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ABSTRACT
This paper compares, for the first time, the computational
power of linearizable objects with that of eventually lin-
earizable ones. We present the following paradox. We
show that, unsurprisingly, no set of eventually linearizable
objects can (1) implement any non-trivial linearizable ob-
ject, nor (2) boost the consensus power of simple objects
like linearizable registers. We also show, perhaps surpris-
ingly, that any implementation of an eventually lineariz-
able complex object like a fetch&increment counter (from
linearizable base objects), can itself be viewed as a fully
linearizable implementation of the same fetch&increment
counter (using the exact same set of base objects).

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Pro-
gramming

Keywords
Concurrent; asynchronous; linearizable; consistency; wait-
free; obstruction-free; fetch-and-increment; consensus

1. INTRODUCTION

A central activity in shared-memory computing is that
of raising the abstraction level of synchronization prim-
itives by building, in software, higher-level inter-process
communication objects than those provided in hardware.
The goal is usually to ensure that, even if the constructed
objects have richer semantics, they appear as if they were
provided in hardware. In particular, every process should
be able to access the shared object independently of con-
tention, i.e., even when other processes may be access-
ing the same object. This property, called wait-freedom
[9], says that if we build, for instance, a fetch&increment
counter in software, then every process should be able
to increment the counter and get its new value, indepen-
dently of whether other processes that are accessing the
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counter concurrently have been swapped or paged out.
This requirement rules out the usage of locks. However,
in order to provide the illusion of a single shared ob-
ject, processes must synchronize using underlying hard-
ware primitives, such as compare&swap. This illusion, in
turn, is typically captured by the property of being lin-
earizable [11]. This property says that even if they are
actually performed concurrently, the operations issued on
that object appear as if they are executed sequentially.

Ensuring either linearizability or wait-freedom alone is
simple. What is challenging, and sometimes considered
too expensive, is to ensure both at the same time. Two
major research directions have been considered to reduce
the difficulty. The first is to weaken wait-freedom and
devise algorithms that “simply” ensure lock-freedom, ob-
struction-freedom, or even use locks in specific portions
of the code [10]. The rationale here is that the conditions
under which the operating system swaps out a process for
a long period of time do not happen very often. A lot of
theoretical work has been devoted in the last decades to
this avenue of research. The second approach is to weaken
linearizability: for some applications, weaker consistency
conditions suffice [19]. Consider a shared fetch&increment
abstraction used to count references of objects in a concur-
rent setting. As pointed out, this would typically be im-
plemented in software using the system’s compare&swap
objects. If several compare&swap tentatives fail due to
unusually high contention, it may be acceptable to return
a temporary value of the counter, as long as, eventually,
all increments of concurrent processes are taken into ac-
count in some future value of the counter. In other words,
in the implementation, if a process is taking too long to
synchronize perfectly, because of contention, it could give
up trying to get the most up-to-date value and (a) do its
increment locally, making sure later that its increments
are eventually counted, and (b) get a value of the counter
to return that is lower than the true value, assuming that
the process will get information about concurrent incre-
ments later.

The notion of eventual consistency [19] aims to cap-
ture precisely this notion of “intermittent inconsistency”.
The approach is analogous to the way self-stabilization
was defined, namely stating that the system should even-
tually work correctly forever beyond some stabilization
time, with the goal of modelling intermittent failures and
the return of the system to normal after the failure. Ob-
viously, if instead of consistency, implementations only
need to implement an eventual form of it, they would of-
fer weaker guarantees. In our example above, the value
returned by the counter might be temporarily inconsis-
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tent with the eventual value. But would these imple-
mentations be easier to implement? Maybe surprisingly,
we show that the answer is no in some situations. More
specifically, we highlight the following paradox.
• On the one hand, unsurprisingly, eventual lineariz-

ability is strictly weaker than linearizability in the
following two senses. (1) No set of eventually lin-
earizable objects can implement any non-trivial lin-
earizable object. (A trivial object is one that can be
implemented without inter-process communication.)
This is true even if we only require the resulting
linearizable object to be obstruction-free, whereas
the eventually linearizable base objects are wait-
free. (2) No set of eventually linearizable objects can
boost the consensus power of simple linearizable ob-
jects like registers, i.e., help solve consensus among
two processes in conjunction with linearizable reg-
isters. In short, eventually linearizable objects can
neither implement linearizable ones (1) nor augment
the power of shared linearizable registers (2).
• On the other hand, eventual linearizability can be as

hard to implement as linearizability: any implemen-
tation of an eventually linearizable fetch&increment
counter (from a set of linearizable base objects),
yields an implementation of a fully linearizable fetch-
&increment counter (from the same set of base ob-
jects). Roughly speaking, this is because a fetch&in-
crement object continues to require synchronization
forever. In contrast, such a result does not hold for
objects that require synchronization only in the be-
ginning of an execution: for example, consensus and
test&set objects are trivial to implement in an even-
tually linearizable manner. Thus, an eventually lin-
earizable implementation of consensus (respectively,
test&set) will clearly not yield a linearizable imple-
mentation of consensus (respectively, test&set).

In fact, we show that any algorithm A that implements
an eventually linearizable fetch&increment object, start-
ing from a given initial state of the object, can itself be
viewed as an algorithm A′ that implements a fully lin-
earizable fetch&increment object, simply starting from a
different initial state of the counter than A. Basically, the
variables of A′ are those of A, initialized after a global
“stabilization time” of eventual linearizability. Interest-
ingly, this is in spite of the fact that the stabilization
time is not a priori fixed: it could be different in different
executions (and this is allowed by our definition of even-
tual linearizability). The main difficulty of the proof is to
show that there must exist a stable configuration C of al-
gorithm A where every possible run that passes through
C has already stabilized at C. (Then, we initialize the
variables of A as they are in C to get A′.)

2. RELATED WORK

Eventual consistency originated in the context of repli-
cated systems where updates to the replicas are propa-
gated using gossipping to improve latency and tolerate
asynchrony and partitions [4, 6, 18]. Because gossipping
is used, replicas are not always consistent, but eventually
become so if the updates stop. More recently, researchers
argued eventual consistency is a reasonable alternative to
consistency in the cloud context. The argument is that
consistency does not scale and is not necessary for many
applications, e.g., [1, 17, 19]. So far, research on even-

tual consistency has focused on describing systems that
implement some form of eventual consistency.

Some attempts have been made to formalize the seman-
tics of eventual consistency. In [14, 15], for instance, the
focus was on abstract properties, while in [2] the goal was
to show how to verify replication schemes that ensure only
eventual consistency. However, little effort has been de-
voted to theoretical studies that would precisely measure
the power and limitations of eventual consistency (beyond
artifacts related to specific implementations). Two no-
table exceptions are [16] and [5].

In [16], Serafini et al. introduced the concept of eventual
linearizability and addressed the problem of the weakest
failure detector to implement objects for which some op-
erations are linearizable and some operations are not. In a
sense, their work is orthogonal to ours. The main common
feature is the definition of eventual linearizability. There
are however two differences between our definition of an
eventually linearizable implementation and the definition
used by Serafini et al. The first is a minor difference. Ser-
afini et al. used a timed model of computation, and talked
about stabilizing after time t rather than after t events.
This is due to their underlying message-passing model
equipped with failure detectors where timing assumptions
are used, while we consider a totally asynchronous shared-
memory model, where time plays no role. The second,
more important difference, has to do with quantifiers.
Serafini et al. defined eventual linearizability of an im-
plementation by saying that there is a single time t such
that all executions stabilize by time t. We do not require
a single t for all executions: the number of events before
executions stabilize may vary, and even be unbounded.
Serafini et al. motivate their choice of focusing only on
finite executions by arguing that any finite history is triv-
ially linearizable after some t (because t can be chosen
large enough to satisfy the definition vacuously), and thus
the notion of eventual linearizability makes sense only if
there is a single t for all executions. We take a differ-
ent approach. We consider infinite executions, which do
not trivially satisfy the property of being t-linearizable for
some t. We made this choice following an analogy with
the literature on self-stabilization, which also deals with
a property describing eventual good behaviour.

Dubois et al. [5] consider a message-passing environ-
ment and compare the weakest failure detector to imple-
ment total order broadcast with the weakest failure de-
tector to implement eventual total order broadcast. Their
results do not provide a comparison between linearizable
and eventually linearizable implementations of specific ob-
jects. We show in this paper that some eventually lineariz-
able objects are trivial to implement in an asynchronous
system (and would thus not require any failure detector),
whereas others are as hard to implement as their lineariz-
able counterparts. Note that the fact that two abstrac-
tions have the same weakest failure detectors does not
mean that any implementation of the first is also an im-
plementation of the second (which is what we show for
fetch&increment objects in this paper). For instance, [3]
shows that two object types T1 and T2 can have the same
weakest failure detectors even if the consensus number of
T1 is greater than that of T2, meaning that T2 cannot
implement T1.

To our knowledge, this paper is the first to compare
the computational power of linearizable and eventually
linearizable objects in a shared-memory context.
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3. MODEL, DEFINITIONS
AND PROPERTIES

A shared-memory system consists of a collection of pro-
cesses that communicate by accessing shared objects of
various types. Each type of object has a sequential speci-
fication, which consists of
• a set Q of possible states,
• a set of possible initial states Q0 ⊆ Q,
• a set INV of possible operation invocations,
• a set RES of possible operation response values, and
• a transition relation δ ⊆ Q×OP ×RES ×Q.

Intuitively, if (q, op, r, q′) ∈ δ, it means that when the
object is in state q and operation op is applied to it, the
object can return the response r and move into state q′.
We consider the name of an operation in OP to include all
of the operation’s arguments. A type T is deterministic if,
for each state q and each operation op, there is a unique
result r and state q′ such that (q, op, r, q′) ∈ δ. A type T
has finite non-determinism if, for each state q and each
operation op, there are finitely many pairs (r, q′) such that
(q, op, r, q′) ∈ δ.

An event is a tuple 〈p, o, x〉 where p is a process name,
o is the name of an object of some type T and x is either
an invocation or response for type T . A computation of
the distributed system is described by a sequence of such
events, called a history. We use H|o to denote the subse-
quence of history H consisting of events at object o and
H|p to denote the subsequence H consisting of events per-
formed by process p. A history is sequential if it consists
of operation invocation and response events, starting with
an invocation, where each invocation 〈p, o, inv〉 (except
possibly the last, if the history is finite) is immediately
followed by a matching response 〈p, o, res〉. Any history
H mentioned in this paper is assumed to be well-formed,
i.e., the subsequence H|p is sequential for each process
p. An operation consists of an invocation event and its
matching response event (if it exists).

A sequential history H is legal if, for each object o,
the subsequence H|o = 〈p1, o, i1〉, 〈p1, o, r1〉, 〈p2, o, i2〉,
〈p2, o, r2〉, . . . satisfies the following with respect to o’s se-
quential specification (Q,Q0, INV,RES, δ): there is a se-
quence of states q0, q1, . . . in Q such that q0 ∈ Q0 and, for
each j ≥ 0, (qj , ij , rj , qj+1) ∈ δ.

An implementation of an object of type T = (Q,Q0,
INV,RES, δ) provides, for each q0 ∈ Q0, a programme
that each process can follow to perform each operation
op in INV . When the programme terminates, it outputs
a result in RES. Since we focus on a shared-memory
model, the programme can make use of shared base ob-
jects: it can invoke an operation on a base object and
await a response from it. In a concurrent execution of
the implementation, each process repeatedly executes the
programme to perform an operation until the programme
generates a response to the operation, and the steps of dif-
ferent processes may be interleaved in an arbitrary way.
Each execution defines a history, the sequence of invoca-
tions and responses on the object of type T . In Section
3.1, we define eventual linearizability, which is a correct-
ness condition for an implementation, that constrains the
set of possible histories that can arise from executions of
the implementation.

An implementation is wait-free if each operation com-
pletes within a finite number of steps of the process per-
forming it. An implementation is non-blocking if, when-

ever some operation is pending and processes continue
to take steps, some operation is eventually completed.
(Some authors call the non-blocking progress property
lock-freedom.) An implementation is obstruction-free if,
there is no execution where only one process takes steps
in an infinite suffix without completing its operation.

Generally, the focus of distributed computing research
is on the interprocess communication, and the computa-
tional power of the processes is not specified. For this
work, we assume that the programmes are written in a
programming language that has equivalent power to the
Turing machine model (but includes a mechanism for ac-
cessing the shared base objects). Correspondingly, we as-
sume that the transition relations of object type specifi-
cations are Turing-computable.

3.1 Eventual Linearizability

We now give several definitions that are used in defin-
ing eventual linearizability. These are based on the defini-
tions in [16], but differ in the ways described in Section 2.
The first property, weak consistency, ensures that opera-
tions cannot return responses that are “out of left field,”
even during the initial period when absolute consistency
is not enforced. In particular, the response to each op-
eration should take into account earlier operations done
by the same process and should be a possible response if
the process knows only about a subset of the operations
performed by other processes.

Definition 1. A history H is weakly consistent if, for
each operation op that has a response in H, there is a legal
sequential history S that
• contains only operations that are invoked in H before
op terminates,
• contains all operations that are performed by the

same process that does op and precede op in H, and
• ends with the same response to op as in H.

Now we define the notion of being linearizable “after
the first t events have occurred.”

Definition 2. Let H be a history and t be a natural
number. Let H ′ be the suffix of H obtained by removing
the first t events. Then, a legal sequential history S is
called a t-linearization of H if
• each operation invoked in S is invoked in H,
• each operation completed in H is completed in S,
• if op1’s response is before op2’s invocation and both

of these events are in H ′ and op2 is in S, then op1
precedes op2 in S, and
• each operation that has a response in H ′ has the

same response in S.
A history is t-linearizable if it has a t-linearization.

Definition 3. A history is eventually linearizable if it
is weakly consistent and t-linearizable for some t.

Definition 4. An implementation of an object is even-
tually linearizable if every history is eventually lineariz-
able. (Note that different histories can be t-linearizable
for different values of t.)

3.2 Basic Properties

We start with some easy properties of t-linearizability.
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Lemma 5. If a history H is t-linearizable, then it is
also t′-linearizable for any t′ > t.

Proof. If S is a t-linearization of H, then S is also a
t′-linearization of H.

Lemma 6. If a history H is t-linearizable, then every
prefix of H is also t-linearizable.

Sketch of proof. Let S be a t-linearization of H. A
prefix of H of length at most t is trivially t-linearizable.
So, consider a prefix H1H2 of H where |H1| = t. Let S1

be the shortest prefix of S containing all operations that
terminate in H2. Let S2 be an arbitrary permutation of
the operations that terminate in H1 but do not appear
in S1 (with the responses they would have if executed in
that order after S1). Then, it is easy to check that S1S2

is a t-linearization of H1H2.

Serafini et al. [16] prove the following proposition using
their slightly different definition of t-linearizability. Note,
however, that the proof holds only for histories involving a
finite number of objects (an assumption that should have
been included in [16]).

Lemma 7. (Proved in [16]) A history H involving a
finite number of objects is t-linearizable for some t if and
only if, for each object o, there is a to such that H|o is
to-linearizable.

The proof of Lemma 7 is based on the proof in [11] that
linearizability is a local property, and it carries over to our
definition. For the “only if” direction, we can take to = t.
For the “if” direction, we choose t large enough so that
the first t events of H include the first to events of H|o
for each o. This is possible because the set of objects o is
finite.

The proof of the following lemma in [16] has a small
error, so for completeness, we provide a detailed proof.

Lemma 8. A history H is weakly consistent if and only
if, for each object o, H|o is weakly consistent.

Proof. Suppose H is weakly consistent. Let o be any
object and op be any operation with a response in H|o.
Since H is weakly consistent, there is a sequential history
S that satisfies Definition 1 for op inH. Then, S|o satisfies
Definition 1 for op in H|o. So, H|o is weakly consistent.

Now, supposeH|o is weakly consistent for each object o.
Let op be any operation that has a response in H. Let
p be the process that performs op and o be the object
op is performed on. Let S be the legal sequential his-
tory that satisfies Definition 1 for op in H|o. Let S′ be
obtained from S by inserting at the beginning of S any
operations performed by p before op in H on objects other
than o, with responses as dictated by the objects’ sequen-
tial specifications. Then, S′ satisfies Definition 1 for op in
H. Thus, H is weakly consistent.

The next proposition is immediate from Lemma 7 and 8.

Proposition 9. A history H that involves a finite num-
ber of objects is eventually linearizable if and only if, for
each object o, H|o is eventually linearizable.

Proposition 9 does not hold for some histories that use
infinitely many objects. For example, consider the fol-
lowing sequential history H that uses read/write registers

R1, R2, . . ., all initialized to the value 0.
〈p,R1, write(1)〉, 〈p,R1, ack〉, 〈q,R1, read〉, 〈q,R1, 0〉,
〈p,R2, write(1)〉, 〈p,R2, ack〉, 〈q,R2, read〉, 〈q,R2, 0〉,
〈p,R3, write(1)〉, 〈p,R3, ack〉, 〈q,R3, read〉, 〈q,R3, 0〉, . . .
If ti is chosen so that the response to the read of Ri occurs
before the tith event of H, then H|Ri is ti-linearizable and
it is easy to see that H|Ri is weakly consistent, so H|Ri

is eventually linearizable for every i. However, H is not
eventually linearizable: for any t, there is an i such that
the write to Ri is invoked after the tth event of H, and
H|Ri is not t-linearizable, so H is not t-linearizable.

A safety property is a set of histories that is non-empty,
prefix-closed and limit-closed. A liveness property is a
set of histories such that every finite history is the prefix
of some history in the set. The following lemma follows
easily from the definition of weak consistency.

Lemma 10. Weak consistency is a safety property.

Proof. The empty execution (consisting of no events)
vacuously satisfies Definition 1, so the set of weakly con-
sistent histories is non-empty.

Next, we prove that the set of weakly consistent histo-
ries is prefix-closed. Suppose H is weakly consistent. Let
H ′ be a prefix of H. Let op be an operation that termi-
nates in H ′. Let S be the sequential history that satisfies
definition 1 for op in H. Then S also satisfies Definition
1 for op in H ′. Thus, H ′ is weakly consistent.

To show the set of weakly consistent histories is limit-
closed, let H1, H2, . . . be an infinite sequence of histories
such that, for each i, Hi is weakly consistent and Hi is
a prefix of Hi+1. We show that H = lim

i→∞
Hi is weakly

consistent. Let op be an operation that terminates in H.
Then there exists an i such that op terminates in Hi. Let
S be a sequential history that satisfies Definition 1 for op
in Hi. Then, S also satisfies Definition 1 for op in H.

0-linearizability is equivalent to linearizability [11]. For
deterministic objects, Lynch [13] proved that linearizabil-
ity is a safety property. The proof extends easily to ob-
jects with finite non-determinism [8]. However, lineariz-
ability is not a safety property for objects with infinite
non-determinism [8].

For t > 0, t-linearizability is not a safety property, even
for deterministic types. Consider a fetch&increment ob-
ject, which stores a natural number and provides a single
operation, fetch&inc, which adds one to the value stored
and returns the old value. Consider the infinite sequen-
tial history which uses a single fetch&increment object X
initialized to the value 0.
〈p,X, fetch&inc〉, 〈p,X, 0〉, 〈q,X, fetch&inc〉, 〈q,X, 0〉,
〈q,X, fetch&inc〉, 〈q,X, 1〉, 〈q,X, fetch&inc〉, 〈q,X, 2〉, . . .
Every finite prefix is t-linearizable if event t is the response
to the first operation: the t-linearization moves the first
operation to the end. However, the whole infinite history
is not t-linearizable.

Thus, t-linearizability is neither a safety nor a liveness
property. However, the property of being t-linearizable
for some t is trivially a liveness property: for any finite
history H, just take t to be equal to the number of events
in H, and then any permutation of the operations in H
yields a legal, sequential history that is a t-linearization
of H. Thus, eventual linearizability is the intersection of a
safety property (weak consistency) and a liveness property
(being t-linearizable for some t).
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3.3 Using Registers to Obtain
Weak Consistency

Our definition of eventual linearizability combines a
safety property (weak consistency) and a liveness prop-
erty (being t-linearizable for some t). If our underlying
system includes linearizable read/write registers, then we
can easily modify any non-blocking implementation that
satisfies the liveness property to also satisfy the safety
property.

Proposition 11. Consider a system that includes lin-
earizable registers as base objects. Let T be an object type
with finite nondeterminism. There is an eventually lin-
earizable non-blocking implementation of T if and only
if there is a non-blocking implementation of T such that
for every history there is a t such that the history is t-
linearizable.

This proposition is proved in detail in the appendix.
The basic idea is to announce all operations by writing
them to shared memory. Then, when a response to an op-
eration has been computed, a process reads all announced
operations and returns the response only if it can verify
that the response does not violate weak consistency. If a
violation of weak consistency is detected, the process is
free to return any response that is consistent with just its
own prior operations.

4. EVENTUAL LINEARIZABILITY
IS WEAK

It is fairly easy to prove that eventually linearizable
objects by themselves are useless for implementing lin-
earizable objects. The intuition is that a linearizable im-
plementation must eventually produce the correct out-
put for some operations, but if the eventually linearizable
base objects used by the implementation are still behav-
ing badly when that output is produced, that output can
be incorrect. The following theorem says that there is
no linearizable implementation of any non-trivial object
that is useful for inter-process communication from any
collection of eventually linearizable objects.

Theorem 12. For n ≥ 2, the following are equivalent
for any type T with finite non-determinism.

1. There is an n-process linearizable wait-free imple-
mentation of T using no shared objects.

2. There is an n-process linearizable obstruction-free
implementation of T using no shared objects.

3. There is an n-process linearizable wait-free imple-
mentation of T from some collection of eventually
linearizable objects.

4. There is an n-process linearizable obstruction-free
implementation of T from some collection of even-
tually linearizable objects.

Proof. It is trivial to see that 1 ⇒ 3 ⇒ 4 and 1 ⇒ 2
⇒ 4. So, it remains to prove that 4 ⇒ 1.

Suppose there is an obstruction-free linearizable im-
plementation I of an object of type T from some col-
lection of eventually linearizable objects for n processes
p1, . . . pn. We construct an n-process wait-free lineariz-
able implementation I ′ of an object of type T simply by
replacing each shared object o by n local copies o1, . . . , on.

(Since we assume that transition functions are Turing-
computable, a process can simulate the object in its local
memory.) Whenever process pi must perform an oper-
ation op on shared object o according to I, pi instead
performs op on its local copy oi.

Then, any finite history H of I ′ is also a possible finite
history of I since the eventually linearizable objects used
by I can return arbitrary answers (that satisfy weak con-
sistency) in any finite prefix of an execution. (Note that
using a local copy of each object ensures the responses
satisfy weak consistency.) Thus, every finite history H of
I ′ must be linearizable, since I guarantees linearizability.
Since linearizability is a safety property for T (which is
assumed to have finite non-determinism), this means that
every history of I ′ is linearizable.

It remains to show that I ′ is wait-free. Consider any
execution α of I ′ and any process pi that takes infinitely
many steps in α. Since there is no communication between
processes in α, pi cannot distinguish α from α|pi, where
pi runs solo. But α|pi is also a solo execution of I and I
is obstruction-free, so every operation that pi invokes in
this execution must terminate.

Theorem 12 allows us to characterize the trivial de-
terministic types that have linearizable implementations
from eventually linearizable objects as follows.

Definition 13. A deterministic type T is called triv-
ial if and only if there is a computable function r that
maps each initial state q0 and operation op to a response
r(q0, op) that is the correct response to op for every state
reachable from q0.

Proposition 14. A deterministic type T has a lineariz-
able obstruction-free implementation for 2 processes from
some collection of eventually linearizable objects if and
only if T is trivial.

Proof. (⇐): Suppose T is trivial. For any initial state
q0, an object of type T initialized to state q0 can be im-
plemented by having op simply return r(q0, op).

(⇒): Suppose there is an obstruction-free linearizable
implementation from eventually linearizable objects. By
Theorem 12, there is also an obstruction-free linearizable
implementation using no shared objects at all for two pro-
cesses p1 and p2. To compute r(q0, op), we simply run the
programme for p1 that implements op for an object ini-
tialized to state q0 until it produces a response. Let α
be this solo execution of the implementation. Let q be
any state that can be reached from q0 via some sequence
of operations. We must show that r(q0, op) is the correct
response for op when an object of type T is in state q.
Consider an execution β of the implementation in which
process p2 runs solo, performing a sequence of operations
that takes the implemented object from the initial state
q0 to state q. (This uses the assumption that T is deter-
ministic, so that we can force the implemented object into
any reachable state.) Since the implementation uses no
shared objects, βα is a also possible execution of the im-
plementation. Since this execution is linearizable, and p1
returns r(q0, op) as the response for op in α, there must be
a transition (q, op, r(q0, op), q

′) in the transition relation
that specifies type T .

In particular, Proposition 14 says that even weak ob-
jects like read/write registers do not have linearizable im-
plementations from any collection of eventually lineariz-
able objects.
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Eventual Linearizability is Still Weak
Even With Linearizable Registers

Theorem 12 tells us that if T is a non-trivial type (i.e.,
cannot be implemented linearizably without any commu-
nication) then a linearizable implementation of T cannot
be built from eventually linearizable objects. But what if
we also have linearizable registers available? Then, could
we build a linearizable object of type T? We use a valency
argument [7] to show the answer is still no if T is strong
enough to solve two-process consensus.

Proposition 15. Let T be any object type that can
solve wait-free two-process consensus. There is no wait-
free linearizable implementation of T from linearizable reg-
isters and any collection of eventually linearizable objects
(of any types).

Proof. Suppose there were such an implementation
to derive a contradiction. Then we could build a wait-
free consensus algorithm for two processes p0 and p1 from
that same collection of eventually linearizable objects and
linearizable registers. Consider the tree of all possible
histories of this consensus algorithm in which process pi
has input i for i = 0, 1. (In this tree, nodes represent
configurations of the algorithm and the edge connecting a
parent to a child are labelled by an invocation or response
on one of the base objects.) A node C is 0-valent (or 1-
valent) if all decisions made in the subtree rooted at C are
0 (or 1, respectively). A node is multivalent if it is neither
0- nor 1-valent. The root of this tree is multivalent, since
a solo run by pi must produce output i. So there must be
a critical configuration C (i.e., C is multivalent, but each
child of C in the tree is 0- or 1-valent).

Thus, there must be one event s0 at p0 and one event
s1 at p1 that take the system from C to configurations C0

and C1 with opposite valencies. If s0 and s1 do not in-
volve the same shared object o, then the events commute:
the configurations reached from C by doing s0s1 or s1s0
are indistinguishable to all processes. So, a solo execution
by p0 from either one leads to the same outcome, contra-
dicting the fact that C0 and C1 have opposite valencies.
We consider three cases.

Case 1 (s0 is an invocation event on o): Let α be any
solo run by p1 continuing from C1 until p1 decides. Then
s1α is also a legal continuation from the configuration
C0, contradicting the fact that C0 and C1 have opposite
valencies.

Case 2 (s1 is an invocation event on o): symmetric to
Case 1.

Case 3 (s0 and s1 are both response events from o):
We show s0s1 and s1s0 could both occur after C.

First, suppose o is a linearizable register. Then, what-
ever response p0 gets in event s0 from configuration C is
still a valid response to p0’s pending operation after s1 oc-
curs. In particular, if s0 returns a null response to a write
by p0, the write would receive exactly the same response
after s1. Likewise, if s0 returns a value v as the response
to a read by p0, that value is still a valid response to the
read if p1 gets the response to its operation first. So, s1s0
is a valid sequence of events following C. Similarly, s0s1
is a valid sequence of events following C.

Now suppose o is an eventually linearizable object, then
there is no constraint that the responses from o in any
finite prefix of the execution must satisfy (beyond weak
consistency). So s0s1 and s1s0 are both possible sequences
of events following C.

Let s0s1α be an execution onward from C where α is
a solo execution by p0 until it decides. Then, s1s0α is a
possible execution from C, contradicting the fact that C0

and C1 have opposite valencies.

Implementing Eventually Linearizable
Objects Using Registers

We next consider whether eventually linearizable ob-
jects are easier to implement than their linearizable coun-
terparts. Here, we focus on implementations from reg-
isters: we show that it is possible to obtain eventually
linearizable implementations of some objects that have
no linearizable implementations.

Any one-shot type has a trivial eventually linearizable
implementation using no shared objects since the imple-
mentation may behave badly during the finite prefix when
all operations are performed. Similarly, some long-lived
types whose behaviour is “interesting” only in a finite
prefix of each execution have eventually linearizable im-
plementations using no shared memory. For example, a
test&set object has an eventually linearizable implemen-
tation where each process simply returns 0 for its first
invocation of test&set and 1 for all subsequent invoca-
tions.

A consensus object provides one operation propose(v),
where v is a value drawn from some domain D. Each
propose operation returns the value used as the argument
of the first propose operation to be linearized. This ob-
ject is essentially the hardest object to implement in a
linearizable way (since it can be used to build linearizable
implementations of every other type [9]), but it is trivial
to implement it in an eventually linearizable way using
only linearizable registers. In fact, the following proposi-
tion states that such an implementation can be built even
from eventually linearizable registers.

Proposition 16. A consensus object has a wait-free,
eventually linearizable implementation from eventually lin-
earizable registers.

Proof. The implementation for n processes uses an ar-
ray Proposals[1..n] of single-writer multi-reader registers,
each initially holding the value ⊥ /∈ D. When process pi
invokes Propose(v), it runs the following programme.

1 Propose(v)
2 if Proposal[i] = ⊥ then Proposal[i] := v
3 read Proposal[1..n] and return leftmost non-⊥ value
4 end Propose

The weak consistency property of the base registers en-
sures that pi’s first read of Proposal[i] returns ⊥ and all
of pi’s subsequent reads of Proposal[i] returns the argu-
ment of pi’s first Propose operation. Thus, pi always
sees a non-⊥ value on line 3, so the leftmost non-⊥ value
is well-defined. Moreover, if pi performs a write, then
it only performs one write (during its first execution of
Propose); all subsequent executions of line 2 must see a
non-⊥ value in Proposal[i].

The implementation is clearly wait-free. Consider any
concurrent execution of the implementation. Let H be
the history of invocations and responses on the consensus
object during this execution and let H ′ be the history of
invocations and responses on the base objects.

We first show that H is weakly consistent. Let op be
a Propose operation by pi that terminates in H and re-
turns the value v it read from Proposal[j]. Then, the
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Propose(v) operation op′ by process pj that wrote v must
have been invoked before op terminated. Thus, a sequen-
tial history that starts with op′ can be used to show that
the result returned by op satisfies Definition 1 in H.

Our next goal is to define a value of t such that H is
t-linearizable. By Lemma 7, there is a t′ such that H ′ is t′-
linearizable (since each of the finitely many base registers
are eventually linearizable). Let P be the set of Propose
operations, all of whose reads terminate after event t′ in
H ′ and appear after all writes in the t′-linearization of
H ′. (Note that there are only finitely many Propose op-
erations that are not in P because there are at most n
writes during the execution.) Then, all Propose opera-
tions in P read exactly the same set of values on line 3
and therefore return the same result v0.

Choose t such that a Propose(v0) operation op0 begins
before event t of H and the finitely many terminating
Propose operations that are not in P all terminate before
event t of H. To create a t-linearization of H, we put op0
first, followed by all other complete operations, in the
order that they terminate. In this sequential history, all
operations return v0, as do all operations in the concurrent
history that terminate after step t.

5. EVENTUAL LINEARIZABILITY CAN
BE HARD TO IMPLEMENT

We prove in Proposition 18, below, that if we have an
eventually linearizable implementation of a fetch&incre-
ment object from linearizable base objects, we can “fix”
the implementation so that it is linearizable. We use the
following technical lemma.

Lemma 17. Suppose we have an eventually linearizable
implementation of a fetch&increment object. Let t > 0
and let α be an infinite history of this implementation.
If every finite prefix of α is t-linearizable, then α is t-
linearizable.

Proof. Since the implementation is eventually lineariz-
able, there is some t′ such that α has a t′-linearization S′.
If t′ ≤ t, then the claim follows from Lemma 5. So, for
the remainder of the proof, we assume t′ > t.

We partition the operations of α into four sets according
to their response events as follows.
• Let A1 contain the operations whose response is

among the first t events of α.
• Let A2 contain the operations whose response is

among events t+ 1, . . . , t′.
• Let A3 contain the operations whose response occurs

after event t′.
• Let A4 contain the operations that do not terminate.

Our goal is to construct a t-linearization S of α. We
describe how to do this by assigning operations to posi-
tions in S. We assume the positions are numbered start-
ing from 0. If an operation in A2 or A3 returns a value
v, we assign it to position v in S. (Note that this can-
not assign two operations to the same position, since if
two operations op1 and op2 return the same result v,
the prefix of α that includes the responses of both op1
and op2 would not be t-linearizable.) Let E = {v :
no operation in A2 or A3 returns v}. This is the set of

slots that have not yet been assigned an operation.
We first show that |A1| ≤ |E| ≤ |A1| + |A4|. Let E′ =
{v : no operation in A3 returns v}. Then, S′ fills all po-

sitions of E′ with operations in A1 and A2 and some sub-
set A′4 ⊆ A4. Thus, |A1|+ |A2| ≤ |E′| ≤ |A1|+ |A2|+ |A4|
(and all of these quantities are finite). Each operation
of A3 is assigned the same slot by S and S′ (since both
are t′-linearizations of α). So, |E| = |E′| − |A2|. Thus,
|A1| ≤ |E| ≤ |A1|+ |A4|.

For our linearization S, we fill in the first |A1| slots
of E with operations in A1, in the order they are in-
voked in α. Then, we fill in the remaining slots with
the first |E| − |A1| ≤ |A4| operations of A4 in the order
of their invocations in α. It remains to prove that S is a
t-linearization of α.

• Each operation invoked in S is invoked in α: This
follows from the definition of S.

• Each operation that terminates in α appears in S:
By definition of S, all operations in A1 ∪ A2 ∪ A3

are assigned slots in S.

• If op1 terminates after event t and op2 begins after
op1 terminates and op2 appears in S, then op1 pre-
cedes op2 in S: Then, op1 ∈ A2 ∪ A3 and op2 ∈
A2 ∪A3 ∪A4. We consider several cases.

First, suppose op2 is in A2 ∪ A3. Then, op1 must
return a smaller value than op2, since the prefix
containing the responses of both op1 and op2 is t-
linearizable. Thus, op1 is assigned an earlier slot
than op2 in S.

Now, suppose op2 is in A4. Let v be the response
returned by op1. Consider a prefix of α that con-
tains all response events of α that return values
less than or equal to v. By the hypothesis of the
lemma, there is a t-linearization of this prefix. In
that t-linearization, all the slots of E prior to slot
v are filled using operations of A1 and operations
of A4 that begin before op1’s response (and hence
before op2 is invoked). This means that the num-
ber of operations in A1 and the number of opera-
tions in A4 that begin before op2 begins is at least
|E ∩ {0, 1, . . . , v}|. In S, all of these operations are
linearized before op2, so op2 is assigned a slot greater
than v. Thus, op1 precedes op2 in S.

• Each operation that has a response after event t of
α has the same response in S: Each operation of
A2 ∪ A3 is assigned to the slot that would cause it
to return the same response in S as it does in α.

For Lemma 17, the hypothesis that the implementation
is eventually linearizable is necessary since t-linearizability
is not a safety property of fetch&increment implementa-
tions (see Section 3.2).

Proposition 18. If there is an n-process eventually
linearizable, non-blocking implementation of a fetch&in-
crement object from a set O of linearizable objects, then
there is an n-process linearizable, non-blocking implemen-
tation of a fetch&increment object from O.

Proof. Let A be an n-process eventually linearizable
implementation of a fetch&increment object fromO. Con-
sider the execution tree of all possible executions of this
implementation in which n processes p1, . . . , pn each re-
peatedly perform fetch&inc operations forever. Each edge
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in the tree represents either a local event or an atomic ac-
tion on an object in O.

Consider a node C in this tree. Let αC be the finite
execution represented by the path from the root to C.
We say that C is stable if every execution with prefix
αC is |αC |-linearizable. (In other words, the behaviour of
the implemented fetch&increment object has “stabilized”
by C.)

It follows from the definition of stable and Lemma 5
that if C is stable, then so are C’s descendants.

Claim 1: There is a stable node in the tree.
Proof of Claim 1: To derive a contradiction, suppose

no node in the tree is stable. We inductively construct a
sequence of finite paths p0, p1, . . . that have the following
properties, where `i = |p0p1 . . . pi|:

1. For i ≥ 0, p0p1 · · · pi is a path starting at the root
of the tree.

2. For i ≥ 1, pi is non-empty.
3. For i ≥ 1, p0p1 . . . pi is not `i−1-linearizable.
Let p0 be the empty execution. For the inductive step

of the construction, let i ≥ 1. Given p0, . . . , pi−1 with the
properties listed above, we construct pi as follows.

Let C be the endpoint of the path p0p1 . . . pi−1. By the
assumption, C is not stable. So, there is some execution
α with prefix p0p1 . . . pi−1 that is not `i−1-linearizable.
By Lemma 17, some finite prefix α′ of α is not `i−1-
linearizable. That prefix has length greater than `i−1, so
let pi be the non-empty path such that α′ = p0p1 . . . pi−1pi.

Now, consider the infinite execution π = p0p1 . . .. Since
the implementation is eventually linearizable, there is a t
such that this execution is t-linearizable. Choose i such
that `i−1 > t. (Such a choice is possible because all of the
pj ’s are non-empty, so we have `0 < `1 < · · · .) Since π
is t-linearizable, it is also `i−1 linearizable, by Lemma 5.
By Lemma 6, the prefix p0p1 . . . pi of π is also `i−1 lin-
earizable, which contradicts the third property of the con-
struction. This completes the proof of Claim 1.

Let C be a stable node. Let t be the number of events
in the execution αC . Consider the configuration Cidle

reached from C by allowing each process to run solo un-
til it completes its current fetch&inc operation. Then,
we let one process p run fetch&inc operations repeatedly.
We argue that, eventually, some operation op0 that p per-
forms must return a value that is equal to the number
of fetch&inc operations that were invoked before op0. (If
not, there would be no way to t-linearize the infinite ex-
ecution where p continues forever.) Let C0 be the con-
figuration at the end of op0. Let v0 be the number of
fetch&inc operations invoked in the path from the root
to C0.

Now, we construct a linearizable implementation A′ of
a fetch&increment object using O. Initialize each object
in O to the state it has in C0. Similarly, each process uses
the same local variables as in A, and they are initialized
in A′ to the values they have in C0. In A′, to perform
a fetch&inc operation, a process executes the algorithm
A for fetch&inc until it obtains a result v, and then it
returns v − v0.

If β is an execution of A′, there is a corresponding exe-
cution αβ′ of A, where α is the execution described above
that takes the system to configuration C0, and β′ is the
same as β except that v0 is not subtracted from the out-
put values. Since C is stable, αβ′ is t-linearizable, and the
t-linearization must linearize before op0 all v0 operations

invoked before op0. Moreover, the t-linearization respects
the real-time order of operations in β′ since they are in-
voked after event t of αβ′. The suffix of the t-linearization
obtained by removing the first v0 operations is a lineariza-
tion of all operations in β.

Remark: The preceding proposition can also be proved
for other progress conditions: if the eventually lineariz-
able implementation is obstruction-free or wait-free, then
it can be used to create an obstruction-free or wait-free
linearizable implementation.

Corollary 19. There is no non-blocking eventually
linearizable implementation of a fetch&increment object
for two processes from linearizable registers.

Proof. If there were such an implementation, we could
build a linearizable implementation of a fetch&increment
object for two processes from linearizable registers, by
Proposition 18. This is impossible since a fetch&increment
object and registers can solve two-process consensus and
registers alone cannot [9, 12].

6. OPEN QUESTIONS

We have shown that eventually linearizable implemen-
tations can be much easier to build (and weaker) than
linearizable ones for some types (e.g., consensus objects).
For other types (such as fetch&increment), an eventually
linearizable implementation appears to be just as hard
to build as a linearizable one. It would be interesting
to characterize the exact situations where an eventually
linearizable implementation is easier to attain than a lin-
earizable one.

One of the fundamental results about linearizable ob-
jects is Herlihy’s wait-free universal construction [9]. It
is natural to ask whether there is a lock-free universal
construction of eventually linearizable objects from some
natural eventually linearizable primitive objects (possibly
in conjunction with linearizable registers). The results of
[5] may provide some ideas for doing this.

APPENDIX: PROOF OF PROPOSITION 11

Proof. The “only if” direction is trivial by the defi-
nition of eventually linearizable. It remains to prove the
“if”direction. Consider a system of n processes p1, . . . , pn.
Let A be an implementation of T with the property that
for every history there is a t such that the history is t-
linearizable. We define a new implementation A′ that is
eventually linearizable.

In addition to whatever shared objects are used by im-
plementation A, A′ uses a sequence of single-writer reg-
isters Ri[0, 1, 2, ...] for each process pi. All of these addi-
tional registers are initialized to the value ⊥. Each process
pi also stores a local counter ci, initially 0, that counts
how many operations pi has performed, and a local vari-
able qi (initialized to the initial state of the implemented
object) that stores the state of the implemented object
that would result if only pi’s own operations were per-
formed on it. In the implementation A′, pi performs an
operation op by executing the algorithm in Figure 1.

First, we prove A′ is non-blocking. The call to algo-
rithm A on line 5 is non-blocking, by the hypothesis. The
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1 Execute(op)
2 write op in Ri[ci] . announce op
3 ci := ci + 1
4 〈qi, rprivate〉 := a possible new state and result if

op is applied to object in state qi
(according to sequential specification)

5 rshared := result of running op in implementation A
6 for j = 1..n . read all announced operations
7 k = 0
8 do until Rj [k] = ⊥
9 read Rj [k]
10 k := k + 1
11 end do
12 end for
13 if a permutation of a subset of the operations read

in the loop (including all read in Ri) yields a
legal sequential execution where op returns
rshared then return rshared

14 else return rprivate
15 end Execute

Figure 1: Algorithm to guarantee weak consis-
tency.

only way the loop (line 8–11) can run forever without
terminating is if process pj increments its counter cj in-
finitely many times, meaning that pj completes infinitely
many operations. Also, there are only finitely many per-
mutations to try in line 13, since T has finite nondeter-
minism.

We now show that any history H generated by this
implementation is eventually linearizable.

Consider an operation op that terminates in H and is
performed by some process p. If op returns on line 14,
let Sprivate be the sequential execution defined by the se-
quence of operations performed by p up to and including
op, with the responses chosen on line 4. Then Sprivate
satisfies Definition 1 for op in H. If op returns on line
13, then the permutation described on line 13 defines a
sequential execution Sshared that satisfies Definition 1 for
op in H. (Note that all operations included in the per-
mutation begin before op terminates.) Thus, H is weakly
consistent.

Next, we prove that H is t-linearizable for some t. Con-
sider the execution that consists of all steps inside the
calls to implementation A on line 5. These define a his-
tory HA. By the hypothesis about implementation A, HA

is tA-linearizable for some tA. Let S be a tA-linearization
of HA.

Let O be the set of operations op such that op termi-
nates in H and op’s call to A on line 5 terminates within
the first tA events in HA. Note that O is finite, because
only finitely many operations terminate before event tA
in HA. Choose t large enough that that all operations
in O terminate before event t of H. (This is possible
because O is a finite set of operations, all of which termi-
nate in H.) We prove that the legal sequential execution
S is a t-linearization of H by showing it satisfies the four
properties in Definition 2.

Since S is a tA-linearization of HA, each operation in-
voked in S is also invoked in HA, and is therefore invoked
in H.

Each operation that terminates in H also must termi-
nate in HA, and therefore terminates in S (since S is a
tA-linearization of HA).

Consider any two operations op1 and op2 such that op1
terminates before op2 is invoked in H and both of these
events occur after event t of H, and op2 is in S. Let op′1
and op′2 be the operations in HA called at line 5 of op1
and op2, respectively. Note that op′1 exists because op1
terminates, and op′2 exists because the operation appears
in S, which is a tA-linearization of HA. Since op1 termi-
nates after event t of H, op1 does not belong to O, so
op′1 terminates after the first tA events of HA. Moreover,
op2’s call to A on line 5 is after op2 begins, which is after
op1 terminates, which is after op1’s call to A terminates.
Thus, op′1 terminates before op′2 begins in HA. Since S is
a tA-linearization of HA, op1 precedes op2 in S.

Suppose op is an operation that terminates in H after
the first t events. We first argue that the test performed
by op at line 13 evaluates to true, so that op returns rshared
at line 13. Let opp be any operation that precedes op in
S. Let op′ and op′p be the operations in HA called at
line 5 of op and opp, respectively. Note that op′ exists
because op terminates, and op′p exists because it appears
in S, which is a tA-linearization of HA. Since op termi-
nates after event t of H, op does not belong to O, so op′

terminates after the first tA events of HA. So, op′p must
begin before op′ terminates in HA (otherwise, op would
have to precede opp in S). This means that opp begins
executing line 5 before op finishes executing line 5. So,
opp executes line 2 before op reaches line 6. Since this is
true for every operation opp that precedes op in S, op will
see the announcement of every operation that precedes op
in S when it reads the registers. Thus, one possible per-
mutation that op considers in the test on line 13 will be
the prefix of S up to op, which yields the response rshared
for op, so the test will evaluate to true, and op will return
rshared, which is the same value that op returns in S.
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