1', s2")
have P6 (s1, s2) and P10 (s1, s2)
proof —
from in-trans-comp and <reachable (composeALMs idl id2) (s1, s2)) have
reachable (composeALMs idl id2) (s1’', s2) by (auto intro: reachable.reachable-n)
with (reachable (composeALMs idl id2) (s1, s2)) and (0 < idl) and «idl <
id2) and P6-invariant and P10-invariant show P6 (s1, s2) and P10 (si, s2)
unfolding invariant-def by auto
qed
from (0 < id1> and Gdl < id2) and in-trans-comp show P7 (s1', s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2)
thus P7 (s1’, s2’) using (P7 (s1, s2)) and (P6 (s1, s2)) and (0 < idl> and
adl < id2)
proof (auto simp add: in-trans-cases-fun-def)
fix ca ra
assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s,
Invoke ca ra, s1') € ALM-trans 0 id1 and (s2, Invoke ca ra, s2’) € ALM-trans
1d1 1d2
thus P7 (s1', s2') by (auto simp add: ALM-trans-def P7-def)
next
fix ca h ra

15

assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s,
Switch ca id1 h ra, s1') € ALM-trans 0 id1 and (s2, Switch ca idl h ra, s2') €
ALM-trans id1 id2

thus P7 (s1', s2') by (auto simp add: ALM-trans-def P7-def P6-def)

next

fix cid’ h

assume P7 (s, s2) and P6 (s1, s2) and 0 < id! and (s2, Commit ¢ id’
h, s2') € ALM-trans id1 id2 and id! < id’ and id’ < id2

thus P7 (s1, s2') using (P10 (s1, s2)) by (auto simp add: ALM-trans-def
P7-def P10-def)

next

fixchr

assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s2,
Switch ¢ id2 h r, s2') € ALM-trans idl id2

thus P7 (si, s2’) by (auto simp add: ALM-trans-def P7-def)

next

fix h

assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s2,
Linearize id1 h, s2') € ALM-trans id1 id2

thus P7 (s1, s2’) by (simp add: ALM-trans-def P7-def)

next

fix h

assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s2,
Initialize id1 h, s2') € ALM-trans idl id2

thus P7 (s, s2’) by (auto simp add: ALM-trans-def P7-def)

next

fix ca ta ra

assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s,
Switch ca 0 ta ra, s1’) € ALM-trans 0 id1

thus P7 (s1', s2) by (auto simp add: ALM-trans-def P7-def)

next

fix ca id' h

assume P7 (s1, s2) and P6 (s1, s2) and id! < id2 and (sI, Commit ca
id’ h, s1") € ALM-trans 0 idl and id’ < id1

thus P7 (s1’, s2) by (auto simp add: ALM-trans-def P7-def)

next

fix h

assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s,
Linearize 0 h, s1’) € ALM-trans 0 idl

thus P7 (s1’, s2) by (auto simp add: ALM-trans-def P7-def)

next

fix h

assume P7 (s1, s2) and P6 (sl, s2) and 0 < id! and id! < id2 and (s,
Initialize 0 h, s1') € ALM-trans 0 id1

thus P7 (s1’, s2) by (auto simp add: ALM-trans-def P7-def)

next

assume P7 (s1, s2) and P6 (sl, s2) and 0 < id! and id! < id2 and (s2,
Abort idl, s2') € ALM-trans id1 id2

thus P7 (si, s2’) by (auto simp add: ALM-trans-def P7-def)

16

next
assume P7 (s1, s2) and P6 (s1, s2) and 0 < id! and id! < id2 and (s,
Abort 0, s1') € ALM-trans 0 idl
thus P7 (s1', s2) by (auto simp add: ALM-trans-def P7-def)
qed
qed
qed

lemma Pj-invariant: [|idl < id2; id1 # 0|] ==> invariant (composeALMs id1
id2) P/
proof (rule invariantl, auto)
fix s1 s2
assume (s1, s2) : starts-of (composeALMs idl id2) and 0 < idl
thus P4 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P4-def)
next
fix s1 s2 s1' 52’ act
assume reachable (composeALMs idl id2) (s, s2) and P4 (s1, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1') s2")
have P6 (s1, s2)
proof —
from in-trans-comp and <reachable (composeALMs idl id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1’, s2') by (auto intro: reachable.reachable-n)
with (reachable (composeALMs id1 id2) (s1, s2)) and (0 < idl) and «dl <
id2) and P6-invariant show P6 (s1, s2) unfolding invariant-def by auto
qged
from 0 < idl) and «dl < id2) and in-trans-comp show Pj (s1’, s2’)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2’)
thus P4 (s1', s2’) using (P4 (s1, s2)) and (0 < id]) and ¢dl < id2) ap-
ply(auto simp add: in-trans-cases-fun-def) apply (auto simp add: ALM-trans-def
P4-def) done
qed
qed

lemma PS8-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) P8
proof (rule invariantl, auto)

fix s1 s2

assume (sl, s2) : starts-of (composeALMs id1 id2) and 0 < idl

thus P8 (s1, s2) by (simp add: starts-of-def composeA LMs-def hide-def ALM-ioa-def
par-def ALM-start-def P8-def)
next

fix s1 s2 s1' 52’ act

assume reachable (composeALMs idl id2) (s, s2) and P8 (s1, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs idl id2—>
(s1', s2")

have P6 (s1, s2) and P10 (sl, s2) and P5 (s1, s2) and P4 (s1, s2)

17

proof —
from in-trans-comp and <reachable (composeALMs idl id2) (s1, s2)) have
reachable (composeALMs id1 id2) (s1’, s2') by (auto intro: reachable.reachable-n)
with <reachable (composeALMs idl id2) (s1, s2)» and (0 < idl> and <(id1
< id2) and P6-invariant and P10-invariant and P5-invariant and Pj-invariant
show P6 (s1, s2) and P10 (s1, s2) and P5 (s1, s2) and P4 (s, s2) unfolding
invariant-def by auto
qed
from (0 < id1]> and Gdl < id2) and in-trans-comp show P8 (s1’', s27)
proof (rule my-rule2)
assume in-trans-cases-fun idl id2 (s1, s2) (s1’, s2”)
thus P8 (s1’, s2') using (P8 (s1, s2) and (0 < idl» and «idl < id2)
proof (auto simp add: in-trans-cases-fun-def)
fix ca ra
assume PS8 (sl, s2) and 0 < idl and idl < id2 and in-invoke-1:(s1,
Invoke ca ra, s1’) € ALM-trans 0 idl and in-invoke-2:(s2, Invoke ca ra, s2') €
ALM-trans id1 id2
show P8 (s1', s2")
proof (cases s’ = s1)
assume sl’ = sl
with in-invoke-2 and (P8 (s, s2)) show ?thesis by (auto simp add:
ALM-trans-def P8-def)
next
assume s1’ # sl
with in-invoke-1 have pendingReqs s1 C pendingReqs s1' by (force simp
add:pendingReqs-def ALM-trans-def)
moreover from in-invoke-1 have hist s1’ = hist s1 by (auto simp
add: ALM-trans-def)
moreover from in-invoke-2 have initHists s2' = initHists s2 by (auto
stmp add:ALM-trans-def)
moreover note (P8 (s1, s2)
ultimately show ?¢thesis by (auto simp add: ALM-trans-def P8-def
linearizations-def postfiz-all-def)
qed
next
fix ca h ra
assume P8 (s1, s2) and 0 < id! and id! < id2 and in-switch-1:(s1, Switch
ca idl h ra, s1') € ALM-trans 0 id1 and in-switch-2:(s2, Switch ca id1 h ra, s27)
€ ALM-trans id1 id2
show P8 (s1', s2")
proof (auto simp add:P8§-def)
fix hi
assume hi € initHists s2’
show h! € postfiz-all (hist s1') (linearizations (pendingReqs s1'))
proof (cases h1 € initHists s2)
assume hil € initHists s2
moreover from in-switch-1 and 0 < idl> have hist s1’ = hist
sl and pendingReqs s1' = pendingReqs s1 by (auto simp add:ALM-trans-def
pendingReqs-def)

18

moreover note (P8 (s1, s2)
ultimately show hl € postfiz-all (hist s1') (linearizations (pendingReqs
s1")) by (auto simp add:P8-def)
next
assume hl ¢ initHists s2
with a1 € initHists s2) and in-switch-2 have hl1 = h by (auto simp
add: ALM-trans-def)
with in-switch-1 and 0 < id1l) and P10 (s1, s2)> have hl € postfiz-all
(hist s1) (linearizations (pendingReqs s1)) by (auto simp add: ALM-trans-def P10-def)
moreover from in-switch-1 and 0 < idl> have hist s1’ = hist
sl and pendingReqs s1’ = pendingReqs s1 by (auto simp add:ALM-trans-def
pendingReqs-def)
ultimately show ?thesis by auto
qed
qed
next
fix cid’ h
assume P8 (s1, s2) and 0 < idl and (s2, Commit c id’ h, s2') € ALM-trans
id1 id2 and id1 < id’ and id’ < id2
thus P8 (s1, s2’) by (auto simp add: ALM-trans-def P8-def)
next
fixchr
assume P8 (s1, s2) and 0 < idl and id! < id2 and (s2, Switch c id2 h r,
s2'y € ALM-trans id1 id2
thus P8 (s1, s2’) by (auto simp add: ALM-trans-def P8-def)
next
fix h
assume P8 (s1, s2) and 0 < id! and id! < id2 and (s2, Linearize idl h,
s2'y € ALM-trans id1 id2
thus P8 (sI, s2") by (auto simp add: ALM-trans-def P8-def)
next
fix h
assume P8 (s1, s2) and 0 < id! and id! < id2 and (s2, Initialize id1 h,
s2'y € ALM-trans id1 id2
thus P8 (s1, s2’) by (auto simp add: ALM-trans-def P8-def)
next
fix ca ta ra
assume P8 (s1, s2) and 0 < idl and id! < id2 and (sI, Switch ca 0 ta
ra, s1') € ALM-trans 0 idl
thus P8 (sl1’, s2) using (P5 (s1, s2) by (auto simp add: ALM-trans-def
P8-def P5-def)
next
fix ca id' h
assume P8 (s1, s2) and in-commit-1:(s1, Commit ca id" h, s1’) € ALM-trans
0 id1
from in-commit-1 have pendingReqs s1’ = pendingReqs s1 and hist s1’ =
hist s1 by (auto simp add:pendingReqs-def ALM-trans-def)
with (P8 (s1, s2)) show P8 (s1/, s2) by (auto simp add: ALM-trans-def
P8-def pendingReqs-def)

19

next
fix h
assume P8 (s1, s2) and 0 < id! and id! < id2 and (s!, Linearize 0 h,
s1") € ALM-trans 0 id1
thus P8 (s1’, s2) using (P6 (s, s2)) and (P4 (s1, s2)) by (auto simp add:
ALM-trans-def P8-def P6-def P4-def)
next
assume P8 (sI, s2) and 0 < idl and idl < id2 and (s2, Abort id1, s2’)
€ ALM-trans id1 id2
thus P8 (si, s2’) by (auto simp add: ALM-trans-def P8-def)
next
fix h
assume P8 (s1, s2) and 0 < id! and id! < id2 and (si, Initialize 0 h,
s1'y € ALM-trans 0 idl1
thus P8 (s1’, s2) using (P10 (s1, s2)) by (auto simp add: ALM-trans-def
P8-def P10-def)
next
assume P8 (s1, s2) and 0 < idl and idl < id2 and (s, Abort 0, s1’) €
ALM-trans 0 id1
thus P8 (s1’, s2) by (auto simp add: ALM-trans-def P8-def pendingReqs-def)
qed
qed
qed

lemma PI12-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) P12
proof clarify
assume id! < id2 and 0 < idl
with P8-invariant and P4-invariant have invariant (composeALMs id1 id2) (A
(s, 82) . P8 (s1, s2) A\ P4 (s1, s2)) by (auto simp add:invariant-def)
moreover haveV s . P8 s AN P4 s— P12 s
proof auto
fix s1 s2
assume P8 (s1, s2) and P4 (si, s2)
hence initHists-prop:v¥' h € initHists s2 . (3 h' . h = h’' Q (hist s1) A
set h' C pendingReqs sl A distinct h') by (auto simp add:P8-def postfiz-all-def
linearizations-def)
show P12 (s1, s2)
proof (simp add:P12-def, rule impl)
assume 3 ¢ . phase s2 ¢ # Sleep
with (P4 (s1, s2)» have initHists s2 # {} by (auto simp add:P4-def)
with I-c-p-lemmalof initHists s2 hist s1] and initHists-prop
obtain rs where [-c-p (initHists s2) = rs @Q hist s1 by (auto simp add:
suffizeq-def)
moreover have set rs C pendingReqs s1
proof —
from «initHists s2 # {}> obtain h where h € initHists s2 by auto
with initHists-prop obtain h’ where h = h' Q (hist s1) A set h' C
pendingReqs s1 by auto

20

moreover from [-c-p-common-postfix|of initHists s2] and (h € initHists s2)
obtain "' where h = h"' Q (l-c-p (initHists s2)) by (auto simp add:common-postfiz-p-def
suffizeq-def)
moreover note (l-c-p (initHists s2) = rs @Q hist s>
ultimately show ¢thesis by auto
qed
moreover have distinct rs
proof —
from <initHists s2 # {}> obtain h where h € initHists s2 by auto
with initHists-prop obtain h’ where h = h’/ Q (hist s1) and distinct b’
by auto
with I-c-p-common-postfiz|of initHists s2] and h € initHists s2) and (-c-p
(initHists s2) = rs @ hist s1> obtain h’ where A’ = h'/ @ rs apply (auto simp
add:common-postfiz-p-def suffizeq-def) by (metis <h = h' Q hist s1) append-assoc
append-same-eq)
with <(distinct h'y show ?thesis by auto
qed
ultimately show Jrs. l-c-p (initHists s2) = rs Q hist sI N\ set rs C pend-
ingReqs s1 N distinct rs by auto
qed
qged
ultimately show ?thesis by (auto intro:invariant-imp)
qed

lemma PII-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs id1
id2) P11
proof clarify
assume id! < id2 and 0 < idl
with PS8-invariant and P12-invariant and P6-invariant and P7-invariant have
invariant (composeALMs id1 id2) (A (s1, s2) . P8 (s1, s2) N P12 (s1, s2) N\ P6
(s1, 82) N P7 (s1, s2)) by (auto simp add:invariant-def)
moreover haveV s . P§8s AN P12s N P6 s N P7s — P11l s
proof auto
fix s1 s2
assume P8 (s1, s2) and P12 (s, s2) and P6 (s1, s2) and P7 (s1, s2)
show P11 (s1, s2)
proof (simp add:P11-def initValidReqs-def, auto)
fixzch
assume phase s2 ¢ # Sleep
with (P12 (s1, s2)) and (P8 (s1, s2)» have initHists-prop:¥ h € initHists s2
.(3 R . h=h"Q (hist s1) A set h' C pendingReqs s1) and lep-prop:3 rs . l-c-p
(initHists s2) = rs Q (hist s1) by (auto simp add:P12-def P8-def postfiz-all-def
linearizations-def)
assume z ¢ set (l-c-p (initHists s2)) and h € initHists s2 and z € set h
from initHists-prop and (h € initHists s2) obtain h’ where h = h' Q (hist
s1) and set h' C pendingReqs s1 by auto
moreover from lcp-prop obtain rs where l-c-p (initHists s2) = rs Q (hist
s1) by auto
moreover note « ¢ set (l-c-p (initHists s2))) and «x € set h

21

ultimately have z € set b’ by auto
with (set b’/ C pendingReqs s1) show z € pendingReqs s1 by auto
next
fixzch
assume phase s2 ¢ # Sleep and — initialized s2
with (P12 (s, s2)» have lcp-prop:3 s . l-c-p (initHists s2) = rs Q (hist
s1) by (auto simp add:P12-def P8-def postfix-all-def linearizations-def)
assume z ¢ set (l-c-p (initHists s2)) and z € pendingReqs s2
from « ¢ set (I-c-p (initHists s2))y and lcp-prop have x ¢ set (hist s1) by
auto
moreover obtain ¢’ where phase s1 ¢’ = Aborted and z = pending sl ¢’
proof —
from <z € pendingReqs s2) and (P6 (s1, s2)> obtain ¢’ where phase sl ¢
= Aborted and = = pending s2 ¢’ by (force simp add:pendingReqs-def P6-def)
moreover with (- initialized s2) and (P7 (sl, s2)) have x = pending sl
¢’ by (auto simp add:P7-def)
ultimately show (Ac’. [phase s1 ¢’ = Aborted; v = pending s1 ¢'| =
thesis) == thesis by auto
qed
ultimately show x € pendingRegs s1 by (auto simp add:pendingReqs-def)
qed
qed
ultimately show ?thesis by (auto intro:invariant-imp)
qed

/

lemma Pla-invariant: [|idl < id2; id1 # 0]] ==> invariant (composeALMs id1
id2) Pla
proof (rule invariantl, auto)
fix s1 s2
assume (s1, s2) : starts-of (composeALMs id1 id2) and 0 < idl
thus Pla (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def Pla-def)
next
fix s1 s2 s1' s2’ act
assume reachable (composeALMs idl id2) (s1, s2) and Pla (s, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs idl id2—>
(s1') s2")
have P5 (s1, s2)
proof —
from in-trans-comp and (reachable (composeALMs idl id2) (s1, s2) have
reachable (composeALMs id1 id2) (s1’, s2') by (auto intro: reachable.reachable-n)
with (reachable (composeALMs idl id2) (s1, s2)) and (0 < idl) and «dl <
id2) and PS-invariant show P5 (s1, s2) unfolding invariant-def by auto
qed
from (0 < id]> and (dl < id2) and in-trans-comp show Pla (sl1’, s2’)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1’, s2’)
thus Pla (s1’, s2') using (Pla (s, s2) and (P5 (s1, s2)) and 0 < idD
and «d! < id2) apply(auto simp add: in-trans-cases-fun-def) apply (auto simp

22

add: ALM-trans-def Pla-def P5-def) done
qed
qed

lemma Plb-invariant: [|id] < id2; id1 # 0|] ==> invariant (composeALMs id1
id2) P1b
proof (rule invariantl, auto)
fix s1 s2
assume (s1, s2) : starts-of (composeALMs idl id2) and 0 < idl
thus P1b (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P1b-def)
next
fix s1 s2 s1' 52’ act
assume reachable (composeALMs id1 id2) (s1, s2) and P1b (s1, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1', s2")
have Pla (s1, s2)
proof —
from in-trans-comp and (reachable (composeALMs idl id2) (s1, s2) have
reachable (composeALMs id1 id2) (s1’, s2') by (auto intro: reachable.reachable-n)
with (reachable (composeALMs idl id2) (s1, s2) and (0 < idl) and «dl <
1d2) and Pla-invariant show Pla (s1, s2) unfolding invariant-def by auto
qed
from (0 < idD> and «idl < id2) and in-trans-comp show P1b (s1', s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1', s2')
thus P1b (s1’, s2') using (P1b (s1, s2)) and (Pla (s, s2)) and (0 < idD>
and «d! < id2) apply(auto simp add: in-trans-cases-fun-def) apply (auto simp
add: ALM-trans-def P1b-def Pla-def) done
qed
qed

lemma P13-invariant: [|idl < id2; id1 # 0]] ==> invariant (composeALMs id1
id2) P13
proof clarify
assume id! < id2 and 0 < idl
with P11-invariant and P12-invariant have invariant (composeALMs id1 id2)
(X (s1, 82) . P11 (s1, s2) N P12 (s1, s2)) by (auto simp add:invariant-def)
moreover haveV s . P11 s AN P12 s — P13 s
proof auto
fix sl s2
assume P11 (s1, s2) and P12 (s1, s2)
show P13 (s1, s2)
proof (simp add:P13-def, rule impl)
assume (3 ¢ . phase s2 ¢ # Sleep) A — initialized s2
with (P12 (s1, s2)) and (P11 (s1, s2)) obtain rs where init ValidReqs-prop:init Valid Reqs
s2 C pendingRegs s1 and l-c-p (initHists s2) = rs Q (hist sI) and set rs C
pendingReqs s1 and distinct rs by (auto simp add:P12-def P11-def postfiz-all-def
linearizations-def)

23

moreover from (-c-p (initHists s2) = rs Q (hist s1)) have initValidReqs s2
N set rs = {} by (auto simp add:initValidRegs-def)
ultimately show postfiz-all (I-c-p (initHists s2)) (linearizations (initValidReqs
s2)) C postfiz-all (hist s1) (linearizations (pendingReqs s1)) by (force simp add:
postfiz-all-def linearizations-def)
qed
qed
ultimately show ?thesis by (auto intro:invariant-imp)
qed

lemma P1j-invariant: [|id] < id2; id1 # 0|] ==> invariant (composeALMs id1
id2) P14
proof (rule invariantl, auto)
fix s s2
assume (s1, s2) : starts-of (composeALMs idl id2) and 0 < idl
thus P14 (s1, s2) by (simp add: starts-of-def composeALMs-def hide-def ALM-ioa-def
par-def ALM-start-def P14-def)
next
fix s1 s2 s1' 52’ act
assume reachable (composeALMs id1 id2) (sl, s2) and P14 (s1, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1', s2")
have P6 (s1, s2) and P13 (sl, s2) and P10 (s, s2) and P2 (s, s2) and P/
(s1, s2)
proof —
from in-trans-comp and <reachable (composeALMs idl id2) (s1, s2)) have
reachable (composeALMs idl id2) (s1', s2”) by (auto intro: reachable.reachable-n)
with (reachable (composeALMs id1 id2) (s1, s2)) and (0 < idl) and «idl <
id2) and P6-invariant and P1S3-invariant and P10-invariant and Pj-invariant
and P2-invariant show P6 (s, s2) and P13 (s1, s2) and P10 (s, s2) and P2
(s1, s2) and P4 (s1, s2) unfolding invariant-def by auto
qged
from (0 < idl) and «dl < id2) and in-trans-comp show P14 (s1’, s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1’, s2’)
thus P14 (s1’, s2") using (P14 (s1, s2)) and (0 < id]> and «d! < id2
proof (auto simp add: in-trans-cases-fun-def)
fix ca ra
assume P14 (s1, s2) and 0 < idl and id! < id2 and (s!, Invoke ca ra,
s1'y € ALM-trans 0 id1 and (s2, Invoke ca ra, s2') € ALM-trans id1 id2
thus P14 (s1', s2') by (auto simp add: ALM-trans-def P14-def)
next
fix ca h ra
assume P14 (s1, s2) and 0 < id! and id! < id2 and (s!, Switch ca id1
h ra, s1") € ALM-trans 0 idl and (s2, Switch ca id1 h ra, s2’) € ALM-trans idl
1d2
thus P14 (s1', s2') by (auto simp add: ALM-trans-def P14-def)
next

fix cid’ h

24

assume P1/ (s, s2) and 0 < id! and (s2, Commit c id’ h, s2") € ALM-trans
id1 id2 and id! < id’ and id’ < id2
thus P14 (s, s2’) by (auto simp add: ALM-trans-def P14-def)
next
fixchr
assume P1/ (sl, s2) and 0 < idl and id! < id2 and (s2, Switch ¢ id2 h
r, s2') € ALM-trans id1 id2
thus P14 (s, s2’) by (auto simp add: ALM-trans-def P14-def)
next
fix h
assume P14 (s1, s2) and 0 < id! and id! < id2 and (s2, Linearize id1 h,
s2")y € ALM-trans id1 id2
thus P14 (s1, s2') by (auto simp add: ALM-trans-def P1j-def linearizations-def
postfiz-all-def pendingReqs-def)
next
fix h
assume P1/ (s, s2) and 0 < id! and idl < id2 and (s2, Initialize id1 h,
s2'y € ALM-trans id1 id2
thus P1j (s1, s2’) using (P13 (s1, s2)) apply (auto simp add: ALM-trans-def
P14-def P13-def linearizations-def postfiz-all-def pendingRegs-def) prefer 2 apply
force apply blast done
next
assume P14 (s1, s2) and 0 < id! and id! < id2 and (s2, Abort id1, s2')
€ ALM-trans idl id2
thus P14 (s1, s2’) by (auto simp add: ALM-trans-def P14-def)
next
fix ca ta ra
assume P14 (s, s2) and 0 < id! and id! < id2 and (sI, Switch ca 0 ta
ra, s1') € ALM-trans 0 id1
thus P14 (s1', s2) by (auto simp add: ALM-trans-def P1/-def)
next
fix ca id' h
assume P14 (s1, s2) and idl < id2 and (s1, Commit ca id" h, s1') €
ALM-trans 0 id1 and id’ < id1
thus P14 (s1', s2) by (auto simp add: ALM-trans-def P14-def)
next
fix h
assume P14 (s1, s2) and 0 < id! and id! < id2 and in-lin:(s1, Linearize
0 h, s1’) € ALM-trans 0 id1
from in-lin have — initialized s2 and hist s2 = [| using (P6 (s, s2)) and (P2
(s, s2) and (P10 (s1, s2)) and (P2 (s1, s2)) by (auto simp add: ALM-trans-def
P14-def P6-def P10-def P2-def P2-def)
thus P14 (s1', s2) by (auto simp add:P14-def)
next
fix h
assume P14 (s1, s2) and 0 < idl and id! < id2 and (si, Initialize 0 h,
s1") € ALM-trans 0 id1
thus P14 (s1', s2) using (P10 (s1, s2))by (auto simp add: ALM-trans-def
P1j-def P10-def)

25

next
assume P14 (s1, s2) and 0 < id! and id! < id2 and (s, Abort 0, s1') €
ALM-trans 0 id1
thus P14 (s1', s2) by (auto simp add: ALM-trans-def P14-def)
qed
qed
qed

lemma Pl5-invariant: [|id1 < id2; idl # 0|] ==> invariant (composeALMs idl
id2) P15
proof (rule invariantl, auto)
fix s1 s2
assume (s1, s2) : starts-of (composeALMs idl id2) and 0 < idl
thus P15 (s1, s2) by (simp add: starts-of-def composeA LMs-def hide-def ALM-ioa-def
par-def ALM-start-def P15-def)
next
fix s1 s2 s1' 52’ act
assume reachable (composeALMs id1 id2) (s, s2) and P15 (s, s2) and 0 <
id1 and id! < id2 and in-trans-comp:(s1, s2) —act——composeALMs id1 id2—>
(s1') s2")
have P13 (s1, s2) and P1b (sl, s2) and P6 (sI, s2) and Pla (si, s2) and
P5 (s1, s2) and P10 (s1, s2)
proof —
from in-trans-comp and (reachable (composeALMs idl id2) (s1, s2) have
reachable (composeALMs id1 id2) (s1’, s2') by (auto intro: reachable.reachable-n)
with (reachable (composeALMs idl id2) (s1, s2)) and (0 < idl) and «dl <
1d2) and P13-invariant and Pl1b-invariant and Pla-invariant and P6-invariant
and Pj5-invariant and P10-invariant show P13 (s1, s2) and P1b (s1, s2) and
P6 (s1, s2) and Pla (s1, s2) and P5 (s1, s2) and P10 (s, s2) unfolding
mwvariant-def by auto
qed
from (0 < idl» and «dl < id2) and in-trans-comp show P15 (s1’, s27)
proof (rule my-rule2)
assume in-trans-cases-fun id1 id2 (s1, s2) (s1’, s27)
thus P15 (s1/, s2') using (P15 (sl, s2) and (0 < id]» and «idl < id2
proof (auto simp add: in-trans-cases-fun-def)
fix ca ra
assume P15 (s1, s2) and in-invokel:(s1, Invoke ca ra, s1’) € ALM-trans 0
id1 and in-invoke2:(s2, Invoke ca ra, s2') € ALM-trans id1 id2
show P15 (s1', s2")
proof —
{ assume s1’ = s1
with (P15 (s1, s2)) and in-invokel and in-invoke2 and (0 < idl) and
adl < id2)
have ?thesis by (auto simp add:ALM-trans-def P15-def)
} note casel = this
{ assume s1’ # s1
with in-invokel and in-invoke2 and <P6 (sI, s2)) have s2’ = s2 apply
(auto simp add: ALM-trans-def P6-def) by (metis phase.simps(12) phase.simps(4))

26

with (s1’# s> and (P15 (s1, s2)) and in-invokel have ?thesis by (force
simp add:P15-def ALM-trans-def pendingReqs-def)
} note case2 = this
from casel and case2 show ?thesis by auto
qed
next
fix ca h ra
assume P15 (s1, s2) and 0 < id! and id! < id2 and (sI, Switch ca id1
h ra, s1') € ALM-trans 0 idl and (s2, Switch ca id1 h ra, s2') € ALM-trans idl
1d2
thus P15 (s1/, s2') by (auto simp add: ALM-trans-def P15-def pendingRegs-def)
next
fix cid’ h
assume P15 (s1, s2) and 0 < idI and (s2, Commit c id’ h, s2') € ALM-trans
id1 id2 and id! < id’ and id’ < id2
thus P15 (s1, s2') by (auto simp add: ALM-trans-def P15-def)
next
fixchr
assume P15 (s1, s2) and 0 < idl and id! < id2 and (s2, Switch ¢ id2 h
r, s2') € ALM-trans idl id2
thus P15 (s, s2’) by (auto simp add: ALM-trans-def P15-def)
next
fix h
assume in-lin:(s2, Linearize id1 h, s2') € ALM-trans id1 id2
show P15 (s1, s2)
proof (auto simp add:P15-def)
fix r
assume phase s2’ (request-snd r) = Sleep and r € set (hist s2') and r ¢
pendingReqs sl
show r € set (hist s1)
proof —
from (phase s2' (request-snd r) = Sleep> and in-lin have phase s2
(request-snd r) = Sleep by (auto simp add:ALM-trans-def)
with (P1b (s1, s2)) have r ¢ pendingReqs s2 by (auto simp add:pendingReqs-def
P1b-def)
with in-lin and (r € set (hist s2')) have r € set (hist s2) by (auto simp
add: ALM-trans-def postfiz-all-def linearizations-def)
with (phase s2 (request-snd r) = Sleep) and (P15 (s1, s2)) and (r ¢
pendingReqs s1) show %thesis by (auto simp add:P15-def)
qged
qed
next
assume P15 (s1, s2) and 0 < idl and idl < id2 and (s2, Abort id1, s2')
€ ALM-trans idl id2
thus P15 (s, s2') by (auto simp add: ALM-trans-def P15-def)
next
fix h
assume in-init:(s2, Initialize id1 h, s2') € ALM-trans id1 id2
show P15 (s1, s2)

27

proof (auto simp add:P15-def)
fix r
assume phase s2' (request-snd r) = Sleep and r € set (hist s2') and r ¢
pendingReqs s1
show r € set (hist s1)
proof —
from in-init and (P13 (s1, s2)
have hist s2' € postfiz-all (hist s1) (linearizations (pendingReqs s1)) by
(auto simp add:ALM-trans-def P13-def)
with (€ set (hist s2’)) have r € set (hist s1) V r € pendingReqs s1 by
(auto simp add: postfix-all-def linearizations-def)
with «r ¢ pendingReqs s1) show %thesis by auto
qed
qed
next
fix ca ta ra
assume (s, Switch ca 0 ta ra, s1’) € ALM-trans 0 id1
hence s1’ = s1 using (P5 (s1, s2)) by (auto simp add: ALM-trans-def
P5-def)
thus P15 (s1', s2) using (P15 (s1, s2)) by auto
next
fix ca id' h
assume P15 (s1, s2) and id! < id2 and (s1, Commit ca id" h, s1') €
ALM-trans 0 id1 and id’ < id1
thus P15 (s1’, s2) by (auto simp add: ALM-trans-def P15-def pendingReqs-def)
next
fix h
assume P15 (s1, s2) and 0 < id! and id! < id2 and (s, Linearize 0 h,
s1'y € ALM-trans 0 id1
thus P15 (s1', s2) by (auto simp add: ALM-trans-def P15-def pendingReqs-def
postfiz-all-def)
next
fix h
assume (s1, Initialize 0 h, s1’) € ALM-trans 0 id1
hence s1’ = s1 using (P10 (s1, s2)) by (auto simp add: ALM-trans-def
P10-def)
thus P15 (s1’, s2) using (P15 (sl, s2)> by auto
next
assume P15 (s1, s2) and 0 < id! and id! < id2 and (s, Abort 0, s1’) €
ALM-trans 0 id1
thus P15 (s1', s2) by (auto simp add: ALM-trans-def P15-def pendingRegs-def)
qed
qed
qed

4.5 The refinement proof

definition ref-mapping :: (ALM-state * ALM-state) => ALM-state
— The refinement mapping between the composition of two ALMs and a single

28

ALM

where

ref-mapping = X (s1, s2) .
(pending = Xc. (if phase s1 ¢ # Aborted then pending s1 ¢ else pending s2 c),
initHists = {},
phase = Ac. (if phase s1 ¢ # Aborted then phase s1 ¢ else phase s2 ¢),
hist = (if hist s2 =[] then hist s1 else hist s2),
aborted = aborted s2,
ingtialized = Truel)

theorem composition: [|id1 # 0; idl < id2|] ==> ((composeALMs idl id2) =<|
(ALM-ioa 0 id2))
— The composition theorem
proof —
assume id! # 0 and idl < id2
show composeALMs idl id2 =<| ALM-ioa 0 id2
proof (simp add: ioa-implements-def, rule conjl, rule-tac[2] conjl)
show same-input-sig:inp (composeALMs id1 id2) = inp (ALM-ioa 0 id2)
— First we show that both automata have the same input and output signature

using «d! # 0y and «d! < id2) by (simp add: composeALMs-def hide-def
hide-asig-def ALM-ioa-def asig-inputs-def asig-outputs-def asig-of-def ALM-asig-def
par-def asig-comp-def, auto)
from «id! # () and «dl < id2)
show same-output-sig:out (composeALMs idl id2) = out (ALM-ioa 0 id2)
— Then we show that output signatures match
by (simp add: asig-inputs-def asig-outputs-def asig-of-def composeALMs-def
hide-def hide-asig-def ALM-ioa-def ALM-asig-def par-def asig-comp-def, auto)
show traces (composeALMs idl id2) <= traces (ALM-ioa 0 id2)
— Finally we show trace inclusion
proof (rule trace-inclusion|where f=ref-mapping|)
— We use the mapping ref-mapping, defined before
from same-input-sig and same-output-sig show ext (composeALMs id1 id2)
= ext (ALM-ioa 0 id2)
— First we show that they have the same external signature
by (simp add: externals-def)
next
show is-ref-map ref-mapping (composeALMs idl id2) (ALM-ioa 0 id2)
— Then we show that ref-mapping-comp is a refinement mapping
apply (simp add: is-ref-map-def, auto, rename-tac sl s2) prefer 2 apply
(rename-tac sl s2 s1' s2' act)
proof —
— First we show that start states correspond
fix s1 s2
assume (s1, s2) : starts-of (composeALMs id1 id2)
thus ref-mapping (s1, s2) : starts-of (ALM-ioa 0 id2) using «dl #
0y and Gdl < id2) by (simp add: ALM-ioa-def ALM-start-def starts-of-def
composeA LMs-def hide-def par-def ref-mapping-def)
next

29

— Then we show the main property of a refinement mapping
fix s1 s2s1' s2’ act
assume reachable:reachable (composeALMs id1 id2) (s1, s2) and in-trans-comp:(s1,
$2) —act——composeALMs idl id2—> (s1’, s2)

We make the invariants available for later use

have P6 (s1, s2) and P6 (s1’, s2') and P9 (s1, s2) and P7 (sl, s2)
and P10 (s1, s2) and P/ (sl, s2) and P5 (s1, s2) and P13 (s1, s2) and Pla
(s1, s2) and P14 (sl, s2) and P14 (s1’, s2') and P15 (s1, s2) and P2 (s1, s2)
and P3 (s1, s2)
proof —
from reachable and in-trans-comp have reachable (composeALMs id1 id2)
(s1', s2") by (rule reachable.reachable-n)
with P6-invariant and P9-invariant and P2-invariant and P7-invariant
and P10-invariant and Pj-invariant and P5-invariant and P13-invariant and
Pla-invariant and P14-invariant and P15-invariant and P3-invariant «id1 # O
and «d1 < id2) and reachable
show P6 (sI, s2) and P6 (s1/, s2’) and P9 (s1, s2) and P7 (s, s2)
and P10 (s1, s2) and P/ (sl, s2) and P5 (s, s2) and P13 (s1, s2) and Pla
(s1, s2) and P14 (s1, s2) and P14 (s1’, s2") and P15 (s1, s2) and P2 (s1,
s2) and P3 (s1, s2) by (auto simp add: invariant-def)
qed
let %t = ref-mapping (s1, s2)
let ?t' = ref-mapping (s1’, s2’)
show EX ex. move (ALM-ioa 0 id2) ex ?t act ?t’
— the main part of the proof
proof (simp add: move-def, auto)
assume act : ext (ALM-ioa 0 id2)
hence act : {act . EX ¢ r . act = Invoke ¢ r | (EX t . act = Switch ¢ 0t
r)} Un {act . EX ctr . (EXid'. 0 <=id’' & id' < id2 & act = Commit ¢ id’ tr)
| (EX r . act = Switch c id2 tr r)} by (auto simp add: ALM-ioa-def ALM-asig-def
externals-def asig-inputs-def asig-outputs-def asig-of-def)
with in-trans-comp show EX ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) &
Finite ex & laststate (2t, ex) = ?t' & mk-trace (ALM-ioa 0 id2)$ex = [act!]
— If act is an external action of the composition, then there must be an
execution of the spec with matching states and forming trace ”act”
apply auto
proof —
fix cr
assume in-invoke:(sl, s2) —Invoke ¢ r——composeALMs idl id2—>
(s1') s2")
— If the current action is Invoke
show EX ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) & Finite ex & laststate
(2, ex) = 2t' & mk-trace (ALM-ioa 0 id2)$ex = [Invoke ¢ r!]
proof —
let Zex = [(Invoke c r, ?t)!]

have Finite ?ex by auto
moreover have laststate (¢, ?ex) = ?t’ by (simp add: laststate-def)

30

moreover have mk-trace (ALM-ioa 0 id2)$(%ex) = [Invoke c 1]
by (simp add: mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def
ALM-ioa-def ALM-asig-def)

moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
proof —
{
assume s1' # sl & s2' # s2
— contradiction

with in-invoke and «id! # () and «id! < id2) and (P6 (s1', s2')> have
?thesis apply (simp add: is-exec-frag-def composeALMs-def trans-of-def hide-def
ALM-ioa-def ALM-asig-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def
asig-of-def) apply(auto simp add:ALM-trans-def P6-def) done

moreover
{
assume s!’ = sl and s2' = s2
with in-invoke have pre-s1:~(phase s1 ¢ = Ready & request-snd r
=c & r ¢ set (hist s1)) and pre-s2:™(phase s2 ¢ = Ready & request-snd r = ¢
& r ¢ set (hist s2)) using [[hypsubst-thin]] apply (auto simp add: is-exec-frag-def
composeALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply (simp-all add: ALM-trans-def)
apply (drule-tacl!] arg-conglwhere f = phase]) apply simp-all apply (metis
phase.simps(8) fun-upd-idem-iff) apply (metis phase.simps(8) fun-upd-idem-iff)
apply (metis phase.simps(8) fun-upd-idem-iff) apply (metis phase.simps(8) fun-upd-idem-iff)
done
hence ~(phase ?t ¢ = Ready & request-snd r = ¢ & r ¢ set (hist
?t)) using P14 (s1, s2)) by (auto simp add:ref-mapping-def P14-def)
hence ?thesis using «idl # () and (s1' = sI) and (s2’ = 52) apply
(simp add: is-exec-frag-def composeALMs-def trans-of-def hide-def ALM-ioa-def
ALM-asig-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def
asig-of-def) apply(simp-all add: ALM-trans-def) apply force done

moreover
{
assume s1’ # sl and s2' = s2
with in-invoke have pre-si:phase s1 ¢ = Ready & request-sndr = c & r
¢ set (hist s1) and trans-s1: s1’' = sl (pending := (pending s1)(c := r), phase :=
(phase s1)(c := Pending)|) apply (simp-all add: is-exec-frag-def compose ALMs-def
trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def) apply(simp-all add:ALM-trans-def
ref-mapping-def) done
have pre-t: phase ?t ¢ = Ready & request-snd r = ¢ & r ¢ set (hist
2t)
proof —
from pre-s1 have phase ?t ¢ = Ready & request-snd r = ¢ by
(auto simp add:ref-mapping-def)
moreover have r ¢ set (hist 7t)
proof (cases hist s2 = [])

31

assume hist s2 = |]
with pre-s1 show ?thesis by (auto simp add:ref-mapping-def)
next
assume hist s2 # ||
show r ¢ set (hist 7t)
proof auto
assume r € set (hist 7t)
with <hist s2 # []» have r € set (hist s2) by (auto simp
add:ref-mapping-def)
moreover from pre-s! and (P6 (s, s2) have phase s2
(request-snd 1) = Sleep by (force simp add:P6-def)
moreover note (P15 (s1, s2)
ultimately have r € set (hist s1) V r € pendingRegs s1 by
(auto simp add:P15-def)
with pre-si have r € pendingReqs sl by auto
with (Pla (s1, s2)) and pre-s! show False by (auto simp
add:pendingRegs-def Pla-def)
qed
qed
ultimately show ?thesis by auto
qed
moreover from pre-s! and trans-s1 and (s2’ = s2) have trans-t: 7’
= ?t(pending := (pending ?t)(c := r), phase := (phase ?t)(c := Pending)| by
(auto simp add:ref-mapping-def fun-eq-iff)
ultimately have ?thesis apply (simp add: is-exec-frag-def
composeA LMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply (simp add: ALM-trans-def)
done
}

moreover

{

assume s!’ = sl and s2’ # s2

with in-invoke and «id! # 0) have pre-s2: phase s2 ¢ =
Ready & request-snd r = ¢ & r ¢ set (hist s2) and trans-s2: s2' = s2(pending :=
(pending s2)(c := r), phase := (phase s2)(c¢ := Pending)|) apply (simp-all add:
is-exec-frag-def compose A LMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def
par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def)
apply (simp-all add: ALM-trans-def ref-mapping-def) done
from pre-s2 and (P6 (s1, s2)) have aborted-s1-c:phase s1 ¢ =
Aborted by (auto simp add: P6-def)
with pre-s2 and P3 (si, s2)) and (P14 (s1, s2)) have pre-t:phase
2t ¢ = Ready & request-snd v = ¢ & r ¢ set (hist ?t) apply (auto simp add:
fun-eg-iff ref-mapping-def P3-def P1/-def) done
moreover have trans-t:?t’ = ?t(pending := (pending ?t)(c :=
r), phase := (phase ?t)(c := Pending)|) using aborted-s1-c and (s1’ = s> and
trans-s2 apply(force simp add: fun-eq-iff ref-mapping-def) done
ultimately have ?thesis apply (simp add: is-exec-frag-def
composeA LMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def

32

asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply (simp add: ALM-trans-def)
done
}

ultimately show ?thesis by auto
qged
ultimately show ?thesis by (auto intro: exl[where z="?ex])
qed
next
fix crh
assume in-switch:(s1, s2) —Switch ¢ 0 h r——composeALMs idl id2—>
(s1', s2")
— If we get a switch 0 input (nothing happens)
show EX ex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) & Finite ex & laststate
(2t, ex) = 2t & mk-trace (ALM-ioa 0 id2)$ex = [Switch ¢ 0 h r!]
proof —
let Zex = [(Switch ¢ 0 h r, ?t')!]

have Finite ?ex by auto

moreover have laststate (?t, ?ex) = ?t’ by (simp add: laststate-def)

moreover have mk-trace (ALM-ioa 0 id2)$(%ex) = [Switch ¢ 0 h r!]
by (simp add: mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def
ALM-ioa-def ALM-asig-def)

moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ex)
proof —
from in-switch and «id! # 0) and «idl < id2)> and (P5 (si,
s2)) have s1’ = s1 and s2' = s2 and A c¢ . phase s1 ¢ # Sleep apply (simp-all
add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply (simp-all
add: ALM-trans-def P5-def) done
hence 7t = ?t’ and A c¢ . phase ?t ¢ # Sleep using (P6 (sI, s2)
by (auto simp add:ref-mapping-def P6-def)
thus %thesis by (simp add:is-exec-frag-def ALM-ioa-def trans-of-def
ALM-trans-def)
qed
ultimately show ?thesis by (auto intro: exl[where z=?ez])
qed
next
fix chr
assume in-switch:(s1, s2) —Switch ¢ id2 h r——composeALMs id1 id2—>
(s1') s2")
— The case when the system switches to a third, new, instance
show EX ez. is-exec-frag (ALM-ioa 0 id2) (%, ex) &
Finite ex & laststate (%t, ex) = 2t’ & mk-trace (ALM-ioa 0 id2)$ex =
[Switch ¢ id2 h]
proof —
let Zex = [(Switch c id2 h r, 2t')!]
have Finite ?ex by auto
moreover have laststate (2t, ?ex) = ?2t’ by (simp add: laststate-def)

33

moreover have mk-trace (ALM-ioa 0 id2)$(%ex) = [Switch c id2 h r!]
by (simp add: mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def
ALM-ioa-def ALM-asig-def)

moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
proof —
from in-switch and (id1 < id2) have s1’' = s1 apply (simp-all

add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) done

from «id1 # 0 and «idl < id2> in-switch have pre-s2:aborted s2 &
phase s2 ¢ = Pending & r = pending s2 ¢ & (if initialized s2 then (h € postfiz-all
(hist s2) (linearizations (pendingRegs s2))) else (h : postfiz-all (I-c-p (initHists s2))
(linearizations (initValidRegs s2)))) and trans-s2: s2' = s2(phase := (phase s2)(c
:= Aborted)|) apply (simp-all add: composeALMs-def trans-of-def hide-def par-def
actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def
ALM-asig-def) apply(auto simp add:ALM-trans-def) done

from pre-s2 have si-aborted:phase s1 ¢ = Aborted using (P6 (s1,
s2)) apply(auto simp add: P6-def) done

have pre-t:aborted ?t & phase ?t ¢ = Pending & initialized 7t & h :
postfiz-all (hist ?t) (linearizations (pendingReqs ?t)) & r = pending 2t ¢

proof —

from si-aborted and pre-s2 have aborted ?t & pending %t ¢ = r

and phase 9t ¢ = Pending and initialized ?t by (auto simp add: ref-mapping-def
fun-eq-iff)

2t))

moreover have h : postfiz-all (hist ?t) (linearizations (pendingReqs

proof —
from pre-s2 have (if initialized s2 then (h : postfiz-all (hist
s2) (linearizations (pendingReqs s2))) else (h : postfiz-all (l-c-p (initHists s2))
(linearizations (initValidRegs s2)))) by auto
thus ?thesis
proof auto
assume casel-1:initialized s2 and casel-2:h : postfiz-all (hist
s2) (linearizations (pendingReqs s2))
hence suffizeq (hist s1) (hist s2) using (P14 (s1, s2)) by (auto
simp add:P14-def suffizeq-def)
show h € postfiz-all (hist ?t) (linearizations (pendingRegs ?t))

proof —
have hist 2t = hist s2
proof (cases hist s2 = [])

assume hist s2 = []
show hist 7t = hist s2

proof —
from <hist s2 = [|» and «suffizeq (hist s1) (hist s2)) have
hist s1 =[] by (auto simp add:suffizeg-def)
with <hist s2 = [)) show hist 7t = hist s2 by (auto simp
add: ref-mapping-def)
qed
next

34

assume hist s2 # []
thus hist 2t = hist s2 by (simp add:ref-mapping-def)
qed
moreover have pendingReqs s2 <= pendingReqs ?t
proof (simp add: pendingRegs-def, clarify)
fix ¢
assume pending s2 ¢ ¢ set (hist s2) and phase s2 ¢ =
Pending V phase s2 ¢ = Aborted
moreover with «(P6 (s, s2)) have phase s1 ¢ = Aborted
by (auto simp add:P6-def)
moreover note <suffizeq (hist s1) (hist s2))
ultimately show Jca. pending s2 ¢ = pending %t ca A
pending s2 ¢ ¢ set (hist 2t) A (phase ?¢t ca = Pending V phase 7t ca = Aborted)
apply (simp add:ref-mapping-def suffiveq-def) by (metis prefizeq-Nil prefizeq-def
self-append-conv2)
qed
moreover note casel-2
ultimately show ?thesis by (auto simp add: linearizations-def
postfiz-all-def)
qed
next
assume case2-1: initialized s2 and case2-2:h : postfiz-all (I-c-p
(initHists s2)) (linearizations (initValidReqs s2))
from case2-1 and (P10 (s1, s2)) have hist s2 = [] by (auto
simp add:P10-def)
have h : postfiz-all (hist s1) (linearizations (pendingReqs s1))
proof —
from pre-s2 have phase s2 ¢ # Sleep by auto
moreover note (P13 (s1, s2)) and case2-1 and case2-2
ultimately show ?Zthesis by (auto simp add:P13-def)
qed
moreover from (hist s2 = [|» have hist ?t = hist s1 by (auto
stmp add:P10-def ref-mapping-def)
moreover have pendingReqs ?t = pendingReqs sl1
proof auto
fix r
assume r € pendingReqs 7t
with this obtain ¢’ where r = pending %t ¢’ and r ¢ set (hist
?t) and phase ?t ¢’ € {Pending, Aborted} by (auto simp add:pendingReqs-def)
show r € pendingReqs sl
proof (cases phase sl ¢’ = Aborted)
assume phase s1 ¢/ = Aborted
with phase 2t ¢’ € {Pending, Aborted}) and (r = pending %t
¢ have phase s2 ¢’ € {Pending, Aborted} and r = pending s2 ¢’ by (auto simp
add:ref-mapping-def)
with (P6 (s1, s2)) and case2-1 and (P7 (s, s2)) and
(hist ?t = hist s1> and «r ¢ set (hist ?t)) have phase s1 ¢’ = Aborted and r =
pending s1 ¢’ and r ¢ set (hist s1) apply (auto simp add: P6-def P7-def) apply
force apply force done

35

thus ?thesis by (auto simp add:pendingReqgs-def)
next
assume phase sl ¢’ # Aborted
with - = pending ?t ¢y and «r ¢ set (hist ?t)) and (phase
2t ¢’ € {Pending, Aborted}) and (hist 7t = hist s1) show ?2thesis by (auto simp
add:ref-mapping-def pendingReqs-def)
qed
next
fix r
assume r € pendingReqs s1
with this obtain ¢ where r = pending s1 ¢ and phase s1 ¢ €
{Pending, Aborted} and r ¢ set (hist s1) by (auto simp add:pendingReqs-def)
with (hist s2 = [and «— initialized s2) and (P7 (s1, s2)) show
r € pendingReqs ?t by (auto simp add:ref-mapping-def pendingReqs-def P7-def)
qed
ultimately show ?thesis by (auto simp add: postfix-all-def
linearizations-def)
qed
qed
ultimately show ?thesis by auto
qed
moreover have trans-t:?t' = ?t(phase := (phase ?t)(c := Aborted)|)
using sI-aborted and (s1’ = s1) and trans-s2 by (auto simp add:ref~-mapping-def

fun-eq-iff)
ultimately show ?thesis using «idl < id2) apply (simp add:
is-exec-frag-def compose A LMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def
par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def)
apply(simp add:ALM-trans-def) done
qed
ultimately show ?thesis by (auto intro: exl[where z="7?ez])
qed
next
fix ¢ hid’
assume in-commit:(s1, s2) —Commit ¢ id’ h—composeALMs idl id2—
(s1’, s2") and id’ < id2
— Case when the composition commits a request
show Jex. is-exec-frag (ALM-ioa 0 id2) (?t, ex) A Finite ex A laststate
(2t, ex) = 2t' A mk-trace (ALM-ioa 0 id2)-ex = [Commit c id’ h!]
proof —
let ?ex = [(Commit ¢ id’ h, 2t')!]

have Finite ?ex by auto
moreover have laststate (?t, ?ex) = ?t' by (simp add: laststate-def)
moreover have mk-trace (ALM-ioa 0 id2)$(%ex) = [Commit ¢
id’ h!] using «id’ < id2) by (simp add: mk-trace-def externals-def asig-inputs-def
asig-outputs-def asig-of-def ALM-ioa-def ALM-asig-def)

moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex)
proof —

36

{

assume id’ < id1
with in-commit have s2’' = s2 and pre-si:phase s1 ¢ = Pending
A pending sl ¢ € set (hist s1) A h = dropWhile (A r . r # pending s1 ¢) (hist
s1) and trans-s1:s1’ = s1 (phase := (phase s1)(c := Ready)|) apply (simp-all
add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply (auto
simp add:ALM-trans-def) done
from pre-s1 have si-not-aborted-c:phase s1 ¢ # Aborted by auto
have pre-t:phase ?t ¢ = Pending & pending ?t ¢ € set (hist 2t) A h
= dropWhile (A r . r # pending ?t c¢) (hist 9t)
proof (cases hist s2 = [])
assume hist s2 = |]
with pre-s! and (phase s1 ¢ # Aborted> show ?thesis by (auto
simp add: ref-mapping-def)
next
assume hist s2 # |]
hence initialized s2 using (P10 (s1, s2)» by (auto simp add:P10-def)
from pre-s! and (phase s1 ¢ # Aborted) have phase ?t ¢ = Pending
and pending 7t ¢ = pending s1 ¢ and pending s1 ¢ € set (hist s1) by (auto simp
add:ref-mapping-def)
moreover have pending 7t ¢ € set (hist 7t)
proof —
from cinitialized s2) and (P14 (s1, s2)) obtain rs3 where hist
s2 = rs3 Q (hist s1) by (auto simp add:P14-def)
with (pending s1 ¢ € set (hist s1)) and (hist s2 = rs8 Q (hist
s1)) and (pending ?t ¢ = pending s1 ¢» show pending ?t ¢ € set (hist ?t) by (auto
stmp add:ref-mapping-def suffizeq-def)
qed
moreover have h = dropWhile (X r . r # pending ?t c¢) (hist ?t)
proof —
from (pending s1 ¢ € set (hist s1)) obtain rs! rs2 where hist
s1 = rs2 Q@ rsl and hd rs1 = pending sl ¢ and rs! # || and pending sl ¢ ¢ set
rs2 by (metis list.sel(1) in-set-conv-decomp-first list.simps(3))
with (pending ?t ¢ = pending s1 ¢» and drop While-lemmalof hist
s1 rs1 pending s1 c] and pre-sI have h = rs! by auto
moreover have dropWhile (A r . r # pending ?t ¢) (hist 2t) =
rsl
proof —
from (initialized s2) and (P14 (s1, s2)) obtain rs3 where hist
s2 = rs3 @ (hist s1) and set rs8 N set (hist s1) = {} by (auto simp add:P14-def)
with pending s1 ¢ € set (hist s1)> and (hist s1 = rs2 Q rsi»
have hist s2 = rs3 @Q rs2 @ rs! and pending s1 ¢ ¢ set rs3 by auto
with (pending s1 ¢ ¢ set rs2) obtain rs/ where hist s2 = rsj
@ rs! and pending sl ¢ ¢ set rsj by auto
with <hd rs1 = pending s1 ¢» and <rs1 # [and drop While-lemmalof
hist s2 rs1 pending s1 c] have dropWhile (A r . r # pending s1 c) (hist s2) = rsl
by auto
thus ?thesis using (hist s2 # [} and (pending ¢t ¢ = pending

37

s1 o by (auto simp add:ref-mapping-def)
qed
ultimately show ?thesis by auto
qed
ultimately show %thesis by auto
qed
moreover from «s2’ = s2) and sI-not-aborted-c and trans-sl
have trans-t:?t' = %t (phase := (phase ?t)(c := Ready)| by (simp add:fun-eq-iff
ref-mapping-def)
ultimately have ?thesis using (id! < id2> apply (simp add:
is-exec-frag-def compose A L Ms-def trans-of-def hide-def ALM-ioa-def ALM-asig-def
par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def)
apply(simp add:ALM-trans-def) done

moreover
{
assume idl < id’
with in-commit have s1’ = s1 and pre-s2:phase s2 ¢ = Pending
A pending s2 ¢ € set (hist s2) A h = dropWhile (A r . r # pending s2 c¢) (hist
s2) and trans-s2:s2' = s2 (phase := (phase s2)(c := Ready)|) apply (simp-all
add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply (auto
stmp add:ALM-trans-def) done
from pre-s2 and (P6 (s1, s2)) have facts:aborted s1 & phase s1 ¢
= Aborted & hist s2 # [| by (force simp add:P6-def)
with pre-s2 have pre-t:phase %t ¢ = Pending N pending %t ¢ €
set (hist 2t) A h = dropWhile (A v . r # pending ¢t ¢) (hist ?t) by (auto simp
add:ref-mapping-def)
moreover from (s1’ = sI) and facts and trans-s2 have
trans-t: 7t = 7t (phase := (phase ?t)(c¢ := Ready)| by (auto simp add:fun-eq-iff
ref-mapping-def)
ultimately have ?thesis using (idl < id2) apply (simp add:
is-exec-frag-def compose A LMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def
par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def)
apply(simp add:ALM-trans-def) done
}
ultimately show ?thesis using (id’ < id2) by force
qed
ultimately show ?thesis by (auto intro: exl[where z=?ex])
qed
qed
— We finished the case when the composition takes an action that is in
the external signature of the spec
next
assume act ¢ ext (ALM-ioa 0 id2)
— Now the case when the composition takes an action that is not in the
external signature of the spec
with in-trans-comp and «dl < id2> and (idl # 0> have act : {act
. act = Abort 0 | act = Abort idl | (EX ¢ r h . act = Linearize 0 h | act =

38

Linearize id1 h | act = Switch ¢ idl h r | act = Initialize 0 h | act = Initialize
id1 h)} by (auto simp add: composeALMs-def hide-def hide-asig-def ALM-ioa-def
ALM-asig-def externals-def asig-inputs-def asig-outputs-def asig-internals-def asig-of-def
trans-of-def par-def actions-def)
with in-trans-comp show Jex. is-exec-frag (ALM-ioa 0 id2) (%t, ex) A
Finite ex A laststate (2t, ex) = ?t' N mk-trace (ALM-ioa 0 id2)-ex = nil
proof auto
assume in-abort:(s1, s2) —Abort 0—composeALMs id1 id2— (s1’, s27)
— The case where the first Abastract aborts
moreover with «id! # 0) and «id! < id2) and (P6 (s1, s2)) and (P2 (s1,
s2) haveV c . phase s1 ¢ # Aborted and hist s2 = [and ¥V ¢ . phase s2 ¢ = Sleep
apply (simp-all add: composeALMs-def trans-of-def hide-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def)
apply (auto simp add:fun-eq-iff ALM-trans-def ref-mapping-def P6-def P2-def) done
moreover note «idl # ()
ultimately have 9t = 2t apply (simp-all add: composeALMs-def
trans-of-def hide-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def
asig-of-def ALM-ioa-def ALM-asig-def) apply(auto simp add:fun-eq-iff ALM-trans-def
ref-mapping-def) done
thus ?thesis
proof simp
let ?ex = nil
have Finite ?ex by auto
moreover have laststate (?t, ?ex) = ?t by (simp add: laststate-def)
moreover have mk-trace (ALM-ioa 0 id2)-?ex = nil using (id1
< id2) by (simp add: mk-trace-def externals-def asig-inputs-def asig-outputs-def
asig-of-def ALM-ioa-def ALM-asig-def)
moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ?ex) by (auto simp
add:is-ezec-frag-def)
ultimately show 3 ex. is-exec-frag (ALM-ioa 0 id2) (%t, ex) A Finite
ex A laststate (%t, ex) = 2t A mk-trace (ALM-ioa 0 id2)-ex = nil by (auto intro:
ezl [where z=7?ez])
qed
next
assume in-abort:(s1, s2) —Abort idl —composeALMs id1 id2— (s1’,
s2")
— The case where the second ALM aborts
show ?thesis
proof —
let ?ex = [(Abort 0, 7t"))]
have Finite ?ex by auto
moreover have laststate (?t, ?ex) = ?t' by (simp add: laststate-def)
moreover have mk-trace (ALM-ioa 0 id2)-?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
moreover have is-exec-frag (ALM-ioa 0 id2) (%t, ex)
proof —
from in-abort and «idl # 0> have s1’ = sl and pre-s2:~ aborted s2 &
(3 ¢ . phase s2 ¢ # Sleep) and trans-s2:s2' = s2(aborted:= True|) apply (simp-all

39

add: composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply (auto
simp add:ALM-trans-def) done
from pre-s2 and (P6 (sI, s2)) have pre-t:™~ aborted ?t & (3 ¢ .
phase 7t ¢ # Sleep) apply (force simp add:ref-mapping-def P6-def) done
moreover from trans-s2 and (s1’ = si) have trans-t:9t' =
?t(|aborted:= True|) by (auto simp add: fun-eq-iff ref-mapping-def)
ultimately show ?thesis apply (simp add: is-exec-frag-def
composeALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply (simp add: ALM-trans-def)
done
qed
ultimately show ?thesis by (auto intro: exl[where z=?ex])
qed
next
fix h
assume in-lin:(s1, s2) —Linearize 0 h—composeALMs id1 id2— (s1/,
s27)
— If the composition executes Linearize 0
show ?thesis
proof —
let %ex = [(Linearize 0 h, 2t")!]
have Finite ?ex by auto
moreover have laststate (?t, ?ex) = ?t’ by (simp add: laststate-def)
moreover have mk-trace (ALM-ioa 0 id2)-?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
moreover have is-ezec-frag (ALM-ioa 0 id2) (?t, %ex)
proof —
from in-lin and <idl # 0> have s2' = s2 and pre-si:initialized
s1 & ™~ aborted s1 & h € postfiz-all (hist s1) (linearizations (pendingRegs s1))
and trans-sl:s1’ = si(hist := h, initialized := True|) apply (simp-all add:
composeALMs-def trans-of-def hide-def par-def actions-def asig-outputs-def asig-inputs-def
asig-internals-def asig-of-def ALM-ioa-def ALM-asig-def) apply (auto simp add:ALM-trans-def)
done
have pre-t:initialized 7t & ™~ aborted 7t & h € postfiz-all (hist ?t)
(linearizations (pendingReqs %t))
proof —
from pre-s1 have ~ aborted s1 by auto
with (P9 (s1, s2)» have ™~ aborted ?t and initialized ?t by (auto
simp add:ref-mapping-def P9-def)
moreover have h € postfiz-all (hist ?t) (linearizations (pendingRegs
1))

proof —
from «— aborted s1) have hist ?t = hist s1 using (P6 (s1, s2)
and (P2 (s1, s2)) by (auto simp add:P6-def P2-def ref-mapping-def)
moreover have pendingReqs s1 C pendingReqs %t
proof auto
fix z

40

assume z € pendingReqs sl
moreover note (- aborted s1) and (P6 (s1 ,s2)
ultimately obtain ¢ where z = pending sI ¢ and phase si
¢ = Pending and pending sl ¢ ¢ set (hist s1) by (auto simp add:pendingReqs-def
PG-def)
thus z € pendingRegs ?t using <hist 2t = hist s1) by (force simp
add:ref-mapping-def pendingReqs-def)
qed
moreover from pre-s1 have h € postfiz-all (hist s1) (linearizations
(pendingReqs s1)) by auto
ultimately show ?thesis by (auto simp add: postfiz-all-def
linearizations-def)
qed
ultimately show ?thesis by auto
qed
moreover have trans-t: ?t' = ?t(hist := h, initialized := Truel)
proof —
have hist ?t’ = hist s1’
proof —
from pre-s1 have ™~ aborted s1 by auto
with (P6 (s1, s2)» and (P2 (s, s2)) have hist s2 = [] by (auto
stmp add:P6-def P2-def)
with (s2' = s2) show ?thesis by (auto simp add:ref-mapping-def)
qed
with trans-s1 have hist 7' = h by auto
thus ?thesis using (s2' = s2) and trans-s1 by (auto simp
add:ref-mapping-def fun-eq-iff)
qed
ultimately show ?thesis apply (simp add: is-exec-frag-def
composeALMs-def trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def
asig-outputs-def asig-inputs-def asig-internals-def asig-of-def) apply (auto simp add: ALM-trans-def)
done
qged
ultimately show ?thesis by (auto intro: exl[where z=?ex])
qed
next
fix h
assume in-lin:(s1, s2) — Linearize id1 h—composeALMs id1 id2— (s1’,
s27)
— If the composition executes Linearize id1
let ?ex = [(Linearize idl h, ?t')!]
have Finite ?ex by auto
moreover have laststate (?t, ?ex) = ?t' by (simp add: laststate-def)
moreover have mk-trace (ALM-ioa 0 id2)-?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
moreover have is-exec-frag (ALM-ioa 0 id2) (?t, ex)
proof —
from in-lin and (id1 # 0) have s1' = sI and pre-s2: initialized s2

41

A = aborted s2 N h € postfiz-all (hist s2) (linearizations (pendingReqs s2)) and
trans-s2: s2' = s2(hist := h|) apply (simp-all add: composeALMs-def trans-of-def
hide-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def
ALM-ioa-def ALM-asig-def) apply (auto simp add:ALM-trans-def) done
have pre-t:initialized 2t N — aborted 2t N h € postfiz-all (hist %t)
(linearizations (pendingReqs ?t))
proof —
have — aborted 7t and initialized 7t using pre-s2 by (auto simp
add:ref-mapping-def)
moreover have h € postfiz-all (hist ?t) (linearizations (pendingRegs
1))

proof —
from pre-s2 have initialized s2 by auto
hence suffizeq (hist s1) (hist s2) using P14 (s1, s2)) by (auto
simp add:P14-def suffizeq-def)
hence hist 2t = hist s2 by (auto simp add:ref-mapping-def)
moreover have pendingReqs s2 C pendingRegs ¢t
proof auto
fix z
assume z € pendingReqs s2
from this obtain ¢ where = = pending s2 ¢ and phase
s2 ¢ € {Pending, Aborted} and pending s2 ¢ ¢ set (hist s2) by (auto simp
add:pendingRegs-def)
with (P6 (s1, s2) and (hist ?t = hist s2) show = € pendingReqs
2t by (force simp add:ref-mapping-def P6-def pendingReqs-def)
qed
moreover from pre-s2 have h € postfiz-all (hist s2) (linearizations
(pendingReqs s2)) by auto
ultimately show %thesis by (auto simp add:postfiz-all-def
linearizations-def)

qed

ultimately show ?thesis by auto
qed
moreover have trans-t: ?t' = ?t(hist := h)
proof —

from pre-s2 and trans-s2 have initialized s2' by auto

hence suffiveq (hist s1’) (hist s2') using (P14 (s1’, s2') by (auto
simp add:P14-def suffizeq-def)

hence hist ?t’ = hist s2' by (auto simp add:ref-mapping-def)

with trans-s2 and (s1’ = sI> show ?thesis by (auto simp
add:ref-mapping-def fun-eq-iff)
ged
ultimately show ?thesis apply (simp add: is-exec-frag-def compose AL Ms-def
trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def) apply (auto simp add:ALM-trans-def)
done
qed

ultimately show ?thesis by (auto intro: exl[where r="?%ex])

42

next
fixcrh
assume n-switch:(s1, s2) —Switch ¢ idl h r—composeALMs id1 id2—
(s1') s2")
— If the composition switches internally
show ?thesis
proof —
let %ex = nil
have Finite ?ex by auto
moreover have laststate (7t, ?ex) = 7t by (simp add: laststate-def)
moreover have mk-trace (ALM-ioa 0 id2)-?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
moreover have is-ezec-frag (ALM-ioa 0 id2) (?t, ?ex) by (auto simp
add:is-exec-frag-def)
moreover have 7t' = 7t
proof —
from in-switch and dl # 0) have pre-si:aborted s1 N phase
sl ¢ = Pending N r = pending s1 ¢ A (if initialized s1 then (h € postfiz-all (hist
s1) (linearizations (pendingReqs s1))) else (h : postfiz-all (l-c-p (initHists s1))
(linearizations (initValidReqs s1)))) and trans-si: s1' = s1(phase := (phase s1)(c
:= Aborted)|) apply (simp-all add: composeALMs-def trans-of-def hide-def par-def
actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def
ALM-asig-def) apply(auto simp add:ALM-trans-def) done
have pre-s2:phase s2 ¢ = Sleep and trans-s2: s2’ = s2 (initHists
:= {h} U (initHists s2), phase := (phase s2)(c := Pending), pending := (pending
s2)(c:= 7))
proof —
from pre-s1 have phase s1 ¢ = Pending by auto
with (P6 (s1, s2)) have phase s2 ¢ = Sleep apply (simp add: P6-def)
by (metis phase.simps(10))
with in-switch and «d1 # 0> and id1 < id2)> show phase s2 ¢ = Sleep
and s2’ = s2 (initHists := {h} U (initHists s2), phase := (phase s2)(c := Pend-
ing), pending := (pending s2)(c := r)|) apply (simp-all add: composeALMs-def
trans-of-def hide-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def
asig-of-def ALM-ioa-def ALM-asig-def) apply (auto simp add:ALM-trans-def P6-def)
done
qed
from pre-s1 and pre-s2 and trans-s! and trans-s2 and (Pla
(s1, s2)) have pending ?t ¢ = pending ?t’ ¢ & initHists ?t = initHists 2t & hist
2t = hist ?t' & aborted ?t = aborted ?t' A phase ?t' ¢ = phase ?t ¢ by (simp
add:ref-mapping-def fun-eq-iff P1a-def)
moreover note pre-s! and pre-s2 and trans-sI and trans-s2
ultimately show ?thesis by (force simp add:ref-mapping-def fun-eq-iff)
qed
ultimately show ?thesis by (auto intro: exI[where x="7%ez))
qed
next

fix h

43

assume in-initialize:(s1, s2) —Initialize 0 h—composeALMs idl id2—
(s1’, s27)
hence Fulse using (P10 (s1, s2)) apply (simp-all add: composeALMs-def
trans-of-def hide-def par-def actions-def asig-outputs-def asig-inputs-def asig-internals-def
asig-of-def ALM-ioa-def ALM-asig-def) apply (auto simp add:ALM-trans-def P10-def)
done
thus ?thesis by auto
next
fix h
assume in-initialize:(s1, s2) —Initialize id1 h—composeALMs id1 id2—
(s1', s2")
— If the second ALM of the composition initializes
let ?ex = [(Linearize idl h, ?t)!]
have Finite ?ex by auto
moreover have laststate (7t, Zex) = ?t' by (simp add: laststate-def)
moreover have mk-trace (ALM-ioa 0 id2)-?ex = nil by (simp add:
mk-trace-def externals-def asig-inputs-def asig-outputs-def asig-of-def ALM-ioa-def
ALM-asig-def)
moreover have is-ezec-frag (ALM-ioa 0 id2) (?t, ex)
proof —
from in-initialize and «idl # 0) have s1' = s1 and pre-s2:(3 ¢ . phase
s2 ¢ # Sleep) N — aborted s2 N — initialized s2 N\ h € postfiz-all (I-c-p (initHists
$2)) (linearizations (initValidReqs s2)) and trans-s2:s2' = s2(hist := h, initialized
:= True|) apply (simp-all add: composeALMs-def trans-of-def hide-def par-def
actions-def asig-outputs-def asig-inputs-def asig-internals-def asig-of-def ALM-ioa-def
ALM-asig-def) apply(auto simp add:ALM-trans-def) done
have pre-t:initialized 2t N — aborted 9t N h € postfiz-all (hist ?t)
(linearizations (pendingReqs %t))
proof —
from pre-s2 have initialized 7t N — aborted ?t by (auto simp
add:ref-mapping-def)
moreover have h € postfiz-all (hist ?t) (linearizations (pendingReqs
1)

proof —
from pre-s2 have h € postfiz-all (I-c-p (initHists s2)) (linearizations
(initValidRegs s2)) and - initialized s2 and 3 ¢ . phase s2 ¢ # Sleep by auto
with (P13 (s1, s2)) have h € postfiz-all (hist s1) (linearizations
(pendingReqs s1)) by (auto simp add:P13-def)
moreover from (— initialized s2) and (P10 (s1, s2)) have hist 2t
= hist s1 by (auto simp add:ref-mapping-def P10-def)
moreover have pendingReqs s1 C pendingReqs %t
proof auto
fix z
assume z € pendingReqs s1
from this obtain ¢ where z = pending sl ¢ and phase
sl ¢ € {Pending, Aborted} and pending sl ¢ ¢ set (hist s1) by (auto simp
add:pendingReqs-def)
show z € pendingReqs ?t
proof (cases phase s1 ¢ = Pending)

44

assume phase s1 ¢ = Pending
with «z = pending s1 ¢ and (pending s1 ¢ ¢ set (hist s1)) and <hist
7t = hist s1) show ?thesis by (force simp add:ref-mapping-def pendingReqs-def)
next
assume phase s1 ¢ # Pending
with (phase s1 ¢ € {Pending, Aborted})> have phase s1 ¢ =
Aborted by auto
with - initialized s2) and <P6 (s, s2)) and (P7 (s, s2)) have
pending s2 ¢ = pending s1 ¢ and phase s2 ¢ € {Pending, Aborted} by (auto simp
add:P6-def P7-def)
with «z = pending s1 ¢ and (pending s1 ¢ ¢ set (hist s1)) and <hist
2t = hist s1» and (P6 (s1, s2)) show ?thesis by (auto simp add:ref-mapping-def
pendingReqs-def P6-def)
qed
qed
ultimately show %thesis by (auto simp add:postfix-all-def
linearizations-def)

qed

ultimately show ?thesis by auto
qed
moreover have trans-t:2t' = ?t(hist := h))
proof —

from pre-s2 have 3 ¢ . phase s2 ¢ # Sleep by auto
with trans-s2 have initialized s2’ and 3 ¢ . phase s2' ¢ # Sleep by
auto
hence suffizeq (hist s1') (hist s2") using (P14 (s1’, s2')» by (auto
simp add:P14-def suffizeq-def)
hence hist ?t’ = hist s2' by (auto simp add:ref-mapping-def)
with trans-s2 and (s1’ = sI) show ?thesis by (auto simp
add:ref-mapping-def fun-eq-iff)
qed

ultimately show ?thesis apply (simp add: is-exec-frag-def compose AL Ms-def

trans-of-def hide-def ALM-ioa-def ALM-asig-def par-def actions-def asig-outputs-def
asig-inputs-def asig-internals-def asig-of-def) apply (auto simp add:ALM-trans-def)
done

qed

ultimately show ?thesis by (auto intro: exI[where z=7?ez])

qed
qed
qed
qed
qed

qged

end

45

5 Conclusion

In this document we have defined the ALM automaton (a shorthand for
Aboratable Linearizable Modules) and we have proved that the composition
of two instances of the ALM automaton behaves like a single instance of the
ALM automaton. This theorem justifies the compositional proof technique
presented in [1].

References

[1] R. Guerraoui, V. Kuncak, and G. Losa. Speculative linearizability. Tech-
nical report, EPFL, 2011. Accepted for publication at PLDI 2012, avail-
able at http://lara.epfl.ch/w/slin.

[2] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463—
492, 1990.

[3] L. Lamport and K. Marzullo. The part-time parliament. ACM Trans-
actions on Computer Systems, 16:133-169, 1998.

[4] N. A. Lynch and M. R. Tuttle. An introduction to input/output au-
tomata. CWI Quarterly, 2:219-246, 1989.

46

	Introduction
	Definition and properties of the longest common postfix of a set of lists
	The ALM Automata specification
	Proof that the composition of two instances of the ALM automaton behaves like a single instance of the ALM automaton
	A case split useful in the proofs
	Invariants of a single ALM instance
	Invariants of the composition of two ALM instances
	Proofs of invariance
	The refinement proof

	Conclusion

