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Abstract
Iron based high temperature superconductors have several common features with superconducting
cuprates, including the square lattice and the proximity to an antiferromagnetic phase. Themagnetic
excitation spectrumbelowTc of Fe Te Se1.02 0.7 0.3 shows an hourglass-shaped dispersionwith a
resonance around the commensurate point . In a previous inelastic neutron scattering study, we
showed that the hourglass-shaped dispersion ismost likely a prerequisite for superconductivity, while
the consequences are the opening of a gap and a shift of spectral weight. In this paper we follow the
evolution of the hourglass shaped dispersion under applied pressure up to 12 kbar. Our results show
that that the pressure-induced 37% increase ofTc is concomitant with a change in themagnetic
excitation spectrum,with an increase of the hourglass energy by 38%.

1. Introduction

Iron based chalcogenides and oxypnictides started attracting attentionwith the discovery of high temperature
superconductivity in the doped iron compoundRFeAsO [1, 2], further fuelled by their striking similarities to the
highTc cuprates which go beyond a layered structure with a square lattice and a common proximity ofmagnetic
and superconductive state [3]. As in the cuprates (for a review see [4]), a spin resonance is observed in the
inelastic excitation spectrumbelowTc in both iron chalcogenide and pnictides compounds [5]. + −Fe Te Sey x x1 1

has the simplest layered crystallographic structure among the iron-based superconductors and displays a spin
excitation spectrumwith a spin resonance, an hour-glass shape dispersion and a spin gapwhich accompany the
onset of superconductivity. References[6–8] in addition to the Te/Se ratio as a tuning parameter, the excess of
iron (parameter y) located on interstitial sites strongly influences both themagnetic and the superconducting
properties of + −Fe Te Sey x x1 1 [9] and its study provides new insights into the superconductingmechanism. In

addition, parent compounds showpeculiarmagnetic behavior upon application of pressure such as pressure-
induced ferromagnetism in antiferromagnetic Fe1+yTe [10], indicating a strong correlation between the crystal
structure and themagnetic properties. Further investigations of the interplay betweenmagnetism and
unconventionnal superconductivity are thus possible by the application of pressure, a parameter with the
advantage of tuning superconductivity properties [11, 12]without sample composition changes, avoiding
potential changes in doping-induced inhomogeneity and the hard to control level of excess iron.

In a previous study [8], we reported themagnetic excitation spectrum in single crystals of + −Fe Te Sey x x1 1 at

zero applied pressure. Fe Te Se1.02 0.7 0.3 with y=0.02 is a bulk superconductingmaterial withTc∼ 10K.We found
amagnetic hour glass dispersionwith the constriction of the incommensurate spectrum towards the
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commensurate wavevectorQ= (0.5, 0.5, 0) occuring at an energy ofEg=5.3(5) meV. This commensuration
clearly developed aboveTc , while the temperature dependence of the spin gap showed a rapid depletion of
intensity belowTc. This implies that the commensurationwould be a prerequisite for superconductivity, while
the spin gap is a consequence. This was further confirmed by the incommensurate spectrumof the non
superconducting sample Fe1.05Te0.7Se0.3 (y = 0.05), where no hourglass shapewas observed in themagnetic
spectrum.We characterized themagnetic spectrumby three energies:Ehg = 5.3(5) meV the energy of the
commensurate hourglass position ;Egap = 3.7(5) meV, belowwhich the spectral weight is depleted in the SC
state ; andEmax = 7.5(5) meV the energy of themaximum spectral weight in the SC state.We suggest that Ehg sets
an upper limit forTc and in this particular case the transition temperature of Fe Te Se1.02 0.7 0.3 is close to that limit.
Herewe investigate how respectivelyTc and themagnetic excitation spectrumdevelops under the application of
pressure in the SC sample Fe Te Se1.02 0.7 0.3.

2. Experimentalmethod and samples

Magnetizationmeasurements were performed in a SQUIDmagnetometer (quantumdesign) with the sample
loaded in a diamond anvil pressure cell. The Fe Te Se1.02 0.7 0.3 sample was cut with a laser to a diameter of 300 μm
and a thickness of 100 μm,which corresponds to themaximum size of the gasket hole. Themagnetization of
Fe Te Se1.02 0.7 0.3 wasmeasuredwithH = 20Oe for eight applied pressures in the range 0–33 kbar. The
background signal of the pressure cell wasmeasured by a temperature scan of the empty cell atH = 20Oe and
substracted from the obtained data. As the signal from the sample is small when compared to the background,
the variation in absolute value of themagnetization as a function of pressure cannot be quantitatively analysed.

Inelastic neutron scatteringwas performed on the high-flux thermal neutron spectrometer IN8 at the ILL,
France in the same configuration as in our previousmeasurement [8]. A single crystal of∼30 mm3, from the
same batch as themagnetizationmeasurements, was encapsulated in Pb powderwhichwas confined inside a
circular TiZr gasket. The gasket was loaded betweenCd shielded boron nitride anvils of a Paris–Edinburgh cell,
whichwasmounted inside amodified cryostat of the ILL ‘orange’ type. The base temperature ofT=5 Kwas
reached byfirst filling the sample chamber with liquid nitrogen, pumped out atT=77 K, and further cooling
with the help of a cold head employing theGifford–McMahon refrigeration cycle. The pressure was applied
in situ by pressing the anvils with an externally connectedHe compressor stage. The Pb served on the one hand as
hydrostatic pressure transmittingmedium, on the other hand as gauge for the pressure calibration at the sample
position by following the pressure dependent scattering angle shift of the (111) nuclear reflection of Pb. This
experimental setup gave satisfying signal to noise ratios even for the small sample volume in use. Nevertheless,
acquisition times of approximately 1 h/point were necessary to reach comparable statistics as in our previous
experiment, therefore severly limiting the number of scans that could be collected.Measurements were
performed atP = 12 kbar andT<6 K. These results were comparedwith a former experiment on IN8 at zero
applied pressure (detailedmethod in [8]).

3. Results

Figure 1(a) shows themagnetization curves as a function of temperature for eight applied pressures fromwhich
the superconducting transition temperatures were extracted. The resulting Pressure–temperature phase
diagrampresented infigure 1(b) shows the rise of the superconducting transition temperature fromTc = 9.7 K
at zero applied pressure to amaximumofTc=13.3 ± 0.4 K atP∼ 10 kbar (shown by the dashed lines) and then a
decrease ofTc upon further application of pressure. A comparable Pressure–temperature phase diagramwas
obtained for a richer Se composition in [11], with a stronger enhancement of superconductivity with pressure.
This is to be expected, asmagnetic order is strengthened by pressure in Te-rich compositions [13], and the
competition betweenmagnetism and superconductivity can be tuned by lowering the Te/Se ratio. Similar
behaviourwas found for othermembers of the ironChalcogenide family such as undoped FeSe [14, 15], where
pressure enhances spinfluctuations and drivesTc to amuch higher value [16], and in FeTe0.6Se0.4 [17], where
the authors attribute the shift of the SC phase transitionwith applied pressure to an increased hybridization and
weakening of the coupling strength.

In order to study the evolution of the three energy scales in the excitation spectrumwith pressure,
P = 12 kbarwas applied to the Fe Te Se1.02 0.7 0.3 sample. This pressure is slightly abovePmax determined from
magnetizationmeasurements, butTc is very close to themaximumvalue. Figure 2 shows neutron energy scans at
the commensurate positionQ= (0.5, 0.5, 0) at 5 K for both zero applied pressure and 12 kbar. In the zero applied
pressure case, themaximumof the spectral weight at the commensurate position is found at∼6 meV, just above
Ehg. Under the application of a 12 kbar pressure, the commensuratemagnetic peak is shifted towards higher
energy transfers with themaximumof the spectral weight at∼7.5 meV.
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Further inelasticQ-scans showmagnetic excitations at the incommensurate positionsQ= (1/2 ± δ, 1/2∓ δ,
0), for both the sample at zero applied pressure and the sample at 12 kbar. Figures 3(a)–(d) showQ-scans for the
zero applied pressure data.We observe two distinct incommensurate peaks dispersing towards each other only
merging atE = 5.5 meV, which corresponds to the resonance.

Figures 3(e)–(f) showsQ-scans performed atE=7.5 meV andE=8.5 meV at 12 kbar pressure.While at
E = 8.5 meV, a two peak incommensurate spectrumwith δ=0.09 is clearly observed, only one broad gaussian
models the data atE = 7.5 meV. A direct comparison of theQ-scans at E=7.5 meVperformed at zero applied
pressure and at applied pressure P = 12 kbar are also shown on panel (g) after scaling.

Using the zero applied pressure results [8] to interpret the 12kbar pressure data, we obtain the schematic
picture of the pressure-induced change to the excitation spectrum, shown infigure 4. Themagnetic dispersion
measured in the superconducting state of Fe Te Se1.02 0.7 0.3 at zero applied pressure andT=2 K is shown in
figure 4(a). The schematic evolution of the hourglass shapewith applied pressure illustrates the increase ofEhg,

Figure 1. (a)Magnetization curves as a function of temperature for an applied fieldH = 20Oe for Fe Te Se1.02 0.7 0.3 at 7 different applied
pressure P. (b) Pressure–temperature phase diagramof Fe Te Se1.02 0.7 0.3 with the transition temperatures extracted from the
magnetizationmeasurements. The solid line is a guide for the eyes.

Figure 2. (a) AtT = 5 K andP=12 kbar, data (blue) atQ = (0.5 0.5 0) and background (black) from a non-magneticQ = (0.69 0.24
0). Energy scans atQ = (0.5 0.5 0) andT = 5 K at zero applied pressure (red) and at 12 kbar (blue) showing the shift of the spectral
weight to higher energies upon application ofP = 12 kbar. The ambient pressure and 12 kbar data have been scaled to facilitate
comparison. The background from (a) has been substracted from the 12 kbar data.
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corresponding to a shift of the hourglass dispersion towards higher energy transfers. By combining the energy
andQ-scans to theP=0data, we estimate the 12 kbar commensurate energyEhg = 7.3 ± 0.6 meV.

4.Discussion

From the zero pressure study [8], we interpreted that because it exists above the transition temperature, the
hourglass-shaped dispersionmay be a necessary condition for the high-temperature superconductivity. One
possible natural explanation is that the inwards dispersion allows the spin gap to shift spectral weight towards the
commensurate point, thereby lowering the exchange energy [18]. A consequence of this interpretation is that
the commensurate energy Ehg sets an upper limit for the possible spin gap and hence forTc. This interpretation is

Figure 3. (a)–(d)Q-scans at zero applied pressure P for Fe Te Se1.02 0.7 0.3 at energy transfers of 8.5, 7.5, 5.5 and 4 meV are shown on the
left panels. (e)–(f) The top right panels show theQ-scans performed for E=8.5 and 7.5 meV atP=12 kbar, after background
substraction. (g) The bottom right panel is a comparison of theQ-scans at 7.5 meV at zero applied pressure (red line) and at
P=12 kbar (green line). The lines representGaussian fits of the data. The high pressure data is scaled to allow comparison.

Figure 4. (a) Themagnetic dispersionmeasured in superconducting state of Fe Te Se1.02 0.7 0.3 atT=2 K at zero applied pressure [8].
(b)–(c) Sketchs of the hourglass shape for zero applied pressure (b) and applied pressure (c), showing an increase of the
commensuration energy Ehg in applied pressure.
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strongly supported by the currentmeasurements. The observed 37% increase inTc from9.7 to 13.3 K is
accompaniedwith an similar 38% increase inEhg from5.3(5) to 7.3(6) meV.

Naturally, thehourglass energy isnot theonly limitation toTc ,which is illustrated for example in theLa2−xSrxCuO4

family ( =T 39c
max K) ,where thehourglass energy is 40–50meV[19], similar toYBa2Cu3O7−x ( =T 93c

max K).Tc in
LSCOispresumably suppressedbycompeting spinandcharge stripephases [20]. In this respect, thehourglass energy
can indicate theupper limit that canbeachieved ina familyofhigh-temperature superconductors, henceproviding
guidance towhether searching for chemical compositionvariationsmayprove fruitful.

This leads us to conjecture a possiblematerials discovery strategy forfinding new families of high-
temperature superconductors. From transport orMeissner effectmeasurements alone it is easy to recognize if a
newmaterial is a superconductor, but difficult to knowwhether amaterial is close to being a superconductor.
Screening newmaterials for incommensurate and hourglass shaped dispersionswould allow to identify
materials whichmay compositionally be close to superconducting compounds. Note that our hypothesis is that
the hourglass dispersion is a necessary but not sufficient condition for superconductivity. For instance, the
cobaltates show an hourglass spectrum [21], but remain insulating for all doping levels. An interesting challenge
would be tofind away tomobilize carriers in this system. Evolution ofmodern neutron sources, especially the
European Spallation Source, and new instruments specifically designed for small samples will render
measurements possible on<1 mm3 samples [22] and couldmake suchmaterials discovery strategies feasible.
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