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a b s t r a c t

The mechanical loss spectrum of a yellow gold bi-crystal is presented and analyzed in detail.
The relaxation strength is monitored as a function of several geometrical parameters such as sample
width, length and thickness. It is found that the relaxation strength is proportional to the GB density
(the inverse width), whereas it depends linearly on the sample thickness. The experimental findings are
compared to finite elements (FE) simulations, where the material can glide frictionless along the grain
boundary. The simulations show the same dependencies as the mechanical loss measurements.
The relaxation peak in the loss spectrum can be interpreted as due to GB sliding accommodated by
the elastic deformation of the grains.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In metals, plastic deformation is achieved by dislocation motion.
However, in polycrystalline specimens, a deformation between adja-
cent grains is often observed at high temperature. A number of studies
testify the existence of grain boundary (GB) sliding, for example in
ultrafine-grained Cu [1], in Au thin films [2], in AuPd [3] as well as in
Pd [4] nanocrystalline materials. Direct observations of GB sliding have
been made on single boundaries in Au nanopillars [5] and in Zn
bi-crystals [6].

Mechanical spectroscopy is a non-destructive experimental
technique that probes the mechanical response of a specimen to
a periodic excitation. The technique is sensitive in particular to of
GB sliding. A first model for GB sliding was developed by Zener in
1941 [7], which was verified experimentally by Kê [8] in poly-
crystalline Al. A GB peak in the mechanical loss spectrum has been
observed in different polycrystalline materials [9–13]. This peak is
absent in single crystalline specimens, which suggests that the
relaxation peak is directly related to the presence of GBs.

A recent study on Au polycrystals [14] together with molecular
dynamics simulations has shown that the microscopic stress
relaxation mechanism acting at the GBs is probably due to GB
sliding connected to a change in the GB structure. At elevated
temperatures, the GB layer becomes disordered and a shearing
parallel to the boundary plane is observed in the simulations.

In polycrystalline specimens, the experimental results reflect the
mixed contributions from different types of GBs, which are character-
ized by distinct structures and properties [15]. In order to characterize

the relaxation mechanism responsible for the mechanical loss peak, it
is advantageous to study bi-crystals containing a single GB. Few
studies on bi-crystals reporting the measurement of mechanical loss
spectra are found in the literature, for example those related to pure
Cu [16] and Al [17].

The investigations by Shi et al. [18,17] on Al bi-crystals have
been performed as a function of the misorientation angle showing
that the activation parameters are distinct for high and low angle
GBs. Furthermore, it was shown by Jiang et al. [19] that the
relaxation strength of the Al bi-crystal's peak is proportional to
the GB density, defined as the GB area per unit volume.

Up to now, mechanical spectroscopy measurements on bi-
crystals were made on pure metals. The present work shows that
the mechanical loss peak of bi-crystals can also be observed in
metallic alloys.

In this paper, we investigate the mechanical loss spectrum of a gold
alloy bi-crystal as a function of different geometrical parameters such
as the sample width, the thickness and the length, which account for
different volume fractions with respect to the GB surface and for
different stress distributions in the GB plane. The changes of the
relaxation strength are compared with finite elements (FE) simula-
tions, where we used the same sample dimensions as in the experi-
ments. From the simulations, an empirical formula of the relaxation
strength for rectangular sample geometries is derived, which can then
be compared to the results of previous model calculations [14]
assuming GB sliding at the origin of the stress relaxation mechanism.

2. Experimental methods

Bi-crystals of a commercial 18-carat (75 weight%) gold alloy,
which contains 30.5 atomic% Ag and 9.9 atomic% Cu were
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produced by the Bridgman technique. The sample was cut so that the
GB is vertical in the torsion pendulum and the torsion axis lies in the
GB plane. During the mechanical loss measurements, the lower
sample end is fixed while the upper end is twisted periodically.
The initial dimensions of the bi-crystal were (12.3�4.3�0.78) mm.
Fig. 1 shows the sample geometry. The length c, the width d and the
thickness a were reduced step by step to observe in which way the
loss spectrum of the bi-crystal depends on these parameters. The grain
structure and the misorientation angle were controlled before and
after the measurements. The misorientation angle remained stable at
δ¼ ð51:770:2Þ1. Tilt and twist components were present, character-
izing this specific GB as a random boundary.

For comparison, a polycrystalline specimen was cut from a
cylindrical wire of 2 mm in diameter. This sample had a homoge-
neous and small grained structure with an average grain diameter of
30 μm. A single crystal was grown in the same production step as the
bi-crystal in the Bridgman oven. The bi-crystal's width was reduced
by spark cutting, removing 1 mm of single crystalline material from
the side. The left-over single crystal could be measured in the torsion
pendulum.

The mechanical loss and the dynamic shear modulus have been
measured in a forced torsion pendulum as a function of tempera-
ture at an imposed frequency of f¼0.5 Hz and at a constant strain
amplitude of 1 �10�5. The heating and cooling rate was 2 K/min.
In the case of an anelastic relaxation with a characteristic time τ,
the mechanical loss as a function of ω¼ 2πf takes the form of a
Debye peak [20]:

tan ϕ¼Δ � ωτ
1þω2τ2

ð1Þ

where Δ is the relaxation strength. The height of the Debye peak
Δ=2 yields the relaxation strength, which is also defined as

Δ¼ γ1an
γel

¼ ϵan
ϵel

ð2Þ

that relates the unrelaxed shear strain angle γel with the relaxed
(anelastic) strain angle γ1an. The maximum of the peak in Eq. (1) is
obtained for ωτ¼ 1. If the relaxation process is thermally acti-
vated, the relaxation time τ follows an Arrhenius equation:
τ¼ τ0 exp Hact=ðkBTÞ

� �
, where τ0 is the limit relaxation time and

Hact denotes the activation enthalpy.

If a peak in a mechanical loss spectrum appears broadened, one
can assume that the relaxation time varies continuously around a
mean value τm according to a log-normal distribution [21]:

Ψ ðzÞ ¼ 1ffiffiffiffi
π

p
β
exp � z2

β2

 !
with z¼ ln

τ
τm

� �
ð3Þ

The broadening is characterized by the distribution parameter β.
Assuming that the relaxation strength Δ is identical for all values
of τ, one can calculate the analytic expression of the broadened
Debye peak as a convolution of Eq. (1) with (3):

tan ϕ¼ Δ
2
ffiffiffiffi
π

p
β

Z 1

�1

exp � z2

β2

 !

coshððln ωτÞþzÞ dz: ð4Þ

A thermally activated and broadened Debye peak can be fully
described by four parameters: the relaxation strength Δ, the
activation energy Hact, the limit relaxation time τ0 and the broad-
ening factor β.

3. Results

Fig. 2 shows the mechanical loss spectrum and the dynamic
shear modulus as a function of temperature of the polycrystal, the
bi-crystal and the single crystal, which had been a part of the
bi-crystal before. The mechanical loss shows peak P1 at around
600 K that may be attributed to a Zener relaxation due to stress
induced diffusion of Cu atom pairs [22]. The P1 peak is present in
all samples. Heating and cooling of the bi-crystal superimpose
perfectly indicating that the microstructure is stable between
room temperature and 950 K. The spectra of the single crystal
and the bi-crystal superimpose very nicely except for the peak P2.
The polycrystal's spectrum is equally shown and its P2 peak is
about twice as high and much broader.

Since the P2 peak is exclusively present in samples containing
GBs, it can be concluded that the peak P2 is closely related to the
presence of GBs. It can be ruled out that P2 is due to dislocation
relaxation in the bulk or to a relaxation related to twin boundaries.
The contribution of the bulk material is given by the spectrum of
the single crystal and thus, the difference between the single
crystal's spectrum and the bi-crystal's spectrum must be due to
the grain boundary, which is the only structural defect that
distinguishes single and bi-crystal.

From Fig. 2, it can be seen that the mechanical loss increases
at high temperatures. However, in the fit of the complete spec-
trum, the high temperature background should be taken into

Fig. 1. Schematic drawing of the bi-crystal with vertical GB showing the width d,
the thickness a and the length c. The deformation axis is the vertical axis along c.

Fig. 2. Mechanical loss spectrum of the bi-crystal with a vertical GB. A relaxation
peak accompanied by a modulus drop is observed at 800 K. The spectrum of a
polycrystal and a single crystal is shown for comparison. The single crystal has been
cut from one side of the bi-crystal.
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consideration. It has been shown by Schoeck [23] that an expo-
nential background can be described by three parameters K, n and
HBG:

tan ϕ¼ K
ð2πf Þn exp �nHBG

kBT

� �
ð5Þ

where n is the broadening factor of the background and K is the
amplitude, which are valid over limited ranges of temperature.

Fig. 3 shows different temperature spectra measured at fre-
quencies between f¼1 Hz and f¼0.025 Hz (black markers). Both
peaks and the high temperature background are thermally acti-
vated, since they shift to higher temperatures with increasing
frequency.

In order to extract the activation parameters of the bi-crystal, a
different method than the usual Arrhenius method has been used,
which gives a higher confidence level in the parameter values. For a
data set of six temperature scans in Fig. 3, all data points have been
fitted at once with the same parameter set. The fitting function is the
sum of two Debye peaks (4) and an exponential background (5) plus a
constant offset a and an offset b � f accounting for experimental noise
in the low frequency region. Since the relaxation strength Δ of the
Zener peak P1 follows a Curie–Weiss behavior [24], Δp ðT�TcÞ�1,
and is therefore temperature dependent, we used the parameters for
the Curie–Weiss constant C and the ordering temperature Tc instead of
a constant Δ.

All parameters are independent and the statistical errors reflect
the correct uncertainties of the fitting parameters, since the
parameters are all varied at the same time. The usage of classical
analysis methods like Arrhenius plots and background subtrac-
tions can introduce a bias of the statistical errors, because a subset
of the parameters is fitted. Then, the result is used to extract for
example the activation energy in a second analysis step. The
method used for this work does not suffer from this type of bias.

The fit of the bi-crystal's spectrum is shown in Fig. 3 with dark
gray markers together with the contribution of the GB peak (light
gray). Table 1 summarizes the values obtained for the parameters
of P1 (first column), P2 (second column), the exponential back-
ground (K, n and HBG) as well as the two offset parameters a and b
using an offset of the form aþb � f . The activation energy
H2 ¼ ð1:9970:03Þ eV for the GB peak in the bi-crystal is lower
than the energy Hpoly ¼ 2:35 eV [12] measured in a polycrystal of
the same alloy. The limit relaxation time τ02 ¼ ð2:070:9Þ � 10�13 s
takes a perfectly reasonable value of the order of magnitude of the
inverse Debye frequency, which, for a GB peak is not always the

case. This is a further argument for the goodness of the parameter
extraction method used here.

The broadening parameter β¼ 1:5570:08 is significantly
lower than measured in the polycrystal (βpoly ¼ 3:9570:05Þ [25].
This can be easily understood, since the bi-crystal only contains a
single type of GB, whereas many different GBs contribute to the
relaxation peak in the polycrystal. The exponential background has
the same activation energy HBG within the error bars as the P2
peak of the bi-crystal in Table 1.

3.1. Dependence on the geometrical parameters

In general, mechanical loss peaks do not depend on the sample
geometry but they depend on intrinsic parameters like the impurity
content or the dislocation density. If the relaxation mechanism is
highly stress dependent, the geometry can play a role since the
distribution of the stress in the sample can vary with the sample
shape. Other geometry dependencies can be due to the experimental
set up. For example a temperature gradient along the sample length
can cause a peak broadening. Using a shorter sample can reduce the
gradient and the peak appears narrower.

The bi-crystal depicts a different behavior since the relaxation
strength depends intrinsically on parameters like the sample width or
the thickness. Since only one GB is present, the distribution of the
defect (the GB), which causes a stress relaxation, is very inhomoge-
neous over the sample volume. A bi-crystal is very sensitive to the
stress relaxation at the GB and it allows us therefore to test a different
type of parameters, which is not possible in a homogeneous sample
like a polycrystal.

The specimen geometry is shown in Fig. 1, where the names for
the different sample dimensions have been chosen to be in
agreement with the formulas in Ref. [14] and to permit an easy
comparison of the experimental results with the theory.

Reducing the width d by cutting the sample on both sides leads
to a strong increase in the peak height (Fig. 4). In fact, it is not only
the peak that increases, but the whole high temperature part of
the spectrum. Fig. 4(b) shows the peak height of P2 as a function of
the inverse width 1=d. It turns out [14] that the height and
therefore the relaxation strength Δ is directly proportional to the
grain boundary density s¼ A=V ¼ ac=acd¼ 1=d. A similar result
has been found by Jiang et al. [19] in Al, where the authors showed
that the GB peak height doubles when reducing the sample width
by a factor of 1/2.

Fig. 5(a) illustrates the dependence of Δ on the sample
thickness a. It shows the inverse behavior as in the case of the
width: when a decreases, the peak height and the background
decrease simultaneously. To reduce the width, the sample has
been polished mechanically, in a first step from 0.78 mm to
0.64 mm, which corresponds to a thickness reduction of 18% and
in a second step to 0.54 mm, which is 16% reduction. The back-
ground behaves the same way as the P2 peak, since the difference
between the black and the dark gray curves continues on the high
temperature part of the spectrum. Fig. 5(b) shows the peak height
as a function of a together with a linear fit through the origin. We
observe that the peak height increases with a, even if the data
points do not lie on a line. This shows that the peak height
increases with the grain boundary width a. Changing a does not
affect the GB density A=V ¼ 1=d.

As a third geometric parameter, the sample length dependence
was tested on a bi-crystal having the GB centered as shown
schematically in Fig. 1. The parameter c has no influence on
neither the peak height nor the position (Fig. 6). The slight shift
of the c¼7.45 mm curve is more likely to be a measurement
artefact than a real effect. In this case, the GB density is constant
and a shearing in the vertical direction is suppressed, since the bi-
crystal is clamped at the top and at the bottom.

Fig. 3. Temperature scans of the bi-crystal (black markers) at different frequencies
varying from f¼1 Hz to f¼0.025 Hz. The fitted values are marked in dark gray, the
contribution of the GB peak is shown in light gray. The fitting parameters are the
same for all measurement points.

A.-K. Maier et al. / Materials Science & Engineering A 632 (2015) 43–49 45



The last geometrical parameter, on which a dependence of the
GB peak height was observed, is an asymmetry factor jd1�d2 j=d,
where d1 and d2 are the widths of the two single crystalline parts
in Fig. 1. This parameter varies between 0 and 1, where a centered
GB has the value 0 and a completely off-centered GB has a value
close to 1.

A dependence on the asymmetry factor has been observed only
qualitatively. A sample with a curved GB illustrated in Fig. 7(a) has
been measured as a function of the length l. Since the peak of a bi-
crystal with a centered GB does not depend on the length, the only
parameter, which changes in the curved GB sample, is the mean
position of the GB. Fig. 7(b) shows that the GB peak decreases in
height when the GB is shifted to the sample border. The back-
ground on the other hand remains unchanged except for the
shortest sample with l¼7.3 mm.

4. Discussion

In Ref. [26], it has been shown that the GB peak of a polycrystal
depends on the grain size d. More precisely, with higher d, the GB

peak is observed at higher temperatures, whereas the peak height
and shape remain unchanged. The observed linear relationship
between τ and d, i.e. τpd and therefore a grain size exponent
equal to 1, is in full agreement with the Zener model [7] of grain

Table 1
Fitting parameters of the bi-crystal. The first column belongs to P1, the second to P2 and the third to the background and offset. The errors are statistical errors (standard
deviation with 1 σ confidence). In the case of τ01, the third column is the upper limit with 2 σ confidence.

P1 P2 BG

Value Error Value Error Value Error

C ðKÞ 1.8 0.5 Δ2 0.060 0.002 K 11 2
Tc ðKÞ 400 50 τ02ðsÞ 2:0� 10�13 9� 10�14 n 0.239 0.007

τ01 ðsÞ 5� 10�17 o2� 10�16 H2 ðeVÞ 1.99 0.03 HBG ðeVÞ 2.01 0.05

H1 ðeVÞ 1.88 0.14 β2 1.55 0.08 a 0.0039 0.0002
β1 0.9 0.4 b �0.0013 0.0002

Fig. 4. (a) Dependence of the bi-crystal's peak on the width d. The peak height
increases with decreasing d. The background changes in the same way. The peak
position remains unchanged. (b) The peak height as a function of the inverse width
1=d shows a linear relationship.

Fig. 5. (a) Mechanical loss spectrum of the bi-crystal with different thickness a.
A reduction of a by polishing leads to a decrease of peak P2 and the background.
(b) Peak height as a function of the thickness a. The gray line is only a guide for
the eyes.

Fig. 6. Spectrum of the bi-crystal with varying clamping lengths. The mechanical
loss does not depend on the parameter c in the case of a centered GB.
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boundary sliding in a polycrystal. If we make the hypothesis that
GB sliding on a microscopic scale has a macroscopic effect as if two
elastic solids can glide along their common surface, we can
perform finite element (FE) simulations to test the geometric
dependencies.

4.1. FE simulations

The simulations were performed on two vertical bars, which
are joined to form a bi-crystal with a flat sliding surface in order to
check, if the geometry dependencies observed in the mechanical
loss experiment are linked to the intrinsic GB type with its
microscopic structure or to the stress distribution in the sample.
Along the GB, the material can slide with respect to the adjacent
material without friction. The GB is infinitely thin and we do not
consider that the misorientation or the plane direction with
respect to the crystal lattice could influence the GB structure.

The only parameter that is probed in these simulations is the
relaxation of local stresses in the vicinity of the GB. The simula-
tions used gold as a bulk material and the geometry and forces
were chosen according to the experimental set-up shown in Fig. 1.
As in the experiment, a torque is applied along the vertical axis c.

In the experiment, the relaxation strength Δ is given by the peak
height (1), but in principle it could also be measured in a static
deformation experiment. The relaxation strength is given by Eq. (2):
Δ¼ ϵan=ϵel. In the FE simulation, Δ can be calculated from the
deformation of a sample without GB and with GB. At a constant force,
ϵel is given by the maximum deformation of a continuous sample
without GB. ϵan can be extracted from the difference ϵtot�ϵel, where
ϵtot is the maximum deformation of the sample with a GB.

For each sample geometry, the force on the top surface was
adapted, such that the total strain ϵtot reached 10�5, since the
experiments were also performed in constant strain mode with
10�5 as a maximal strain amplitude.

The introduction of a vertical GB leads to a stress relaxation
along the GB in the FE simulations. Fig. 8(a) and (b) visualizes two
different sliding modes that occur at the GB. Fig. 8(a) shows the
z-displacement in the presence of a GB. The thin black lines show
the sample position without deformation and the surface color
illustrates the displacement in the z-direction. Mainly the vertical
edges show a displacement upwards (red) or downwards (blue).
The coloring is discontinuous at the boundary. The right side slides
upwards with respect to the left side. A shear component ϵzy is
observed at the GB plane, where the first index corresponds to the
direction of the shear displacement and the second index is the
normal direction of the shear plane. The small diagram on the left
of the colored bi-crystal shows that the sliding amount is highest
in the middle of the GB.

The grain boundary also slides along the perpendicular x-axis,
as it can be seen from Fig. 8(b) and (c). The sample is viewed from
above with the green surface being the bi-crystal's top surface. The
grain boundary is seen as a curved line, where a relative displace-
ment of both sample parts occurred. The sliding in the top half is
opposite to the sliding in the bottom half. A diagram on the right
of Fig. 8(c) shows qualitatively the shear component ϵxy.

The shear along x and z together can be seen as a rotational
shear around the y-axis. The right part of the sample colored in red
turns in the negative y-direction, whereas the left part turns in the
positive y-direction. On a local scale, the shear stress varies along
the GB plane and has different directions in form of a simple shear
component.

Fig. 9 shows the quantitative results of the FE simulations, where
the relaxation strength has been measured for various sample
geometries. The absolute relaxation strength is much higher than
the one measured in a real bi-crystal, since the FE model has a
completely flat boundary and the gliding is frictionless.

Observations of grain boundaries by electron microscopy in
transmission in Al [15] and in Au [27,28] show a crystalline GB
structure with a zig–zag profile at room temperature, which
becomes flatter upon heating. Even if the GB is flat at the atomic
scale at temperatures where GB sliding becomes active, the GB is
probably not flat at macroscopic scales over the whole sample. The
perfect flatness of the GB in the FE simulations is a simplification
and in the real GB has a certain roughness, which leads to an
additional contribution of the restoring force. Therefore, the
relaxation strength caused by a real GB is expected to be much
smaller than the simulated relaxation strength.

The FE simulations are in general agreement with the experi-
mental findings from mechanical spectroscopy measurements. Δ
varies very slightly with the sample length c both for a centered
GB and a GB shifted to one side so that d1 ¼ 3 � d2. In both cases,
the GB plane is a perfectly flat surface. As in the experiments, the
simulated relaxation strength is proportional to the thickness a

Fig. 7. (a) Schematic drawing of a bi-crystalline sample with a shifted and curved
grain boundary. A reduction of the length shifts the mean position to the right side.
(b) Temperature spectra of the bi-crystal at different lengths l, which is more a
parameter for the shift of the GB to one side. The GB peak decreases when the
mean GB position is shifted to the border of the sample.

Fig. 8. (a) FE simulations of a sample with central GB. The deformation is enhanced
by a factor of 3200. The colors on the surface indicate the displacement in the z-
direction, where red zones have moved upwards and blue zones downwards. The
color is discontinuous along the boundary plane indicating a glide. The effect is
most pronounced in the middle of the sample and tends to 0 on to and on the
bottom. (b) and (c) Top view of the same sample: the green surface is the top
surface and the curved line belongs to the GB. A sliding along the x-axis occurred
with different directions in the top half (light blue surface in b) and the bottom half
(yellow surface in c). No sliding in the x-direction is observed in the center of the
sample. The displacement is enhanced by a factor of 8000. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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(Fig. 9(b)) and inversely proportional to the width d (Fig. 9(c)). If
the GB is shifted to one side of the sample, the relaxation strength
decreases. These geometric dependencies can be summarized in a
phenomenological formula:

Δ¼Δ0 �
a
d

1� jd1�d2 j
d

� �α� �
: ð6Þ

Δ0 is the relaxation strength for a centered GB in a rectangular
sample with square base a¼d. The simulated data set provides
values Δ0 � 1:1 and α¼ 4:3470:09. A comparison with the
experimental findings shows a qualitative agreement with Eq.
(6). The parameter α cannot be extracted from the experimental
data, since we do not know the exact correlation between the
clamping length l and the mean GB position for the curved GB.

The interpolation of Fig. 4(b) for a sample with square base
a¼ d¼ 0:78 mm leads to Δ0 ¼ 0:189, which is six times smaller
than the value from the FE simulations. The difference between
simulation and experiment indicates that friction plays an impor-
tant role when the microscopic mechanism responsible for the GB
peak is related to GB sliding.

The experiments show a mechanical loss spectrum with two
peaks and a high temperature background. When the sample
thickness or the width was changed (Figs. 4a and 5a), not only did
the peak height change but also the background.

It has been shown in Ref. [25] that the background increases when
the dislocation density in a single crystal is increased. Therefore, at
least a part of the high temperature background should be due to a
dislocation relaxation. On the other hand, the correlation between the
GB peak and the background is quite obvious in the bi-crystal spectra.
The background increases in the same manner as the GB peak, when
the width d is reduced. If the background were only due to disloca-
tions in the single crystalline parts, it would be difficult to understand
why the background should increase when a part of the single

crystalline material is removed. It seems that at least a part of the
background in the bi-crystals is originating from the same relaxation
mechanism that causes the GB peak.

Morris and Jackson [29] presented an analysis of the Raj/Ashby
model [30] of GB sliding, where energy dissipation is caused by two
mechanisms: boundary sliding and GB diffusion. If the characteristic
time scales for both mechanisms are sufficiently distinct, the mechan-
ical loss spectrum presents a low frequency (high temperature) back-
ground as well as a mechanical loss peak. The peak is due to a viscous
sliding along the GBs, whereas the background is due to GB diffusion.
Taking only the diffusional term into consideration, the model predicts
a steady state creep for low frequencies (high temperature).

From the mechanical loss spectrum in polycrystals, the diffusional
mechanism producing a local creep at the GB can be understood in the
following way. The polycrystal spectrum shows a relaxation peak due
to GB sliding. The restoring force due to the presence of adjacent
grains is supposed to be temperature independent and at high
temperatures or low frequencies, a perfect relaxation peak should
tend to 0. If, on the other hand, the pinning points responsible for the
restoring force start to weaken at high temperatures, the restoring
force itself decreases and one should observe the onset of local creep.
In the mechanical loss spectrum, the relaxation peak transforms into a
high temperature background instead of decreasing to 0.

Therefore, the high temperature background is probably caused
by two different mechanisms. In samples that contain GBs, a part
of the background is due to GB diffusion, superimposed on the
background caused by dislocations in the bulk.

5. Conclusions

The mechanical loss spectrum of yellow gold alloy polycrystals is
mainly composed of two relaxation peaks and a high temperature

Fig. 9. Relaxation strength calculated from finite elements simulations. (a) Length dependence for a centered GB and a GB at 1/4 of the total width. (b) Dependence on the
thickness a with a linear fit. The fit passes close to the origin. (c) Dependence on the total width d. The relaxation strength is inversely proportional to d. (d) Dependence on
the asymmetry factor jd1�d2 j=d. Δ decreases for an off-centered boundary. The parameter Dsym is the relaxation strength of a symmetric boundary plane.

A.-K. Maier et al. / Materials Science & Engineering A 632 (2015) 43–4948



exponential background. The first peak (P1), which is observed at
about 600 K for a 0.5 Hz frequency, is due to a Zener type anelastic
relaxation.

The second peak (P2), which appears in polycrystals and in bi-
crystals, but not in single crystals, is due to a relaxation associated
with the GBs. The peak observed in bi-crystals is narrower than in
a polycrystal and its height depends on external geometrical
parameters like the sample thickness and the width. The relaxa-
tion strength is inversely proportional to the width d, which
means that the relaxation strength scales with the volume fraction
of GBs. Δ is proportional to the sample thickness a, which in the
present model is the thickness of the GB plane. Furthermore, the
relaxation strength is independent of the length l, since the sample
is fixed in this direction. If the GB in the bi-crystal is situated close
to one side, the relaxation strength is decreased.

Finite Elements simulations can reproduce the qualitative
change of the relaxation strength with different sample geome-
tries. An expression of the relaxation strength as a function of the
geometrical parameters a, d, l and the asymmetry factor
jd1�d2 j=d has been developed. It is therefore possible to separate
the geometrical part of the relaxation strength from the
microscopic part.
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