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General and Practical Formation of Thiocyanates from Thiols 

Reto Frei,[b]† Thibaut Courant,[a]† Matthew D. Wodrich[a] and Jerome Waser*[a] 

Abstract: A new method for the cyanation of thiols and disulfides 

using cyanobenziodoxol(on)e hypervalent iodine reagents is 

described. Both aliphatic and aromatic thiocyanates can be 

accessed in good yields in a few minutes at room temperature 

starting from a broad range of thiols with high chemioselectivity. The 

complete conversion of disulfides to thiocyanates was also possible. 

Preliminary computational studies indicated a low energy concerted 

transition state for the cyanation of the thiolate anion or radical. The 

developed thiocyanate synthesis has broad potential for various 

applications in synthetic chemistry, chemical biology and materials 

science. 

Introduction 

Heteroatom containing functional groups are essential in 

synthetic and medicinal chemistry, as they have a tremendous 

influence on the physical and biological properties of molecules 

and serve as a platform for functionalization. Thiocyanates in 

particular have attracted broad attention. They can be found in 

bioactive natural products, such as fasicularin (1),[1a-b] 9-

thiocyanatopupukeanane (2)[1c]  and psammaplin B (3)[1d] 

(Scheme 1A). Thiocyanates are also very important precursors 

in synthetic and medicinal chemistry, chemical biology and 

materials science (Scheme 1B). They can be converted easily to 

thiocarbamates and structurally diverse heterocycles.[2] The 

good leaving group ability of the cyanide group makes them mild 

electrophilic sulfur-transfer reagents to access disulfides and 

thioethers.[3a-e] Thiocyanates can also easily be converted into 

thiols and the cyano group is consequently a useful and atom-

economical protecting group for sulfur.[3f-g] Furthermore, 

thiocyanates derived from cysteine are also important 

intermediates to access dehydroalanines under mild conditions, 

to promote cleavage of the amide bonds in peptides and 

proteins and to study the mechanism of enzymes with vibrational 

spectroscopy.[4] Finally, thiocyanates are highly useful 

precursors for the synthesis of gold-thiolate nanoparticules.[5] 

Traditionally, this functional group has been introduced by 

nucleophilic or electrophilic thiocyanation of organic molecules, 

and their accessibility has been limited by the availability and 

reactivity of the required precursors.[2a] Other disconnections 

giving access to thiocyanates would be highly desirable.  

The synthesis of thiocyanates from thiols would constitute 

such an alternative disconnection, especially in light of the broad 

range of commercial or easily accessible thiols. This can be 

achieved either by nucleophilic cyanation of an activated thiol 

derivative[6] or direct electrophilic cyanation of the thiol using 

reagents such as 4-9 (Scheme 2A).[4,7] The latter route is more 

efficient, as it can be done in a single step. Nevertheless, no 

truly general method for the selective cyanation of both aliphatic 

and aromatic thiols has been reported and the most often used 

electrophilic cyanation reagent, cyanogen bromide (4), is toxic, 

difficult to manipulate and highly reactive, which leads to side 

reactions. Consequently, the discovery of new electrophilic 

cyanation reagents is an intensive topic of research.[8] 

 

Scheme 1. Thiocyanates in Natural Products (A) and as Synthetic Precursors 

(B). 

To develop new electrophilic cyanation methods, the use of 

hypervalent iodine reagents is highly promising, due to the 

exceptional reactivity of three-center four-electron bonds.[9] 

Nevertheless, hypervalent iodine compounds are also strong 

oxidants, which limits their use for the functionalization of thiols 

due to the easy formation of disulfides via oxidative dimerization. 

Recently, the use of cyclic hypervalent iodine reagents, 

especially benziodoxol(on)es, has led to important 

breakthroughs in atom-transfer reactions.[10] In the field of thiol 

functionalization in particular, Togni and co-workers reported the 

first example of trifluoromethylation,[11] whereas our group 

developed a practical alkynylation of thiols using 

EthynylBenziodoXolone (EBX) reagents.[12] However, to the best 

of our knowledge, hypervalent iodine reagents have never been 

used for the synthesis of thiocyanates starting from thiols. 

Herein, we report the first use of 1-Cyano-1,2-BenziodoXol-3-

(1H)-one (CBX, 10) and 1-Cyano-3,3-Dimethyl-3-(1H)-1,2-

BenziodoXol (CDBX, 11),[9d] for the cyanation of thiols (Scheme 

2B). The reaction proceeded at room temperature in a few 
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minutes in nearly quantitative yields for a broad range of 

aromatic and aliphatic thiols and displayed unprecedented 

functional group tolerance. CBX reagents could also be used for 

accessing thiocyanates from disulfides in up to 92% yield. In 

addition, a combined experimental and computational 

investigation gave a first insight into the reaction mechanism.   

 

 

Scheme 2. Previously reported reagents for thiol cyanation (A) and our new 

approach (B).   

Results and Discussion 

We started our study with simple commercially available 

thiophenol 13a as a model substrate (Table 1). With 1-cyano-

1,2-benziodoxol-3(1H)-one (CBX, 10), we found that the desired 

thiocyanate 14a could be obtained in moderate yield using 

triethylamine as a base (entry 1). The choice of the base was 

crucial to obtain good yields of the thiocyanate product 14a and 

minimize formation of the undesired disulfide 15a arising from 

the oxidative dimerization of thiophenol 13a (entries 1-4). 

Stronger bases such as tetramethylguanidine (TMG), 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD) and 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) led to the desired 

thiocyanate 14a as the main product (entries 2-4). Among the 

latter, DBU showed the best result with a yield above 95% (entry 

4). In the absence of base, disulfide 15a was obtained as the 

major product (entry 5). An important effect of the solvent was 

also apparent, as significant formation of disulfide 15a was 

observed in other solvents (entries 6 and 7). 1-Cyano-3,3-

dimethyl-1,2-benziodoxole (CDBX, 11), also gave an excellent 

result (entry 8). The cyclic hypervalent iodine regents 10 and 11 

were superior to iodonium salts such as 12,[9j] which led to the 

formation of disulfide 15a as major product (entry 9).  

 

 

 

 

 

Table 1. Optimization of thiocyanate formation[a]  

 
entry 10-12 base solvent yield 14a[b] yield 15a[b] 

1 10 Et3N THF 40% 60% 

2 10 TMG THF 79% 20% 

3 10 TBD THF 74% 26% 

4 10 DBU THF >95% <5% 

5 10 - THF <10% 90% 

6 10 DBU MeOH 64% 35% 

7 10 DBU CH3CN 86% 12% 

8 11 DBU THF >95% <5% 

9 12 DBU THF 17% 81% 
 

[a] 4-Tertbutylthiophenol (13a, 0.50 mmol), cyanide transfer reagent (10-12, 

0.550 mmol), base (0.525 mmol), solvent (5.0 mL), 23 °C, 5 min, open flask. 
[b] Isolated yield of spectroscopically pure product.  

Under the optimized conditions CBX (10) or CDBX (11) (1.1 

eq) was added in one portion to a solution of the thiol 13a (1.0 

eq) and DBU (1.05 eq) in THF at room temperature and stirred 

for five minutes in an open-air flask to give the thiocyanate 14a 

in 96% isolated yield (Scheme 3A). The cyanation of thiophenol 

(13b) and 2-thionaphthalene (13c) gave the corresponding 

products 14b and 14c in 90% and 95% respectively. Both 

electron-withdrawing (products 14d-i) or electron-donating 

(products 14j-l) groups were well tolerated and gave 

thiocyanates in 88-98% yield. The cyanation was successful in 

the presence of numerous functional groups such as halogens 

(fluorides, chlorides and bromides), nitro groups, esters, amides 

and ethers. Double and triple cyanation reactions were also 

possible, as demonstrated by the synthesis of bisthiocyanate 

14m and tristhiocyanate 14n in 87% and 78% respectively. 

These compounds are particularly interesting scaffolds for 

materials science as a platform for dendrimeric heterocycle 

synthesis.[2a,13] 

There are only few methods for the efficient conversion of 

aliphatic thiols to the corresponding thiocyanates under mild 

conditions.[7c,14] The use of cyanation reagent 10 allowed us to 

selectively convert primary, secondary and tertiary aliphatic 

thiols into thiocyanates in a general and practical fashion 

(Scheme 3B, products 14o-q). In particular, the more complex 

steroid 14p was obtained in an excellent 97% yield. 

Chemoselectivity is a main challenge for cyanation reactions 

as acidic or nucleophilic functionalities can react with 

electrophilic cyanation reagents and consequently need to be 

protected, adding extra steps to the synthetic sequence. In 

particular, free amines and anilines are known to be efficiently 

cyanated with electrophilic cyanation reagents.[7e]   



FULL PAPER    

 

 

 

 

 

Scheme 3. General and practical thiocyanate synthesis from various thiols. The reaction conditions of Table 1, entry 8 with reagent 11 were used. [a] Reagent 10 
was used (conditions of Table 1, entry 4). 

 

To our delight, the cyanation reaction could be selectively 

done in the presence of unprotected aliphatic (products 14r and 

14s) and aromatic (product 14t) carboxylic acids in 86-91% yield 

(Scheme 3C). With a free aliphatic alcohol and a phenol, the 

thiocyanates 14u and 14v were obtained in 88% and 91% 

respectively. In the case of aniline 13w, the cyanation was 

completely selective for sulfur and 14w was obtained in 90% 

yield. This result points to the superior selectivity of hypervalent 

iodine-based reagents and their strong affinity for sulfur. On the 

other hand, it was possible to selectively cyanate a thiol in the 

presence of a thioether to obtain thiocyanate 14x in 94% yield. 

The methodology was extended to the use of heterocyclic 

substrates giving thiocyano-benzothiazole 14y or thiocyano-

pyrimidine 14z in 85% and 94% yield respectively. Heterocyclic 

thiocyanates are useful building-blocks for the synthesis of 

bioactive compounds.[15] Thiocyano-glycosides are known to be 

very good glycoside donor in glycosylation reactions, especially 

for 1,2-cis-glycosylation.[16] Under our optimized conditions, 

tetra-acetyl-β-thioglucose 13aa cleanly gave the desired 

thiocyanate 14aa in 88% yield without epimerization to the  

form (Scheme 3D). Finally, phenylselenol (13ab) was found to 

be a suitable substrate for this reaction and selenocyanate 14ab 

could be obtained in 88% yield (Scheme 3E). 

Several pathways can be proposed for the reaction 

mechanism (Scheme 5).[9] A first possibility would be 

nucleophilic attack on the carbon of the cyanide group to form 

thioimidate I (pathway A). 1,2-Elimination would then give 

thiocyanate 14 and benzoate 16. However, this mechanism is 

less probable when considering that the most electrophilic 

position is usually on the iodine for this type of reagents.[9] 

Therefore, attack on the iodine atom appears more probable to 

give intermediate II upon ring-opening of the benziodoxolone 

heterocycle (pathway B). Reductive elimination on iodine would 

then lead to thiocyanate 14. This type of mechanism has indeed 

been often proposed for the functionalization of nucleophiles 

with hypervalent iodine reagents.[9] 

Nevertheless, when considering the strong oxidizing 

properties of hypervalent iodine reagents, mechanisms involving 

a single electron transfer and the subsequent formation of 

radical intermediates also constitute an important alternative 

(pathway C). In the case of related benziodoxolone reagents for 

trifluoromethylation, the formation of a trifluoromethyl radical has 

often been proposed.[11] However, when considering the much 

lower stability of the cyano radical, such an intermediate 

appears highly improbable.[17] In contrast, a single electron 

transfer between reagent 10 and a thiolate anion could be 

possible, although Lewis or Brønsted acid activation of 

hypervalent iodine reagents is usually needed to promote single 

electron transfer.[18] Several pathways could then be considered 

for further reaction of the formed radical anion III and the thiol 
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radical: (1) Concerted reaction to give directly the thiocyanate 

(pathway C1), (2) radical recombination to give intermediate II 

followed by reductive elimination (pathway C2), or initiating of a 

radical chain reaction starting with attack of the thiol radical onto 

reagent 10 (pathway C3). In the latter case, the formed 

benziodoxole radical 17 would be further reduced by a thiolate 

anion to give benzoate 16 and regenerate a thiol radical. If the 

reaction would occur via pathway C3, it should be possible to 

intercept the formed thiol radicals with trapping reagents. 

However, no adduct could be observed in presence of 

phenylacetylene and 1,1-dicyclopropylethene, which are known 

to react very quickly with thiol radicals.[19] Consequently, this 

pathway also appears less probable. 

Finally, a last alternative would involve a concerted 

mechanism via a three-atom transition state IV (pathway D). 

Although this alternative has not yet been proposed in the 

literature for the cyanation of thiols, we have recently discovered 

by computation that such a transition state was possible in the 

case of the related alkynylation reaction.[20] We consequently 

turned to computational chemistry to investigate this intriguing 

mechanism pathway. 

 

Scheme 4. Speculative mechanism pathways for the cyanation reaction.   

Computations (at the PBE0-dDsC/TZ2P//M06-2X/def2-SVP 

or M06-2X/def2-TZVP//M06-2X/def2-SVP theoretical level, see 

computational details section) designed to probe the potential 

energy surface with phenyl thiolate 13b’ allowed us to identify 

low-energy Van der Waals complexes V indeed indicating a 

significant interaction between the sulfur and the iodine atom 

(Figure 1). Nevertheless, the sulfur atom is already shifted 

towards the carbon of the cyanide group (S-I and S-C distances 

of 2.895 and 3.206 Å respectively). Starting from V, no stable 

intermediate corresponding to either thioimidate I or intermediate 

II containing a formal S-I bond was observed. Instead, a low 

energy (8.8 kcal/mol) transition state IV led directly to 

thiocyanate 14b and iodobenzoate 23 (complex VI).[21,22] This 

energetically favorable concerted pathway is in accordance with 

the high reaction rate. As observed for the alkynylation of 

thiols,[20] the linear geometry at the cyanide carbon was distorted 

and a significant transfer of negative charge on the nitrogen 

atom was observed (-0.46 calculated Hirshfeld iterative charge). 

The higher electronegativity of the nitrogen atom could further 

stabilize the formed charge and lower the energy of the 

transition state.  

 

Figure 1. Free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in 

implicit THF solvent (COSMO-RS)] for the cyanation of thiophenolate (13b’) 

with CBX (10) and computed geometries (M06-2X/def2-SVP level) for Van der 

Waals complex V and transition state IV with thiophenolate (13b’), thiophenol 

radical (13b’’) and thiophenol (13b).[21] 

In addition to thiophenolate (13b’), thiophenol radical (13b’’) 

and thiophenol (13b) itself could also lead to thiocyanate 

formation. Consequently, the energies and geometries for Van 

der Waals complex V and transition state IV were calculated for 
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these two molecules. Interestingly, the addition of thiophenol 

radical 13b’’ was also a very facile process, with a transition 

state energy of only 8.3 kcal/mol. The geometries of Van der 

Waals complexes V and transition state IV are similar to the 

ones obtained with thiophenolate 13b’, except that the distance 

between the sulfur and the iodine atom was significantly longer 

in complex V (3.460 vs 2.895 Å). It is know that hypervalent 

iodine reagents are strongly Lewis acidic in para position to the 

aryl ring,[9] and a stronger interaction with the nucleophilic 

thiolate compared to the neutral radical could be reasonably 

expected. In contrast, a completely different result was obtained 

using thiophenol (13b) itself as nucleophile: a much higher 

transition state energy (36.8 kcal/mol) was observed, as well as 

a nearly complete change of the geometry to trigonal planar 

(ICN angle of 128°). Consequently, direct reaction of the neutral 

thiol appears highly improbable, and it is in good agreement with 

the lack of thiocyanate formation in the absence of base (Table 

1, entry 5). 

Finally, the energy profile and the computed geometries 

were also calculated in the case of the reaction of CDBX (11) 

with thiophenolate (13b’) (Figure 2).  

 

Figure 2. Free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in 

implicit THF solvent (COSMO-RS)] for the cyanation of thiophenolate (13b’) 

with CDBX (11) and computed geometries (M06-2X/def2-SVP level) for Van 

der Waals complex V and transition state IV.[23] 

A similar profile was obtained, although transition state IV 

was higher in energy (13.9 vs 8.8 kcal/mol with CBX (10)). 

Concerning the geometries, a stronger distortion from linearity 

was observed (ICN angle of 137° vs 143°) and the C-I distance 

was larger (2.295 vs 2.173 Å) and the C-S distance shorter (2.076 

vs 2.281 Å), corresponding to a later transition state. 

During optimization of the reaction conditions with thiolate 

13a, the formation of disulfide 15a could be avoided by the right 

choice of reagent, base and solvent. However, even under the 

optimized conditions, formation of small amounts of disulfide 15a 

was still observed by TLC in the first minute of reaction, but 

gradually disappeared afterwards. We consequently wondered if 

disulfide 15a could also be converted into the desired 

thiocyanate 14a under the reaction conditions. Indeed, when 

15a was treated with 2.1 equivalents of CDBX (11), thiocyanate 

14a was obtained in 92% yield in one hour (Scheme 5). To the 

best of our knowledge, this constitutes the first report of efficient 

transformation of a disulfide into a thiocyanate, as most reported 

methods can reach a maximum of only 50% yield.[6,24] Under the 

same reaction conditions, thiocyanates 14h and 14ac-d bearing 

either electron-withdrawing or electron-donating groups could be 

obtained in 66-80% yield. The cyanation of an aliphatic disulfide 

was also possible, but thiocyanate 14ae was obtained in lower 

yield (34%). 

 

Scheme 5. Thiocyanate formation from disulfides. 

Conclusions 

In conclusion, we have developed a very general and practical 

methodology to access useful thiocyanates from readily 

available thiols and disulfides. This methodology utilizes the 

easily accessible and user-friendly benziodoxoles CBX (10) and 

CDBX (11) as electrophilic cyanation reagents. The mild 

reaction conditions and high chemoselectivity allowed us to 

successfully prepare aromatic-, benzylic-, and aliphatic 

thiocyanates, as well as thiocyano-saccharides or thiocyano-

steroids. The methodology showed an unprecedented functional 

group tolerance towards carboxylic acids, alcohols, thioethers 

and anilines. The high rate and selectivity observed could be 

tentatively rationalized by a low energy barrier concerted 

mechanism available to thiolates and thiol radicals as 

nucleophiles. All attempted trapping experiments for thiol 

radicals were unsuccessful up to now. Nevertheless, the 

presence of short-lived radical intermediates cannot be excluded 

without further investigations. The thiol-cyanation reaction we 

developed has the potential to become a reference method for 

thiocyanate formation from thiols and disulfides with various 

applications in synthetic chemistry, chemical biology and 

materials science. 

Experimental Section 

Computational Details.[25] 
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Geometries were optimized using Truhlar’s M06-2X[26] density functional 

with the def2-SVP basis set in Gaussian09.[27] M06-2X computations 

employed the “Ultrafine” grid to remove known problems with the size of 

the integration grid for this functional family.[28] To obtain refined energy 

estimation that explicitly account for non-bonded interactions, a density 

dependent dispersion correction (-dDsC)[29] was used appended to the 

PBE0[30] functional (PBE0-dDsC). PBE0-dDsC single point computations 

made use of the slater-type orbital 3- basis set, TZ2P, as implemented 

in ADF.[31] To confirm the accuracy of the PBE0-dDsC computations, a 

second set of single point energies was obtained at the M06-2X/def2-

TZVP level. All reported free energies include the effects of solvation (in 

THF) using the implicit continuum model for realistic solvents[32] 

(COSMO-RS), also as implemented in ADF, as well as free energy 

correction derived from M06-2X/def2-SVP computations. Iterative 

Hirshfeld charges[33] were computed using Q-Chem.[34] 

Experimental Procedures.  

Caution: Hypervalent iodine reagents are high energy compounds which 

should be used with appropriate care. Compounds 10 and 11 are stable 

at room temperature, but show a strong exothermic decomposition at 

151 °C and 133 °C respectively by DSC measurement. We recommend 

not using these reagents above 40 °C and running reactions behind a 

protective shield. An advantage of the method is to avoid the use of 

highly toxic cyanide anions. Nevertheless, as the formation of small 

amounts of cyanide cannot be excluded, all relevant measures have to 

be taken when performing the cyanation step.[35] In particular, the 

aqueous layers were basified and disposed separately. All open flask 

reactions were set up in well ventilated fume-hoods.  

General Procedure for the cyanation of thiols.  

A 25 mL round bottom flask was charged with a magnetic stirring bar, 

thiol derivative (0.500 mmol, 1.00 eq.) and THF (5.0 mL). To this solution 

was added 1,8-diazabicycloundec-7-ene (DBU, 79.0 µL, 0.525 mmol, 

1.05 eq.), followed by 1-cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole 

(CDBX (11), 158 mg, 0.550 mmol, 1.10 eq.) or 1-cyano-1,2-benziodoxol-

3-(1H)-one (CBX (10), 150 mg, 0.550 mmol, 1.10 eq.). In case DBU 

addition yielded a THF-insoluble thiolate, CDBX or CBX was added prior 

to DBU. An additional equivalent of DBU (total amount: 153 µL, 1.03 

mmol. 2.05 eq.) was added for carboxylic acid containing substrates. The 

resulting reaction mixture was stirred in an open flask for 5 minutes at 

room temperature (unless otherwise stated). The reaction was quenched 

with 5% aq. citric acid (10 mL). The aq. mixture was extracted with 

EtOAc (3 x 10 mL) and the combined organic layers were dried over 

MgSO4, filtered and concentrated in vacuo. The crude product was 

further purified by column chromatography. 
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1. List of Abbreviations 
 

EtOAc   Ethyl acetate  

Ac2O   Acetic anhydride 

CDBX   1-Cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole  

CBX   1-Cyano-1,2-benziodoxol-3-(1H)-one 

DBU   1,8-Diazabicycloundec-7-ene 

TBD   1,5,7-Triazabicyclo[4.4.0]dec-5-ene 

TFAA   Trifluoroacetic anhydride  

THF   Tetrahydrofuran 

TIPS   Triisopropylsilyl 

TIPS-EBX   1-[(Triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one 

TLC   Thin layer chromatography 

TMG   1,1,3,3-Tetramethylguanidine 

TMS   Trimethylsilyl 

TMS-CN  Trimethylsilyl cyanide 

TMS-OTf  Trimethylsilyl trifluoromethanesulfonate 

brsm   Based on recovered starting material  

Im.   1-H-Imidazole  

DMSO   Dimethyl sulfoxide 
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2. Computational Details 

 
Figure S1. Reaction free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in 

implicit THF solvent (COSMO-RS)] for the reaction of CBX with a phenylthiol anion. Values 

in kcal/mol. 

 

 
 

 

 

Figure S2. Selected structures along the intrinsic reaction coordinate for the reaction of CBX 

with a phenylthiol anion. Structures computed at the M06-2X/def2-SVP level. Bond lengths 

in Angstrom.  
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Figure S3. Reaction free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in 

implicit THF solvent (COSMO-RS)] for the reaction of CBX with a phenylthiol radical. 

Values in kcal/mol. 

 

 
 

 

Figure S4. Selected structures along the intrinsic reaction coordinate for the reaction of CBX 

with a phenylthiol radical. Structures computed at the M06-2X/def2-SVP level. Bond lengths 

in Angstrom.  
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Figure S5. Reaction free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in 

implicit THF solvent (COSMO-RS)] for the reaction of CBX with neutral phenylthiol. Values 

in kcal/mol. 

 
 

Figure S6. Selected structures along the intrinsic reaction coordinate for the reaction of CBX 

with neutral phenylthiol. Structures computed at the M06-2X/def2-SVP level. Bond lengths in 

Angstrom.  
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Figure S7. Reaction free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in 

implicit THF solvent (COSMO-RS)] for the reaction of CDBX with a phenylthiol anion. 

Values in kcal/mol. 
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Table S1. Electronic energies, free energy corrections, and solvation corrections of relevant 

species. PBE0-dDsC/TZ2P and M06-2X/def2-TZVP electronic energies obtained from single 

point computations on M06-2X/def2-SVP geometries.  

Compound M06-2X/def2-

SVP 

Electronic 

Energy 

(hartree) 

M06-

2X/def2-

SVP Free 

Energy 

Correction 

(hartree) 

PBE0-

dDsC/TZ2P 

Electronic 

Energy 

(hartree) 

M06-

2X/def2-

TZVP 

Electronic 

Energy 

(hartree) 

PBE0-

dDsC/TZ2P 

Solvation 

Energy 

(kcal/mol) 

 CBX/Phenylthiol Anion 

Reactant -1438.913291 0.143967 -8.361120 -1439.905415 -47.838 
TS -1438.899587 0.145162 -8.347671 -1439.888145 -48.192 
Product -1438.988473 0.143819 -8.420133 -1439.975958 -49.633 
 CBX/ Phenylthiol Radical 

Reactant -1438.794259 0.142637 -8.235568 -1439.781356 -17.754 
TS -1438.779398 0.143964 -8.226017 -1439.765917 -16.238 
Product -1438.842142 0.141754 -8.278477 -1439.824976 -16.511 
 CBX/Phenylthiol 

Reactant -1439.432099 0.156239 -8.432726 -1440.419780 -16.329 
TS -1439.353139 0.157084 -8.363608 -1440.341014 -23.374 
Product -1439.524302 0.159046 -8.508100 -1440.503039 -14.658 
 CDBX/ Phenylthiol Anion 

Reactant -1443.457403 0.214259 -9.768118 -1444.451798 -51.260 
TS -1443.436323 0.214552 -9.748953 -1444.426214 -49.587 
Product -1443.480614 0.213157 -9.781551 -1444.475380 -51.948 

 

 

 

Table S2. Free energies for relevant reactions. PBE0-dDsC and M06-2X/def2-TZVP 

electronic energies computed on M06-2X/def2-SVP optimized geometries. Free energies 

include unscaled free energy corrections from M06-2X/def2-SVP computations and solvation 

corrections (in implicit THF) from COSMO-RS (at the PBE0-dDsC/TZ2P level). Values in 

kcal/mol. 
 PBE0-dDsC/TZ2P Free 

Energy 

M06-2X/def2-TZVP Free 

Energy 

CBX/Phenylthiol Anion 

Reactant  TS 8.84 11.23 

TS  Product -47.76 -57.39 

CBX/ Phenylthiol Radical 

Reactant  TS 8.34 12.04 

TS  Product -34.58 -38.72 

CBX/Phenylthiol 

Reactant  TS 36.86 42.91 

TS  Product -80.72 -91.73 

CDBX/ Phenylthiol Anion 

Reactant  TS 13.88 17.91 

TS  Product -23.69 -34.09 
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28 
CBX/Phenylthiol Anion - Reactant 
I       0.56207     -0.92062      0.42045 
S       2.39304      1.28463      0.82992 
N       2.89838     -1.62323     -1.77287 
C       2.09828     -1.34079     -0.98586 
O      -1.33790     -1.03767      1.66523 
C      -2.14702     -2.01324      1.44140 
O      -3.19756     -2.23874      2.00919 
C      -1.67229     -2.94726      0.33224 
C      -0.47073     -2.70453     -0.32320 
C      -0.01361     -3.53679     -1.34048 
H       0.92978     -3.33962     -1.85223 
C      -0.79243     -4.63905     -1.69991 
H      -0.44617     -5.29967     -2.49730 
C      -2.00227     -4.89862     -1.05121 
H      -2.60105     -5.76367     -1.34240 
C      -2.44097     -4.05295     -0.03649 
H      -3.37819     -4.21107      0.50051 
C       1.91980      2.07855     -0.66748 
C       2.71464      1.98294     -1.82726 
C       2.33757      2.60711     -3.01388 
C       1.15372      3.34392     -3.08558 
C       0.72703      2.82339     -0.75951 
C       0.35080      3.44454     -1.94817 
H       3.63209      1.39398     -1.77579 
H       2.97424      2.51026     -3.89664 
H       0.85813      3.82942     -4.01766 
H       0.10036      2.90340      0.13118 
H      -0.58171      4.01296     -1.98624 
 

28 
CBX/Phenylthiol Anion - TS 
I       0.12373     -0.93628      0.63290 
S       2.53907      1.05635      0.42985 
N       2.46782     -1.44818     -1.46519 
C       1.91855     -0.88655     -0.59101 
O      -1.90104     -1.30164      1.82794 
C      -2.54703     -2.35744      1.52608 
O      -3.59518     -2.76535      1.99804 
C      -1.87229     -3.17930      0.42238 
C      -0.67658     -2.76367     -0.14555 
C      -0.02967     -3.47323     -1.15404 
H       0.90846     -3.11230     -1.57973 
C      -0.62659     -4.65519     -1.59725 
H      -0.13987     -5.23021     -2.38728 
C      -1.82950     -5.10103     -1.04368 
H      -2.28253     -6.02728     -1.40247 
C      -2.44912     -4.36439     -0.03803 
H      -3.38941     -4.66811      0.42581 
C       2.06260      2.05362     -0.94086 
C       2.62981      1.84322     -2.21102 
C       2.26192      2.63919     -3.29296 
C       1.33129      3.66808     -3.13587 
C       1.11500      3.08173     -0.79784 
C       0.76020      3.88319     -1.88087 
H       3.34603      1.02866     -2.32993 
H       2.70903      2.45320     -4.27217 
H       1.04930      4.29294     -3.98541 
H       0.66038      3.23928      0.18212 
H       0.02367      4.67826     -1.74400 
 
 
 
 
 
28 
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CBX/Phenylthiol Anion - Product 
I      -0.98929      2.67718      2.40521 
S       3.56954     -0.48493     -0.49889 
N       6.21615     -1.06638     -1.39438 
C       5.13366     -0.85580     -1.03793 
O      -0.47144      0.17366      0.73984 
C      -1.54383     -0.44705      0.79110 
O      -1.79511     -1.61641      0.45237 
C      -2.77575      0.34507      1.33454 
C      -2.76030      1.58754      1.97486 
C      -3.94191      2.20253      2.40536 
H      -3.89367      3.16882      2.90882 
C      -5.17017      1.58436      2.19197 
H      -6.08693      2.07427      2.52699 
C      -5.21397      0.34345      1.55627 
H      -6.17059     -0.15509      1.38574 
C      -4.02964     -0.25682      1.14563 
H      -4.01016     -1.23298      0.65952 
C       2.71047     -2.03411     -0.80726 
C       3.32377     -3.16548     -1.34589 
C       2.55393     -4.31212     -1.53895 
C       1.20055     -4.32203     -1.19893 
C       1.35900     -2.02206     -0.46022 
C       0.60623     -3.18027     -0.66150 
H       4.38191     -3.15715     -1.61170 
H       3.02372     -5.20333     -1.96005 
H       0.60820     -5.22578     -1.35481 
H       0.85706     -1.13771     -0.03335 
H      -0.44761     -3.12291     -0.37584 

 
28 
CBX/Phenylthiol Radical - Reactant 
O      -4.28945     -1.56889      1.73263 
I      -0.48482     -0.22530      0.68784 
S       1.50487      2.60494      0.66008 
N       2.52681     -0.89918     -0.51661 
C       1.48223     -0.66348     -0.07883 
O      -2.52450     -0.23835      1.37575 
C      -3.15351     -1.38512      1.38436 
C      -2.28544     -2.52783      0.89139 
C      -0.98141     -2.28756      0.49268 
C      -0.12269     -3.27339      0.03045 
H       0.90072     -3.05535     -0.27632 
C      -0.62860     -4.57435     -0.02666 
H       0.01804     -5.37642     -0.38489 
C      -1.93975     -4.85444      0.36699 
H      -2.31251     -5.87791      0.31393 
C      -2.76911     -3.83484      0.82572 
H      -3.79867     -4.00954      1.14291 
C       2.10150      2.89635     -0.92666 
C       3.14066      3.83797     -1.12036 
C       3.63710      4.08415     -2.39193 
C       3.10780      3.40220     -3.49232 
C       1.57833      2.21655     -2.05197 
C       2.07820      2.47097     -3.32005 
H       3.53966      4.35914     -0.24928 
H       4.43993      4.80877     -2.53240 
H       3.50047      3.59705     -4.49142 
H       0.77726      1.49045     -1.90800 
H       1.67012      1.94152     -4.18155 
 
 
 
 
 
 
 
 
 
28 
CBX/Phenylthiol Radical - TS 
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O      -3.54683     -2.41365      1.90913 
I       0.15899     -0.93387      0.71683 
S       2.82529      0.90025      0.25356 
N       2.61745     -1.55649     -1.33358 
C       1.98599     -0.99677     -0.51164 
O      -1.71538     -1.14090      1.74892 
C      -2.47264     -2.16304      1.43208 
C      -1.85154     -3.04090      0.36622 
C      -0.61424     -2.71738     -0.16604 
C       0.02274     -3.46757     -1.14263 
H       0.99749     -3.19271     -1.54557 
C      -0.64527     -4.60811     -1.59632 
H      -0.17357     -5.22292     -2.36398 
C      -1.89467     -4.96478     -1.08321 
H      -2.39588     -5.85967     -1.45358 
C      -2.49973     -4.18349     -0.10293 
H      -3.47417     -4.42439      0.32566 
C       2.16369      1.92088     -1.01171 
C       2.82987      2.02484     -2.24402 
C       2.31233      2.83816     -3.24624 
C       1.13908      3.56316     -3.02485 
C       0.98003      2.64614     -0.79715 
C       0.47682      3.46981     -1.79990 
H       3.74482      1.45171     -2.40007 
H       2.82764      2.91074     -4.20485 
H       0.73891      4.20406     -3.81179 
H       0.46888      2.56675      0.16397 
H      -0.43809      4.03768     -1.62632 
 
28 
CBX/Phenylthiol Radical - Product 
O      -3.61016     -2.16210      2.13213 
I       0.07276     -0.38938      0.52685 
S       3.95784      2.03433     -0.61147 
N       1.21913      2.82117     -0.86658 
C       2.32402      2.49533     -0.75852 
O      -1.48742     -2.07121      1.57999 
C      -2.68190     -1.54972      1.65693 
C      -2.84959     -0.14760      1.12507 
C      -1.79513      0.57540      0.57891 
C      -1.94607      1.86785      0.08804 
H      -1.09841      2.41061     -0.33333 
C      -3.21512      2.44500      0.15575 
H      -3.35700      3.45810     -0.22333 
C      -4.29262      1.74229      0.69943 
H      -5.27814      2.20699      0.74515 
C      -4.11015      0.45018      1.18262 
H      -4.92459     -0.13370      1.61524 
C       3.70881      0.45707      0.21738 
C       3.71720      0.40785      1.61204 
C       3.52677     -0.81660      2.25062 
C       3.33428     -1.97614      1.49835 
C       3.53386     -0.69876     -0.54542 
C       3.34079     -1.91851      0.10336 
H       3.85726      1.32375      2.18742 
H       3.51954     -0.86287      3.34008 
H       3.17549     -2.93063      2.00174 
H       3.53551     -0.63776     -1.63462 
H       3.19170     -2.82561     -0.48373 
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29 
CBX/Neutral Phenylthiol - Reactant 
I       0.66027     -0.33843      1.85320 
S       1.84292      1.86519     -1.01599 
N       3.87464     -0.81821      1.25208 
C       2.74969     -0.64253      1.45461 
O      -1.49169     -0.21634      1.87753 
C      -2.12583     -0.71739      0.84885 
O      -3.31904     -0.73592      0.69483 
C      -1.18680     -1.28316     -0.19875 
C       0.18294     -1.21988     -0.01926 
C       1.11879     -1.66183     -0.93856 
H       2.19204     -1.57802     -0.76401 
C       0.61369     -2.22339     -2.11447 
H       1.31439     -2.58694     -2.86736 
C      -0.76306     -2.32762     -2.32957 
H      -1.13175     -2.77566     -3.25304 
C      -1.66352     -1.85591     -1.37839 
H      -2.74537     -1.90317     -1.51505 
C       0.08643      1.81671     -1.27207 
C      -0.37486      1.31507     -2.49363 
C      -1.74375      1.17950     -2.71709 
C      -2.66155      1.54483     -1.73352 
C      -0.83435      2.19317     -0.28673 
C      -2.20111      2.06016     -0.52276 
H       0.34099      1.03346     -3.26845 
H      -2.09283      0.78000     -3.67098 
H      -3.73169      1.42003     -1.89987 
H      -0.48665      2.58376      0.67216 
H      -2.90972      2.32873      0.26170 
H       1.83955      2.79308     -0.04003 
 
29 
CBX/Neutral Phenylthiol - TS 
I       1.39187     -1.22773      0.47030 
S       1.88864      2.20629      0.21552 
N       3.44672      0.61323     -1.47320 
C       2.62189      0.65512     -0.64091 
O      -0.91677     -1.74218      1.77208 
C      -1.88042     -1.36784      1.06963 
O      -3.04861     -1.14377      1.38506 
C      -1.52316     -1.06407     -0.41140 
C      -0.22946     -0.91893     -0.88201 
C       0.08667     -0.59794     -2.20114 
H       1.12227     -0.51059     -2.53252 
C      -0.96596     -0.40164     -3.09397 
H      -0.74567     -0.15572     -4.13397 
C      -2.28752     -0.53777     -2.66086 
H      -3.10774     -0.39410     -3.36620 
C      -2.55677     -0.86045     -1.33498 
H      -3.57369     -0.95979     -0.95051 
C       0.15397      2.04693      0.50518 
C      -0.67768      2.47515     -0.53546 
C      -2.05400      2.35586     -0.37458 
C      -2.57983      1.82790      0.80615 
C      -0.35848      1.51969      1.69691 
C      -1.73642      1.42668      1.84310 
H      -0.25711      2.87781     -1.45910 
H      -2.71675      2.66020     -1.18500 
H      -3.65507      1.68847      0.91723 
H       0.29776      1.15285      2.48760 
H      -2.15584      0.95824      2.73284 
H       2.32334      1.89464      1.45650 
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29 
CBX/Neutral Phenylthiol - Product 
I      -2.74853     -0.24424     -0.08666 
S       0.38013      1.86740     -1.46508 
N      -0.73088      3.11134      0.85046 
C      -0.26880      2.59717     -0.07765 
O      -0.32157     -1.39321     -2.00292 
C       0.19703     -2.05599     -0.96370 
O       0.78813     -3.08217     -1.13317 
C       0.10804     -1.41002      0.40330 
C      -0.90716     -0.58212      0.90570 
C      -0.78456      0.01122      2.16376 
H      -1.57144      0.66938      2.53174 
C       0.34108     -0.23767      2.94504 
H       0.42634      0.23615      3.92394 
C       1.33524     -1.09738      2.48281 
H       2.21145     -1.31121      3.09602 
C       1.21235     -1.67466      1.22592 
H       1.97929     -2.34367      0.83394 
C       1.87280      1.13241     -0.79497 
C       2.44699      1.53401      0.40918 
C       3.61747      0.90883      0.83703 
C       4.20494     -0.09864      0.07354 
C       2.45012      0.12665     -1.57454 
C       3.61922     -0.48747     -1.13125 
H       1.98404      2.31517      1.01413 
H       4.06933      1.21527      1.78167 
H       5.11871     -0.58410      0.41816 
H       1.97789     -0.19691     -2.50432 
H       4.06272     -1.28343     -1.73055 
H      -0.73616     -0.55966     -1.73459 
 
35 
CDBX/Phenylthiol Anion - Reactant 
I       0.10770     -0.09058      0.78096 
S       1.04367      2.66483      1.40156 
N       3.09901     -1.06436      1.99024 
C       2.07240     -0.69411      1.59992 
O      -1.82279     -0.09558     -0.12887 
C      -2.55491     -1.26282      0.01246 
C      -1.59425     -2.46057      0.08986 
C      -0.27237     -2.21240      0.45224 
C       0.66182     -3.23322      0.58947 
H       1.68977     -3.01112      0.88167 
C       0.26247     -4.54968      0.34954 
H       0.98806     -5.35948      0.44567 
C      -1.05633     -4.82498     -0.00993 
H      -1.36938     -5.85437     -0.19512 
C      -1.97868     -3.78665     -0.13447 
H      -3.01164     -4.01058     -0.41083 
C       1.85969      2.95768     -0.12039 
C       2.89773      2.12394     -0.59194 
C       3.53657      2.37377     -1.80438 
C       3.17627      3.46904     -2.59160 
C       1.51060      4.05886     -0.93314 
C       2.15723      4.31091     -2.13943 
H       3.20442      1.27428      0.02280 
H       4.33337      1.70275     -2.13565 
H       3.67962      3.66326     -3.54079 
H       0.70660      4.71139     -0.58729 
H       1.85671      5.17404     -2.73961 
C      -3.38582     -1.22817      1.30880 
C      -3.47751     -1.37614     -1.20611 
H      -4.14702     -2.24805     -1.15248 
H      -4.08768     -0.46369     -1.25831 
H      -2.86857     -1.43731     -2.11843 
H      -3.98717     -2.14134      1.43857 
H      -2.71718     -1.12547      2.17668 
H      -4.05001     -0.35210      1.28045 
 
 
 
 
 
35 
CDBX/Phenylthiol Anion - TS 
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I      -0.41199     -0.71146      0.57219 
S       2.07811      1.25751      0.17783 
N       1.86044     -0.99524     -1.74633 
C       1.41342     -0.45224     -0.79458 
O      -2.28129     -1.23927      1.78980 
C      -2.73190     -2.51798      1.70100 
C      -2.04405     -3.25788      0.52968 
C      -0.98921     -2.65162     -0.13556 
C      -0.31037     -3.24710     -1.19844 
H       0.51130     -2.72182     -1.69102 
C      -0.71324     -4.51896     -1.60565 
H      -0.19851     -5.00249     -2.43801 
C      -1.76405     -5.16550     -0.95340 
H      -2.07584     -6.16270     -1.27127 
C      -2.41947     -4.53896      0.10366 
H      -3.24039     -5.05140      0.61167 
C       2.13232      2.33858     -1.21202 
C       2.76682      1.95763     -2.40708 
C       2.82219      2.84132     -3.48288 
C       2.27114      4.12031     -3.38742 
C       1.56235      3.61960     -1.12961 
C       1.64178      4.50456     -2.20246 
H       3.18133      0.95147     -2.47799 
H       3.30977      2.52640     -4.40835 
H       2.32817      4.81114     -4.23093 
H       1.05369      3.90722     -0.20759 
H       1.19820      5.49906     -2.11513 
C      -2.41492     -3.29832      2.99684 
C      -4.25495     -2.50742      1.45634 
H      -4.69956     -3.51370      1.39772 
H      -4.72659     -1.95570      2.28266 
H      -4.45890     -1.96581      0.52180 
H      -2.76742     -4.34228      2.97205 
H      -1.32666     -3.29368      3.15748 
H      -2.88815     -2.77400      3.84049 
 
35 
CDBX/Phenylthiol Anion - Product 
I      -2.34514      0.67036     -3.10119 
S       1.13979     -0.48657     -1.91337 
N       1.93440      1.65043     -3.62750 
C       1.59857      0.79436     -2.92325 
O      -3.27704     -1.28582     -1.17534 
C      -2.75548     -0.98555     -0.02183 
C      -1.89864      0.35961     -0.00859 
C      -1.66527      1.14978     -1.13121 
C      -0.90208      2.32336     -1.07482 
H      -0.73532      2.89726     -1.98868 
C      -0.34794      2.74348      0.13014 
H       0.25272      3.65513      0.16642 
C      -0.56213      1.97968      1.27827 
H      -0.12744      2.28213      2.23424 
C      -1.32075      0.81767      1.19212 
H      -1.47165      0.22098      2.09588 
C       1.87639      0.04153     -0.37307 
C       2.66814      1.18070     -0.22831 
C       3.17405      1.50247      1.02976 
C       2.89914      0.69772      2.13424 
C       1.59329     -0.77214      0.72683 
C       2.10914     -0.44025      1.97625 
H       2.87263      1.82273     -1.08587 
H       3.78494      2.39976      1.14343 
H       3.29409      0.96071      3.11677 
H       0.93800     -1.63763      0.61292 
H       1.87159     -1.07148      2.83408 
C      -3.85615     -0.79149      1.07857 
C      -1.76775     -2.10741      0.46654 
H      -1.26285     -1.93232      1.43472 
H      -2.34980     -3.04000      0.52475 
H      -1.01826     -2.23892     -0.33198 
H      -3.49709     -0.57160      2.09907 
H      -4.51942      0.02034      0.74424 
H      -4.44529     -1.72123      1.09513 
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3. General Methods 
 

Technical grade solvents were used for quantitative flash chromatography. HPLC grade 

solvents purchased from Sigma-Aldrich or freshly distilled solvents were used for flash 

chromatography for compounds undergoing full characterization. Reaction solvents were 

dried by passage over activated alumina under nitrogen atmosphere (H2O content < 30 ppm, 

Karl-Fischer titration). We note; however, that the thiol-alkynylation reaction gives identical 

results when using HPLC grade THF purchased from Sigma-Aldrich or dried THF from the 

solvent system. Commercially available reagents were purchased from Acros, Aldrich, Fluka, 

VWR, Aplichem or Merck and used without any further purification. Chromatographic 

purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 

Å, using the solvents indicated as eluent with 0.1-0.5 bar pressure. TLC was performed on 

Merck silica gel 60 F254 TLC plates and visualized with UV light and permanganate stain. 

Melting points were measured on a calibrated Büchi B-540 melting point apparatus using 

open glass capillaries. 1H NMR spectra were measured on a Brucker DPX-400 400 MHz 

spectrometer, all signals are reported in ppm with the corresponding internal solvent peak or 

TMS as standard. The data is being reported as (s = singlet, d = doublet, t = triplet, q = 

quadruplet, qi = quintet, m = multiplet or unresolved, br = broad signal, coupling constant(s) 

in Hz, integration; interpretation). 13C NMR spectra were carried out with 1H-decoupling on a 

Brucker DPX-400 100 MHz. All signals are reported in ppm with the corresponding internal 

solvent signal or TMS as standard. Infrared spectra were obtained on a JASCO FT-IR B4100 

spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm-1 (w = 

weak, m = medium, s = strong, sh = shoulder). High resolution mass spectrometric 

measurements were performed by the mass spectrometry service of ISIC at the EPFL on a 

MICROMASS (ESI) Q-TOF Ultima API.  
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4. Preparation of Reagents  
 

1-Hydroxy-1,2-benziodoxol-3-(1H)-one (20) 

 

 
 

Following a reported procedure,1 NaIO4 (25.8 g, 121 mmol, 1.05 eq.) and 2-iodobenzoic acid 

(19) (28.5 g, 115 mmol, 1.00 eq.) were suspended in 30% (v:v) aq. AcOH (175 mL). The 

mixture was vigorously stirred and refluxed for 4 h. The reaction mixture was then diluted 

with cold water (500 mL) and allowed to cool to room temperature, while protecting it from 

light. After 1 h, the crude product was collected by filtration. The crystals were washed with 

ice water (3 x 100 mL) followed by acetone (3 x 100 mL) and then air-dried in the dark 

affording 20 (29.3 g, 111 mmol, 96.5%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 

8.04 (s, 1 H, OH), 8.01 (dd, 1 H, J = 7.6, 1.5 Hz, ArH), 7.96 (ddd, 1 H, J = 8.5, 7.2, 1.5 Hz, 

ArH), 7.84 (dd, 1 H, J = 8.2, 0.7 Hz, ArH), 7.70 (td, 1 H, J = 7.3, 1.1 Hz, ArH). 13C NMR 

(100 MHz, (DMSO-d6) δ 167.7, 134.5, 131.5, 131.1, 130.4, 126.3, 120.4. IR ν 3083 (w), 3060 

(w), 2867 (w), 2402 (w), 1601 (m), 1585 (m), 1564 (m), 1440 (m), 1338 (s), 1302 (m), 1148 

(m), 1018 (w), 834 (m), 798 (w), 740 (s), 694 (s), 674 (m), 649 (m). The characterization data 

is in accordance with reported literature values.2 

 

1-Acetoxy-1,2-benziodoxol-3-(1H)-one (21) 

 

 
 

Following a reported procedure,3 1-hydroxy-1,2-benziodoxol-3-(1H)-one (20, 10.3 g, 39.1 

mmol, 1.00 eq.) was suspended in acetic anhydride (35 mL) and heated to reflux for 30 

minutes. The resulting clear, slightly yellow solution was slowly let to warm up to room 

temperature and then cooled to 0 °C for 30 minutes. The white suspension was filtered and 

the filtrate was again cooled to 0 °C for 30 minutes. The suspension was once again filtered 

and the combined two batches of solid product were washed with hexane (2 x 20 mL) and 

dried in vacuo affording 21 (10.8 g, 35.3 mmol, 90.2%) as a white solid. 1H NMR (CDCl3, 

400 MHz): δ 8.24 (dd, 1 H, J = 7.6, 1.6 Hz, ArH), 8.00 (dd, 1 H, J = 8.3, 1.0 Hz, ArH), 7.92 

(ddd, 1 H, J = 8.4, 7.2, 1.6 Hz, ArH), 7.71 (td, 1 H, J = 7.3, 1.1 Hz, ArH), 2.25 (s, 3 H, 

COCH3).
 13C NMR (CDCl3, 100 MHz): δ 176.5, 168.2, 136.2, 133.3, 131.4, 129.4, 129.1, 

118.4, 20.4. The values of the NMR spectra are in accordance with reported literature data.3 

 

1-Cyano-1,2-benziodoxol-3-(1H)-one (10) 

 

                                                 
1 Kraszkiewicz, L.; Skulski, L. Arkivoc 2003, 120. 
2 Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem. Int. Ed. 2009, 48, 9346. 
3 Eisenberger, P.; Gischig, S.; Togni, A. Chem. Eur. J. 2006, 12, 2579. 
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Following a reported procedure,4 1-acetoxy-1,2-benziodoxol-3-(1H)-one (21, 10.5 g, 34.3 

mmol, 1.00 eq.) was dissolved under nitrogen in dry dichloromethane (80 mL). To the clear 

colorless solution was added via syringe trimethylsilyl cyanide (TMS-CN, 9.20 mL, 68.6 

mmol, 2.00 eq.) over a five minute time period. The reaction mixture was stirred at room 

temperature and under nitrogen for 72 hours. The resulting thick white suspension was 

filtered and the solid was washed with hexane (3 x 20 mL) and dried in vacuo affording 10 

(8.89 g, 32.6 mmol, 95.0%) as a white solid. 1H NMR (DMSO-d6, 400 MHz): δ 8.29 (d, 1 H, 

J = 8.3 Hz, ArH), 8.13 (dd, 1 H, J = 7.4, 1.7 Hz, ArH), 8.06-7.97 (m, 1 H, ArH), 7.88 (t, 1 H, 

J = 7.3 Hz, ArH). 13C NMR (DMSO-d6, 100 MHz): δ 166.7, 136.5, 132.0, 131.9, 130.2, 

127.8, 117.5, 87.9. IR ν 3157 (w), 3093 (w), 2160 (w), 1629 (s), 1562 (m), 1439 (m), 1321 

(s), 1298 (s), 1148 (m), 839 (m), 747 (s). The characterization data is in accordance with 

reported literature values.4 

 

3,5-Di(trifluoromethyl)phenyl(cyano)iodonium triflate (12) 

 

 
 

Following a reported procedure,5 to a solution consisting of trifluoroacetic anhydride (TFAA, 

20 mL) and dichloromethane (25 mL) was added dropwise at -50 °C aq. 30 wt% hydrogen 

peroxide (4.0 mL). After 10 minutes of stirring at -50 °C, a solution consisting of 1-iodo-3,5-

bis(trifluoromethyl)benzene (22) (1.02 g, 3.00 mmol, 1.00 eq.) and dichloromethane (5.0 mL) 

was added dropwise. The reaction mixture was gradually warmed to 15 °C over a 14 hour 

time period. Next, the mixture was concentrated in vacuo, affording the corresponding 

trifluoroacetate derivative (1.64 g, 2.90 mmol, 97%) as a white solid. The intermediate was 

dissolved in dry dichloromethane (10 mL) without additional purification and trimethylsilyl 

trifluoromethanesulfonate (TMS-OTf, 524 µL, 2.90 mmol, 1.00 eq.), followed by 

trimethylsilyl cyanide (TMS-CN, 388 µL, 2.90 mmol, 1.00 eq.), were added dropwise at room 

temperature. The resulting white suspension was diluted with dry dichloromethane (5.0 mL) 

and stirred at room temperature for 60 minutes, after which it was filtered. The white solid 

was washed with dichloromethane (2 x 10 mL), pentane (2 x 10 mL) and dried in vacuo to 

afford the title compound 12 (1.46 g, 2.83 mmol, 98%) as a white solid. 1H NMR (CD3CN, 

400 MHz): δ 8.97 (s, 2 H, ArH), 8.45 (s, 1 H, ArH). 19F NMR (CD3CN, 376 MHz): δ -63.6, -

79.3. The values of the NMR spectra are in accordance with reported literature data.5 

 

1-Acetoxy-3,3-dimethyl-3-(1H)-1,2-benziodoxole (31) 

 

                                                 
4 Akai, S.; Okuno, T.; Egi, M.; Takada, T.; Tohma, H.; Kita, Y. Heterocycles 1996, 42, 47. 
5 Zhdankin, V. V.; Scheuller, M. C.; Stang, P. J. Tetrahedron Lett. 1993, 34, 6853. 
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Following a reported procedure,3 1-chloro-3,3-dimethyl-3-(1H)-1,2-benziodoxole6 (23, 3.10 

g, 10.5 mmol, 1.00 eq.) and silver acetate (1.83 g, 11.0 mmol, 1.05 eq.) were suspended under 

nitrogen in dry acetonitrile (30 mL). The mixture was stirred in the dark at room temperature 

for 15 hours. Filtration of the precipitated silver chloride followed by solvent removal in 

vacuo yielded compound 24 (2.98 g, 9.31 mmol, 89%) as a white solid. 1H NMR (CDCl3, 400 

MHz): δ 7.79 (dd, 1 H, J = 8.0, 1.3 Hz, ArH), 7.52-7.41 (m, 2 H, ArH), 7.17 (dd, 1 H, J = 7.4, 

1.6 Hz, ArH), 2.10 (s, 3 H, COCH3), 1.52 (s, 6 H, CH3). 
13C NMR (CDCl3, 100 MHz): δ 

177.4, 149.4, 130.5, 130.0, 129.9, 126.3, 115.8, 84.6, 29.3, 21.6. The characterization data is 

in accordance with reported literature values.3 

 

1-Cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (11) 

 

 
 

To a solution consisting of 1-acetoxy-3,3-dimethyl-3-(1H)-1,2-benziodoxole (24, 2.00 g, 6.25 

mmol, 1.00 eq.) and dry dichloromethane (15 mL) was added dropwise trimethylsilyl cyanide 

(TMS-CN, 1.71 mL, 12.5 mmol, 2.00 eq.) at room temperature under nitrogen. The clear 

colorless solution was stirred at room temperature for 20 hours. Solvent removal afforded a 

white solid, which was suspended in pentane (10 mL), filtered and dried in vacuo affording 

pure compound 11 (1.73 g, 6.03 mmol, 96%) as a white solid. Rf (pentane:EtOAc 7:3) = 0.54. 
1H NMR (CDCl3, 400 MHz): δ 8.05 (d, 1 H, J = 8.3 Hz, ArH), 7.62 (t, 1 H, J = 7.3 Hz, ArH), 

7.58-7.49 (m, 1 H, ArH), 7.33 (d, 1 H, J = 7.5 Hz, ArH), 1.48 (s, 6 H, CH3).
 13C NMR 

(CDCl3, 100 MHz): δ 148.1, 131.7, 131.0, 128.3, 126.9, 111.6, 98.0, 80.4, 30.3. IR ν 2974 

(w), 2925 (w), 2139 (w), 1461 (m), 1436 (m), 1251 (m), 1160 (s), 1003 (w), 954 (s), 869 (m), 

761 (s). The characterization data is in accordance with reported literature values.7 

 

  

                                                 
6 This commercially available compound can also be synthesized following the practical procedure by Matousek, 

V.; Pietrasiak, E.; Schwenk, R.; Togni, A. J. Org. Chem. 2013, 78, 6763.  
7 Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Mismash, B.; Woodward, J. K.; Simonsen, A. J. 

Tetrahedron Lett. 1995, 36, 7975. 
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5. Cyanation Reaction 

 

5.1 Reaction Optimization with 1-(tert-Butyl)-4-Thiocyanatobenzene 
 

 
 

The following general procedure was utilized to optimize the thiol-cyanation reaction. A 25 

mL round bottom flask was charged with a magnetic stir bar, 1-(tert-butyl)-4-thiol (13a, 83.0 

mg, 0.500 mmol, 1.00 eq.) and the indicated solvent (5.0 mL). To this solution was added 

base (0.525 mmol, 1.05 eq.), followed by the cyano source (10-12, 0.550 mmol, 1.10 eq.). 

The resulting reaction mixture was stirred with an open flask for 5 minutes at room 

temperature followed by solvent removal under reduced pressure. The crude product was 

purified by flushing it dissolved in minimum amounts of THF through a small plug of silica 

gel using pentane:EtOAc 99:1 as mobile phase. The desired cyanation product (14a) and 

disulfide side-product(15a) were isolated as analytically pure products. It took 20 minutes of 

stirring at room temperature with an open flask for the control experiment (entry 5) with no 

added base to go to completion. For this entry, the 2-iodobenzoic acid side product 21 was 

also isolated by switching the mobile phase to pentane:EtOAc 10:1 and 1% acetic acid once 

the disulfide (15a) and cyanation product (14a) eluted off the column.  

 

1-(tert-Butyl)-4-thiocyanatobenzene (14a) was obtained as a colorless oil. Rf (pentane) = 

0.38. 1H NMR (CDCl3, 400 MHz): δ 7.50-7.43 (m, 4 H, ArH), 1.33 (s, 9 H, tBu). 13C NMR 

(CDCl3, 100 MHz): δ 153.4, 130.5, 127.4, 120.6, 111.0, 34.9, 31.2. IR ν 2965 (m), 2906 (w), 

2870 (w), 2158 (w), 1490 (m), 1400 (w), 1365 (w), 1269 (w), 1116 (m), 1011 (w), 827 (s). 

HRMS (ESI) C11H13NNaS+ [M+Na]+ calc. = 214.0661; [M+Na]+ obs. = 214.0656. 

 

1,2-Bis(4-(tert-butyl)phenyl)disulfane (15a) was obtained as a light yellow solid. Rf 

(pentane) = 0.58. 1H NMR (CDCl3, 400 MHz): δ 7.48-7.42 (m, 4 H, ArH), 7.37-7.31 (m, 4 H, 

ArH), 1.31 (s, 18 H, tBu). 13C NMR (CDCl3, 100 MHz): δ 150.6, 134.1, 127.8, 126.3, 34.7, 

31.4. IR ν 2963 (s), 2903 (w), 2866 (w), 1487 (m), 1397 (w), 1364 (w), 1269 (w), 1116 (w), 

1012 (w), 823 (s), 737 (w). The values of the NMR spectra are in accordance with reported 

literature data.8 

 

2-Iodobenzoic acid (19) (68.7 mg, 0.277 mmol) was obtained as a white solid. 1H NMR 

(DMSO-d6, 400 MHz): δ 13.3 (bs, 1 H, CO2H), 7.97 (dd, 1 H, J = 8.0, 1.1 Hz, ArH), 7.71 (dd, 

1 H, J = 7.7, 1.8 Hz, ArH), 7.47 (td, 1 H, J = 7.6, 1.2 Hz, ArH), 7.22 (td, 1 H, J = 7.7, 1.8 Hz, 

                                                 
8 Hayashi, M.; Okunaga, K.; Nishida, S.; Kawamura, K.; Eda, K. Tetrahedron Lett. 2010, 51, 6734. 



S19 
 

ArH). 13C NMR (DMSO-d6, 100 MHz): δ 168.2, 140.6, 136.9, 132.5, 130.1, 128.2, 94.2. The 

values of the NMR spectra are in accordance with reported literature data.9 

 

Table S3. Results of the thiol-cyanation optimization study. 

Entry 
Cyanating 

Reagent 
Base Solvent 

Isolated 

Yield 14a 

Isolated 

Yield 15a 

1 10 NEt3 THF 40% 60% 

2 10 TMG THF 79% 20% 

3 10 TBD THF 74% 26% 

4 10 DBU THF >95% <5% 

5 10 DBU MeOH 64% 35% 

6 10 DBU CH3CN 86% 12% 

7 10 - THF <10% 90% 

8 12 DBU THF 17% 81% 

9 11 DBU THF >95% <5% 

 

 

 

 

  

                                                 
9 Ball, L. T.; Lloyd-Jones, G. C.; Russell, C. A. Chem. Eur. J. 2012, 18, 2931. 
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5.2 General Procedures for Cyanation 

 

General Procedure A (GPA): for thiols with CDBX (11) 
 

 
 

A 25 mL round bottom flask was charged with a magnetic stirring bar, thiol derivative (0.500 

mmol, 1.00 eq.) and THF (5.0 mL). To this solution was added 1,8-diazabicycloundec-7-ene 

(DBU, 79.0 µL, 0.525 mmol, 1.05 eq.), followed by 1-cyano-3,3-dimethyl-3-(1H)-1,2-

benziodoxole (CDBX (11), 158 mg, 0.550 mmol, 1.10 eq.). In case DBU addition yielded a 

THF-insoluble thiolate, CDBX was added prior to DBU. An additional equivalent of DBU 

(total amount: 153 µL, 1.03 mmol. 2.05 eq.) was added for carboxylic acid containing 

substrates. The resulting reaction mixture was stirred in an open flask for 5 minutes at room 

temperature (unless otherwise stated). The reaction was quenched with 5% aq. citric acid (10 

mL). The aq. mixture was extracted with EtOAc (3 x 10 mL) and the combined organic layers 

were dried over MgSO4, filtered and concentrated in vacuo. The crude product was further 

purified as indicated below. 

 

General Procedure B (GPB): for thiols with CBX (10) 
 

 
 

A 25 mL round bottom flask was charged with a magnetic stirring bar, thiol derivative (0.500 

mmol, 1.00 eq.) and THF (5.0 mL). To this solution was added 1,8-diazabicycloundec-7-ene 

(DBU, 79.0 µL, 0.525 mmol, 1.05 eq.), followed by 1-cyano-1,2-benziodoxol-3-(1H)-one 

(CBX (10), 150 mg, 0.550 mmol, 1.10 eq.). In case DBU addition yielded a THF-insoluble 

thiolate, CBX was added prior to DBU. An additional equivalent of DBU (total amount: 153 

µL, 1.03 mmol. 2.05 eq.) was added for carboxylic acid containing substrates. The resulting 

reaction mixture was stirred in an open flask for 5 minutes at room temperature (unless 

otherwise stated). The reaction was quenched with 5% aq. citric acid (10 mL), extracted and 

further purified as indicated below. 

 

General procedure C: For disulfides with CDBX (11). 

 

A 25 mL round bottom flask was charged with a magnetic stirring bar, disulfide derivative 

(0.250 mmol, 1.00 eq.) and THF (5.0 mL). To this solution was added 1,8-diazabicycloundec-
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7-ene (DBU, 79.0 µL, 0.525 mmol, 2.10 eq.), followed by 1-cyano-3,3-dimethyl-3-(1H)-1,2-

benziodoxole (CDBX, 11, 158 mg, 0.550 mmol, 2.20 eq.). The resulting reaction mixture was 

stirred in an open flask for 60 minutes at room temperature. The reaction was quenched with 

5% aq. citric acid (10 mL), extracted and further purified by flash chromatography over silica 

gel.  

 

5.3 Scope of the Cyanation Reaction 
 

1-(tert-Butyl)-4-thiocyanatobenzene (14a) 

 
Following general procedure GPA with thiol 13a (86 mg, 0.50 mmol, 1.0 equiv.), the 

obtained crude oil was dissolved in minimum amounts of THF and purified by flash 

chromatography using pentane:EtOAc 99:1 as mobile phase affording 14a (91.8 mg, 0.480 

mmol, 96%) as a colorless oil.  

 

Following general procedure GPC with disulfide 15a (83 mg, 0.25 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flash chromatography using pentane:EtOAc 99:1 as mobile 

phase affording 14a (88 mg, 0.46 mmol, 92 %) as a colorless oil.  

 

Rf (pentane) = 0.38. 1H NMR (CDCl3, 400 MHz): δ 7.50-7.43 (m, 4 H, ArH), 1.33 (s, 9 H, 

tBu). 13C NMR (CDCl3, 100 MHz): δ 153.4, 130.5, 127.4, 120.6, 111.0, 34.9, 31.2. IR ν 2965 

(m), 2906 (w), 2870 (w), 2158 (w), 1490 (m), 1400 (w), 1365 (w), 1269 (w), 1116 (m), 1011 

(w), 827 (s). HRMS (ESI) C11H13NNaS+ [M+Na]+ calc. = 214.0661; [M+Na]+ obs. = 

214.0656. 

 

Thiocyanatobenzene (14b) 

 
Following general procedure GPA with thiol 13b (55.6 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was dissolved in minimum amounts of THF and purified by flash 

chromatography using pentane:EtOAc 40:1 as mobile phase affording 14b (60.9 mg, 0.450 

mmol, 90%) as a colorless oil. Rf (pentane:EtOAc 95:5) = 0.57. 1H NMR (CDCl3, 400 MHz): 

δ 7.56-7.49 (m, 2 H, ArH), 7.47-7.38 (m, 3 H, ArH). 13C NMR (CDCl3, 100 MHz): δ 130.3, 

130.1, 129.6, 124.4, 110.6. IR ν 3063 (w), 2158 (m), 1582 (w), 1479 (m), 1444 (m), 1021 (w), 

911 (w), 740 (s). The values of the NMR spectra are in accordance with reported literature 

data.10 

 

2-Thiocyanatonaphthalene (14c) 

 
Following general procedure GPA with thiol 13c (81.0 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flushing it dissolved in minimum amounts of THF through 

a small plug of silica gel using using pentane:EtOAc 99:1 as mobile phase affording 14c (87.7 

mg, 0.473 mmol, 95%) as a colorless oil. Rf (pentane:EtOAc 95:5) = 0.54. 1H NMR (CDCl3, 

                                                 
10 Sun, N.; Zhang, H.; Mo, W. M.; Hu, B. X.; Shen, Z. L.; Hu, X. Q. Synlett 2013, 24, 1443. 
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400 MHz): δ 8.01 (d, 1 H, J = 2.0 Hz, ArH), 7.93-7.77 (m, 3 H, ArH), 7.62-7.50 (m, 3 H, 

ArH). 13C NMR (CDCl3, 100 MHz): δ 133.7, 133.1, 130.4, 129.9, 128.0, 127.8, 127.7, 127.6, 

126.3, 121.3, 110.8. IR ν 3057 (w), 2157 (m), 1503 (m), 857 (m), 813 (s), 745 (s). The values 

of the characterization data are in accordance with reported literature data.10 

 

1-Fluoro-4-thiocyanatobenzene (14d) 

 
Following general procedure GPA with thiol 13d (66.8 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flushing it dissolved in minimum amounts of THF through 

a small plug of silica gel using using pentane:EtOAc 99:1 as mobile phase affording 14d 

(72.3 mg, 0.472 mmol, 94%) as a colorless oil. Rf (pentane:EtOAc 95:5) = 0.49. 1H NMR 

(CDCl3, 400 MHz): δ 7.62-7.49 (m, 2 H, ArH), 7.21-7.08 (m, 2 H, ArH). 13C NMR (CDCl3, 

100 MHz): δ 163.7 (d, J = 250 Hz), 133.3 (d, J = 8.8 Hz), 119.3 (d, J = 3.5 Hz), 117.7 (d, J = 

23 Hz), 110.7. IR ν 3099 (w), 2159 (m), 1591 (m), 1491 (s), 1402 (w), 1232 (s), 1161 (m), 

1082 (w), 1013 (w), 830 (s). The values of the NMR spectra are in accordance with reported 

literature data.10 

 

1,4-Dichloro-2-thiocyanatobenzene (14e) 

 
Following general procedure GPA with thiol 13e (91.0 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was dissolved in minimum amounts of THF and purified by flash 

chromatography using pentane:EtOAc 50:1 as mobile phase affording 14e (97.6 mg, 0.478 

mmol, 96%) as a white solid. Rf (pentane) = 0.27. Melting point = 81.6-84.9 °C. 1H NMR 

(CDCl3, 400 MHz): δ 7.66 (d, 1 H, J = 2.3 Hz, ArH), 7.37 (d, 1 H, J = 8.6 Hz, ArH), 7.30 (dd, 

1 H, J = 8.6, 2.3 Hz, ArH). 13C NMR (CDCl3, 100 MHz): δ 134.5, 131.2, 130.6, 130.3, 128.9, 

126.7, 108.4. IR ν 3083 (w), 3068 (w), 2164 (m), 1565 (w), 1448 (s), 1372 (m), 1252 (w), 

1100 (m), 1032 (s), 865 (m), 825 (s). HRMS (APPI) C7H2Cl2NS+ [M]+ calc. = 201.92900; 

[M]+ obs. = 201.9299. The above melting point is in accordance with a reported literature 

value.11 
 

1-Bromo-2-thiocyanatobenzene (14f) 

 
Following general procedure GPA with thiol 13f (100 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flushing it dissolved in minimum amounts of THF through 

a small plug of silica gel using pentane:EtOAc 50:1 as mobile phase affording 14f (105 mg, 

0.489 mmol, 98%) as a clear colorless oil. Rf (pentane:EtOAc 95:5) = 0.75. 1H NMR (CDCl3, 

400 MHz): δ 7.70 (dd, 1 H, J = 8.0, 1.5 Hz, ArH), 7.60 (dd, 1 H, J = 8.0, 1.4 Hz, ArH), 7.42 

(ddd, 1 H, J = 8.0, 7.5, 1.4 Hz, ArH), 7.25 (ddd, 1 H, J = 8.0, 7.4, 1.5 Hz, ArH). 13C NMR 

(CDCl3, 100 MHz): δ 133.6, 130.2, 129.5, 129.1, 127.2, 121.8, 109.6. IR ν 2943 (w), 2864 

(w), 2161 (w), 2094 (w), 1555 (w), 1451 (s), 1432 (m), 1262 (w), 1018 (m), 883 (w), 856 (w), 

748 (s). The values of the characterization data are in accordance with reported literature 

data.10 

 

                                                 
11 Pilgram, K.; Phillips, D. D. J. Org. Chem. 1965, 30, 2388. 
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1-Thiocyanato-4-(trifluoromethyl)benzene (14g) 

 
Following general procedure GPA with thiol 13g (91.0 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flushing it dissolved in minimum amounts of THF through 

a small plug of silica gel using pentane:EtOAc 99:1 as mobile phase affording 14g (89.2 mg, 

0.439 mmol, 88%) as a white solid. Rf (pentane:EtOAc 95:5) = 0.52. Melting point = 31.0-

31.3°C.  1H NMR (CDCl3, 400 MHz): δ 7.70 (d, 2 H, J = 8.4 Hz, ArH), 7.63 (d, 2 H, J = 8.4 

Hz, ArH). 13C NMR (CDCl3, 100 MHz): δ 131.5 (q, J = 33 Hz), 129.7, 129.2, 127.2 (q, J = 

3.8 Hz), 123.5 (q, J = 270 Hz), 109.1. IR ν 2162 (w), 1610 (w), 1407 (w), 1324 (s), 1170 (m), 

1126 (s), 1088 (m), 1064 (s), 1013 (m), 831 (m). The values of the characterization data are in 

accordance with reported literature data.10  

 

1-Nitro-4-thiocyanatobenzene (14h) 

 
Following general procedure GPA with thiol 13h (78.0 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was dissolved in minimum amounts of THF and purified by two 

consecutive flash chromatography's using pentane:EtOAc 20:1 and 15:1 as mobile phase 

affording 14h (83.2 mg, 0.462 mmol, 92%) as a white solid.  

 

Following general procedure GPC with disulfide 15h (77 mg, 0.25 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flash chromatography using pentane:EtOAc 99:1 as mobile 

phase affording 14h (68 mg, 0.38 mmol, 75 %) as a white solid.  

 

Rf (pentane:EtOAc 9:1) = 0.44. Melting point = 133.6-133.8 °C 1H NMR (CDCl3, 400 MHz): 

δ 8.34-8.26 (m, 2 H, ArH), 7.71-7.64 (m, 2 H, ArH). 13C NMR (CDCl3, 100 MHz): δ 148.0, 

133.5, 128.8, 125.2, 108.2. IR ν 3107 (w), 2163 (w), 1604 (w), 1579 (w), 1523 (s), 1477 (w), 

1343 (s), 1084 (w), 845 (m), 738 (m). The values of the characterization data are in 

accordance with reported literature data.12 

 

Methyl 2-thiocyanatobenzoate (14i) 

 
Following general procedure GPA with thiol 13i (87.0 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was dissolved in minimum amounts of THF and purified by flash 

chromatography using pentane:EtOAc 49:1 as mobile phase affording 14i (91.0 mg, 0.471 

mmol, 94%) as a white solid. Rf (pentane:EtOAc 95:5) = 0.67. Melting point = 75.0-76.0 °C. 

1H NMR (CDCl3, 400 MHz): δ 8.10 (dd, 1 H, J = 7.8, 1.6 Hz, ArH), 7.88 (dd, 1 H, J = 8.2, 

1.1 Hz, ArH), 7.62 (ddd, 1 H, J = 8.2, 7.4, 1.6 Hz, ArH), 7.40 (td, 1 H, J = 7.6, 1.1 Hz, ArH), 

3.94 (s, 3 H, CO2CH3). 
13C NMR (CDCl3, 100 MHz): δ 166.5, 134.2, 131.7, 130.9, 127.8, 

127.6, 126.1, 111.6, 53.0. IR ν 2961 (w), 2154 (w), 1700 (s), 1436 (m), 1309 (s), 1290 (s), 

                                                 
12 Bangher, A.; Guy, R. G.; Pichot, Y.; Sillence, J. M.; Steel, C. J.; Swinbourne, F. J.; Tamiatti, K. Spectrochim. 

Acta Mol. Biomol. Spectros. 1995, 51, 1703. 
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1269 (s), 1117 (m), 1057 (m), 739 (s). The values of the characterization data are in 

accordance with reported literature data.13 

 

1-Methyl-3-thiocyanatobenzene (14j) 

 
Following general procedure GPA with thiol 13j (63.4 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was dissolved in minimum amounts of THF and purified by flash 

chromatography using pentane:EtOAc 99:1 as mobile phase affording 14j (69.5 mg, 0.466 

mmol, 93%) as a colorless oil. Rf (pentane:EtOAc 95:5) = 0.63. 1H NMR (CDCl3, 400 MHz): 

δ 7.36-7.27 (m, 3 H, ArH), 7.24-7.17 (m, 1 H, ArH), 2.37 (s, 3 H, CH3). 
13C NMR (CDCl3, 

100 MHz): δ 140.5, 130.5, 130.4, 130.0, 127.1, 124.0, 110.8, 21.3. IR ν 2923 (w), 2158 (m), 

1596 (w), 1478 (m), 849 (w), 776 (s). The values of the NMR spectra are in accordance with 

reported literature data.10  

 

N-(4-Thiocyanatophenyl)acetamide (14k) 

 
Following general procedure GPA with thiol 13k (85.0 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was dissolved in minimum amounts of THF and purified by flash 

chromatography using pentane:EtOAc 2:1 to 1:1 as mobile phase affording 14k (87.6 mg, 

0.456 mmol, 91%) as a white solid. Rf (EtOAc:pentane 7:3) = 0.49. Melting point = 190.6-

192.4 °C. 1H NMR (THF-d8, 400 MHz): δ 9.29 (bs, 1 H, NH), 7.76-7.68 (m, 2 H, ArH), 7.53-

7.43 (m, 2 H, ArH), 2.04 (s, 3 H, CH3). 
13C NMR (THF-d8, 100 MHz): δ 169.0, 142.6, 132.8, 

121.3, 118.0, 111.3, 24.3. IR ν 3250 (w), 3179 (w), 3101 (w), 3057 (w), 2152 (w), 1675 (m), 

1610 (m), 1588 (s), 1538 (s), 1492 (m), 1396 (m), 1370 (m), 1318 (s), 1265 (w), 840 (m), 771 

(w). HRMS (ESI) C9H8N2NaOS+ [M+Na]+ calc. = 215.0250; [M+Na]+ obs. = 215.0255.  

In addition, 2-(2-iodophenyl)propan-2-ol (132 mg, 0.505 mmol, 92% based on 0.550 mmol of 

starting material 11) was isolated as a colorless oil. 1H NMR (CDCl3, 400 MHz): δ 7.95 (dd, 1 

H, J = 7.8, 1.4 Hz, ArH), 7.62 (dd, 1 H, J = 7.9, 1.7 Hz, ArH), 7.31 (ddd, 1 H, J = 8.0, 7.3, 1.4 

Hz, ArH), 6.88 (td, 1 H, J = 7.6, 1.7 Hz, ArH), 3.07 (bs, 1 H, OH), 1.75 (s, 6 H, CH3). 
13C 

NMR (CDCl3, 100 MHz): δ 148.5, 142.7, 128.6, 128.1, 126.8, 93.3, 73.6, 29.8. The values of 

the NMR data are in accordance with reported literature data.14 

 

1-Methoxy-3-thiocyanatobenzene (14l) 

 
Following general procedure GPA with thiol 13l (71.5 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flushing it dissolved in minimum amounts of THF through 

a small plug of silica gel using pentane:EtOAc 60:1 as mobile phase affording 14l (77.6 mg, 

0.470 mmol, 94%) as a colorless oil. Rf (pentane:EtOAc 95:5) = 0.43. 1H NMR (CDCl3, 400 

MHz): δ 7.33 (t, 1 H, J = 8.1 Hz, ArH), 7.08 (ddd, 1 H, J = 7.8, 1.8, 0.9 Hz, ArH), 7.04 (t, 1 

H, J = 2.1 Hz, ArH), 6.93 (ddd, 1 H, J = 8.4, 2.5, 0.9 Hz, ArH), 3.83 (s, 3 H, OCH3). 
13C 

NMR (CDCl3, 100 MHz): δ 160.7, 131.1, 125.4, 122.0, 115.6, 115.2, 110.5, 55.7. IR ν 2941 

                                                 
13 Zang, H.; Breydo, L.; Mitra, K.; Dannaldson, J.; Gates, K. S. Bioorg. Med. Chem. Lett. 2001, 11, 1511. 
14 Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 

2012, 134, 12002. 
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(w), 2838 (w), 2159 (w), 1594 (s), 1483 (s), 1289 (m), 1251 (s), 1036 (s), 855 (m), 775 (m). 

The values of the characterization data are in accordance with reported literature data.10 

 

1,4-Dithiocyanatobenzene (14m) 

 
The reaction was performed using general procedure GPB with dithiol 13m (73.3 mg, 0.500 

mmol, 1.0 equiv.). As the starting material contained two thiol functionalities, the reaction 

was carried out using 2.10 eq. DBU (158 µL, 1.05 mmol) and 2.20 eq. 1-cyano-3,3-dimethyl-

3-(1H)-1,2-benziodoxole (10, 316 mg, 1.10 mmol). The crude oil was dissolved in minimum 

amounts of THF and purified by two consecutive flash chromatography's using 

pentane:EtOAc 15:1 and 10:1 as mobile phase affording 14m (83.8 mg, 0.436 mmol, 87%) as 

a white solid. Rf (pentane:EtOAc 9:1) = 0.38. Melting point = 109.0-109.8. °C. 1H NMR 

(CDCl3, 400 MHz): δ 7.58 (s, 4 H, ArH). 13C NMR (CDCl3, 100 MHz): δ 130.9, 126.7, 109.2. 

IR ν 2161 (m), 1669 (w), 1632 (w), 1478 (w), 1394 (w), 1007 (w), 809 (s). The values of the 

characterization data are in accordance with reported literature data.12 
 

1,3,5-Trithiocyanatobenzene (14n) 

 
The reaction was performed using general procedure GPB with dithiol 13n (89 mg, 0.500 

mmol, 1.0 equiv.). As the starting material contained three thiol functionalities, the reaction 

was carried out using 3.15 eq. DBU (237 µL, 1.58 mmol) and 3.30 eq. 1-cyano-3,3-dimethyl-

3-(1H)-1,2-benziodoxole (10, 474 mg, 1.65 mmol). The crude oil was dissolved in minimum 

amounts of THF and purified by two consecutive flash chromatography's using 

pentane:EtOAc 9:1 and 7:1 as mobile phase affording 14n (97.3 mg, 0.390 mmol, 78%) as a 

white solid. Rf (pentane:EtOAc 7:3) = 0.57. Melting point = 112.1-114.3 °C. 1H NMR 

(CDCl3, 400 MHz): δ 7.66 (s, 3 H, ArH). 13C NMR (CDCl3, 100 MHz): δ 130.4, 129.0, 107.8. 

IR ν 3057 (m), 2167 (m), 1567 (s), 1421 (m), 1125 (w), 848 (m), 782 (w). HRMS (ESI) 

C9H4N3S3 [M+H]+ calc. = 249.9562; [M+H]+ obs. = 249.9564. 

 

2-(Thiocyanatomethyl)furan (14o) 

 

 
Following general procedure GPB with thiol 13o (57.0 mg, 0.500 mmol, 1.0 equiv.), the 

obtained crude oil was purified by flash chromatography using pentane:EtOAc 95: to 9:1 as 

mobile phase affording 14o (61 mg, 0.47 mmol, 88%) as a yellow oil. Rf (Pentane:EtOAc 9:1) 

= 0.45. 1H NMR (CDCl3, 400 MHz): δ 7.45 (dd, 1H, J = 1.8, 0.8 Hz, CHO), 6.44 (dd, 1H, J = 3.2, 

0.5 Hz, ArH), 6.38 (dd, 1H, J = 3.4, 2.0 Hz, ArH), 4.21 (s, 2H, CH2S).13C NMR (CDCl3, 100 

MHz): δ. 147.05, 143.95, 111.59, 111.09, 110.65, 30.98. IR ν 2361 (w), 2341 (w), 2155 (m), 

2082 (w), 1500 (w), 1249 (w), 1153 (m), 1014 (s), 940 (m), 746 (s). 

The values of the 1HNMR data are in accordance with reported literature data15 

 

                                                 
15 Maeda, H.; Kawaguchi, T.; Masui, M.; Ohmori, H. Chem. Pharm. Bull. 1990, 38, 1389. 
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Cholest-5-en-3β-yl thiocyanate (14p) 

 
Following general procedure GPB with thiol 13p (201 mg, 0.500 mmol, 1.0 equiv.), the crude 

solid was purified by flash chromatography using pentane:EtOAc  9:1 as mobile phase 

affording 14p (211 mg, 0.477 mmol, 97%) as  white crystals. Rf (Pentane:EtOAc 95:5) = 

0.55. Melting point = 125.0-126.2°C. 1H NMR (CDCl3, 400 MHz): δ 5.43-5.39 (m, 1H, 

CHsp2), 3.08 (tt, 1H, J = 12.4, 4.2 Hz, CHS), 2.59 – 2.48 (m, 1H), 2.44 (ddd, 1H, J = 13.6, 4.5, 

2.3 Hz), 2.08 – 1.93 (m, 4H), 1.90-1.76 (m, 2H), 1.62-1.04 (m, 18H), 1.02 (s, 3H, CH3), 1.01-

0.93 (m, 2H), 0.91 (d, 3H, J = 6.5 Hz, CH3), 0.87 (d, 3H, J = 1.8 Hz, CH3-iPr), 0.85 (d, 3H, J 

= 1.7 Hz, CH3-iPr), 0.67 (s, 3H, CH3).
13C NMR (CDCl3, 100 MHz): δ 139.9, 123.1, 111.2, 

56.6, 56.1, 50.0, 48.1, 42.2, 39.7, 39.6, 39.5, 39.3, 36.4, 36.2, 35.8, 31.8, 31.78, 31.73, 29.9, 

28.2, 28.0, 24.2, 23.8, 22.8, 22.5, 20.9, 19.2, 18.7, 11.8. IR ν 2930 (s), 2865 (s), 2153 (w), 

1465 (m), 1380 (w), 823 (w). 

The values of the NMR spectra and physical data are in accordance with reported literature 

data.16
  

 

1-Thiocyanatoadamantane (14q) 

 
 

Following general procedure GPB with thiol 13q (84.0 mg, 0.500 mmol, 1.0 equiv.), the 

crude solid was purified by flash chromatography using pentane:EtOAc 99:1 to 95:5 as 

mobile phase affording 14q (96.0 mg, 0.497 mmol, 99%) as a white solid. Rf (Pentane:EtOAc 

9:1) = 0.7. Melting point = 66.0-67.0°C. 1H NMR (CDCl3, 400 MHz): δ 2.16 (s, 3H, CH), 

2.08- 2.03 (m, 6H, CH2), 1.78-1.65 (m, 6H, CH2).
13C NMR (CDCl3, 100 MHz): δ. 110.9, 

54.0, 43.6, 35.4, 30.3. IR ν 2911 (s), 2854 (m), 2143 (w), 1453 (w), 1301 (w), 1035 (s), 819 

(w).HRMS (ESI) C11H15NNaS+ [M+Na]+  calc. = 216.0817; [M+Na]+ obs. = 216.0816. The 

values of the NMR spectra and physical data are in accordance with reported literature data.17  

 

12-Thiocyanatododecanoic acid (14r) 

 
Following general procedure GPB with thiol 13r (121 mg, 0.500 mmol, 1.0 equiv.), the aq. 

mixture was extracted with EtOAc (3 x 10 mL) and the combined organic layers were dried 

over MgSO4, filtered and concentrated in vacuo. The crude oil was purified by two 

consecutive flash chromatography's using pentane:EtOAc 20:1 and 1% acetic acid as mobile 

phase affording 14r (111 mg, 0.432 mmol, 86%) as a white solid. Rf (pentane:EtOAc 4:1, 

bromocresol green staining) = 0.49. Melting point = 32.1-33.8 °C. 1H NMR (CDCl3, 400 

MHz): δ 11.1 (bs, 1 H, CO2H), 2.94 (t, 2 H, J = 7.3 Hz, CH2SCN), 2.34 (t, 2 H, J = 7.5 Hz, 

CH2CO2H), 1.81 (p, 2 H, J = 7.4 Hz, CH2CH2SCN), 1.62 (p, 2 H, J = 7.5 Hz, CH2CH2CO2H), 

                                                 
16 Morzycki, J.W. et al. Steroids 2014, 82, 60. 
17 Ando, T.; Clark, J.H. ; Cork, D.G. ; Fujita, M. ; Kimura, T. J. Org. Chem. 1987, 52, 681. 
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1.43 (p, 2 H, J = 7.2 Hz, CH2), 1.38-1.21 (m, 12 H, CH2). 
13C NMR (CDCl3, 100 MHz)18: δ 

180.3, 112.6, 34.2, 30.0, 29.5, 29.4, 29.3, 29.1, 29.0, 28.1, 24.8. IR ν 3458 (w), 2931 (s), 2857 

(m), 2155 (s), 1711 (m), 1462 (w), 1274 (w), 1054 (m), 730 (w). HRMS (ESI) C13H24NO2S 

[M+H]+ calc. = 258.1522; [M+H]+ obs. = 258.1522. 

 

2-(4-Thiocyanatophenyl)acetic acid (14s) 

 
Following general procedure GPA with thiol 13s (87.0 mg, 0.500 mmol, 1.0 equiv.), the crude 

oil was dissolved in minimum amounts of THF and purified by flash chromatography using 

pentane:EtOAc 8:1 to 7:1 with 1% acetic acid as mobile phase affording 14s (87.2 mg, 0.451 

mmol, 90%) as a white solid. Rf (pentane:EtOAc 7:3 with 1% acetic acid) = 0.34. Melting 

point = 105.2-106.8 °C. 1H NMR (CDCl3, 400 MHz): δ 11.5 (bs, 1 H, CO2H), 7.50 (d, 2 H, J 

= 7.9 Hz, ArH), 7.36 (d, 2 H, J = 8.0 Hz, ArH), 3.68 (s, 2 H, CH2). 
13C NMR (CDCl3, 100 

MHz): δ 177.2, 135.1, 131.4, 130.4, 123.5, 110.5, 40.5. IR ν 2918 (w), 2153 (w), 1691 (s), 

1420 (m), 1249 (m), 911 (m), 810 (m), 739 (w). HRMS (ESI) C9H7NNaO2S
+ [M+Na]+ calc. = 

216.0090; [M+Na]+ obs. = 216.0088. In addition, 2-(2-iodophenyl)propan-2-ol (130 mg, 

0.496 mmol, 90% based on 0.550 mmol of starting material 11) was isolated as a colorless oil.  

 

4-Thiocyanatobenzoic acid (14t) 

 
Following general procedure GPA with thiol 13t (78.0 mg, 0.500 mmol, 1.0 equiv.), the crude 

solid was dissolved in minimum amounts of THF and purified by flash chromatography using 

pentane:EtOAc 7:1 with 1% acetic acid as mobile phase affording 14t (81.6 mg, 0.455 mmol, 

91%) as a white solid. Rf (pentane:EtOAc 7:3 with 1% acetic acid) = 0.54. Melting point = 

223.9-225.8 °C. 1H NMR (THF-d8, 400 MHz): δ 11.6 (bs, 1 H, CO2H), 8.08 (d, 2 H, J = 8.2 

Hz, ArH), 7.65 (d, 2 H, J = 8.2 Hz, ArH). 13C NMR (THF-d8, 100 MHz): δ 166.7, 132.6, 

132.2, 131.9, 129.3, 109.8. IR ν 2942 (w), 2673 (w), 2561 (w), 2164 (w), 1683 (s), 1595 (s), 

1426 (m), 1323 (m), 1297 (s), 1188 (m), 847 (m), 759 (s). HRMS (ESI) C8H4NO2S
- [M-H]- 

calc. = 177.9963; [M-H]- obs. = 177.9954. 

 

6-Thiocyanatohexan-1-ol (14u) 

 
Following general procedure GPB with thiol 13u (68.5 mg, 0.500 mmol, 1.0 equiv.), the aq. 

mixture was extracted with EtOAc (3 x 10 mL) and the combined organic layers were washed 

with sat. aq. NaHCO3 (3 x 10 mL) dried over MgSO4, filtered and concentrated in vacuo. The 

crude oil was purified by flash chromatography using pentane:EtOAc 3:2 as mobile phase 

affording 14u (70.2 mg, 0.441 mmol, 88%) as a colorless oil. Rf (pentane:EtOAc 1:1, KMnO4 

staining) = 0.40. 1H NMR (CDCl3, 400 MHz): δ 3.58 (t, 2 H, J = 6.5 Hz, HOCH2), 2.92 (t, 2 

H, J = 7.2 Hz, CH2SCN), 2.17 (bs, 1 H, OH), 1.80 (p, 2 H, J = 7.3 Hz, CH2CH2SCN), 1.54 (p, 

2 H, J = 6.7 Hz, HOCH2CH2), 1.49-1.32 (m, 4 H, CH2CH2). 
13C NMR (CDCl3, 100 MHz): δ 

112.5, 62.4, 33.9, 32.3, 29.8, 27.7, 25.1. IR ν 3382 (w), 2936 (s), 2860 (m), 2155 (s), 1462 

(w), 1423 (w), 1055 (s), 729 (w). HRMS (ESI) C7H13NNaOS [M+Na]+ calc. = 182.0610; 

[M+Na]+ obs. = 182.0612. 

 

                                                 
18 Several signals were not resolved at 100 MHz. 
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3-Thiocyanatophenol (14v) 

 
Following general procedure GPA with thiol 13v (65.7 mg, 0.500 mmol, 1.0 equiv.), the 

crude oil was dissolved in minimum amounts of THF and purified by flash chromatography 

using pentane:EtOAc 9:1 as mobile phase affording 14v (69.0 mg, 0.456 mmol, 91%) as a 

colorless oil. Rf (pentane:EtOAc 4:1) = 0.60. 1H NMR (CDCl3, 400 MHz): δ 7.29 (t, 1 H, J = 

8.0 Hz, ArH), 7.09-7.01 (m, 2 H, ArH), 6.91 (ddd, 1 H, J = 8.3, 2.4, 0.9 Hz, ArH), 6.68 (bs, 1 

H, OH). 13C NMR (CDCl3, 100 MHz): δ 157.4, 131.4, 124.7, 121.9, 117.2, 116.6, 111.3. IR ν 
3370 (w), 2162 (w), 1601 (m), 1586 (s), 1478 (m), 1442 (m), 1319 (w), 1257 (m), 1217 (m), 

882 (s), 774 (m). HRMS (ESI) C7H4NOS- [M-H]- calc. = 150.0014; [M-H]- obs. = 150.0013. 

 

3-Thiocyanatoaniline (14w) 

 
Following general procedure GPA with thiol 13w (63.9 mg, 0.500 mmol, 1.0 equiv.), the 

crude oil was dissolved in minimum amounts of THF and purified by flash chromatography 

using pentane:EtOAc 9:1 to 7:1 with 1% triethylamine as mobile phase affording 14w (67.9 

mg, 0.452 mmol, 90%) as a white solid. Rf (pentane:EtOAc 7:3 with 1% triethylamine) = 

0.52. Melting point = 50.8-53.4 °C. 1H NMR (CDCl3, 400 MHz): δ 7.16 (t, 1 H, J = 7.9 Hz, 

ArH), 6.82 (ddd, 1 H, J = 7.8, 1.9, 0.9 Hz, ArH), 6.78 (t, 1 H, J = 2.0 Hz, ArH), 6.66 (ddd, 1 

H, J = 8.1, 2.2, 0.9 Hz, ArH), 3.90 (bs, 2 H, NH2). 
13C NMR (CDCl3, 100 MHz): δ 148.2, 

130.9, 124.8, 119.3, 115.9, 115.3, 111.0. IR ν 3464 (w), 3372 (w), 3228 (w), 2156 (m), 1624 

(s), 1596 (s), 1485 (s), 1447 (w), 1276 (w), 991 (w), 851 (w), 771 (m). HRMS (ESI) 

C7H7N2S
+ [M+H]+ calc. = 151.0324; [M+H]+ obs. = 151.0331. 

In addition, 2-(2-iodophenyl)propan-2-ol (142 mg, 0.540 mmol, 98% based on 0.550 mmol of 

starting material 11) was isolated as a colorless oil.  

 

Methyl(4-thiocyanatophenyl)sulfane (14x) 

 
Following general procedure GPA with thiol 13x (81.0 mg, 0.500 mmol, 1.0 equiv.), the 

crude oil was dissolved in minimum amounts of THF and purified by flash chromatography 

using pentane:EtOAc 99:1 as mobile phase affording 14x (85.3 mg, 0.471 mmol, 94%) as a 

colorless oil. Rf (pentane:EtOAc 95:5) = 0.48. 1H NMR (CDCl3, 400 MHz): δ 7.39-7.31 (m, 2 

H, ArH), 7.21-7.12 (m, 2 H, ArH), 2.40 (s, 3 H, SCH3). 
13C NMR (CDCl3, 100 MHz): δ 

142.2, 131.3, 127.3, 119.3, 110.8, 15.3. IR ν 2922 (w), 2157 (m), 1736 (m), 1679 (m), 1478 

(m), 1438 (m), 1328 (m), 1101 (s), 811 (s). HRMS (APPI) C8H7NS2 [M]+ calc. = 181.0020; 

[M]+ obs. = 181.0015. 

 

2-Thiocyanatobenzo[d]thiazole (14y) 

 

 
Following general procedure GPA with thiol 13y (84 mg, 0.50 mmol, 1.0 equiv.), the crude 

solid was purified by flash chromatography using pentane:EtOAc 99:1 to 95:5 as mobile 

phase affording 14y (82 mg, 0.43 mmol, 85%) as a light-yellow solid. Rf (Pentane:EtOAc 9:1) 

= 0.5. Melting point = 85.0-86.2°C. 1H NMR (CDCl3, 400 MHz): δ 7.99 (d, 1 H, J = 8.1 Hz, 



S29 
 

ArH), 7.86 (d, 1 H, J = 7.9 Hz, ArH), 7.53 (t, 1 H, J = 7.7 Hz, ArH), 7.45 (t, 1 H, J = 7.6 Hz, 

ArH). 13C NMR (CDCl3, 100 MHz): δ 153.4, 153.0, 136.5, 127.2, 126.4, 123.2, 121.4, 107.1. 

IR ν 3053 (w), 2167 (w), 1462 (w), 1421 (s), 1311 (w), 1238 (m), 995 (s), 757 (s). HRMS 

(ESI) C8H5N2S2 [M+H]+ calc. = 192.9897; [M+H]+ obs. = 192.9894. 

The values of the 1H NMR data, IR and melting point are in accordance with reported 

literature data.19  

 

2-Thiocyanatopyrimidine (14z) 

 
Following general procedure GPA with thiol 13z (57.2 mg, 0.500 mmol, 1.0 equiv.), the crude 

oil was dissolved in minimum amounts of THF and purified by flash chromatography's using 

pentane:EtOAc 4:1 as mobile phase affording 14z (64.5 mg, 0.470 mmol, 94%) as a white 

solid. Rf (pentane:EtOAc 3:2) = 0.52. Melting point = 112.6-113.0 °C 1H NMR (CDCl3, 400 

MHz): δ 8.68 (d, 2 H, J = 4.7 Hz, ArH), 7.28 (t, 1 H, J = 4.8 Hz, ArH). 13C NMR (CDCl3, 100 

MHz): δ 164.2, 159.1, 119.9, 107.4. IR ν 2175 (w), 1562 (s), 1380 (s), 1278 (w), 1181 (m), 

815 (w), 768 (w), 742 (w). The values of the characterization data are in accordance with 

reported literature data.20  

In addition, 2-(2-iodophenyl)propan-2-ol (133 mg, 0.506 mmol, 92% based on 0.550 mmol of 

starting material 11) was isolated as a colorless oil.  

 

β-Thiocyanato-tetraacetyl-glucopyranoside (14aa) 

 
Following general procedure GPB with thiol 13aa (164 mg, 0.500 mmol, 1.0 equiv.), the 

crude oil was purified by flash chromatography using pentane:EtOAc  91 to 8:2 as mobile 

phase affording 14aa (167 mg, 0.429 mmol, 95%) as colorless cristals. Rf (Pentane:EtOAc 

9:1) = 0.3. Melting point = 133.0-133.5°C. 1H NMR (CDCl3, 400 MHz) δ 5.26 (t, 1 H, J = 9.2 

Hz, H3), 5.14 (t, 1 H, J = 9.7, H2) 5.14 (t, 1 H, J = 9.7, H4), 4.90 (d, 1 H, J = 9.7 Hz, H1), 4.27 

(dd, 1 H, J = 12.6, 4.8 Hz, H6), 4.19 (dd, 1 H,  J = 12.7, 2.2 Hz, H6), 3.83 (ddd, 1 H, J = 10.1, 

4.8, 2.2 Hz, H5), 2.11 (s, 3 H, CH3CO), 2.10 (s, 3 H, CH3CO), 2.04 (s, 3 H, CH3CO), 2.02 (s, 

3 H, CH3CO). 13C NMR (101 MHz, CDCl3) δ 171.0, 170.4, 169.6, 169.5, 108.3, 83.9, 77.7, 

73.4, 71.1, 67.9, 61.9, 21.2, 21.0. IR ν 2948 (w), 2081 (w), 1741 (s), 1370 (m), 1211 (s), 1033 

(s), 915 (m), 792 (w).HRMS C15H19NO9SNa+  [M+Na]+  calc. = 412.0670; [M+Na]+ obs. = 

406.0678. 

The values of the characterization data are in accordance with reported literature data.21 

 

Selenocyanatobenzene (14ab) 

 
Following general procedure GPA with selenol 13ab (79.0 mg, 0.500 mmol, 1.0 equiv.), the 

crude orange oil was purified by flash chromatography using pentane:EtOAc  1:0 to 9:1 as 

mobile phase 14ab (80 mg, 0.44 mmol, 88%) as red oil. Rf (Pentane:EtOAc 9:1) = 0.7. 1H 

                                                 
19 Kaupp, G.; Schmeyers, J.; Boy, J. Chem. Eur. J. 1998, 4, 2467. 
20 Kim, J. J.; Kweon, D. H.; Cho, S. D.; Kim, H. K.; Jung, E. Y.; Lee, S. G.; Falck, J. R.; Yoon, Y. J. 

Tetrahedron 2005, 61, 5889. 
21 Kochetkov, N.K., Klimov, E. M., Malysheva, N. N., Demchenko, A. V. Carbohydrate. Res. 1991, 212, 77. 
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NMR (CDCl3, 400 MHz): δ 7.70-7.57 (m, 2H), 7.49- 7.35 (m, 3H). 13C NMR (CDCl3, 100 

MHz): δ 132.8, 130.4, 129.8, 121.9, 101.6. HRMS C7H5SeN [M]+  calc. = 182.9582 ; [M]+ 

obs. = 182.9581. The values of the NMR spectra and physical data are in accordance with 

reported literature data.22 

 

1-Methoxy-4-thiocyanatobenzene (14ac) 

 

 
 

Synthesized following general procedure GPC. The crude oil was purified by flash 

chromatography using pentane:EtOAc 95:5 to 9:1 as mobile phase 14ac (55 mg, 0.33 mmol, 

66%, 97% purity) as a colorless oil. Rf (Pentane:EtOAc 9:1) = 0.75. 1H NMR (CDCl3, 400 

MHz): δ 7.54 – 7.45 (d, 2H, J = 8.7 Hz, ArH), 6.94 (d, 2H, J = 8.7 Hz, ArH), 3.82 (s, 2H, 

CH3O). 13C NMR (CDCl3, 100 MHz): δ 161.3, 133.8, 115.8, 113.8, 111.6, 55.6. IR ν  2361 

(w), 2156 (w), 1592 (m), 1494 (s), 1297 (m), 1253 (s), 1179 (m), 1029 (m), 829 (m). 

The values of NMR spectra and physical data are in accordance with literature data.10 
 

1-Methyl-4-thiocyanatobenzene (14ad) 

 

 
 

Synthesized following general procedure GPC. The crude oil was purified by flash 

chromatography using pentane:EtOAc 95:5 to 9:1 as mobile phase 14ad (60 mg, 0.40 mmol, 

80%) as a colorless oil. Rf (Pentane:EtOAc 9:1) = 0.75. 1H NMR (400 MHz, Chloroform-d) δ 

7.36 (d, 2H, J = 8.0 Hz, ArH), 7.17 (d, 2H, J = 8.0 Hz, ArH), 2.31 (s, 3H, CH3). 
13C NMR 

(CDCl3, 100 MHz): δ 140.3, 131.0, 130.8, 120.5, 111.1, 21.2. IR ν 3029 (w), 2925 (w), 2361 

(s), 2339 (s), 2157 (m), 1492 (m), 1017 (w), 808 (s). 
The values of NMR spectra and physical data are in accordance with literature data.10 
 

1-Dodecylthiocyanate (14ae) 

 

 
Synthesized following general procedure GPC. The crude oil was purified by flash 

chromatography using pentane:DCM 95:5 to 85:15 as mobile phase. 14ae (39 mg, 0.17 mmol, 

34%) was obtained as a colorless oil. Rf (Pentane:DCM 9:1) = 0.25. 1H NMR (400 MHz, 

Chloroform-d) δ 2.97 (d, 2H, J = 7.3 Hz, CH2S), 1.85 (qt, 2H,  J = 7.3 Hz, CH2CH2S), 1.51-

1.42 (m, 2H, CH2), 1.40 – 1.26 (m, 16H, 8xCH2), 0.91 (t, 3H,  J = 6.8 Hz, CH3CH2). 
13C 

NMR (101 MHz, CDCl3) δ 112.4, 34.1, 31.9, 29.9, 29.6, 29.5, 29.3, 29.3, 28.9, 27.9, 22.7, 

14.1.23 IR ν  2924 (s), 2855 (m), 2155 (w), 1463 (w), 724 (w). 

The values of NMR spectra and physical data are in accordance with literature data.24 
 

  

                                                 
22 Tomoda, S.; Takeuchi, Y.; Nomura, Y. Chem. Lett. 1981, 10, 1069. 
23 One aliphatic carbon could not be resolved. 
24 Ciszek, J.W.; Stewart, M.P.; Tour, J.M. J. Am. Chem. Soc. 2004, 126, 13172. 
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6. Thiyl radical trapping experiment 

 
1,1 dicylcopropylethene was synthesized according to the literature procedure.25 

 

 
 

A 25 mL round bottom flask was charged with a magnetic stirring bar, 13a (0.500 mmol, 1.00 

eq.) and THF (5.0 mL). To this solution was added 1,8-diazabicycloundec-7-ene (DBU, 79.0 

µL, 0.525 mmol, 1.05 eq.), followed by 1,1-dicyclopropylethene (108 mg, 1.00 mmol, 2.00 

eq) or phenylacetylene (102 mg, 1.00 mmol, 2.00 eq) and 1-cyano-3,3-dimethyl-3-(1H)-1,2-

benziodoxole (CDBX (11), 158 mg, 0.550 mmol, 1.10 eq.). The resulting reaction mixture 

was stirred in an open flask for 5 minutes at room temperature. The reaction was concentrated 

in vacuo. The crude product was directly purified by chromatography on silica gel, 

Pentane:AcOEt 99:1 to afford 14a as a yellow oil. (89.0 mg, 0.465 mmol, 93%) (95% without 

radical trap) 

No trapped thiyl radical could be recovered or observed. 

  

                                                 
25 Povie, G. ; Tran, A.-T. ; Bonnaffé, D. ; Habegger, J. ; Le Narvor, D. ; Renaud, P. ; Ang. Chem. Int. Ed. 2014, 53, 
3894. 
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7. Spectra of New Compounds 
 

Shown below are the corresponding 1H (CDCl3, 400MHz), 13C (CDCl3, 100.1MHz) NMR and 

IR (neat) spectra in this order of the above fully characterized compounds.  
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1-Cyano-1,2-benziodoxol-3-(1H)-one (10) 
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1-Cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (11) 
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1-(tert-Butyl)-4-thiocyanatobenzene (14a) 
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Thiocyanatobenzene (14b) 
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2-Thiocyanatonaphthalene (14c) 
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1-Fluoro-4-thiocyanatobenzene (14d) 
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1,4-Dichloro-2-thiocyanatobenzene (14e) 
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1-Bromo-2-thiocyanatobenzene (14f) 
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1-Thiocyanato-4-(trifluoromethyl)benzene (14g) 
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1-Nitro-4-thiocyanatobenzene (14h) 
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Methyl 2-thiocyanatobenzoate (14i) 

 

 



S54 
 

 
  



S55 
 

1-Methyl-3-thiocyanatobenzene (14j) 
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N-(4-Thiocyanatophenyl)acetamide (14k) 
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1-Methoxy-3-thiocyanatobenzene (14l) 
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1,4-Dithiocyanatobenzene (14m) 
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1,3,5-Trithiocyanatobenzene (14n) 
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2-(thiocyanatomethyl)furan (14o) 
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Cholest-5-en-3β-yl thiocyanate (14p) 
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1-thiocyanatoadamantane (14q) 
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12-Thiocyanatododecanoic acid (14r) 
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2-(4-Thiocyanatophenyl)acetic acid (14s) 
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4-Thiocyanatobenzoic acid (14t) 

 

 



S76 
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6-Thiocyanatohexan-1-ol (14u) 
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3-Thiocyanatophenol (14v) 
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3-Thiocyanatoaniline (14w) 
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Methyl(4-thiocyanatophenyl)sulfane (14x) 
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2-thiocyanatobenzo[d]thiazole (14y) 
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2-Thiocyanatopyrimidine (14z) 
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β-thiocyanato-tetraacetyl-glucopyranoside (14aa) 
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Selenocyanatobenzene (14ab) 
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1-methoxy-4-thiocyanatobenzene (14ac) 
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1-methyl-4-thiocyanatobenzene (14ad) 
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1-dodecylthiocyanate (14ae) 
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8. DSC Measurements for Compounds (10) and (11) 
 

1-Cyano-1,2-benziodoxol-3-(1H)-one (10) 

 

 

Integral 220.30 mJ

  normalized 21.79 Jĝ -1

Peak 226.30 °C

Heating Rate 4.00 °Cmin̂ -1

Integral 5775.68 mJ

  normalized 571.28 Jĝ -1

Peak 151.55 °C

Heating Rate 4.00 °Cmin̂ -1

Method Name: 30-350°C 4°C per minSchmidt_CompoundA, 06.05.2014 17:49:52

Schmidt_CompoundA, 10.1100 mg

mW

200

min0 10 20 30 40 50 60 70

^exo

STARe  SW 12.10SYNGENTA: CPR Anal yt i cs

Method Name: 30-350°C 4°C per min

mW

200

min

°C110 115 120 125 130 135 140 145 150 155 160

20 21 22 23 24 25 26 27 28 29 30 31 32 33

^exo

ST AR e SW 12. 10SYNGENT A:  CPR Analy t ics



S99 
 

 
 

 

 

 

1-Cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (11) 

 

 
 

 

mW

5

min

°C190 195 200 205 210 215 220 225 230 235 240 245 250 255

40 42 44 46 48 50 52 54 56

^exo

ST AR e SW 12. 10SYNGENT A:  CPR Analy t ics

Integral 4756.12 mJ

  normalized 479.93 Jg^-1

Peak 313.69 °C

Heating Rate 4.00 °Cmin^-1

Integral 54.64 mJ

  normalized 5.51 Jg^-1

Peak 176.74 °C

Heating Rate 4.00 °Cmin^-1

Integral 88.53 mJ

  normalized 8.93 Jg^-1

Peak 117.08 °C

Heating Rate 4.00 °Cmin^-1

Integral 5378.10 mJ

  normalized 542.69 Jg^-1

Peak 133.36 °C

Heating Rate 4.00 °Cmin^-1

Method Name: 30-350°C 4°C per min
Schmidt_CompoundB, 06.05.2014 19:27:18

Schmidt_CompoundB, 9.9100 mg

mW

50

min0 10 20 30 40 50 60 70

^exo

STARe  SW 12.10SYNGENTA: CPR Analytics
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