
A STUDY IN SUMS OF PRODUCTS

ÉTIENNE FOUVRY, EMMANUEL KOWALSKI, AND PHILIPPE MICHEL

Abstract. We give a general version of cancellation in exponential sums that arise as
sums of products of trace functions satisfying a suitable independence condition related to
the Goursat-Kolchin-Ribet criterion, in a form that is easily applicable in analytic number
theory.

1. Introduction

In many (perhaps surprisingly many) applications to number theory, exponential sums
over finite fields of the type

(1.1)
ÿ

xPFp

Kpγ1 ¨ xq ¨ ¨ ¨Kpγk ¨ xqe
´hx

p

¯

arise naturally, for some positive integer k ě 1, where

‚ The function K is a “trace function” over Fp, of weight 0, for instance

Kpxq “ e
´fpxq

p

¯

for some fixed polynomial f P ZrXs, a Kloosterman sum

Kpxq “ ´
1
?
p

ÿ

yPFˆp

e
´y´1 ` xy

p

¯

,

or its generalization to hyper-Kloosterman sums

Kpxq “ Klrpx; pq “
p´1qr´1

ppr´1q{2

ÿ

t1¨¨¨tr“x

e
´t1 ` ¨ ¨ ¨ ` tr

p

¯

for some r ě 2;
‚ For 1 ď i ď k, γi P PGL2pFpq acts on Fp by fractional linear transformation

ˆ

a b
c d

˙

¨ x “
ax` b

cx` d
,

for instance γi ¨ x “ aix ` bi for some ai P Fˆp and bi P Fp (and the sum (1.1) is
restricted to those x P Fp which are not poles of any of the γi);
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Grant 228304). É. F. thanks ETH Zürich, EPF Lausanne and the Institut Universitaire de France for
financial support.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148012684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


‚ Finally, h P Fp.

The goal is usually to prove, except in special “diagonal” cases, an estimate of the type
ÿ

xPFp

Kpγ1 ¨ xq ¨ ¨ ¨Kpγk ¨ xqe
´hx

p

¯

!
?
p,

where the implied constant is independent of p and h, when K has suitably bounded “com-
plexity”.

Note that if Kpxq is a Kloosterman sum, or another similar normalized exponential sum
in one variable, then opening the sums expresses (1.1) as a pk ` 1q-variable character sum,
and (because of the normalization) the goal becomes to have square-root cancellation with
respect to all variables.

We emphasize that we do not assume that the γi are distinct. Furthermore, such sums
also arise with some factors Kpγi ¨ xq replaced with their conjugate Kpγi ¨ xq, or indeed with
factors Kipxq which are not directly related. Such cases will be also handled in this paper.

As a sample of situations where such sums have arisen, we note:

‚ In many proofs of the Burgess estimate for short character sums, one has to deal
with cases where h “ 0 and Kipxq “ χpx ` aiq or χpx` aiq for some multiplicative
character χ (see, e.g., [14, Cor. 11.24, Lem. 12.8]);

‚ Cases where k “ 2 and γ1, γ2 are diagonal are found in the thesis of Ph. Michel and
his subsequent papers, e.g. [21];

‚ For k “ 2, γ1 “ 1, h “ 0, we obtain the general “correlation sums” (for the Fourier
transform of K) defined in [5]; these are crucial to our works [5, 6, 7];

‚ Special cases of this situation of correlation sums can be found (sometimes implicitly)
in earlier works of Iwaniec [13], of Pitt [23] and of Munshi [22];

‚ The case k “ 2, γ1 and γ2 diagonal, h arbitrary and K a Kloosterman sum in two
variables (or a variant with K a Kloosterman sum in one variable and γ1, γ2 not
upper-triangular) occurs in the work of Friedlander and Iwaniec [11], and it is also
used in the work of Zhang [24] on gaps between primes;

‚ Cases where k is arbitrary, the γi are upper-triangular and distinct, and h may be
non-zero appear in the work of Fouvry, Michel, Rivat and Sárközy [10, Lemma 2.1],
indeed in a form involving different trace functions Kipγi ¨ xq related to symmetric
powers of Kloosterman sums;

‚ The sums for k arbitrary and h “ 0, with K a hyper-Kloosterman sum appear in the
works of Fouvry, Ganguly, Kowalski and Michel [9] and Kowalski and Ricotta [19]
(with γi diagonal);

‚ This last case, but with arbitrary h and the γi being translations also appears in
the work of Irving [12], and (for very different reasons) in work of Kowalski and
Sawin [20];

‚ Another instance, with k “ 4, h arbitrary and γi upper-triangular, occurs in the work
of Blomer and Milićević [1, §11].

The principles arising from algebraic geometry and algebraic group theory (in particular
the so-called Goursat-Kolchin-Ribet criterion, as developed by Katz), together with the
general form of the Riemann Hypothesis over finite fields of Deligne lead to square root
cancellation in such sums in (also possibly surprisingly) many circumstances. However, this
principle is not fully stated in a self-contained manner in any reference. Thus, this paper
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is devoted to a review of these principles. We have aimed to give statements that can
be quoted easily in applications similar to the ones above, possibly with some additional
algebraic leg-work.

All estimates will be derived ultimately from the following form of the Riemann Hypothesis
over finite fields (see Section 4 for a sketch). Given two constructible `-adic sheaves F and
G on A1

Fp
, lisse on some dense open set U , we will denote

xF,Gy “ dimH2
c pA

1
ˆ F̄p,F bDpGqq “ dimH2

c pU ˆ F̄p,F bDpGqq,

where we denote by DpGq the middle-extension dual of G (see the notation section for details).
We have:

Proposition 1.1. Let k ě 1 and let F “ pFiq1ďiďk be any k-tuple of `-adic middle-extension
sheaves on A1

Fp
such that the Fi are of weight 0, and let G be an `-adic middle-extension

sheaf of weight 0. Let Ki be the trace function of Fi and M that of G. If

(1.2) x
â

i

Fi,Gy “ 0

then we have
ˇ

ˇ

ˇ

ÿ

xPFp

K1pxq ¨ ¨ ¨KkpxqMpxq
ˇ

ˇ

ˇ
ď C

?
p,

where C ě 0 depends only on k and on the conductors1 of Fi and of G.

Thus, we will concentrate below on finding and explaining criteria that ensure that the
vanishing property (1.2) holds, deriving bounds for the corresponding sums from this propo-
sition. However, for convenience, we will state formally a number of special cases of the
resulting estimates. Moreover, it can happen in some applications that the precise main
term in diagonal situations is important2, and we give some statements that contain such
estimates.

We begin by defining a special class of trace functions for which we can give a general
estimate for (1.1).

Definition 1.2 (Bountiful sheaves). We say that an `-adic sheaf F on A1
Fp

is bountiful
provided the following conditions hold:

‚ The sheaf F is a middle extension, pointwise pure of weight 0, of rank r ě 2;
‚ The geometric monodromy group of F is equal to either SLr or Spr (we will say that
F is of SLr-type, or Spr-type, respectively);

‚ The projective automorphism group

(1.3) Aut0pFq “ tγ P PGL2pF̄pq | γ
˚F » F b L for some rank 1 sheaf Lu

of F is trivial.

If F is of SLr-type, we will also need to understand the set

Autd
0pFq “ tγ P PGL2pF̄pq | γ

˚F » DpFq b L for some rank 1 sheaf Lu,

which we define for any middle-extension `-adic sheaf F.

1 See the notation section for a remainder of the definition.
2 See for instance [20].
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This definition implies that Aut0pFq acts on Autd
0pFq by left-multiplication: for elements

γ P Aut0pFq and γ1 P Autd
0pF, we have γ1γ P Autd

0pFq. This action is simply transitive (if
γ1, γ2 P Autd

0pFq, we get γ “ γ2γ
´1
1 P Aut0pFq with γ2 “ γγ1). This means that Autd

0pFq is
either empty or is a right coset ξAut0pFq of Aut0pFq.

There is another extra property: if γ P Autd
0pFq, the fact that DpDpFqq » F implies that

γ2 P Aut0pFq.
In particular,3 for a sheaf with Aut0pFq “ 1 (e.g., a bountiful sheaf), there are only two

possibilities: either Autd
0pFq is empty, or it contains a single element ξF, and the latter is

an involution: ξ2
F “ 1. If this second case holds, we say that ξF is the special involution of

F. (For instance, we will see that for hyper-Kloosterman sums K`r with r odd, there is a
special involution which is x ÞÑ ´x).

The diagonal cases, where there is no cancellation in (1.1), will be classified by means of
the following combinatorial definitions:

Definition 1.3 (Normal tuples). Let p be a prime, k ě 1 an integer, γ a k-tuple of PGL2pF̄pq

and σ a k-tuple of GalpC{Rq “ t1, cu, where c is complex conjugation.
(1) We say that γ is normal if there exists some γ P PGL2pF̄pq such that

|t1 ď i ď k | γi “ γu|

is odd.
(2) If r ě 3 is an integer, we say that pγ,σq is r-normal if there exists some γ P PGL2pF̄pq

such that
|t1 ď i ď k | γi “ γu| ě 1

and

|t1 ď i ď k | γi “ γ and σi “ 1u| ´ |t1 ď i ď k | γi “ γ and σi ­“ 1u| ı 0 pmod rq.

(3) If r ě 3 is an integer, and ξ P PGL2pF̄pq is a given involution, we say that pγ,σq is
r-normal with respect to ξ if there exists some γ P PGL2pF̄pq such that

|t1 ď i ď k | γi “ γu| ě 1

and

(1.4)
´

ÿ

1ďiďk
pγi,σiq“pγ,1q

1`
ÿ

1ďiďk
pγi,σiq“pξγ,cq

1
¯

´

´

ÿ

1ďiďk
pγi,σiq“pγ,cq

1`
ÿ

1ďiďk
pγi,σiq“pξγ,1q

1
¯

ı 0 pmod rq.

Example 1.4. (1) The basic example of a pair pγ,σq which is not r-normal arises when k
is even and it is of the form

ppγ1, γ1, . . . , γk{2, γk{2q, p1, c, . . . , 1, cqq

since we then have

|t1 ď i ď k | γi “ γ and σi “ 1u| “ |t1 ď i ď k | γi “ γ and σi “ cu|

for any γ P tγ1, . . . , γk{2u.
(2) Let ξ P PGL2pF̄pq be an involution. Some basic examples of pairs pγ,σq which are

not r-normal with respect to ξ are the following:

3 See Lemma 3.1 for a more general statement, based on these properties, that limits the possible structure
of Autd0pFq.
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‚ If k is even, pairs

ppγ1, ξγ1, . . . , γk{2, ξγk{2q, p1, 1, . . . , 1, 1qq

(for instance, if the γi are distinct, the left-hand side of (1.4) is then

p1` 0q ´ p0` 1q “ 0

for each γ P tγ1, . . . , γk{2u),
‚ For r “ 3, k “ 7, pairs

ppγ, ξγ, ξγ, γ, γ, ξγ, γq, p1, c, c, c, 1, 1, 1qq

where the left-hand side of (1.4) for γ (resp. ξγ) is

p3` 2q ´ p1` 1q “ 3 ” 0 pmod 3q (resp. p1` 1q ´ p2` 3q “ ´3).

After these definitions, we have first an abstract statement, from which estimates follow
immediately from Proposition 1.1. In this statement, for a sheaf F and σ P AutpC{Rq, we
denote Fσ “ F if σ is the identity, and Fσ “ DpFq if σ “ c is complex conjugation.

Theorem 1.5 (Abstract sums of products). Let p be a prime and let F be a bountiful `-adic
sheaf on A1

Fp
.

(1) Assume that F is of Spr-type. For every k ě 1, every k-tuple γ of elements in
PGL2pF̄pq, and every h P Fp, we have

x
â

1ďiďk

γ˚i F,LψphXqy “ 0

provided that either γ is normal or that h ­“ 0.
(2) Assume that F is of SLr-type. For every k ě 1, for all k-tuples γ of elements of

PGL2pF̄pq and σ of elements of AutpC{Rq, and for all h P Fp, we have

x
â

1ďiďk

γ˚i pF
σ
q,LψphXqy “ 0

provided that either h ­“ 0, or that h “ 0 and either

‚ F has no special involution, and pγ,σq is r-normal;
‚ F has a special involution ξ, p ą r, and pγ,σq is r-normal with respect to ξ.

To be concrete, we get:

Corollary 1.6 (Bountiful sums of products). Let p be a prime and let K be the trace function
modulo p of a bountiful sheaf F with conductor c. Then, for any k ě 1, there exists a constant
C “ Cpk, cq depending only on c and k such that:

(1) If F is self-dual, so that K is real-valued, then for any k-tuple γ of elements of
PGL2pF̄pq and for any h P Fp, provided that either γ is normal, or h ­“ 0, we have

ˇ

ˇ

ˇ

ÿ

xPFp

Kpγ1 ¨ xq ¨ ¨ ¨Kpγk ¨ xqe
´hx

p

¯ˇ

ˇ

ˇ
ď C

?
p.

(2) If F is of SLr-type with r ě 3, and p ą r, then for k-tuples γ of elements of PGL2pF̄pq

and σ of AutpC{Rq, and for any h P Fp, provided either that pγ,σq is r-normal, or r-normal
with respect to the special involution of F, if it exists, or that h ­“ 0, we have

ˇ

ˇ

ˇ

ÿ

xPFp

Kpγ1 ¨ xq
σ1 ¨ ¨ ¨Kpγk ¨ xq

σke
´hx

p

¯ˇ

ˇ

ˇ
ď C

?
p
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where we put Kpγi ¨ xq
σi “ σipKpγi ¨ xqq.

This is intuitively best possible, because if F is self-dual and γ is not normal, so that the
distinct elements γj in γ appear each with even multiplicity 2nj, we get for h “ 0 the sum

ÿ

xPFp

ź

j

Kpγj ¨ xq
2nj

in which there is no cancellation to be expected. The corresponding optimality holds for
sheaves of SLr-type, but this is less obvious.

It is sometimes important to determine even in this case what is the main term that may
arise. Examples are given by the following statement:

Corollary 1.7. Let p be a prime and let K be the trace function modulo p of a bountiful
sheaf F with conductor c. Assume furthermore:

‚ That the arithmetic monodromy group of F is equal to the geometric monodromy
group,

‚ If F is of SLr-type and has a special involution ξ, that ξ˚F » DpFq.

Then, for any k ě 1, there exists a constant C depending only on c and k such that:
(1) If F is of Sp2g-type, then for any k-tuple γ of elements of PGL2pF̄pq which is not

normal and for any h P Fp, there exists an integer mpγq ě 1 such that
ˇ

ˇ

ˇ

ÿ

xPFp

Kpγ1 ¨ xq ¨ ¨ ¨Kpγk ¨ xq ´mpγqp
ˇ

ˇ

ˇ
ď C

?
p.

If k is even and γ consists of pairs of k{2 distinct elements, then mpγq “ 1. In general,

mpγq “
ź

γPγ

Apnγq

where γ runs over all elements occuring in the tuple γ, nγ is the multiplicity of γ in the tuple
and Apnq is the multiplicity of the trivial representation of Sp2g in the n-th tensor power of
the standard representation of Sp2g.

(2) If F is of SLr-type with r ě 3, then for k-tuples γ of elements of PGL2pF̄pq and σq
of AutpC{Rq, such that pγ,σq is not r-normal, or not r-normal with respect to the special
involution of F if it exists, there exists an integer mpγ,σq ě 1 such that

ˇ

ˇ

ˇ

ÿ

xPFp

Kpγ1 ¨ xq
σ1 ¨ ¨ ¨Kpγk ¨ xq

σk ´mpγ,σqp
ˇ

ˇ

ˇ
ď C

?
p.

If k is even, γ consists of k{2 pairs of elements which are distinct or distinct modulo the
special involution if it exists, and for each such pair pγi, γjq, one of σi is the identity and the
other is c, then mpγ,σq “ 1. Otherwise, mpγ,σq is bounded in terms of k and r only.

The proofs of Theorem 1.5, Corollaries 1.6 and 1.7 will be found in Section 4, after we
develop a more general framework in Section 2. Many examples of (trace functions of)
bountiful sheaves, and also of the more general situation of the next section, together with
more statements of the resulting estimates, are found in Section 3. Readers may wish to first
read through this last section in order to see more examples of the estimates we obtain.

There is a certain inevitable tension in this paper between the fact that, on the one hand,
we deal with rather general phenomena, and on the other hand most applications involve
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extremely concrete special cases. We hope to write a fuller book-length account of trace
functions over finite fields that will resolve this conflict by providing much more detailed
explanations and examples, but in the meantime, the current text should provide precise
references for many applications. Any reader in a state of doubt concerning sums of the type
considered here is welcome to contact the authors. We also mention that the arXiv version
of this text contains some more details and examples.

Notation and conventions. (1) An `-adic sheaf over an algebraic variety X defined over
Fp will always mean a constructible Q̄`-sheaf for some ` ­“ p; whenever the trace function
of such sheaves are mentioned, it is assumed that an isomorphism ι : Q̄` ÝÑ C has been
chosen once and for all, and that the trace function is seen as complex-valued through this
isomorphism.

(2) For a lisse sheaf F (resp. a middle-extension sheaf F on A1) we denote by DpFq the
dual lisse sheaf (resp. the middle-extension dual j˚pDpj

˚Fqq where j : U ãÑ A1 is the open
immersion of a dense open set where F is lisse). If % is a finite-dimensional representation
of a group G, we denote by Dp%q the contragredient representation.

(3) The conductor of an `-adic middle-extension sheaf F on A1
Fp

is defined as

cpFq “ rankpFq ` | SingpFq| `
ÿ

xPSingpFq

SwanxpFq,

where SingpFq is the set of singularities of F in P1pF̄pq and SwanxpFq the Swan conductor
at x.

(4) We denote by ZpGq the center of a group G, and by G0 the connected component of
the identity in a topological or algebraic group G.

Acknowledgements. Thanks to Z. Rudnick for feedback and suggestions concerning the
paper, and to A. Irving for asking a question that led us to find a slip in a previous version.
We also thank the referee for his or her careful reading of the text.

2. A general framework

We provide in this section, and the next, a very general statement concerning sheaves
with trace functions of the type appearing in (1.1). This will be presented in a purely
algebraic manner, and later sections will provide the diophantine interpretation that leads
to the results of the first section.

We first make a definition that encapsulates some of the content of the Goursat-Kolchin-
Ribet criterion of Katz (see[16, §1.8]):

Definition 2.1 (Generous tuple). Let k ě 1 be an integer and p a prime. Let U Ă A1
Fp

be

a dense open set. Let F “ pFiq be a tuple of `-adic middle-extension sheaves on A1
Fp

, all
lisse on U . Denote by

%i : π1pU ˆ F̄p, η̄q ÝÑ GLpViq

the `-adic representations corresponding to Fi, and

% “
à

1ďiďk

%i

We say that F is U-generous if:

(1) The sheaves Fi are geometrically irreducible and pointwise pure of weight 0 on U ;
7



(2) For all i, the normalizer of the connected component of the identity G0
i of the geomet-

ric monodromy group Gi of Fi is contained in GmG
0
i Ă GLpViq and its Lie algebra is

simple (in particular, G0
i acts irreducibly on Vi);

(3) For all i ­“ j, the pairs pG0
i , Stdiq and pG0

j , Stdjq are Goursat-adapted in the sense
of [16, p. 24], where Stdi denotes the tautological representations Gi Ă GLpViq;

(4) Let G be the Zariski closure of the image of % and let %̃i : G ÝÑ GLpViq be the
representation such that %i is the composition

π1pU ˆ F̄p, η̄q
%
ÝÑ G

%̃i
ÝÑ GLpViq ;

then for all i ­“ j, and all 1-dimensional characters χ of G, there is no isomorphism

(2.1) %̃i » %̃j b χ, or Dp%̃iq » %̃j b χ

as representations of G.

We say that F is strictly U-generous if it is generous and the monodromy groups Gi are
connected.

Remark 2.2. The last condition holds in particular if, for i ­“ j, there is no rank 1 sheaf L
such that

Fi » Fj b L, or DpFiq » Fj b L,

and we will usually check it in this form.

Example 2.3. We just give quick examples here, leaving more detailed discussions to Sec-
tion 3.

(1) Let U “ Gm. Given n ě 1 even (resp. odd) and a k-tuple paiq of distinct elements
of Fˆp (resp. elements distinct modulo ˘1), we take Fi “ rˆais

˚K`n, where K`n is the
n-variable Kloosterman sheaf with trace function Klnpx; pq (see Section 3).

Then pFiq is strictly U -generous. This follows from the theory of Kloosterman sheaves, in
particular the computation of the geometric monodromy groups by Katz [15], and the fact
that there does not exist a rank 1 sheaf L and a geometric isomorphism

rˆas˚K`n » K`n b L or rˆas˚K`n » DpK`nq b L,

for a ­“ 1 if n is even, and for a R t˘1u if n is odd. (In other words, we have Aut0pK`rq “ 1,
and for r ě 3 odd, Autd

0pK`rq contains the unique special involution x ÞÑ ´x; see Section 3
for details).

(2) Given F0 self-dual and lisse on Gm, with geometric monodromy group equal to Spr,
such that the projective automorphism group of F0 is trivial, and a k-tuple paiq of distinct
elements of Fˆp , we may take Fi “ rˆais

˚F0 on U “ Gm, and pFiq is then strictly Gm-
generous.

(3) Given F0 lisse on Gm with geometric monodromy containing SLr for some r ě 3, such
that

Aut0pF0q XT “ 1,

where T Ă PGL2 is the diagonal torus, and a k-tuple a “ paiq of elements of Fˆp distinct
modulo ˘1, then the tuple prˆais

˚F0q is Gm-generous.
Indeed, all conditions of the definition are clearly met, except maybe for the non-existence

of isomorphisms

Dp%iq » %j b χ
8



for i ­“ j. But such an isomorphism would imply that there exists a rank 1 lisse sheaf L on
Gm and a geometric isomorphism

rˆais
˚ DpF0q » rˆajs

˚F0 b L,

and this implies that
ˆ

paia
´1
j q

2 0
0 1

˙

P Aut0pF0q “ 1,

so that ai “ ˘aj, contradicting our assumption on the tuple a.
(4) Given a U -generous tuple (resp strictly U -generous tuple), any subtuple is still U -

generous (resp. strictly U -generous). Similarly, if V Ă U is another dense open set, the
restrictions to V of a U -generous tuple is V -generous (and similarly for strictly generous
tuples).

We now come back to the development of the general theory. The crucial point is the
following lemma:

Lemma 2.4 (Katz). Let F be U-generous. Then the connected component of the identity of
the geometric monodromy group G of the sheaf

à

i

Fi

on U is equal to the product

G0
“

ź

1ďiďk

G0
i

of the connected components of the geometric monodromy groups Gi of Fi. If F is strictly
generous, then G “ G0.

Let π : V ˆF̄p Ñ UˆF̄p be the finite abelian étale covering corresponding to the surjective
homomorphism

π1pU ˆ F̄p, η̄q ÝÑ G{G0,

so that V “ U and π is the identity on UˆF̄p if F is strictly U-generous. Then the geometric
monodromy group of

π˚
´

à

i

Fi

¯

is equal to G0. Furthermore, the restriction to G0 of any irreducible representation of G is
irreducible.

Proof. In view of the definition, the computation of the monodromy groups is a special case
of the Goursat-Kolchin-Ribet Proposition of Katz [16, Prop. 1.8.2] (noting that, with the
notation there, if the normalizer of G0

i is contained in GmG
0
i , then G0

i acts irreducibly on
Vi, because any subrepresentation is stable under the action of GmG

0
i Ą NGLpViqG

0
i Ą Gi).

For the last part, let τ be an irreducible representation of G. Note that

G Ă
ź

i

pGmG
0
i q Ă ZpGqG0

by the second condition in the definition of a generous tuple, and the fact that any g P G is
of the form

g “ pξigiq
9



for some ξi P Gm X Gi Ă ZpGiq and gi P G
0
i , so that g “ zh with z “ pξiq P ZpGq and

h “ pgiq P G
0. It follows that for any g “ zh P G, we have

τpgq “ τpzhq “ τpzqτphq.

Since τpzq is a scalar (because τ is G-irreducible and z is central), we see that any G0-
invariant subspace is also G-invariant. �

Remark 2.5. This result would not extend if we allow Gi not contained in GmG
0
i : for

instance, if G “ O2r, so that G0 “ SO2r, there exist irreducible representations of G which
split in two irreducible subrepresentations when restricted to G0.

We then state a preliminary result, which for convenience we express in the language of
Tannakian categories. For a U -generous tuple F, we denote by TpFq the Tannakian category
of sheaves on U ˆ F̄p generated by the sheaves Fi.

Proposition 2.6. Let F be U-generous, and let π : V ˆ F̄p Ñ U ˆ F̄p be the finite abelian
étale covering corresponding to the surjective homomorphism

π1pU ˆ F̄p, η̄q ÝÑ G{G0.

(1) The the category TpFq is equivalent as a Tannakian category to the category of rep-
resentations of the linear algebraic group G, a functor from the latter to TpFq giving this
equivalence is

Λ ÞÑ Λ ˝ %F

where %F is the representation of π1pU ˆ F̄p, η̄q corresponding to the lisse sheaf
à

i

Fi.

Furthermore the restriction to G0 of a representation of G corresponds to the functor π˚.
(2) If G is an irreducible object of TpFq, then we have a geometric isomorphism

π˚G »
â

i

Λipπ
˚Fiq

where Λi is an irreducible representation of G0
i for each i. Two such sheaves have isomorphic

restriction to V ˆ F̄p if and only if the respective Λi are the same.

Proof. The first part is a standard fact. To deduce (2), we simply note that from the last part
of Lemma 2.4, the pullback π˚G is geometrically irreducible if G is geometrically irreducible.
We then obtain the stated formula from the classification of irreducible representations of a
direct product. �

We now present a first classification theorem that is well-suited to cases where all sheaves
involved are self-dual.

Theorem 2.7 (Diagonal classification). Let F be U-generous and let π : V ˆ F̄p Ñ U ˆ F̄p

be the finite abelian étale covering corresponding to the surjective homomorphism

π1pU ˆ F̄p, η̄q ÝÑ G{G0.

Let G be an `-adic sheaf which is geometrically irreducible and lisse on U . Let

n “ pn1, . . . , nkq
10



be a k-tuple of positive integers. Denote

Fn “
â

1ďiďk

Fbnii .

We have
xFn,Gy ­“ 0

only if there exists a geometric isomorphism

(2.2) π˚G »
â

i

Λipπ
˚Fiq

on V ˆF̄p, where, for all i, Λi is an irreducible representation of the group G0
i which is also a

subrepresentation of the representation Stdbnii of G0
i , with Stdi denoting the natural faithful

representation of G0
i corresponding to π˚Fi.

In fact, for G given as above, we have

xFn,Gy ď
ź

1ďiďk

multΛipStdbnii q,

where multΛipStdbnii q denotes the multiplicity of Λi in Stdbnii .
If F is strictly U-generous, then equality holds in this formula, and in particular the left-

hand side is non-zero if and only if G is of the form
Â

i ΛipFiq with Λi as above.
In general, if G is of the form (2.2), then there exists a character χ of G{G0 such that

xFn,Gb χy ­“ 0.

If all ni are equal to 1, we denote Fp1,...,1q “ F. Then

xF,Gy “ 0

unless G » F, and
xF,Gy “ 1

in that case.

The crucial point in the proof is the following very simple fact:

Lemma 2.8. With the notation of the theorem, assume that

xFn,Gy ­“ 0.

Then G is geometrically isomorphic to an object of TpFq.

Proof. The co-invariant formula for lisse sheaves states that

xFn,Gy “ dimpFn,η̄ bDpGη̄qqG.

The irreducibility of G, and the semi-simplicity of the representations involved, shows that
if this dimension is non-zero, then G is geometrically isomorphic to a subsheaf of Fn. But
clearly this sheaf is itself an object of TpFq, hence the result by transitivity. �

Proof of the theorem. By the lemma, G is geometrically isomorphic to an object of TpFq.
Since it is also geometrically irreducible, Lemma 2.4 shows that π˚G is also geometrically
irreducible. Thus, by the proposition, it follows that

π˚G »
â

1ďiďk

Λipπ
˚Fiq,

11



where the Λi are some irreducible representations of the group G0
i . We have then

xFn,Gy ď xπ
˚Fn, π

˚Gy “ dimpFn,η̄ bDpGη̄qq
G0

,

where we can use invariants instead of coinvariants because the representations are semisim-
ple. But the G0-invariants of the generic fibre of

π˚Fn bDpπ˚Gq “
â

1ďiďk

´

π˚Fbnii bDpΛipπ
˚Fiqq

¯

are isomorphic (under the equivalence of the proposition) to the invariants of G0 on
ò

1ďiďk

´

Stdbnii bDpΛiq

¯

hence to the tensor product over i of the G0-invariants of

Stdbnii bDpΛiq.

Thus we get the inequality for the dimension, and in particular the G0-invariant space is
non-zero if and only if Λi is a subrepresentation of Stdbnii for all 1 ď i ď k, and this gives a
necessary condition for the G-invariant space to be non-zero.

In the opposite direction, if G is given by (2.2) with Λi an irreducible subrepresentation of
Stdbnii , then we have

pFn,η̄ bDpGη̄qq
G0

­“ 0.

This invariant space is naturally a representation of G{G0; since it is non-zero, it contains
at least one character χ; one then checks easily that

pFn,η̄ bDpGη̄ b χqq
G
­“ 0.

Finally, if ni “ 1 and xF,Gy ­“ 0, then since F is irreducible in this case (e.g. because its
restriction to G0 is irreducible as

Ò

i Stdi), Schur’s Lemma gives the result. �

We state separately a more general version of Theorem 2.7 which is useful when some
sheaves are not self-dual.

Theorem 2.9 (Diagonal classification, 2). Let F be U-generous and let π : V ˆF̄p Ñ UˆF̄p

be the finite abelian étale covering corresponding to the surjective homomorphism

π1pU ˆ F̄p, η̄q ÝÑ G{G0.

Let G be an `-adic sheaf which is geometrically irreducible and lisse on U . Let

m “ pm1, . . . ,mkq, n “ pn1, . . . , nkq

be k-tuples of integers such that ni `mi ě 1 for all i. Denote

Fm,n “
â

1ďiďk

´

Fbmii bDpFiq
bni

¯

.

We have

xFm,n,Gy ­“ 0

only if there exists a geometric isomorphism

(2.3) π˚G »
â

i

Λipπ
˚Fiq

12



on V ˆ F̄p, where, for all i, Λi is an irreducible representation of the group G0
i which is also

a subrepresentation of the representation Stdbmii bDpStdiq
bni of G0

i , with Stdi denoting the
natural faithful representation of G0

i corresponding to π˚Fi.
In fact, for G given as above, we have

xFm,n,Gy ď
ź

1ďiďk

multΛipStdbmii bDpStdiq
bniq,

where multΛipStdbmii bDpStdiq
bniq denotes the multiplicity of Λi in Stdbmii bDpStdiq

bni. If
F is strictly U-generous, then there is equality, and the converse also holds.

In general, if G is given by (2.3), then there exists a character χ of G{G0 such that

xFm,n,Gb χy ­“ 0.

Clearly, the case n “ p0, . . . , 0q recovers Theorem 2.7.

Proof. This is the same as that of Theorem 2.7, mutatis mutandis. �

Here is a simple corollary that can be very helpful:

Corollary 2.10. Let F “ pFiq1ďiďk be U-generous. Let G be an `-adic sheaf. Let σ be a
k-tuple of elements of AutpC{Rq. If

rankG ă
ź

i

rankFi,

then we have

x
â

1ďiďk

Fσii ,Gy “ 0.

Proof. Note that this corresponds to the previous situation, withm and n such thatmi`ni “
1 for all i.

By considering a geometrically irreducible subsheaf of G, we may assume that it is geomet-
rically irreducible (since a subsheaf still satisfies the dimension bound and x¨, ¨y is “bilinear”
with respect to direct sums). By the previous arguments, if

x
â

1ďiďk

Fσii ,Gy ­“ 0

then we would have

π˚G »
â

i

Λipπ
˚Fiq,

where Λi is irreducible and occurs in Stdi. But this implies that Λi » Stdi, and in particular
that rankG “

ś

i rankFi. �

3. Examples

We collect here examples of trace functions for which the results stated in the introduction
or in the previous section apply, and state some of the resulting bounds for convenience.
These examples are taken for the most part from the many results of Katz, who has computed
the monodromy groups of many classes of sheaves over A1 using a variety of techniques.

13



3.1. General construction. Quite generally, let pFiqiPI be any finite tuple of middle-
extension sheaves of weight 0 on A1

Fp
such that the geometric monodromy groups Gi of

the restriction of Fi to a dense open set Ui where it is lisse, is such that G0
i is any of the

groups

SLr, for r ě 3, SO2r`1, for r ě 1,

Spr, for r even ě 2,

F4, E7, E8, G2.

Then we can always extract a convenient generous subtuple as follows: let U be the
intersection of the Ui, and let J Ă I be any set of representatives of I for the equivalence
relation defined by i „ j if and only if

Fi » Fj b L, or DpFiq » Fj b L

on U for some rank 1 sheaf L lisse on U . Then F “ pFiqiPJ is U -generous.
Indeed, condition (1) is clear, and (2) holds by the restrictions on G0

i (see also [18, 9.3.6]
for the normalizer condition, and note that in the exceptional cases indicated, all auto-
morphisms of the groups are inner, which implies the normalizer condition). Also, by [16,
Examples 1.8.1], the representations corresponding to i ­“ j in J are always Goursat-adapted,
and finally the restriction to the representatives of the equivalence relation ensures the last
condition.

Note that for any multiplicities ni, mi ě 0 for i P I, we have then geometric isomorphisms
â

iPI

Fbnii b
â

iPI

DpFiq
bmi » L

â

iPJ

F
bn1i
i b

â

iPJ

DpFiq
bm1i

for some rank 1 sheaf L (depending on pni,miq) and

n1i “
ÿ

j„i

nj, m1
i “

ÿ

j„i

mj,

and it is therefore possible to use many of the results for the generous tuple F to derive
corresponding statements that apply to the original one. For an example of applying this
principle, see the discussion of the Bombieri–Bourgain sums in Section 5.

In applications of this strategy, especially in the SLr case, the following lemma will be
useful:

Lemma 3.1. Let F be an `-adic sheaf modulo p. Then Autd
0pFq is either empty or is of the

form ξAut0pFq for some ξ P NpAut0pFqq such that ξ2 P Aut0pFq.

For Aut0pFq “ 1, we recover the fact that Autd
0pFq is either empty or contains only an

involution; if Aut0pFq is equal to its normalizer, e.g., if it is a maximal and non-normal
subgroup, then it shows that Autd

0pFq is either empty or equal to Aut0pFq, which means that
1 P Autd

0pFq, or in other words that

F » DpFq b L

for some rank 1 sheaf L. This means that, in some sense, F is “almost” self-dual.

Proof. More generally, consider a subgroup H of a group G, and a coset T Ă G of the form
T “ ξH that satisfies g2 P G for all g P T (as is the case of T “ Autd

0pFq Ă G “ PGL2pF̄pq

for the subgroup H “ Aut0pFq).
14



We claim first that this situation occurs if and only if T “ ξH for some ξ P G such that
ξHξ “ H.

Indeed, pξgqpξgq P H for all g P H is equivalent to ξgξ P H for all g P H, i.e., to ξHξ Ă H.
But then the converse inclusion ξHξ Ą H also holds by taking the inverse:

ξ´1Hξ´1
“ pξHξq´1

Ă H´1
“ H.

Now from ξHξ “ H, we get first in particular ξ2 P H, and then

H “ ξHξ “ ξpHξ2
qξ´1

“ ξHξ´1

implies that ξ P NpHq. This gives the result in our case, and we may also note that the
converse holds, namely if ξ P NpHq satisfies ξ2 P H, then

ξHξ “ ξHξ2ξ´1
“ ξHξ´1

“ H.

�

Looking at the list of simple groups at the beginning of this section, it is clear that the
only significant omission is that of G0

i “ SO2r for r ě 2; in that case, it is indeed not
true that the normalizer O2r is contained in GmG

0
i (see also Remark 2.5 (2) below). This

complication may be problematic in some applications, since geometric monodromy groups
O2r do occur naturally (e.g., for certain hypergeometric sheaves and for elliptic curves over
function fields, see Section 3). However, we have not (yet) encountered such cases in analytic
number theory, and one can expect that some analogues of our statements could be proved
using the classification of representations of O2r and their restrictions to SO2r.

3.2. Even rank Kloosterman sums. For r ě 2 even, the normalized Kloosterman sums

Klrpx; pq “ ´
1

ppr´1q{2

ÿ

t1¨¨¨tr“x

e
´t1 ` ¨ ¨ ¨ ` tr

p

¯

are the trace functions of a self-dual bountiful sheaf K`r on A1
Fp

. Indeed, the geometric

monodromy group is then Spr by [15, Th. 11.1], and the projective automorphism group
is trivial by Proposition 3.6 below. In addition, one knows that the arithmetic monodromy
group of K`r is equal to its geometric monodromy group, so that Corollary 1.7 applies to this
sheaf. The conductor is given by cpK`rq “ r ` 3 (the rank is r, there are two singularities,
one with zero Swan conductor, the other with Swan conductor 1).

Hence, from Corollary 1.6, we get:

Corollary 3.2. Let r ě 2 be an even integer. Let k ě 1 be an integer. There exists a
constant C ě 1, depending only on k and r such that for any prime p, any h P Fp and any
γ “ pγ1, . . . , γkq P PGL2pFpq and h P Fp, such that either

‚ we have h ­“ 0, or;
‚ some component of γ occurs with odd multiplicity, i.e., γ is normal, as in Defini-

tion 1.3.

Then we have
ˇ

ˇ

ˇ

ÿ

xPFp

Klrpγ1 ¨ x; pq ¨ ¨ ¨Klrpγk ¨ x; pqe
´hx

p

¯
ˇ

ˇ

ˇ
ď Cp1{2

where the sum runs over x such that all γi ¨ x are defined.
15



3.3. Odd rank Kloosterman sums. For r ě 2 odd, the normalized Kloosterman sums

Klrpx; pq “
1

ppr´1q{2

ÿ

t1¨¨¨tr“x

e
´t1 ` ¨ ¨ ¨ ` tr

p

¯

are the trace functions of a non-self-dual bountiful sheaf K`r on A1
Fp

of SLr type, with
conductor uniformly bounded over p, with special involution x ÞÑ ´x. Indeed, the geometric
monodromy group is SLr by [15, Th. 11.1], and the projective automorphism group is trivial
by Proposition 3.6 below, and we also have a geometric isomorphism

DpK`rq » rˆp´1qs˚K`r.

In addition, one knows that the arithmetic monodromy group of K`r is equal to its geo-
metric monodromy group, and hence Corollary 1.7 also applies to this sheaf of SLr-type.
The conductor is r ` 3 as for even-rank Kloosterman sums.

Hence, from Corollary 1.6, we get:

Corollary 3.3. Let r ě 2 be an odd integer. Let k ě 1 be an integer. There exists a
constant C ě 1, depending only on k and r such that for any prime p, any h P Fp and any
γ “ pγ1, . . . , γkq P PGL2pFpq

k and σ “ pσ1, . . . , σkq P AutpC{Rqk, such that either

‚ we have h ­“ 0, or;
‚ the pair pγ,σq is r-normal with respect to x ÞÑ ´x.

Then we have
ˇ

ˇ

ˇ

ÿ

xPFp

Klrpγ1 ¨ x; pqσ1 ¨ ¨ ¨Klrpγk ¨ x; pqσke
´hx

p

¯
ˇ

ˇ

ˇ
ď Cp1{2

where the sum runs over x such that all γi ¨ x are defined.

Concretely, recall (see (1.4) and the examples following) that to say that the pair pγ,σq
is r-normal with respect to x ÞÑ ´x means that for some component γ of γ, we have

r - pa1 ` a2q ´ pb1 ` b2q,

where:

‚ a1 is the number of i with γ “ γi and σi “ 1

‚ a2 is the number of i with γ “

ˆ

´1 0
0 1

˙

γi and σi “ c

‚ b1 is the number of i with γ “ γi and σi “ c

‚ b2 is the number of i with γ “

ˆ

´1 0
0 1

˙

γi and σi “ 1.

3.4. Hypergeometric sums. Hyper-Kloosterman sums have been generalized by Katz [16,
Ch. 8] to hypergeometric sums, which are analogues of general hypergeometric functions.
Some give rise to bountiful sheaves, and many to generous tuples. We recall the definition:
given a prime number p, integers m, n ě 1, with m ` n ě 1, and tuples χ “ pχiq1ďiďn and
% “ p%jq1ďjďm of multiplicative characters of Fˆp , the hypergeometric sum Hyppχ,%, t; pq is
defined (see [16, 8.2.7]) for t P Fp by

Hyppχ,%, t; pq “
p´1qn`m´1

ppn`m´1q{2

ÿ

Npxq“tNpyq

ź

i

χipxiq
ź

j

%jpyjqe
´T pxq ´ T pyq

p

¯
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where

Npxq “ x1 ¨ ¨ ¨ xn, Npyq “ y1 ¨ ¨ ¨ ym,

T pxq “ x1 ` ¨ ¨ ¨ ` xn, T pyq “ y1 ` ¨ ¨ ¨ ` ym

so that the sum is over all pn`mq-tuples px,yq P Fp
n`m such that

x1 ¨ ¨ ¨ xn “ ty1 ¨ ¨ ¨ ym.

If n “ r, m “ 0, and χi “ 1 for all i, then we recover the Kloosterman sums Klrpt; pq. If
n “ 2, m “ 0, and χ2 “ 1 but χ1 is non-trivial, we obtain Salié-type sums. This indicates
that such sums should arise naturally in formulas like the Voronoi summation formula for
automorphic forms with non-trivial nebentypus.

Katz shows (see [16, Th. 8.4.2]) that if no character χi coincides with a character %j (in
which case one says that χ and % are disjoint), then for any ` ­“ p, there exists an irreducible
`-adic middle-extension sheaf Hyppχ,%q on A1

Fp
, of weight 0, with trace function given by

Hyppχ,%, t; pq. This sheaf is lisse on Gm, except if m “ n, in which case it is lisse on
Gm ´ t1u. It has rank maxpm,nq. Moreover, these results of Katz show that the conductor
of Hyppχ,%q is bounded in terms of m and n only.

The basic results of Katz concerning the geometric monodromy group G of the hypergeo-
metric sheaf Hyppχ,%q depend on the following definitions of exceptional tuples of characters
(see [16, Cor. 8.9.2, 8.10.1]):

Definition 3.4. Let k be a finite field and let χ and % be an n-tuple and an m-tuple of
characters of kˆ.

(1) For d ě 1, the pair pχ,%q is d-Kummer-induced if d | pn,mq and if there exist n{d and
m{d-tuples χ˚ and %˚ such that χ consists of all characters χ such that χd is a component
of χ˚, and % consists of all characters % such that %d is a component of %˚.

(2) Assume n “ m. For integers a, b ě 1 such that a`b “ n, the pair pχ,%q is pa, bq-Belyi-
induced if there exist characters α and β with β ­“ 1 such that χ consists of all characters χ
such that either χa “ α or χb “ β, and if % consists of all characters % such that %n “ αβ.

(3) Assume n “ m. For integers a, b ě 1 such that a ` b “ n, the pair pχ,%q is pa, bq-
inverse-Belyi-induced if and only if p%,χq is pa, bq-Belyi-induced.

We say that pχ,%q is Kummer-induced (resp. Belyi-induced, inverse-Belyi-induced) if
there exists some d ě 2 (resp. some a, b ě 1) such that the pair is d-Kummer-induced (resp.
pa, bq-Belyi-induced, pa, bq-inverse-Belyi-induced).

We then have the following:

‚ If n “ m, let Λ denote the multiplicative character

Λ “
ź

i

χi%i.

Assume that pχ,%q is neither Kummer-induced, Belyi-induced, nor inverse-Belyi-
induced. Then G0 is either trivial, SLn, SOn or Spn; if Λ “ 1, it is either SLn or
Spn, if Λ ­“ 1 but Λ2 “ 1, then G0 is either 1 or SOn or SLn, and if Λ2 ­“ 1, then
G0 is either 1 or SLn (see [16, Th. 8.11.2]). The problem of determining which case
occurs is discussed by Katz; most intricate is the criterion for G0 to be trivial (see [16,
§8.14–8.17]), which is however applicable in practice.
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‚ If n ­“ m, let r “ maxpn,mq be the rank of the sheaf. Assume that pχ,%q is
not Kummer induced. Then, provided p ą 2 maxpn,mq ` 1, and p does not divide
an explicit positive integer, we have: G0 “ SLr if n ´ m is odd (and G ­“ G0 if
|n ´ m| “ 1); G0 “ SLr, SOr or Spr if n ´ m is even and either r R t7, 8, 9u or
|n´m| ­“ 6 (see [16, Th. 8.11.3]). Here also, more precise criteria for which G0 arises
exist, as well as a classification of the few exceptional possibilities when |n´m| “ 6
and r P t6, 7, 8u.

Example 3.5. If % is the empty tuple, n ě 2 and χ is an n-tuple where all components are
trivial, then it follows immediately from the definition that pχ,%q is not Kummer-induced.
Thus the last result recovers, for p large enough in terms of n, the fact that the geometric
monodromy group of K`n contains SLn if n is odd, and contains either SOn or Spn if n is
even.

In order to apply the results of the previous section, it is of course very useful to have
some information concerning the projective automorphism groups of hypergeometric sheaves.
Many cases are contained in the following result:

Proposition 3.6. (1) Let χ1, %1 and χ2, %2 be any n1-tuple (resp. m1-tuple, n2-tuple, m2-
tuple) with χ1 disjoint from %1 and χ2 disjoint from %2, and with m1`n1 ě 1, m2`n2 ě 1.
Let a P Fˆp . Then we have a geometric isomorphism

(3.1) rˆas˚Hyppχ1,%1q » Hyppχ2,%2q,

if and only if a “ 1 and χ1 „ χ2 and %1 „ %2.
(2) Let m ­“ n with m`n ě 1 be integers with maxpm,nq ě 2 and pm,nq ­“ p1, 2q, pm,nq ­“

p2, 1q. Let χ and % be disjoint tuples of characters of Fˆp . The projective automorphism group
Aut0pHyppχ,%qq is then trivial.

(3) With notation as in (2), the set Autd
0pHyppχ,%qq is non-empty if and only if the

integer n ´ m is odd, and the tuples χ and % are both invariant under inversion. In this
case, the special involution is x ÞÑ ´x, i.e., we have

rˆp´1qs˚Hyppχ,%q » DpHyppχ,%qq.

(4) If n “ m ě 2, then for any disjoint n-tuples pχ,%q, the group Aut0pHyppχ,%qq is a
subgroup of the finite group

Γ “
!

1,

ˆ

0 1
1 0

˙

,

ˆ

´1 1
0 1

˙

,

ˆ

0 1
´1 1

˙

,

ˆ

1 0
1 ´1

˙

,

ˆ

1 ´1
1 0

˙

)

Ă PGL2pF̄pq.

(5) With notation as in (4), the set Autd
0pHyppχ,%qq is either empty or is a subset of Γ,

which is of the form T “ ξH for some subgroup H Ă Γ and some ξ P NΓpHq such that
ξ2 P H.

Proof. (1) For all a P F̄ˆp , the components of χ (resp. %) can be recovered from the sheaf
rˆas˚Hyppχ,%q as the tame characters occuring in the representation of the inertia group
at 0 (resp. at 8) corresponding to this sheaf, and the multiplicity appears as the size of
the associated Jordan block (see [16, Th. 8.4.2 (6), (7), (8)]). Thus (3.1) is only possible if
χ1 „ χ2 and %1 „ %2.

We assume this is the case now, i.e., that

rˆas˚Hyppχ,%q » Hyppχ,%q.
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We then obtain a “ 1 from [16, Lemma 8.5.4] and the fact that the Euler-Poincaré
characteristic of a hypergeometric sheaf is ´1.

(2) We may assume that n ą m, using inversion otherwise. Assume that γ P PGL2pF̄pq is
such that

γ˚Hyppχ,%q » Hyppχ,%q b L

for a rank 1 sheaf L. By comparing ramification behavior we see that γ must be diagonal (if
γ´1p0q ­“ 0, then L must be tamely ramified at 0 to have the tensor product tamely ramified
at γ´1p0q, as γ˚Hyppχ,%q is; but then the inertia invariants at γ´1p0q are zero for the tensor
product, a contradiction to [16, Th. 8.4.2 (6)], and the case of γ´1p8q ­“ 8 gives a similar
contradiction).

Thus γ P Aut0pHyppχ,%qq implies a geometric isomorphism

rˆas˚Hyppχ,%q » Hyppχ,%q b L

on some dense open set j : U ãÑ Gm. By [16, Lemma 8.11.7.1], under the current assumption
pn,mq ­“ p2, 1q, this implies that L » LΛ for some multiplicative character Λ.

But then we have
Hyppχ,%q b LΛ » HyppΛχ,Λ%q

by [16, 8.3.3] where Λχ “ pΛχiqi and Λ% “ pΛ%jqj. We are therefore reduced to a geometric
isomorphism

rˆas˚Hyppχ,%q » HyppΛχ,Λ%q,

and by (1), it follows that a “ 1, i.e., γ “ 1.
(3) As in the previous case, we see that any element γ P Autd

0pHyppχ,%qqmust be diagonal,
so that γ ¨ x “ ax for some a P Fˆp . Since γ, if it exists, is an involution, we obtain a2 “ 1,
and therefore the only possibility for the special involution is x ÞÑ ´x.

We now assume that

rˆp´1qs˚Hyppχ,%q » DpHyppχ,%qq b L

for some rank 1 sheaf L.
Again by [16, Lemma 8.11.7.1], the sheaf L is a Kummer sheaf LΛ. We have

DpHyppχ,%qq b L » Hypψ̄pχ,%q b LΛ b rˆp´1qn´ms˚HyppΛχ,Λ%q

by combining [16, 8.3.3] and [16, Lemma 8.7.2] (using also the fact that Kummer sheaves
are geometrically multiplication invariant). Thus the assumption means that

rˆp´1qs˚Hyppχ,%q » rˆp´1qn´ms˚HyppΛχ,Λ%q.

If n ´ m is even, this can not happen by (1); if n ´ m is odd, on the other hand, this
happens if and only if Λχ „ χ and Λ% „ %, as claimed.

(4) Let n “ m ě 2 and γ P Aut0pHyppχ,%qq so that

γ˚Hyppχ,%q » Hyppχ,%q b L

for some rank 1 sheaf L. The right-hand side is ramified at t0, 1,8u (because n ě 2 and
the description of local monodromy from [16, Th. 8.4.2 (8)] shows that the ramification of
the hypergeometric sheaf cannot be eliminated by tensoring with a character), and hence γ
must permute the points 0, 1, 8. This shows that γ P Γ.

(5) Arguing as in (4) with an isomorphism

γ˚Hyppχ,%q » DpHyppχ,%qq b L
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we see that Autd
0pHyppχ,%qq Ă Γ. Then the statement is just the conclusion of Lemma 3.1

in this special case. �

In view of these results, one can feel confident that sums of products of hypergeometric
sums can be handled using the results of this paper, at least in many cases. The trickiest
case would be when G0 “ Or with r even (in view of Remark 2.5), which does occur (e.g.,
if n ´m ě 2 is even, n is even, the tuples χ and % are stable under inversion, and

ś

χi is
non-trivial of order 2, see [16, Th. 8.8.1, Lemma 8.11.6]).

3.5. Fourier transforms of multiplicative characters. Many examples of sheaves with
suitable monodromy groups are discussed in [16, 7.6–7.14], arising from Fourier transforms
of other (rather simple) sheaves. We discuss one illustrative case, encouraging the reader to
look at Katz’s results if he or she encounters similar-looking constructions.

We consider a polynomial g P FprXs and a non-trivial multiplicative character χ modulo
p. We assume that no root of g is of order divisible by the order of χ. We then form the
sheaf

Fχ,g “ FTψpLχpgqq

i.e., the Fourier transform of the Kummer sheaf with trace function χpgpxqq, where ψ is the
additive character ep¨{pq. The trace function of Fχ,g is

Kχ,gpxq “ ´
1
?
p

ÿ

yPFp

χpgpyqqψpxyq.

Proposition 3.7. With notation as above, let r be the number of distinct roots of g in F̄p.
Assume that r ě 2 and p ą 2r ` 1. Assume furthermore that the only solutions of the
equations

(3.2) x1 ´ x2 “ x3 ´ x4

where px1, . . . , x4q range over the roots of g in F̄p are given by x3 “ x1, x4 “ x2 or x2 “ x1

and x3 “ x4. Then Fχ,g is a middle-extension sheaf of weight 0, of rank r, lisse on Gm, and
with geometric monodromy group containing SLr. Furthermore, we have

Aut0pFg,χq » ta P F̄p | gpaXq “ cgpX ´ αq for some c P F̄ˆp , α P Fpu,

and Autd
0pFχ,gq “ H if r ě 3. The conductor of Fg,χ is bounded in terms of degpgq only.

We leave this proposition without proof (see the arXiv version of this paper for details); all
the results follow from the work of Katz [16, 7.9.1–7.9.3] on such trace functions. Concerning
the last statement, note that if r “ 2, the sheaf is of Sp2-type (since Sp2 “ SL2) to that
Autd

0pFχ,gq is not relevant in that case.

4. Sums of products with fractional linear transformations

We can now quickly prove the results stated in Section 1 using the framework established
previously.

Proof of Theorem 1.5. We begin with the easier Spr-type case. Let γ˚ be the tuple of distinct
elements of γ, and nγ the multiplicity of any such element in γ. Let U be the common open
set in A1 where all γ P γ˚ are defined. Arguing as in Example 2.3 (2), we see that the tuple
F “ pγ˚FqγPγ˚ is strictly U -generous, simply because F is bountiful of Spr-type.
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By Theorems 2.7 and 2.9, we see that if

x
â

1ďiďk

γ˚i F,Lψp´hXqy ­“ 0,

there must exist some geometric isomorphism

LψphXq »
â

γPγ˚

Λγpγ
˚Fq

where Λγ are irreducible representations of the geometric monodromy group G “ Spr of F
such that Λγ is a subrepresentation of Stdbnγ . Just for dimension reasons, each Λγ must be a
one-dimensional character. But Definition 1.2 implies in particular that G has no non-trivial
character, so that Λγ “ 1, which implies that LψphXq must be geometrically trivial, i.e., that
h “ 0.

This already proves the first part of Theorem 1.5 when h ­“ 0. Now assume h “ 0. Then
the condition that the trivial representation be a subrepresentation of Stdbnγ holds if and
only if nγ is even, and thus

x
â

1ďiďk

γ˚i F,Lψp´hXqy ­“ 0

if and only if all multiplicities nγ are even, which means if and only if γ is not normal.
We now come to the SLr-type case. If F has a special involution ξ, let L be a rank 1 sheaf

such that

(4.1) ξ˚F » DpFq b L,

and we note that (as a character of the fundamental group of U ˆ F̄p) the sheaf L has order
dividing r (by taking the determinant on both sides). For convenience, we let ξ “ 1 and
L “ Q̄`, if there is no special involution.

Let γ˚ be a tuple of representatives of the elements of γ for the equivalence relation

γi „ γj if and only if pγi “ γj or γi “ ξγjq

(which is indeed an equivalence relation because ξ2 “ 1).
Then, arguing as in Example 2.3 (3), we see that the tuple F “ pγ˚FqγPγ˚ is strictly

U -generous, because F is bountiful of SLr-type and because

γ˚i F » Dpγ˚j Fq b L1,

for some rank 1 sheaf L1, implies that

γiγ
´1
j P Autd

0pFq,

and thus either does not occur (if F has no special involution) or happens only if γi “ ξγj,
so that γi „ γj, which is excluded for distinct components of γ˚.

For γ P γ˚, we denote

n1
γ “ |ti | γi “ γ and σi “ 1u| ` |ti | γi “ ξγ and σi “ cu|,

ncγ “ |ti | γi “ γ and σi “ cu| ` |ti | γi “ ξγ and σi “ 1u|,

so that, by bringing together equivalent γi’s, we obtain a geometric isomorphism

(4.2)
â

1ďiďk

γ˚i pF
σiq »

â

γPγ˚

pγ˚Fqbn
1
γ bDpγ˚Fqbn

c
γ b L0
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for some rank 1 sheaf L0, which is a tensor product of sheaves of the form γ˚L or γ˚pDLq.
In particular, L0 has order dividing r since L does.

We now get from Theorem 2.9 that if

x
â

1ďiďk

γ˚i pF
σ
q,LψphXqy “ x

â

γPγ˚

pγ˚Fqbn
1
γ bDpγ˚Fqbn

c
γ , pL0 b LψphXqy ­“ 0,

then

L0 b LψphXq »
â

γPγ˚

Λγpγ
˚Fq

where Λγ is an irreducible representation of SLr which is a subrepresentation of the tensor

product Stdbn
1
γ bDpStdqbn

c
γ . Since SLr has no non-trivial 1-dimensional characters, this

shows that this condition cannot occur unless Λγ is trivial for all γ, which implies then that

(4.3) L0 b LψphXq » Q̄`

is trivial.
If F has no special involution, this immediately implies that h “ 0. If F has a special

involution, on the other hand, we recall that L0 has order r, while LψphXq has order p if
h ­“ 0. Hence (4.3) is impossible if p ą r and h ­“ 0, and moreover, in that case we also get
from (4.3) that L0 must be trivial.

Thus, in all cases of Theorem 1.5, we reduce to understanding the case h “ 0. Since Λγ

is trivial, we have also the condition that the trivial representation is a subrepresentation of
the tensor product

pγ˚Fqbn
1
γ bDpγ˚Fqbn

c
γ

for all γ in γ˚.
But the trivial representation of SLr is a subrepresentation of StdbnbDpStdqbm if and

only if r | n ´m (see, e.g., [19, Proof of Prop. 4.4]), and this means that if there is a main
term, then r | n1

γ ´ ncγ for all γ P γ˚, which means precisely that pγ,σq is not r-normal (if
there is no special involution) or not r-normal with respect to ξ (if there is one). �

Remark 4.1. We see from the proof that the condition p ą r in Theorem 1.5 (when F has
a special involution) can be relaxed: especially, it is not needed if we have

ξ˚F » DpFq

(i.e. if L in (4.1) can be taken to be the trivial sheaf, since we only used p ą r to deduce
that L0 in (4.2) is trivial, which is automatically true in this case).

For completeness, we explain the proof of Proposition 1.1 (see, e.g., [5, §8,§9] for similar
arguments).

Proof of Proposition 1.1. Let U Ă A1 be the maximal open set where all sheaves Fi and G

are lisse. We have

|pA1
´ UqpFpq| ď

ÿ

i

cpFiq ` cpGq.

Since the sheaves are all mixed of weights ď 0, we have
ˇ

ˇ

ˇ

ÿ

xPUpFpq

K1pxq ¨ ¨ ¨KkpxqMpxq ´
ÿ

xPFp

K1pxq ¨ ¨ ¨KkpxqMpxq
ˇ

ˇ

ˇ
ď C1|pA

1
´ UqpFpq|
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where C1 is the product of the ranks of the sheaves. This means that it is enough to deal
with the sum over x P UpFpq.

By the Grothendieck–Lefschetz trace formula we have

ÿ

xPUpFpq

K1pxq ¨ ¨ ¨KkpxqMpxq “ ´ trpFr | H1
c pU ˆ F̄p,

â

i

Fi bDpGqqq

since the H0
c and H2

c terms vanish, by assumption for H2
c and because we have a tensor

product of middle-extension sheaves for H0
c .

By Deligne’s proof of the Riemann Hypothesis [3], since the tensor product is of weight 0,
all eigenvalues of Frobenius acting on the cohomology space have modulus ď

?
p, and hence

ˇ

ˇ

ˇ

ÿ

xPUpFpq

K1pxq ¨ ¨ ¨KkpxqMpxq
ˇ

ˇ

ˇ
ď dimH1

c pU ˆ F̄p,
â

i

Fi bDpGqq ˆ
?
p.

Finally, using the Euler-Poincaré formula, one sees that the dimension of this space is
bounded in terms of the conductors of Fi and of G, and in terms of k (see, e.g., [8, Lemma
3.3] for some details). �

As already mentioned, Corollary 1.6 is an immediate consequence of Theorem 1.5 and
Proposition 1.1. Corollary 1.7 is similar, except that in the argument of Proposition 1.1,
there is a main term in the trace formula which is (for the Sp-type case) given by

trpFr | H2
c pU ˆ F̄p,

â

γ˚i F bDpGqqq.

However, the extra assumption that the geometric monodromy group coincides with the
arithmetic monodromy group means that all eigenvalues of the Frobenius acting on H2

c are
equal to p. Hence this contribution is equal to

p dimH2
c p
â

γ˚i F bDpGqq “ px
â

γ˚i F,Gy

and for G given (as in the proof of Theorem 1.5) by

G “
â

γPγ˚

Λγpγ
˚Fq

with Λγ an irreducible representation of G which is a subrepresentation of Stdbnγ , we have

x
â

γ˚i F,Gy “
ź

γPγ˚

multΛγ pStdbnγ q

where each multiplicity is at most k, and is equal to 1 if nγ “ 1. The result follows immedi-
ately.

The case of SLr-type is similar and left to the reader; the extra condition that ξ˚F » DpFq
(without a twist by a non-trivial rank 1 sheaf) allows us to deduce (4.2) with L0 trivial, from
which the non-vanishing of H2

c follows when pγ,σq is not r-normal with respect to the special
involution. (We already observed that under this condition we do not need to assume p ą r
in Theorem 1.5).

23



5. Applications

We present here some applications of the general case developed in Section 2, going beyond
the results of the introduction and of the previous section. The first recovers an estimate
of Katz used by Fouvry and Iwaniec in their study of the divisor function in arithmetic
progressions [4], the second discusses briefly the sums of Bombieri and Bourgain [2].

5.1. The Fouvry-Iwaniec sum. In [4], for primes p and pα, βq P Fˆp
2, the exponential sum

Spα, β; pq “
ÿ

t

Kl2pαpt´ 1q2qKl2ppt´ 1qpαt´ βqqKl2pβpt
´1
´ 1q2qKl2ppt

´1
´ 1qpβt´1

´ αqq

arises, where the sum is over t P Fˆp ´ t1, β{αu, and we abbreviate Kl2pxq “ Kl2px; pq. This
is not of the type of Section 1, since the arguments of the Kloosterman sums are not simply
of the form γi ¨ t. However, it fits the general framework of Section 2 with the 4-tuple

F “ pf˚i K`2q1ďiď4,

where

f1 “ αpX ´ 1q2, f2 “ pX ´ 1qpαX ´ βq

f3 “ βpX´1
´ 1q2, f4 “ pX

´1
´ 1qpβX´1

´ 1q.

Let U “ Gm ´ t1, β{αu. We claim that this 4-tuple is U -generous if α ­“ β (which
is certainly a necessary condition, since otherwise f1 “ f2). Indeed, since the geometric
monodromy group of each f˚i F is SL2 “ Sp2 (because the geometric monodromy group of
K`2 is SL2, and SL2 has no finite index algebraic subgroup), we need to check that there is
no geometric isomorphism

f˚i K`2 » f˚j K`2 b L

for i ­“ j and a rank 1 sheaf L. But taking the dual and then tensoring, such an isomorphism
implies

f˚i EndpK`2q » f˚j EndpK`2q,

on the open set V “ f´1
i pGmq where the left-hand side of the original isomorphism (hence

also the right-hand side) is lisse. Since EndpK`2q » Q̄` ‘ Sym2
pK`2q, this implies that

f˚i Sym2
pK`2q » f˚j Sym2

pK`2q,

on V .
But since Sym2

pK`2q is ramified at 0 and 8, the ramification loci Si of the sheaves
f˚i Sym2

pK`2q are, respectively

S1 “ t1,8u, S2 “ t1, β{α,8u,

S3 “ t0, 1u, S4 “ t0, 1, βu,

and are therefore distinct, proving the desired property of U -generosity.
Since the sum Spα, β; pq concerns the tensor product of

f˚1 K`2 b f
˚
2 K`2 b f

˚
3 K`2 b f

˚
4 K`2

with the trivial sheaf Q̄`, which is a tensor product of the trivial representations, which is
not a subrepresentation of Std, it follows therefore that

xf˚1 K`2 b f
˚
2 K`2 b f

˚
3 K`2 b f

˚
4 K`2, Q̄`y “ 0
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and hence by Proposition 1.1 that

Spα, β; pq ! p1{2

for all primes p and α ­“ β in Fˆp , where the implied constant is absolute. In the Appendix
to [4], Katz gives a precise estimate of the implied constant.

5.2. The Bombieri-Bourgain sums. The Bombieri-Bourgain sums are defined by

S “
ÿ

xPFp

ź

1ďiďk

Kipx` aiqMpxq

(see [17, p. 513]) where

Mpxq “ e
´bx`Gpxq

p

¯

χpgpxqq,

Kipxq “ ´
1
?
p

ÿ

yPFp

χipfipyqqe
´gipyq

p

¯

e
´xy

p

¯

for some b P Fp and pa1, . . . , akq P Fp
k, where

‚ pχ, χ1, . . . , χkq are non-trivial multiplicative characters modulo p,
‚ fi P FprXs, g P FprXs are non-zero polynomials,
‚ gi P FprXs and G P FprXs may be zero.

This sum is of the type considered in Section 2, with

Fi “ r`ais
˚ FTψpLψpgiq b Lχpfiqq,

G “ LψpG`bXq b Lχpgq

(or rather those Fi corresponding to the distinct parameters since this is not assumed to be
the case).

Under (different) suitable conditions on these parameters, Bombieri and Bourgain [2,
Lemma 33] and Katz [17, Th. 1.1] give estimates for S of the type

S ! p1{2

where the implied constant depends only on k and the degrees of the polynomials involved.
Both proofs actually avoid involving monodromy groups which illustrates that sometimes an
estimate for a sum of products might be easier to obtain than those involved in the previous
sections. We show how to recover quickly the desired square-root cancellation in the case
that occurs for the application considered by Bombieri and Bourgain, by a hybrid of Katz’s
argument and those of the previous sections.

In [2], the conditions are: p is odd, gi “ G “ 0, 1 ď degpfiq ď 2, degpgq ě 2, the fi and
g have only simple roots, and all χi and χ are equal and are of order 2. We then first note
that if some fi has degree 1, the resulting Fourier transform

FTψpLχpfiqq

is geometrically isomorphic to a tensor product

LψpαXq b LχpXq
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(we use here that χ “ χ̄), so that by combining these with G we may assume that all fi are
of degree 2. Note that g is replaced by Xkg, where k is the number of i with degpfiq “ 1.
Since χ has order 2, we have either k even and

LχpXkgq » Lχpgq,

so that the previous assumptions on g remain valid, or k odd and

LχpXkgq » LXχpgq » Lχpg̃q,

where g̃ “ g{X if gp0q “ 0, or g̃ “ Xg otherwise; in the first case it may be that degpg̃q “ 1,
but in that case the unique zero of g̃ is in Gm since g has simple roots. In particular, in all
cases, we see that g is replaced by a polynomial with at least one (simple) root in Gm.

If all fi were of degree 1, we are left with
ÿ

x

χpgpxqqψphxq,

with g non-constant, which satisfies the desired conditions. We therefore assume that some
fi are of degree 2.

For a polynomial fi of degree 2, by completing squares, we see that the Fourier transform

FTψpLχpfiqq

is geometrically isomorphic to a tensor product of LψphXq for some h and of the Fourier
transform corresponding to a polynomial of the form X2`ci. We may therefore assume that
all fi are of this form.

Finally, it is easy to see that

FTψpLχpX2`ciqq » rx ÞÑ cix
2
{4s˚K`2.

In particular, such sheaves are of rank 2, lisse on Gm and have geometric monodromy
group Gi “ G0

i “ SL2. We therefore obtain a strictly Gm-generous tuple by taking for Fi
the Fourier transforms corresponding to the ci’s, modulo the equivalence relation ci „ cj if
and only if

cic
´1
j P Aut0prx ÞÑ x2

{4s˚K`2q.

We can now conclude: since g has a simple zero in Gm, the sheaf G is ramified at at least
one point inside Gm, and therefore the irreducible sheaf G can not be a subsheaf of the tensor
product

â

i

Fbnii

which is lisse on Gm.

Remark 5.1. Even if degpgq “ 1, g “ αX and α ­“ 0, we can obtain the square-root bounds
provided we have at least one sheaf Fi: by the results of Section 2, the condition

x
â

i

Fbnii ,DpGqy ­“ 0

would imply that DpGq is geometrically isomorphic to
â

i

SymmipFiq

for some mi ě 0. By rank considerations, we have mi “ 0, and this implies that G is
geometrically trivial, which is impossible since g is non-constant.
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