NIR sensitive organic dyes for tandem solar cells and
transparent photodiodes

THESE N° 6595 (2015)

PRESENTEE LE 29 MAI 2015
A LA FACULTE DES SCIENCES ET TECHNIQUES DE L'INGENIEUR
SMX - ENSEIGNEMENT
PROGRAMME DOCTORAL EN PHOTONIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Hui ZHANG

acceptée sur proposition du jury:

Prof. O. Martin, président du jury
Prof. F. NUesch, Dr R. Hany, directeurs de thése
Prof. W. Britting, rapporteur
Prof. R. A. J. Janssen, rapporteur
Prof. J.-E. Moser, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2015



k55 P 5 2 I FN FIZN
Dedicated to My Beloved Family and Jia Hu

B TR Z R TF !

For Their Endless Love and Support!



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Acknowledgements

Firstly I would like to express my sincere thanks to my dear supervisor Prof. Frank Nlesch
who offered me such a chance to pursue my dream. His instructive advice and optimistic atti-
tude on science has guided and encouraged me through all the stages of my study. It is my
great honor to be a member of his group, and | have had a very wonderful experience at EM-
PA in the past three and an half years.

I am also very grateful to my co-supervisor Dr. Roland Hany for his illuminating instruction
and daily caring. Without him this thesis wouldn’t go through successfully, he has always
been supporting with big patience and helping me out of difficulties on whatever problems |

have on the project and some personal issues.

Special thanks to Dr. Gaétan Wicht, who passed in the spring of 2013, for his very kind intro-

duction at the beginning of my doctoral study. I will miss him forever.

For those who contributed to my thesis, | appreciate them very much for their knowledge and
valuable discussions. Particularly Christina Gretener and Yaroslav Romanyuk for MoO3 sub-
strate preparation, Jean-Nicolas Tisserant for nice TEM images, Matthias Nagel for CV meas-
urement, Fernando A. Castro, Rowena Crockett and Alina Zoladek-Lemanczyk for Raman
spectra, Okan Deniz and Carlos Sanchez-Sanchez for UPS measurements, Jakob Heier for
fluorescence measurements, Andreas Borgschulte for XPS measurements, Gaétan Wicht and
Sandra Jenatsch for optical modeling, Andreas C. Gerecke for ESI-HRMS experiments, Jelis-
sa De Jonghe for transient photocurrent experiments, Anna C. VVéron and Thomas Geiger for
the synthesis of cyanine dyes, Roland Steim for the discussion on photodetector, Bjérn Niesen,
Stephan Bicheler and Fan Fu for IPCE measurements, Erwin Hack for ellipsometry meas-
urements, Isabella Gartmann, Beatrice Fischer and Katerina Andric for ordering of the chemi-
cals and organizing everything.

I am extremely thankful to all my colleagues who are and were in the laboratory for function-
al polymers for such a wonderful working atmosphere, especially the young colleagues, Jean-
Nicolas Tisserant, Jose Enrico Quinsaat, Anna C. VVéron, Lei Wang, Sandra Jenatsch, Nicolas
Leclaire, Mohammed Makha, Yee Song Ko, Simon Dunki, Etienne Berner, Oswaldo Neto

and Chuyao Peng et al. for the coffee breaks, fondue, raclette and drinking. It has been a great

pleasure to work with these outstanding scientists.

Prof. Hua Wu and his wife are greatly appreciated for their regular gathering on every Chi-
nese traditional festival, which makes me feel at home. | want to thank Yuebin Liu and Lin

i|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Sun from education affairs office of the embassy of China in Switzerland for their very kind
guidance and help for my studying in Switzerland. And many friends in Switzerland, Wei
Dan, Delong Xie, Hanbin Dan, Xinya Zhang, Yingchuan Yu, Zhongshu Li, Xiaodan Chen,
Xingxing Sheng, Tao Chen, Xia Meng, Hui Yin, Aping Niu, Xin Fang, Wenfeng Liu, An
Ding, roommates Xiaofu Zhang and Jing Xie, thanks a lot for their accompany in doing so
many exhilarating activities, such as cooking, barbecues, skiing, travelling, playing badmin-
ton and basketball and hiking throughout Switzerland, making my life in Switzerland truly

colorful.

Finally, I would like to give my very deeply thanks to my beloved family for their loving con-
siderations and great confidence in me all through these years. | am very obliged to my wife
Jia Hu for her overwhelming support and encouragement. She is wonderful and makes my life
full of happiness. | am heavily indebted to my parents, my sister Lijuan, my brother-in-law
Lipeng and my nephew Tianyu who have always been supporting me without a word of com-

plaint. I am so thankful for their endless love and | love them so much.

Hui Zhang,
Dibendorf, March, 2015

i|lPage



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Abstract

Due to advantages such as mechanical flexibility, light weight and the prospect to use low-
cost roll-to-roll manufacturing processes, organic semiconductors have been widely investi-
gated in many application areas as alternatives for their inorganic counterpart. In organic sem-
iconductors, the rather weak Van der Waals interactions holding together the molecular build-
ing blocks result in narrow absorption bands which endow organic electronics with important
advantages for the development of smart functionalities. Transparent organic electronics
(TOEs), for example, incorporate devices through which visible light is transmitted. Among
other semiconducting devices, it is actually possible to construct sensors and photovoltaic de-
vices that solely use ultraviolet (UV) and near infrared (NIR) light to produce electrical ener-
gy or signal. TOEs have been proposed for easy integration with other electronic devices.
Among the different molecular materials, cyanine dyes stand out by sharp, intense absorption
bands exhibiting the highest molar extinction coefficients. The absorption peak can be easily
shifted into the NIR wavelength region by increasing the length of the conjugated polyme-
thine chain. For example, NIR light absorbing heptamethine cyanine dyes (Cy7) are promis-

ing candidates as transparent and colorless photoactive film materials.

In this thesis work, highly efficient TOE devices such as transparent solar cells and transpar-
ent photodetectors using NIR absorbing cyanine dyes as photosensitive materials have been
successfully fabricated. To optimize these multilayer devices, various cyanine dyes were in-
vestigated, device architecture and interfaces were engineered. Optical simulations of the
stacked thin film structures allowed understanding and tuning device performance. Moreover,
organic solar cells which are transparent in the visible range have been integrated into tandem
and triple junction solar cells. Low bandgap materials that absorb NIR light were combined
with cyanine cells which absorb visible light, thereby more sunlight could be harvested and
power conversion efficiency was dramatically enhanced in such tandem solar cells. The pho-
to-stability investigation of cyanine solar cells showed that cyanine dyes were photostable
when illuminated in the absence of oxygen and water vapor. We found that the initial degra-
dation of cyanine dye devices during operation was due to the photo-polymerization of the
widely used electron acceptor material fullerene Cgo and photo-chromism of the hole extrac-

tion interfacial layer molybdenum oxide (MoO3).

Keywords: organic photovoltaics, photodetectors, transparent, tandem solar cells, stability,

cyanine dye, power conversion efficiency
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Résumeé

Gréace a leur flexibilité mécanique, leur poids léger ainsi que la possibilité de fabrication par
des processus dits de rouleau a rouleau, les semiconductors organiques offrent de nombreux
avantages dans des applications jadis réservees aux semiconducteurs inorganiques. Dans les
semiconducteurs organiques, les constituants moléculaires sont reliés entre eux par les forces
de Van der Waals plut6t faibles, ce qui méne a des bandes électroniques étroites. Par ce fait, il
est possible d’obtenir des spectres d’absorption étroits qui engendrent de nouvelles fonction-
nalités. L électronique organique transparente (EOT) constitue un exemple ou les dispositifs
sont transparents a la lumiére visible. Parmi d’autres dispositifs semiconducteurs, ceci permet
de construire des cellules photovoltaiques et des senseurs qui absorbent uniquement la lu-
miére ultraviolette et infrarouge en la convertissant en signal ou énergie électrique. L’EOT

s’appréte également en tant qu’élément d’intégration parmi d’autres disipositifs électroniques.

Parmi les différents matériaux moléculaires, les cyanines sont des colorants qui se distinguent
par une bande d’absorption étroite et intense montrant les coefficients d’extinction molaire les
plus élevés. Le maximum de la bande d’absorption peut étre facilement déplacé dans
I’infrarouge proche en augmentant la longueur de la chaine polymethine. Les cyanines hep-
tamethines (Cy7), par exemple, sont des candidats prometteurs pour fabriquer des films pho-

toactifs transparents et non-colorés.

Dans le présent travail de these, des dispositifs OET a base de Cy7 tels que des cellules pho-
tovoltaiques transparentes et des photodétecteurs absorbant uniquement dans 1’infrarouge
proche ont été fabriqués avec succes. Afin d’optimiser ces dispositifs multicouches, plusieurs
colorants cyanines, 1’architécture des dispositifs ainsi que les interfaces ont ét¢ investigués. La
simulation optique des structures a films minces ont permis d’analyser et de contrdler la per-
formance des dispositifs. De plus, les cellules solaires transparentes dans le domaine visible,
ont été intégrées dans des cellules tandem et a triple jonction. En combinant le matériau cya-
nine a faible bande interdite avec d’autres cyanines absorbant la lumiére visible, le rendement
énergétique a été grandement amélioré. L’étude de stabilité de cellules solaires a base de cya-
nines a démontré la photostabilité de ces matériaux en absence d’oxygene et de vapeur d’eau.
Il a été mis en évidence que la dégradation initiale de ces dispositifs sous irradiation est due a
la photopolymeérisation de 1’accepteur omniprésent Cgp ainsi qu’au photochromisme de la

couche d’injection de trous a base d’oxyde de molybdéne (MoOs).
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Mots-clés: photovoltaique organique, photodétecteurs, transparence, cellules solaires tandem,
stabilité, cyanines, l'efficacité de conversion énergétique
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Chapter 1. Introduction and state of the art

1. Motivation

One of the main goals of this thesis is to further explore the suitability of cyanine dyes as or-
ganic semiconductors in thin film devices. A particular focus is given to heptamethine cya-
nine dyes absorbing near infrared light and their use in transparent solar cells and photodiodes
as well as in multijunction solar cells. Further emphasis is also given to the exploration of

degradation mechanisms of cyanine solar cells.

Different NIR light absorbing dyes are used as electron donor materials combined with suita-
ble transparent counter acceptors to fabricate organic photosensitive diodes such as organic
solar cells or organic photodetectors. Physical and optical characterizations guide the optimi-
zation in order to achieve highly transparent and efficient devices. For the fabrication of
transparent and color free optoelectronic devices, the ideal photoactive layer materials for
both the electron donor and electron acceptor have a strong absorption in the UV and NIR
spectral range but do not absorb visible light. Due to their outstanding photophysical proper-
ties, cyanine dyes prove to be ideal candidates as colorless photoactive layer materials. These
dyes are characterized by sharp, intense absorption bands with very high molar extinction co-
efficients reaching 3x10° L-mol™cm™, and the absorption peaks can be tuned into the NIR
wavelength region by increasing the length of the conjugated polymethine chain, such as in
heptamethine cyanine (Cy7) dyes.

Tandem devices will be the “Holy Grail”. The devices fabricated in this thesis by using hep-
tamethine dyes as low band-gap materials to absorb near infrared light and combining them
with cells which absorb visible light, for example trimethine cyanine dyes (Cy3) and pen-
tamethine cyanine (Cy5) dyes, thereby harvesting more sunlight and improving power con-
version efficiency. The study of the long term stability of organic solar cells using cyanine
dyes is an important objective of this thesis. This study shall provide crucial information on

the suitability of cyanine solid films in optoelectronic devices.

2. Opportunities and challenges

As industrial development and population in the world is growing fast, energy consumption
and supply is humanity’s most serious problem for the next 50 years. Most of global concerns
have been focused on the development and applications of renewable and sustainable energy

technologies which are based on affordable, inexhaustible and environmentally safe resources
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to replace the traditional fossil fuels in power generation, transporting and heating. Some
clean energy sources in terms of sunlight, wind, water, geothermal and biomass have been re-
alized in the last decades and will continue to be invested in the transition to a cleaner and

more secure energy future.

2.1 Solar energy

Solar energy is the most abundant source of renewable power from nature and has the poten-
tial to meet almost all of mankind’s energy needs. At the surface of the Sun, the power of so-
lar radiation is ~ 6.33x10" W/m?, the yearly average radiation intensity falling on the surface
of the planet is ~ 1360 W/m?2. When extrapolated to half the surface of our planet, this amount
goes up to a gigantic energy input of 1560x10" kWh/year, which is about twice as much as
will ever be obtained from all of the other non-renewable resources on earth such as coal, oil
and natural gas. Put in other words, the yearly solar irradiation meets existing global energy
needs 10000 times over [1].

2.1.1 Solar technologies

Solar technologies are ways used to directly or indirectly harvest the solar energy and make it
useable for mankind. Some technologies have been exploited by human beings since a very
long time ago in the field of architecture, agriculture and transportation. According to the
ways how sunlight is converted and used, the solar technologies can be classified in different
types:
- solar thermal collectors that collect heat by absorbing sunlight for heating or water
warming
- solar heaters that use solar energy to distill water, make biologically-contaminated wa-
ter safe to drink or to cook food
- solar reactors that convert solar energy into storable and transportable fuels through
photo induced chemical or thermal reactions

- solar cells that convert sunlight into electricity using the photovoltaic effect

2.1.2 Solar cells

Only a long time after the first discovery of photovoltaic effect by Alexandre Edmond Bec-
querel in 1839 [2], solar cells have started to attract the attention of the scientific community,

a major achievement being the demonstration of an efficient crystalline silicon solar cell by D.
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D. M. Chapin, C. S. Fuller and G. L. Pearson in 1954 [3]. It is only during the last decades,
that photovoltaic technology has experienced a massive industrial development. Up to now,
many types of solar cells have been invented, produced and commercialized. It is common to

classify these different approaches into three categories.

2.1.2.1 Photovoltaic technology generations

First generation: silicon wafer solar cells, which are made of different crystalline silicon wa-
fers such as mono-crystal silicon (mc-Si), poly-crystal silicon (pc-Si) and ribbon and sheer de-
fined film growth silicon (ribbon/sheet c-Si). The thicknesses of the silicon layers are typical-
ly ~200 micrometers. These technologies have been developed for more than 50 years and are
the most mature technologies dominating the present market with a share of 80% [1]. Even
though silicon is the second most abundant element on earth, the expensive processing cost

for crystallizing silicon limits the cost reduction potential.

Second generation: thin film solar cells, which are made by depositing thin layers of photo-
sensitive materials such as polycrystalline Cu (In, Ga) Se; (CIGS), CdTe, amorphous silicon
(a-Si) and related materials on back substrates. Because these materials show high absorption
coefficients, active layer thicknesses in the order of ~2 micrometers are needed to absorb
enough solar light. The back substrates can be chosen between low-cost rigid glasses and

flexible plastic films. This opens more application areas for thin film technologies.

Third generation: these are the emerging technologies based on some new concepts, for ex-
ample; dye sensitized solar cells (DSSC), quantum dot solar cells (QDSC), perovskite cells,
ultra-low-cost inorganic solar cells and organic photovoltaics (OPVs). Due to the potential of
flexibility, light weight and cost-effectiveness, these concepts have attracted more and more
attention in the last decade. However, some challenges are still existing related to the problem

of low performance and stability.
2.1.2.2 Photovoltaic efficiency

The cell efficiencies including the best research cells [4] and market modules [1, 5] for all

types of devices are listed in Table 1-1.

Table 1- 1 Best efficiencies of research solar cells and modules

mc-S pc-Si a-Si CIGS CdTe DSSC QDSC  Perovskite  OPV

Research cells 25% 20.4% 13.4% 21.7% 21.0% 11.9% 9.2% 20.1% 11.1%

Modules 14-20% 13-15%  4-7%  12-14% 11-12% 5-8% 8-13% 5-7%
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2.2 Opportunities for OPVs

Most of commercially available solar cells are made from refined, highly purified silicon
crystals. The high cost of these inorganic silicon solar cells and their complex production pro-
cesses have generated considerable interest in developing alternative photovoltaic technolo-
gies. As one of the alternatives, OPVs have attracted much research interest as is demonstrat-
ed by the tremendous increase in the number of scientific publications over the last decade.
OPVs have been suggested to be used in many application areas including low-power con-
sumer electronics such as mobile phone rechargers, lighting applications and self-powered

displays, outdoor recreational applications and built-in photovoltaics.

2.2.1 Advantages of OPVs

Due to high absorption coefficients, organic materials with layer thicknesses in the range of
~100 nm can absorb enough sunlight for power generation. In addition, since device fabrica-
tion utilizes low temperature processes, flexible plastic substrates can be used for OPVs to be

made lightweight and flexible.

The energy generation cost is the most critical aspect of a given PV technology. It largely de-
termines the market demand and penetration. Levelised electricity cost (LEC) is a standard
basis for comparing different electricity generation cost, and is defined as the ratio of total
electrical energy production cost to total electrical energy output. The introduction of high
throughput mass production via roll-to-roll (R2R) technology using solution processable
OPVs is crucial for reducing the fabrication cost. Assuming a 1LkWp system containing OPV
modules with 7% efficiency and a lifetime of 5 years, the LEC is estimated between 0.19 and
0.5 €/KWh [6]. By using commercial scale OPV specific costs as the basis, as calculated by C.
J. Mulligan et al. [7], lower LEC of 0.20 $/kWh or 0.13 $/kWh can be achieved for OPV effi-
ciencies and lifetimes of 3% and three years, respectively, or 5% and five years, respectively.
These prices are competitive with traditional silicon wafer and thin film modules whose LECs
are in the range of 0.16-0.29 $/kWh [7] even if the efficiencies of OPV devices up to now are
quite low. The OPV systems will become economically viable and sustainable if the efficien-

cy and lifetime can be further enhanced.

2.2.2 Status of OPVs

As a relatively new technology, OPV does not match the performance of established solar

technologies in terms of efficiency and lifetime. However, performance has risen rapidly in
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the recent years. Heliatek and Mitsubishi Chemical Corp have announced OPV power con-
version efficiency of 12% [8] and 11.1% [9] without revealing the employed organic materi-
als. In the academic community, record efficiencies of 10.8 % [10] for single junction devices,
10.6% [11] for tandem devices and 11.5 % [12] for triple junction devices have been reported
respectively. The sizes of all lab-scale devices are small, therefore efforts have also been put
into the upscaling of OPV devices. Toshiba company has announced a large OPV module

with area of 20x20 cm? and a power conversion efficiency up to 6.8% [5].

In addition to the pursuit of high device efficiency, solar cells have also been intensively in-
vestigated for their potential in unique applications. Narrow absorption spectra in organic
semiconductors are fundamentally different from the very broad absorption bands of their in-
organic counterparts. Therefore, OPVs are considered to have important advantages for the
development of truly transparent solar cells (TSCs). TSCs have been proposed for large scale
applications such as power-generating windows which provide sun shading at the same time,
building integrated photovoltaics, integrated PV chargers for portable electronics and as low

band-gap materials in tandem solar cells [13].

2.2.3 Transparent devices

Previous efforts to construct transparent solar cells have been focused on using thin active
layers with absorption in the visible wavelength range combined with non-reflecting conduc-
tors. This has allowed for the fabrication of semitransparent cells since not all of the incoming
light is absorbed by the active layer. However, these cells are limited by either a low transmit-

tance or a low efficiency because of the tradeoff between harvesting photons and transparency.

2.2.3.1 Fabrication of transparent solar cells

To make a highly transparent and efficient solar cell, the absorption of active layers should be
tuned to the UV [14] or NIR spectral region [13] as shown in Figure 1-1. Besides finding the
right visible transparent photoactive materials, all the other components have to be equally
transparent, especially electrodes, which should not only be transparent in the desired wave-
length region but also highly conductive and easy to process. Transparent conductors have
been widely investigated due to the multitudes of applications for solar energy utilization, for
instance a single layer of PEODT: PSS or PEDOT:PSS with Ag grid [15], indium tin oxide
(ITO) [16, 17], a single graphene layer [18] and dielectric / metal / dielectric (DMD) struc-
tures of MoO3/Ag/M0o03 [19], WoO3/Ag/Wo0O;3 [20], BCP/Ag/M003 [21] and MoO3s/Ag/V,05
[22].
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Figure 1- 1 Comparison of transparent and non-transparent OPVs

2.2.3.2 Characterizations of transparent devices

In many applications, for example, the integration of transparent devices with other electronic
devices, power generating windows used in automobiles and architectural installation, optical
properties of the transparent devices in terms of transparency, color appearance and color ren-
dering are typically required. These parameters need to be balanced which is a demanding
task.

Average visible transmittance (AVT): AVT is the mean value of the experimentally measured

transmittance spectrum T (1) in the visible light wavelength region [1,, 4,].
A
[;2 Isun(2) X T(A)d2

A
0 Lun(A)dA

AVT = X 100%

Human eye perception of transmittance (HPT): Human eye perception of brightness is spec-
trally dependent. Therefore the radiometric measurement of light intensity does not reflect the
intensity perceived by the human eye, which causes differences between HPT and AVT. The
HPT of a transparent device can be calculated by using the eye sensitivity function y (1) to
normalize the measured transmittance spectrum T (A1) in the visible light region [23].

02 Lan(2) X 5(2) X T(D)dA

HPT = X 100%

fjlz Iyn(A) X T(A)dA

Color appearances: Color is a psychophysical interaction of human photoreceptor cells in the
retina and the spectra of light reflected, transmitted or emitted from an object. As defined in
the chromaticity diagram, colors can be represented numerically by their coordinates. The
human eye contains three types of photoreceptor cells with different spectral sensitivities.
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Color matching functions x (1), y(4) and z(A), are the numerical description of the chromatic
response of the averaged human eye as defined by international commission on illumination
(CIE 1931). Given an object with reflected light spectrum S(A), its normalized color coordi-
nates can be calculated as (X, y):

[ jf S(A) x #(A)dA
T ffj S(A) x x(A)dA+ ffj S(A) x y(A)dA + fj: S(A) x z(A)dA

[2S() x 7(2)dA
& fff S(A) x x(A)dA + fff S(A) x y(AdA+ fjf S(A) x Z(D)dA

This allows the corresponding color of this object to be identified in the CIE 1931 Chromatic-
ity diagram. For analysing the colored or transparent organic devices, the folding of the
transmittance spectra T (1) of the designed devices with the AM1.5 sunlight spectrum I(A1)
can be used as investigated light spectra to quantify the color coordinates of the devices,
where S(1)=1(1)T(A).

Color rendering index (CRI): Color is not an intrinsic property of an object and depends on
illumination condition. The human color perception system is able to distinguish those devia-
tions caused by varying light source conditions. A good indoor light source should ensure that
the perception of colors of objects does not deviate from the colors under sunlight illumina-
tion. When transparent devices are integrated in automobile windshields or household glass
panes, the rendering property of the transmitted light through the windows is of interest. CRI
defines how well colors under these light conditions are rendered. It is usually analysed by the
test sample method, comparing the color differences of 8 defined standard testing samples
[24] under reference light condition and testing light condition [25]. The testing light sources
are the folding of the measured devices’ transmittance spectra with standard AM1.5 sunlight
spectrum. The reference light is chosen to be either a blackbody irradiator if correlated color
temperatures (CCT) of the testing light sources are smaller than 5000 K or some other CIE
standard illuminants if CCT > 5000 K. The CCT can be estimated by using McCamy's ap-
proximation algorithm [26]. Only if the distance of the CIE 1965 UCS color coordinates of
the testing light sources to the blackbody locus lies within 0.0054, the CCT is meaningful.
However, in many cases the distance is slightly out of the recommended range. Nevertheless
this procedure is still followed because no other method can be used to analyse the CRI [25,
27]. Special CRI represents deviations of each standard testing color between testing light and

reference light condition. General CRI is the mean value of the eight special CRIs. By defini-
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tion, the CRI can range from 0 to 100 where a higher value represents a better color rendering
capacity.

2.3 Challenges for OPVs

The efficiency of OPVs has doubled in the last decade from 5% to over 10%. Two main fac-
tors that still limit the commercialization of OPVs are the problems of long-term stability and

mass production.

2.3.1 Stability

Mechanisms of the degradation in OPVs are diverse, complicated and only poorly understood
so far. Many factors can induce cell degradation, such as the penetration of water or oxygen
into the devices, heat-induced chemical reactions or photo-decomposition of active layers.
The degradation phenomena can occur at various parts of the devices, in each layer or at each
interface between any two layers.

2.3.1.1 Water and oxygen induced degradation

OPV devices degrade much faster when exposed to ambient environment when stored in a
glove box in the absence of water and oxygen. This is particularly true under light illumina-
tion. The reason for this significant degradation has been attributed to the penetration of water
and oxygen into the devices which can induce exciton quenching, oxidation of organic active

materials and inorganic oxides or lead to the corrosion of metal electrodes.

As have been found that the main entrances for the penetration of water and oxygen into de-
vices are microscopic pinholes and grains in thermally evaporated metal electrodes [28]. Low
work function electrodes such as Al and Ca are highly reactive. They are easy to be oxidized
in the presence of water and oxygen. The formed metal oxides and hydroxides especially at
the organic/metal interfaces are electrically insulating and act as charge transport barriers. The
latter are detrimental for charge collection and can cause reduction in the fill factor [29]. High
work function metals such as Ag and Au can be used to avoid this problem because they are
less reactive and refractory against the degradation induced by water and oxygen.

As has been demonstrated by F. C. Krebs et al. [30] water and oxygen diffuse continuously

throughout all active layers in the devices down to the bottom electrode. When oxygen mole-
cules penetrate into the light absorbing organic material, energy transfer between the organic
semiconductor and oxygen can produce reactive oxygen singlet species that destructively re-

act with the semiconductor. Also, electron transfer to oxygen forming the superoxide anion
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can compete with the desired electron transfer reaction from donor to acceptor leading to a
significant reduction in quantum efficiency and further irreversible reaction of the oxygen
radical. Some useful relationship between the active materials’ photo-oxidation and the devic-
es’ operation time has been found by K. Norrman et al. [31] and M. Hermenau et al. [32].
Therefore, lowering the frontier orbitals of the active materials to reduce electron transfer to
oxygen would in principal enhance the environmental stability of OPV devices.

The bottom transparent electrodes usually made of ITO are also not stable against water and
oxygen. As investigated by F.C. Krebs et al. [30], the In" ions can diffuse throughout all de-
vice layers. These phenomena have already been documented in organic light emitting devic-

es, being strongly related to OPVs in this respect.

In order to reduce the penetration of water and oxygen, some air stable active materials [33]
and buffer layers are introduced in the devices, but these are not sufficient to prevent the deg-
radation [34]. It is obvious that in real applications the OPV devices need to be well encapsu-
lated. The water and oxygen transmission rate should be kept below 10 g m? day™ and 107
cm® m™ day™, respectively, for OPV devices to survive several years [34]. Some methods
have been investigated, for example, another layer of glass [35] is glued, metal oxides (such
as Al,Og3 [36, 37]) are thermal deposited, nanocomposite solutions are spin coated [38] or
flexible plastic barriers (such as PET [39] and PEN [40]) are laminated on top of the devices.
A good encapsulation simultaneously enhances the mechanical stability and filters some
harmful UV light. Whatever type of barrier is being used, it is very important that the barrier
substrate is flexible enough for R2R manufacturing and retains its barrier property after the

manufacturing process.

2.3.1.2 Photo-induced degradation

Double bonds in conjugated organic semiconductors undergo many photochemical reactions.
By absorbing light, the molecules are excited to excited states whose chemical and physical
properties differ greatly from the original states. These excited species can fall apart or com-
bine with each other and hence induce decomposition or polymerization reactions. The reac-
tion rate is dependent on the oxygen concentration, light intensity, temperature, humidity of

the environment and optical properties of the organic molecules.

For example, the most often used electron donors in the early stage, poly-phenylenevinylene
(PPV) type polymers showed rapid loss of the ether functions and double bonds [41] under
UV light irradiation. As summarized by Manceau et al. [42] long side chains, exocyclic dou-

ble bonds, cleavable bonds and moieties containing a quaternary site in the main backbones of
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organic semiconductors resulted in poorly stable materials. The elimination of these chains
can significantly improve their photochemical stability, for example, when the long hexyl side
chains were removed from poly [3-hexylthiophene] (P3HT) to form polythiophene (PT), the

degradation rate was decreased by one order of magnitude [43].

The most efficient acceptors, fullerene Cgo and derivatives thereof are also not stable under
light illumination. When the Cgy molecules are excited from the ground state to the excited
singlet state by photons, they can either return to the ground state by radiative recombination
with low quantum yields of around ~0.07% [44] or decay through very fast intersystem cross-
ing in 1 ps [45] to the triplet state with nearly 100% efficiency. Triplet state excitons are rela-
tively long-lived with lifetimes up to ~50 ms [46] and can either return to the ground state or
react with another neighboring photo-excited triplet state Cgo molecule [47] other than ground
state Cgo monomer [48, 49] in a 2+2 cyclo-addition reaction. The degradation of solar cells
using fullerene as acceptors has been recently correlated to the photochemical reactions of Cgy,

more details will be discussed in Chapter V.

As studied by S. Scholz et al. [50], photochemical reactions were also observed in some fre-
quently used electron conductive materials like bathocuproine (BCP), 4,7-diphenyl-1,10-
phenanthroline (BPhen) and tris(8-hydroxyquinolinato)-aluminum (Algs) under UV light irra-
diation. However, some other materials in terms of N,N,N’,N’-Tetrakis (4-methoxyphenyl)
benzidine (MeO-TPD) as we used in cyanine photodetectors in Chapter Ill and 2,2°,7,7’-
Tetrakis (N,N-diphenylamino)-9,9-spirobifluorene (Spiro-TAD) as widely used in perovskite
cells have shown very good photo stability due to their high vibrational degrees of freedom
[50].

As has been found, some hole or electron transporting oxides such as MoO3 [51], WO3 [52]
and TiO; [53] suffer from pronounced photochemical reactions. Due to the presence of
oxygen vacancy defects, these oxides tend to be n-type doped wide bandgap semiconductors
which can be excited by high energy UV light. The photo-excitation changes the optical
absoption of oxide films and turns the oxides from transparent to colored materials, which is
the so-called photo-chromic effect [51]. The colored films can act as light filters and cause a
reduction in photocurrents when used in OPV devices. The influence of the photochromism of
the frequently used MoO3 on the stability of OPVs will be disscussed in Chapter V.

2.3.1.3 Heat induced degradation

In solar cells, interface nanostructures of any two adjacent layers are critically important pa-

rameters for exciton generation and dissociation [54, 55]. Particularly in bulk heterojunction
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solar cells, the phases of donors and acceptors should form a bicontinuous network to achieve
high performance. Any morphology changes at the interface will cause variations in the per-
formance and influence the stability of the solar cells. As far as solution processed solar cells
are concerned, glass transition temperatures of commonly used organic semiconductors are
low and their morphological structures are thermally dynamic. Solar cells can be heated up to
80°C when exposed to the full sun, this is high enough to induce rearrangement of active

molecules and cause morphology changes.

In order to enhance the thermal stability of the morphology and consequently the stability of
device performance, some methods based on chemical modifications of the molecular struc-
tures have been suggested. Some reactive side chains such as azide [56], alkyl halide [57] are
added on the backbone of molecules which can react with other counterpart materials and
form chemically bonded donor-acceptor structures, the interfaces between donors and accep-
tors are well controlled. Or some cleavable side chains such as carboxylic acid groups, which
can increase the solubility of the materials and be removed by heating after the film formation,
can be grafted on the molecules. The glass transition temperature of the solid films can be in-
creased such that the films are mechanically rigid against thermal dynamics. Both concepts
have been proven to be good solutions to enhance the morphological stability and long term

stability of organic solar cells.

2.3.1.4 Investigation of OPV degradation

To study the long term durability of OPV devices, degradation processes need to be accelerat-
ed at reasonable rates. Parameters that affect the lifetime of OPVs such as temperature, light

intensity, atmospheric conditions can be varied to accelerate the processes.

As studied by O. Haillant et al. [58], the degradation rates show temperature dependence and

follow the Arrhenius equation,
k=A-exp(— &)
RT
Where E, is the activation energy for the process and R is the gas constant. The acceleration
factor AF can then be expressed by considering different temperatures (T1, T2) and light inten-
sities (I, 12):
AF = (1_1) - exp [& (i — l)]
1, R'T, T,
Using this equation, the acceleration factor can be calculated and the lifetime at another tem-

perature or light intensity can be predicted.
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The atmospheric condition including oxygen concentration and humidity is also important for
studying the factors causing degradation. For regular P3HT: PCBM solar cells, the device
showed a significantly different degradation rate when exposed to vacuum, nitrogen or oxy-

gen environment [59] as well as different relative humidity [60].

Since degradation mechanisms of OPV devices are complex, different lifetimes for similar
devices have been reported from lab to lab and are not comparative. Some standard proce-
dures to measure the lifetime have been established recently [61], where the light source,
temperature, humidity and environmental conditions for the study of degradation are well de-
fined.

2.3.2 Upscaling

OPV devices reported in the literatures generally have small active device area (< 1 cm?). In
real applications, the devices need to be up scaled and connected in series and parallel to form
OPV modules. R2R processes are the fastest technologies used to fabricate homogenous thin
films in traditional industries, and they can be adapted with different coating and printing

methods for large scale OPV fabrication.

OPV devices are composed of multiple layers with different functionalities, for example, or-
ganic active layers used to absorb light and metal electrodes used to collect charges. Technol-
ogies required for the deposition of each layer are different. Spin coating of organic materials
and high vacuum deposition of metal electrodes are the most frequently used technologies for
the fabrication of lab-scale devices. Those methods are not suitable to be integrated in high
speed R2R processes, because a large fraction of materials are wasted during the deposition
process and the generation of high vacuum is time consuming. Some other technologies for
the film preparation, which are compatible with R2R procedures, are required.

2.3.2.1 Thin film deposition methods

Many thin film preparation methods in the market such as slot-die coating, blade coating,
spray coating, screen printing, inkjet printing, gravure printing and others, can be implement-
ed in R2R processes. Working principles of these deposition methods are demonstrated in

Figure 1-2.
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Figure 1- 2 Schematic illustration of inkjet printing, spray coating, blade coating, slot-die

coating, screen printing and gravure printing adapted from [62]

The choice among different depositing methods is depending on the requirements of solution
viscosity, substrate’s surface energy, layer uniformity and thickness, possibility also pattern-
ing and throughput speed. Properties and requirements of these technologies [62] are listed in

the following Table 1-2.

Table 1- 2 Properties, requirements and challenges of different coating and printing methods

Methods Pattern Viscosity Speed Thickness Challenges
mpP-S m/min accuracy

Slot-die coating Stripes <10000 0.1-200 Very good  Deweting on some substrates

Blade coating Not possible <1000 0.1-200 Good Deweting on some substrates

Spray coating Low resolution <40 Low Contamination of equipment
Screen printing Well defined 50-50000 Rotary >100  Moderate Screens are hard to clean

Flat <35

Inkjet printing High resolution <40 <75 Good Complex, hard to optimize

Gravure printing | Well defined 15-500 900 Good Long time needed to engrave
gravure
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2.3.2.2 Transparent electrodes and flexible substrates

In addition, solution processable transparent electrodes and flexible substrates are the other

key factors for the application of R2R in OPV mass productions.

Transparent electrodes: ITO is currently used as transparent top electrode in OPVs, which is
deposited in vacuum. The high cost and limited supply of indium together with the require-
ment of costly deposition methods will increase the price of OPV production. Alternatives to
replace ITO substrates have been developed, to be compatible with R2R manufacturing pro-
cesses. These electrodes should be solution processable, flexible, conductive and transparent.
Some progresses have been made by the introduction of metal nanowires [63, 64, 65], carbon
nanotubes [66], graphene [67], metal grids [68], modified PEDOT:PSS [69] and DMD struc-
ture layers [19, 20, 21, 22].

Flexible substrates: Substrates for R2R processes should be flexible, and as barrier substrates
they should be able to prevent the penetration of water and oxygen into the devices, high re-
sistant against any chemicals used during processing and withstand thermal and mechanical
loads. Two main substrates such as stainless steel and plastic foils made of polymers such as
polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) etc. [70] are developed

and their properties are listed in Table 1-3.

Table 1- 3 Comparison of metal foil substrates with plastic foils

Flexible substrates Properties

Metal foils Advantages: high process temperature capability, excellent barrier properties against

water and oxygen, high resistance to corrosion

Disadvantages: non-transparent, rough surface, conductive

Plastic foils Advantages: highly transparent, cheap, R2R compatible

Disadvantages: limited process temperature capability, water and oxygen permeable,

low mechanical stability

3. NIR absorbing organic semiconductors

3.1 Organic semiconductors

Organic semiconductors are composed of conjugated systems with alternatively connected
single and double bonds. A conjugated system has a region of overlapping m-orbitals with de-

localized electrons bridging the inter-adjacent single bonds. Delocalized electrons are free to
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move and capable of receiving energy from an applied field, they are typically contained
within bonding levels that are shared by several neighboring atoms and can be found in con-
jugated systems and meso-ionic compounds. The electrical conductivity of the organic semi-
conductors is arising from the presence of delocalized electrons and the possibility to hop

from one delocalized molecule or molecular assembly to another.

In the photovoltaic process, electrons need to be promoted from the highest occupied molecu-
lar orbitals (HOMO) to the lowest unoccupied molecular orbitals (LUMO) by gaining energy
from absorbing either phonons or photons. The bandgap energy of a semiconductor is the

specific minimum amount of energy required for the transition. It is an intrinsic property of a
semiconductor and differs with different materials. Semiconducting molecules with bandgaps

lower than 1.5 eV are typically considered as low-bandgap semiconductors.

3.2 NIR absorbing organic semiconductors

NIR absorbing organic materials are low bandgap materials. The development of NIR absorb-
ing materials is driven by the diverse and extensive applications in a number of technological
sectors, for example, they can be used as heat filters to absorb NIR light, photosensitizers for

photodynamic therapy, tags for bio-imaging and donors in OPVs.

By integrating the photon flux of standard one sun AM1.5G spectrum as shown in Figure 1-3,
5%, 23% and 31% of the solar photons are in the UV (300-450 nm), visible (450-670nm, de-
fined for photopic responses >5% peak sensitivity) and NIR (670-1000 nm) region, respec-
tively. In order for photovoltaic devices to capture more solar energy over the whole solar
spectral range, low bandgap materials are usually used as donor materials in the devices to ex-

tend the absorption range into the NIR light region.
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Figure 1- 3 Normalized photon flux of AM1.5G spectrum and integrated photon flux percent-
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3.2.1 Tuning the bandgap

In particular, tuning HOMO-LUMO level positions and thereby the bandgap energy of mate-
rials is of great importance for obtaining organic semiconductors that absorb light in the NIR
region. In order to reduce the bandgaps, n-electrons must be effectively delocalized along the
conjugated backbones. Various approaches can be carried out to achieve low bandgap mole-
cules, for instance the synthesis of donor-acceptor (D-A) systems, exploiting substituent ef-

fects or by extending the n-conjugation length.

3.2.1.1 Donor-Acceptor systems

Alternation of electron donor and acceptor units in the conjugated molecular backbone is one
of the design criteria to obtain low bandgap semiconductors. In D-A systems, the hybridiza-
tion between donor and acceptor moieties raise HOMO levels of donors to higher positions
and lower LUMO levels of acceptors to lower positions. Intramolecular charge transfer from
the higher HOMO level to the lower LUMO level leads to a reduction in binding energy [71].
This can be represented by the appearance of a resonace structure in alternative D-A systems:
D-A and D*<> A" [72] can improve double bond character between the repeating units and re-

sult in a suppression of the Peierls distortion and hence reduce the bandgap [73].

3.2.1.2 Substituent effects

The bandgaps of organic semiconductors can be tuned by replacing some atoms or groups
with other specific substituents. The introduction of electron donating groups or electron
withdrawing groups in the conjugated backbone reduces the bandgap by raising the energetic
position of the HOMO or lowering the energetic position of the LUMO, respectively. For ex-
ample, using electron-withdrawing element fluorine to replace hydrogen in thienothiophene
and benzodithiophene units, LUMO levels of the molecules were lowered approximately by
0.1 eV per fluorine [74]. Side chains of alkyl groups were substituted by more electron-
donating alkoxy groups and the HOMO energy levels of the molecules were raised by 0.1 eV
[75].

3.2.1.3 Conjugation length

It has been found in conjugated systems, that the bandgap varies with the number of repeating
units in the backbone [76]. Prolonging m-conjugation length can reduce the bandgap of semi-
conductors, but when torsions in the molecular backbones start to disturb the conjugation, the

bandgap starts to increase. Tuning the conjugation length, which is widely used in cyanine
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dyes, is an easy and effective way to modify the electronic properties of the organic semicon-
ductors.

3.2.1.4 Other effects

Besides the strategies mentioned above, several other factors can influence energetic proper-
ties of the conjugated molecules: space effects play important roles in changing the interac-
tions of electronic orbitals of donors and acceptors. Additional large aromatic or heteroaro-
matic rings fused to backbones can enhance delocalization degree of n-electrons in the
conjugated compounds and result in a reduction of the bandgap. Some heavier atoms can be
introduced in the molecular structures to lower the bandgaps due to polar effects. Taking cop-
per phthalocyanine dyes as example, replacing the central copper atoms by heavier Tin atoms
leads to a reduction of the bandgap by 0.5 eV [77]. Furthermore, organic semiconductors are
found to have a narrower bandgap in solid state as compared to the solvated molecules in so-

lution due to the well-ordered structures and strong intermolecular interactions.

3.2.2 NIR absorbing small molecules

Compared with polymer semiconductors, small molecular semiconductors combine easy
tunability of the absorption to a specific wavelength region and reproducible properties from
batch to batch with well-defined chemical structures and high purity. Some small molecules
such as phthalocyanines, porphyrins, squaraines and cyanines have been shown with good ab-
sorption in the NIR region. In this section, properties and applications of these dyes will be
demonstrated and discussed.

o O v SR, © Rzﬁ>m

(d)
O Q ° 7 Y 6 ’ >RJ/ / ,,/ N<

Figure 1- 4 Molecular structures of (a) phthalocyanine, (b) porphyrin, (c) squaraine and (d)

cyanine

3.2.2.1 Phthalocyanines and porphyrins

Phthalocyanines and porphyrins are cyclic macromolecules, four isoindole or pyrrole units,

respectively, linked to form a 16-membered fused backbone ring by alternating carbon and ni-
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trogen atoms. The molecular center consists of two hydrogen atoms which are likely replaced
by some covalent metals inwardly projecting nitrogen atoms. The absorption peaks of unsub-
stituted porphyrins and phthalocyanines are at around 450 nm and 620 nm, respectively [78,
79]. Their optical properties can be tailored by using different center atoms. It has been found
that the heavier the substituted elements are, the more the absorption peaks shift toward the
NIR region.

Many phthalocyanine derivatives, for example, CuPc [80, 81], SnPc [77, 82], TiOPc [83],
ClIinPc [83], CIAIPc [84] and so on, have been previously shown to have excellent absorptiv-
ity in the NIR region and good overall photoelectrical activities. The other type of phthalocy-
anine derivatives, naphthalocyanines show extremely high absorption coefficients in the
wavelength region of 1000 nm [85]. Compared with porphyrins, phthalocyanines exhibit
broader absorption spectral range, higher charge mobility and longer exciton diffusion length
due to their highly planar molecular structure that packs more closely, resulting in an in-
creased crystallinity and thereby allowing for much stronger intramolecular electronic interac-
tions. Together with these advantages, phthalocyanines are widely investigated in the field of
OPVs, DSSC, transistors and sensors [86].

Four meso and eight B positions on the porphyrin ring are reactive and can be functionalized
to tune the optical properties [87]. Introducing conjugated D-A systems in porphyrin small
molecules can facilitate the intramolecular charge transportation, and the modified materials
are prospective dyes showing very strong and broad absorptions in the NIR region [88]. The
dimerization of metallated porphyrins can extend the absorption peaks further to wavelengths
>1500 nm [89]. Inspired by the efficient energy transfer in naturally occurring photosynthetic
reaction centers, NIR absorbing porphyrin dyes are excellent candidates to promote the effi-
ciency if suitable structural modifications and procedures are applied.

3.2.2.2 Squaraine dyes

Squaraine dyes belong to the class of polymethine dyes and are characterized by their unique
aromatic four membered ring systems. They show similar intense and sharp absorption or
emission in the visible-near infrared region as do cyanine compounds, with the difference of
being electrically neutral [90]. Squaraines are synthesized by reactions of two electron rich
precursors with squaric acids. By using equivalent or different precursors, symmetric [91, 92]
and non-symmetric dyes can be synthesized, respectively [93]. Most of squaraine dyes are en-
cumbered by nucleophilic attack of the central four membered ring, which is highly electron

deficient. Their optical and physical properties can be tuned by attaching different side chains
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[94]. The most notable feature of squaraine dyes is their solubility in low polarity solvents and
good phase separation with fullerene derivatives allowing the formation of bulk heterojunc-
tions [95]. Self-assembly of squaraine molecules into stable nanocrystalline structures by
thermal annealing results in relatively high charge carrier mobility and extended exciton dif-
fusion length. These factors are beneficial in solar cells for charge separation and transport
[96, 97].

3.2.2.3 Others

Some other small molecules and derivatives such as thiadiazoles [98], benzothiadiazole [99],
and D-A systems by incorporating the latter groups or thiophene, pyrole among others also

show good NIR absorbing properties.

3.3 Cyanine dyes

Cyanine dyes belong to the family of polymethine dyes. Two nitrogen centers are bonded to-
gether by alternating single and double bond conjugated chains with an odd number of me-
thine groups and an even number of w-electrons. Due to the delocalization of the positive
charge on one nitrogen atom, the chromophores are positively charged and accompanied by
negatively charged counter ions. Cyanine dyes were originally synthesized and used as sensi-
tizer in photographic emulsions to improve the sensitivity of silver halide grains one century
ago. Recently, cyanine dyes have been intensively investigated in other application areas such

as fluorescent labels, optical data storage and optoelectronic devices [100, 101].

3.3.1 Types of cyanine dyes

According to different nitrogen centers, cyanine dyes are classified into three types: strepto-

cyanines, hemicyanines and closed chain cyanines.

In this work, we classified cyanine dyes according to the number of carbon atoms in the con-
jugated polymethine chains, for example, trimethine cyanine (Cy3) dyes, pentamethine cya-
nine (Cy5) dyes and heptamethine cyanine (Cy7) dyes.

When using different counter ions, cyanine dyes are indicated accordingly for example Cy-I,
Cy-Cl, Cy-PFg, Cy-ClO,. It has been noted that the optical and electrical properties of cyanine
chromophores are independent on the type of counter ion [102], but the influence of counter
ions on the solubility and crystallinity cannot be neglected. Furthermore, if the counterions

are redox active such as I", exciton quenching readily occurs in the solid state.
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3.3.2 Cyanine dye properties

Cyanine dyes are known for their unique properties such as high extinction coefficients and

tunable maximum absorption peak, ionic effects and self-aggregation properties.

3.3.2.1 Optical properties

Cyanine dyes are characterized by sharp absorption spectra and high absorption coefficients
with maximum values in the order of 10° L mol™ cm™. When forming solid films, this trans-
lates into absorption coefficients of up to 10° cm™.The bandgaps of the cyanine dyes are tuna-
ble by changing the number of double bonds between nitrogen atoms in the conjugated back-
bones, their absorption peaks are red shifted by ~100 nm by adding one vinylene unit [103].
For example, bandgaps of Cy3 dyes, Cy5 dyes and Cy7 dyes are ~1.8 eV [104], ~1.4 eV [105]
and ~1.2 eV, respectively [106].

3.3.2.2 lonic effects

The associated cationic cyanine molecules and counter ions can be separated in polar solvents
and in the solid state. Mobile ions can diffuse or drift in an external electrical field to move
within the cyanine layer or to adjacent non-ionic layers. This displacement establishes an in-
ternal electric field by the non-equilibrium ion distribution, which can facilitate charge
transport processes in organic electronic devices and tune the photovoltaic characteristics [105,
107]. These ionic effects can be applied in some research fields, e.g. homojunction photovol-
taic cells and light emitting electrochemical cells [108], where a single layer of ionic semi-
conductors is sandwiched between two electrodes. Upon applying an external bias voltage,
anions separate from the cations and are driven to the anode side leaving an accumulation of
cations at the cathode side. Thereby, regions close to the electrodes are then n-type or p-type
doped, and p-n or p-i-n heterojunctions can be built. The formed heterojunction structures al-
low for charge separation occurring in one single layer. The simplified fabrication procedure

of such device architecture is of great interest.

3.3.2.3 Self-aggregation

Due to strong intermolecular van der Waals attractive forces between molecules, cyanine dyes
easily self-assemble and form two types of aggregates: H-aggregates (H for hypsochromic)
and bathochromic J-aggregates (J for Jelley [109]) by stacking parallel molecules plane-to-
plane with a slipping angle of more than 32° (H-aggregation) or less than 32° (J-aggregation),

respectively. High quality J-aggregates show an extremely narrow red shifted absorption peak.
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Aggregation behavior of cyanine dyes have been widely investigated since their application as
spectral sensitizers in the field of photography. Many technologies including different sub-
strate surfaces [110, 111], matrices, and solvents were introduced to induce the formation of
well-organized cyanine dye aggregates and to control the aggregate size, growth speed, repro-

ducibility and durability.

3.3.3 NIR absorbing cyanine dyes

NIR absorbing cyanine dyes are achieved by increasing the number of vinylene units in

polymethine chains to seven. Cy7 dyes show intensive and sharp absorptions in the NIR light
region. Their absorption maxima can be fine-tuned by different substituent moieties. As stud-
ied by Q. Li et al. [112], the strength of the bathochromic shift induced by the substituents on

the indolenium group is as follows: benzo- > methoxyl > NO,- > methyl > chloro-.

As is well known, cyanine dyes suffer from some problems of photodegradation in the pres-
ence of oxygen [113, 114] due to the formation of both oxygen singlet species and superoxide
anions [115]. It was found that the photofading effects increased with the increase of the cen-
tral methine chain length. NIR light absorbing Cy7 dyes are less stable as compared with Cy3
and Cy5 dyes since the long conjugated chains are easier to be attacked by oxygen molecules.
It is worthwhile to design cyanine dyes with good photostability. As studied by J. Li et al.
[115] the photostability of cyanine dyes was enhanced significantly when cyclic units were in-
troduced into the polymethine chains. And the introduction of some electron donating substit-
uents on the nitrogen atoms or indoleninium fragments is favorable to obtain greater re-

sistance against photobleaching [116].

Heptamethine cyanine dyes have recently been investigated in different types of organic elec-
tronic devices such as OPVs [106], DSSC [117] as well as tandem solar cells to provide or-
ganic semiconductors absorption in the NIR region which will be discussed in Chapter IV. As
colorless photoactive materials absorbing in the NIR region, Cy7 dyes are promising candi-
dates to produce transparent OPVs [106] and transparent photodetectors [118], more details

will be found in Chapter 1l and Chapter 111, respectively.

4. Organic tandem solar cells

4.1 Heterojunction

Unlike inorganic semiconductors where free charges are formed directly after light excitation,

when organic semiconductors absorb photons with energy larger than their optical bandgaps,
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electrons are excited from the HOMO level to the LUMO level. The excited electrons are still
in the Columbic potential of the localized positively charged holes and form so called exci-
tons, electron-hole pairs with binding energy above 0.1 eV. These bonded excitons have to
overcome the binding energy in order to dissociate into free electrons and holes. So a driving
force greater than the binding energy is required to dissociate excitons in organic semiconduc-
tors. The realization of a heterojunction structure, which incorporates an interface between an
electron donating semiconductor and an electron accepting semiconductor can provide an ef-
ficient way for exciton dissociation if the respective electronic orbital energies of donor and
acceptor have a large enough offset. The first solar cells based on heterojunctions were re-
ported by C. W. Tang in 1986 with power conversion efficiency ~1% [119]. This was much
more efficient than the homojunction organic solar cells which showed typical efficiencies
less than 0.01% due to the insufficient separation efficiency of highly bonded holes and elec-
trons [120].

4.1.1 Working principle of a donor/acceptor heterojunction

The efficiency of a heterojunction device is determined by following four critical steps as
shown in Figure 1-5: light absorption, exciton diffusion, exciton dissociation and charge col-

lection. The typical time scales for each step are taken from [121] and shown in the brackets.

PR
(b)

(a)

na
(c) (d)

Figure 1- 5 Working principle of heterojunction devices with (a) light absorption and exciton

¥ R K

formation, (b) exciton diffusion, (c) exciton separation and (d) charge transport and collection.
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Light absorption and exciton formation (~10™°): This step takes place very fast, and its ef-
ficiency is dependent on active layers’ absorption coefficients and thicknesses.

Exciton diffusion (<10 s): Photo-excited electrons can either decay by radiative or non-
radiative recombination to the ground state or diffuse to the heterojunction interfaces where
exciton dissociation can occur. During this competing process, the so called exciton diffusion
length, the distance that an exciton can travel within its lifetime, determines the efficiency of
this step. To achieve exciton diffusion to the hetero-interface, the layer thickness should be
kept within the range of the exciton diffusion length which is typically around 5-50 nm for

organic materials.

Exciton dissociation (~10™* s): When an exciton reaches a donor/acceptor interface, the en-
ergy difference between the LUMO levels of donor and acceptor can provide the driving force
for the dissociation of the exciton into a free electron and hole. The same is true if the energy
offset between the HOMO levels is large enough (e.g. photocurrent contribution from Cgp).
The efficiency of this step can reach nearly 100% at optimal conditions. However, the ques-

tion about how the excitons are dissociated at the interface is still under debate [122,123].

Charge transport and collection (~ 10 s): Once separated, charges have to be transported
through the organic layers and collected at respective electrodes. The recombination of holes
and electrons is the main loss mechanism during this transporting process. The charge collec-
tion efficiency is dependent on the morphology of the heterojunctions. Donor and acceptor
phase should be kept bicontinuous, otherwise the charges would be trapped in the active lay-
ers or reach the wrong contacts and lead to low collection efficiency. In addition, energy bar-
riers between the organic layers and electrodes should be minimized to facilitate charge ex-

traction.

4.2 Single junction OPVs

A Single junction OPV is composed of a donor/acceptor heterojunction structure and two
electrodes with different work functions for electron and hole collection. Typically, a film of
transparent metal oxide (ITO, FTO etc.) acts as front electrode and a film of reflective metal

(Au, Ag, Al etc.) acts as back electrode.

4.2.1 Device architectures

According to different types of donor-acceptor interface structures, OPV devices can be fabri-
cated in planar bilayer, bulk or ordered heterojunction structures as depicted in Figure 1-6.
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(2) OPV (b) PHJ

Back electrode

Active layer I

Transparent electrode

(d) OHJ

Glass substrate

Figure 1- 6 Architectures of (a) organic solar cells with (b) PHJ, (c) BHJ and (d) OHJ

4.2.1.1 Planar heterojunctions

Planar heterojunction (PHJ) is the simplest architecture where an organic donor layer and an
organic acceptor layer are sandwiched between two conducting electrodes. The advantages of
these simple bilayer devices are morphology stable and the reduced charge recombination,
once the exciton separated at the interface, free electrons and holes have less chance to meet
and recombine with each other. However, the photo-generated excitons have to diffuse from
the place where excitons are generated through the acceptor layer or donor layer to the inter-
face region where charge separation occurs. Layer thicknesses should be kept within the range
of the exciton diffusion length for efficient exciton separation, but the small thicknesses limit

light absorption efficiency. A compromise must be reached for an efficient OPV device.

4.2.1.2 Bulk heterojunctions

This shortcoming of PHJs can be addressed by the interpenetrating bulk heterojunction (BHJ)
morphology. In a BHJ, a blend of electron donor and acceptor materials is cast as a mixture,
which then phase-separates. In this way, the donor/acceptor interfaces are located randomly
everywhere in the bulk, making it easy for an exciton to reach a nearby interface and be dis-
sociated into free charges. However, phase separation of BHJs should be well controlled on
the nanoscale and both phases should be continuous, otherwise charges would be trapped in-
side the device and cannot be extracted.
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4.2.1.3 Ordered heterojunctions

Ordered heterojunctions (OHJs) are then introduced to overcome the phase separation prob-
lem of BHJs. A well-ordered template with a highly aligned nanostructure is fabricated
through nanoimprinting, and the other layer is spin coated on the top [124]. OHJs minimize
the variability associated with BHJs and maximize the interface area compared with PHJs.
OHJs are generally hybrids of structured inorganic materials and solution process organic
semiconductors. OHJs suffer similar thickness limitations because the size of the pore must be
in the range of exciton diffusion length. And technologies for the fabrication of highly or-

dered molds are another difficulty.

4.2.2 Parameters limiting the efficiency of single junction OPVs

Organic semiconductors are known for their low charge carrier mobility and short exciton dif-
fusion length and energy barriers at organic/ inorganic interfaces. All these drawbacks limit
the power conversion efficiency in OPVs [125].

4.2.2.1 Charge carrier mobility

The charge mobility in organic films are typically in the range of 10°- 10" cm?/V.s [126, 127,
128, 129]. Low mobility means that charge transport and collection efficiency is low. In order
to enhance the charge collection efficiencies, the thicknesses of active layers have to be min-
imized. Increasing active layer thickness will increase the internal resistance and result in re-
ductions of V¢ and fill factor [130]. Factors that affect charge carrier mobility include mo-
lecular packing, disorder, presence of impurities, temperature, electric field, charge-carrier
density, molecular size/weight and pressure. Methods commonly used to measure charge car-
rier mobility in organic materials are space-charge-limited-current (SCLC), organic field ef-
fect transistors (OFET), time-of-flight (TOF) and charge extraction by linearly increasing
voltage (CELIV) and are reviewed in different publications [126, 131].

Increasing charge mobility in the organic films does not always improve the efficiency of the
devices, because this would not only enhance charge extraction but also speed up the rate of
charge recombination. The balance between charge extraction and recombination leads to a
distinct optimum in the carrier mobility with regard to the efficiencies of organic solar cells.
The best device efficiencies are achieved using materials with mobility in the range of 107 -
10 m?V.s [132] and the ratio of the electron to hole mobility is around 1:0.3 [133].
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4.2.2.2 Energy barrier at organic/metal electrode interfaces

The energy barriers at anode/donor interfaces for hole extraction and cathode/acceptor inter-
faces for electron extraction in OPV devices lead to an increase of the series resistance and an
decrease of Voc. Ohmic contacts are required to overcome these drawbacks, which can be
achieved by modifying electrical properties at the interfaces. The best strategy as has been
proven is to employ buffer layers with aligned band for the transport of majority carriers and
without alignment for minority carriers. In addition, buffer layers can act as optical spacers to
improve light management and enhance the optical absorption efficiency. Many functional
materials have been successfully employed in OPVs as buffer layers, for example, anode
buffer layers such as PEDOT:PSS, TPD [134], graphene oxide (GO) [135], MoO;3 [136] and
WOj3; [137] etc. and cathode buffer layers [138] such as Algs, BCP, TiO,, ZnO etc.
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Figure 1- 7 Energy loss mechanisms in single junction OPVs

4.3 Tandem solar cells

In the last decade, efforts have been focused on pushing the OPV efficiencies by enhancing
light management, improving interfacial design, optimizing the balance of charge carrier mo-
bility and better morphology control [139, 140, 141, 142]. The efficiencies of single junction
OPV cells have been repeatedly reported in excess of 9% for polymers (10.8% [10], 9.2%
[143]) and small molecules (9.02% [144], 9.3% [145], 9.95% [146]).

However, some losses are unavoidable in single junction devices. By assuming an ideal case
where the only recombination mechanism of electron-hole pairs is radiative, and highly ideal
materials are used and all avoidable losses are switched off, as calculated by Shockley and

Queisser (SQ) [147], maximum efficiency for single junction solar cells is around 33% for an
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active material’s bandgap Ey of ~1.3 eV. 18% is lost through transmission of photons with en-
ergy smaller than Eg, and 47% is lost through thermalization of energetic charges generated
by photons with energy larger than Eq that decay to lower energies close to the band edge, and
others are lost due to the blackbody radiation and exciton recombination. These losses are
more pronounced in OPVs as shown in Figure 1-7. Due to the spectral and sharp optical ab-
sorption properties of organic semiconductors, both photons with energy smaller than the
minimum optical gap Egmin and larger than the maximum optical gap Eg max Cannot be ab-
sorbed by the active materials. The energy offset required for exciton dissociation in organic
heterojunction devices causes additional loss [148, 149, 150]. Taking the energy offset (0.3
eV), external quantum efficiency (65%) and fill factor (65%) into account, as derived by
Scharber et al. [151], the highest achievable energy conversion efficiencies of OPVs are

around 10%.

In order to overcome the drawback of single junction solar cells and harvest more solar ener-
gy, multi-junction solar cell connected by single cells with complementary absorption spectra
in series or parallel is a well proven concept to reduce thermalization and transmission losses.
Stacked multiple active layers allow absorption over a wider range of the solar spectrum and
enhance power conversion efficiency as compared with single junction solar cells. In addition,
photons emitted by radiative recombination from large band gap subcells can still be captured

by the neighboring low band gap subcells.

Tandem solar cells have the potential to surpass the SQ limit of single junction solar cells. In
inorganic PVs, the maximum efficiencies for tandem and triple junction solar cells are 42%
and 49%, respectively, comparing with 33% maximum efficiency for single junction devices
when exposed to 1 sun irradiation [152]. In OPVs, the estimations are more complex. In op-
timistic assumptions by assuming EQE=90% and FF=70% [153] or EQE=75% and FF=75%
[154], efficiencies around 23~24% can be achieved for tandem OPVs. In an empirical case,
by assuming EQE=65% and FF=65%, maximum efficiencies of 15% are predictable [155],
30% efficiency increases are obtained compared with the best single OPVs under the same as-
sumptions [156]. For triple junction devices, by assuming EQE=75% and FF=75%, at optimal
configurations, the maximum efficiency of 22.7% is achievable [157]. To date, tandem and
triple junction OPVs with efficiency exceeding 10% [10.6% [158], 10.1% [159]] and 11%
[11.5% [160]], respectively, have been reported.
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4.3.1 Tandem device structures and working principle

To build the multijunction devices, subcells can be electrically connected either in series
(monolithically integrated tandem) or in parallel (mechanically stacked tandem). The simpli-

fied configurations are shown in Figure 1-8.

(a) (b)

Back cell
VTan=V1+ V2 VTan=min [V], Vzl

IM layer '

Bottom electrode

IM layer

JTan=JI+J2

Bottom electrode

Figure 1- 8 Architectures of series (a) and parallel (b) connected tandem cell

4.3.1.1 Monolithic integration

In monolithically integrated tandem solar cells, the two subcells are connected in series and
result in two terminals for connection to external circuit as shown in Figure 1-8 (a). The cath-
ode of the bottom cell is electrically connected with the anode of the top cell through an in-
termediate (IM) layer where electrons and holes accumulate and recombine. When operated
under short circuit condition, the excess of charge carriers from the subcell with more photo-
generated current will negatively charge the other subcell inducing an increase of the photo-
current from the limiting device, the steady state is reached when the flowing current from
two subcells are equal. This means that in order to have an efficient tandem cell both of the
subcells should have matched current. When operated under open circuit condition, assuming
ohmic contact formed between the subcells and no energy loss during charge recombination,
the Voc of the tandem device is the sum of the Vocs of individual subcells.

4.3.1.2 Stacked devices

In mechanically stacked tandem solar cells, a middle transparent electrode acts as the third
terminal connecting the subcells in parallel as shown in Figure 1-8 (b). Each subcell can be
contacted and measured separately, and the stacked devices do not require current matching.
According to the Kirchhoff's circuit laws, the output current is the sum of the currents of indi-

vidual subcells and the output Voc is equal to the smaller one.
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The choice between the series and parallel configurations is dependent on the differences of J-
V characteristics of individual subcells. If the differences are more significant on Voc, series
tandem cells are performing better than parallel tandem cells. Otherwise, if Jsc differences are
more pronounced, parallel connections work principally better than series connections [161].
In OPVs, the photocurrents are easier to tune by varying the thicknesses of active layers and
reach current matching. In addition, the requirement of highly transparent electrodes makes
the stacked devices more problematic than monolithic devices, so the monolithic integrated

tandem solar cells have obtained much more attentions than stacked devices.

4.3.1.3 Intermediate layers

To achieve highly performing monolithic tandem solar cells, the design and choice of inter-
mediate interlayers play an important role. As shown in Figure 1-9, the intermediate layers

should firstly collect electrons and holes from neighboring subcells and secondly act as re-

combination centers for the collected charges.

Cathode

Donor 2

RL Acceptor 2

Anode B

Acceptor 1

Figure 1- 9 Working principle of recombination layer in tandem solar cells

The interlayers typically consist of one electron transport layer and one hole transport layer,
the materials and the structures of interlayer are reviewed in the literature [162]. Some re-
quirements for the interlayers are listed below. [163, 164, 165]

- the interlayers should be thick and robust enough to separate two subcells to prevent
formation of inverted diode behavior and protect bottom active layers against the
damage from spin coating the top active layers from solution;

- the interlayers should be highly transparent to avoid optical losses;
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- the interlayers should present no energy barrier for charge collection and recombina-
tion from the two subcells;

- the conductivity of the interlayers should be suitable, neither too low to increase the
series resistance nor too high to increase the effective area and overestimate the effi-
ciency (this is only an issue in small laboratory cells);

- the optical spacer effect of interlayers should be considered, the maximum intensity of
transmitted light through bottom subcells can be tuned by varying the thickness of in-

terlayers to match with the absorption spectra of top cells [166, 167].

4.3.2 Optimization and characterization of tandem solar cells

4.3.2.1 Optical modelling for current matching

To reduce energy loss in tandem cells, currents from each subcell should be matched [168,
169]. The configurations of the multi-junction solar cells are very complex owing to the large
number of stacked layers in such devices, and the optimization of their performance is hard to
be done experimentally by varying active layer thicknesses. Optical modeling is an invaluable
tool to calculate the photocurrents in each subcell and optimize the active layer thicknesses

and subcell sequences.

The model established by Pettersson et al. [170], which is based on transfer matrix methods,
has been successfully used in single junction OPVs [171] and can be extended in tandem solar
cells [168, 172]. Similarly to single junction solar cells, the electrical field distributions E;(x)
at the position x in a layer i are calculated and the number of excited states Q;(x) is propor-

tional to the square of the electric field:
1 47Tkl' 2
Qi(x) = > CEoM —— |E; ()]

Where c is the speed of light, €,is the permittivity of free space, n; is the reflection coefficient,
k; is the extinction coefficient and A is the wavelength. The optical indexes of all layers as
function of wavelength and the thicknesses of each individual layer can be measured by the
spectroscopic ellipsometry by measuring the change of light polarization upon reflection or

transmission and then fitting the measurement to a model.

By assuming that every generated exciton converts to an electron, which means that the inter-
nal quantum efficiency (IQE) is equal to 1, the maximum achievable current density Jsc max
can be calculated by integrating the number of excited states over the full wavelength region.
Comparing Jsc, max t0 the experimentally measured Jsc, exp, the average 1QE can be obtained
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from the ratio of Jsc, exp/Jsc, max- A series of corresponding single junction solar cells with dif-
ferent active layer thicknesses can be fabricated to determine the IQE values. Then the deter-
mined average IQE values can be combined in the optical model to predict the achievable Jsc
of the tandem cells [173]. By assuming that the Voc is sum of Vocs of each subcell and taking
a reasonable fill factor value, efficiencies of the tandem solar cells can be predicted. This

method was used in our cyanine multijunction solar cells in Chapter 1V.

4.3.2.2 IPCE measurements

To accurately measure the performance of tandem OPVs, the EQE spectra must be folded
with the standard AM 1.5G solar spectrum to calculate Jsc [174]. Also the EQE of each sub-
cell is a critical measurement for well understanding the working mechanism and determining
the limiting subcells in tandem solar cells. However, the EQE measurement of tandem devic-
es is quite challenging, especially for two terminal tandem devices because the subcells can-
not be measured separately. Unlike in single junction OPVs, the photo-generated charges can
be extracted from tandem devices only if both subcells are simultaneously excited. In order to
measure the EQE of the investigated subcell, a selectively strong light bias must be applied to
the other subcell, such that the investigated subcell limits the current over the whole wave-
length region. While in the EQE measurements, the current limiting device is always operated
in reverse bias due to the light biased subcell which works under open circuit condition, this
will lead to an overestimation of Jsc of the investigated subcell. An additional positive electri-
cal bias should be applied to the tandem device to compensate for this effect and avoid over-
estimation of performance. The magnitudes of optical bias and electrical bias to be applied on
the device during the EQE measurements must be well defined.

For the optical bias, the selected light should be in the wavelength region which is not or only
slightly absorbed by the investigating cell, and the light intensity should be high enough to
make sure that the amount of charges generated from the biased cell higher than the charges
from the investigated cell at any scanned wavelength region. In OPVs, the photo generated
currents are dependent on the light intensity. However, the intensity of probe light used in the
EQE measurements is usually lower than the 1 sun condition, so the measured EQE should be
corrected to standard AM1.5G sunlight illumination condition according to the light depend-
ence properties of the corresponding single cell. In some cases, the bias light is absorbed by
both subcells but primarily by the biased subcell, therefore, the light intensity can be tuned to
generate 1 sun condition for the investigated cell, no corrections need to be done afterwards
[175].
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For the electrical bias, the determination of the magnitudes of the applied voltage is more
complicated. Simply, the electrical bias can be approximately applied in the same magnitude
with the V¢ of the optically biased subcell. However, as studied by Gilot et al. [175], the real
bias voltage can deviate significantly from the Voc. The precise way to determine the correct
electrical bias should use J-V characteristics of each subcell under the illumination conditions
that are representative for the subcells in the tandem. The positive bias voltage, to be applied
on the tandem cell to ensure short-circuit conditions for the investigated subcell, is the abso-
lute value of the voltage of the data points shown in both the J-V curves of the two subcells
with equal Jscs and voltages opposite. And also the modulated probe light induced photo-
voltage should be taken into account to modify the electrical bias voltage and make sure the

current limiting device is working under short circuit condition.

4.3.3 Factors limiting tandem cells

Compared with single junction cells, subcells used in tandem solar cells suffer from some
losses. For example, for the front subcell, absorption is reduced because there is no reflective
back contact and for the back subcell some light is filtered out by the front cell [176]. The
state of the art for the efficiency increase in tandem solar cells is the reduced photocurrents
can be compensated by the increase of Voc. However, multijunction devices do not always
improve the efficiency over the corresponding single devices [155]. In order to achieve high
performing tandem cells, besides parameters necessary to achieve high performing single
junction solar cells, some other requirements to construct efficient tandem devices are dis-

cussed below.

4.3.3.1 Layer sequences

Layer sequences are a critically important parameter determining the maximum efficiencies of
tandem solar cells. Theoretically, efficient tandem devices put the wide band gap subcells in
the front and small band gap subcells in the back to avoid the thermerlization loss. However,
in some thin layer solar cells, the devices with reversed layer sequences are performing better
than the regular devices due to the specific absorption profiles and interference effects [176,
177].

As simulated by G. Dennler et al. [155], the efficiencies can be dramatically improved by
stacking subcells whose performance are limited by low Jscs due to the small active layer
thicknesses and poor optical electric field distributions [178]. By stacking these single cells
into a multi-junction cell, the optical distributions can be optimized by spacer effects and in-
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terference effects from the subcells and interlayers. The optical absorption of each subcell and
the performance of the stacked devices can be significantly enhanced compared with the cor-
responding single cells [169].

4.3.3.2 Band gap combinations

An appropriate band gap combination is another key parameter to determine the efficiency of
tandem solar cell. In order to effectively capture photons from the sun, materials with com-
plementary absorptions over the whole solar spectrum should be chosen as donors in tandem
devices [179, 180] and the absorption overlap between these materials should be minimized
[155]. Unlike in inorganic multijunction solar cells, the optimal band gap combinations in or-
ganic multijunction cells can widely differ depending on minimum energy offsets and optical
absorption bandwidths, for example, (1.7 eV, 1.1 eV) [157] and (1.6 eV, 1.3 eV) [155] for
tandem cells, and (2.0 eV, 1.5 eV, 1.1 eV) [157] for triple junction cells, respectively. In other
cases, the efficiency can be enhanced by stacking the same subcells because the light is not
fully absorbed in one single cell, for example, W. Li et al. [181] fabricated 1+2 triple junction
cells using a wide bandgap subcell as bottom cell and the same photoactive layer with differ-
ent thicknesses as middle and back subcell, the efficiencies increased from 8.9% for tandem
to 9.64% for triple junction cells. Therefore, the optimization of tandem OPVs should be done
case-by-case. A case study for the optimization of cyanine multijunction solar cells will be
discussed in Chapter IV.

5. Organic Photodetectors

Based on the concept of organic heterojunctions, many organic electronic devices with differ-
ent functionalities can be produced. One example are photodetectors, which are light sensors

used to convert a light signal into an electrical signal.

5.1 Operational mechanism

A commonly used photodetector is a photodiode. The device structure is very similar to solar
cells but optimized for working under reverse bias condition with low dark current and fast
response speed. According to the type of output signal, photodetectors can be classified as
photo-conductive mode and photo-voltaic mode.

Photo-conductive mode: the diode is an electrical insulator when operated under reverse bias
condition in the dark. Once a light signal is detected, free charges are generated by incident

photons and can flow through the device, and then the diode becomes conductive. The
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amount of photogenerated charges is dependent on the incident light intensity, and the electri-
cal conductivity of the diode varies as a function of the intensity of light signal. Because the
charges are simultaneously driven by the reverse bias and the built-in electric field, photode-
tectors can respond to the light signal very fast. However, the drawback of this operation
mode is that the applied bias injects charges from electrodes to the device and increases the

noise current.

Photo-voltaic mode: When operated in an open circuit condition, photogenerated electrons in
the diode are accumulated at the cathode side and holes are accumulated at the anode side, an
internal electric field is established due to the energy difference between these accumulated
positive and negative charges. The magnitude of the voltage is dependent on the amount of
charges and hence the incoming light intensity. In this mode, the dark current is kept at a min-
imum because no external bias is applied. The shortcoming of this mode is the limited re-

sponse time.

5.2 Applications

The technology of light detection is used very often in our daily life, it can be directly used or
integrated with other devices to invent some new applications such as: environmental moni-
toring for security and safety, position sensors in industrial automatic systems, sensors used to
automatically control doors in the buildings or public transportation, light detection in bio-

medical applications, optical communications etc.

Photodetectors have to be sensitive in some given spectral regions depending on applications.
Organic semiconductors have broadened the application in many areas due to their tunable
spectral sensitivity. Organic photodetectors (OPDs) can be made panchromatic or selectively
sensitive in some specific wavelength regions, such as UV, VIS and NIR light detectors. Par-
ticularly, medical and industrial sensors often have the requirement to operate in the NIR re-
gion only as the NIR light penetrates deeper into the tissues and benefit for being invisible
and inducing less interference, OPDs are attractive as filter-free solid state alternatives. And
also, OPDs can be made transparent by using NIR light absorbing dyes. The transparent
OPDs can be easily monolithically integrated with other optical electronic devices to form in-

tegrated systems with smart functionalities, more details will be described in Chapter III.
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5.3 Important properties of photodetectors

5.3.1 Response time

The response time of a detector is the time required to respond to an incoming light signal or
changes in light intensity. It is a key parameter to determine the performance of the photode-
tector. The response time is determined by the time required for the charge generation at the

interface, charge diffusion to reach the electrode, and RC time constant.

In OPDs, the charge generation is typically very fast in the time scale of 10™ s. The main limi-
tations for fast response are the low charge mobility, trap states in disordered organic semi-
conductors and the RC time. To enhance the response speed, external electrical bias is normal-
ly applied to the device [182] and the size of the photodetector is kept small to minimize the
RC time constant. In some other cases, methods such as increasing the temperature [183] and
enhancing organic vertical carrier mobility [ 184] have been used to overcome the drawback of
low carrier mobility. Decreasing the active layer thicknesses is another choice to enhance the
response time, but pin holes and the reduction in quantum efficiency are hardly avoided in ul-

trathin film devices.

5.3.2 Spectral responsivity

Spectral responsivity R is related to the efficiency of light detection as a function of the wave-
length, and is defined as the magnitude of the electrical signal output from a photodetector in

response to a particular light power,

R = ]ph _ K_q
Lignt Mo e

Where, Jyh is the photocurrent and lyigne is the incident light intensity, is quantum efficien-

Mok
cy, A is the wavelength, h is Planck’s constant, ¢ is the speed of light in vacuum, R is in units
of mA W™, R increases with applied reverse bias due to the improved charge collection effi-
ciency in the photodiode. The responsivity should be constant or at least well defined within
some wavelength range. In some cases, it can also be important to have zero response in some

other wavelength range, for example, transparent detectors are non-sensitive to visible light.

5.3.3 Noise current

As a major contribution of detection limit, the dark current plays a key role in determining the

overall performance of a photodetector. It should be minimized in order to improve the power
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consumption and the effectiveness of photocurrent readout process. Therefore, its origins
have to be understood in order to effectively reduce the dark current. Two factors have been

identified as major contributions of the dark current [185, 186].

5.3.3.1 Shot noise

The term of shot noise is derived from fluctuations in the stream of electrons in a vacuum

tube, and its magnitude is expressed as:

lgn = Y, 2qIpc Af

Where, q is the absolute value of the elementary charge, Ip¢ is the average DC diode current,
Af is the electrical bandwidth in Hz. Shot noise is referred to as reverse bias leakage current. It
can be minimized by keeping leakage current small. Photodetectors are normally operated
under biased condition, their high leakage currents have been attributed to the charge injection
from electrodes. Suitable engineering of the electrode/active layer interfaces is generally ac-
cepted as an efficient way to suppress charge injection phenomena, some hole blocking layers
(HBL) [187, 188] and electron blocking layers (EBL) [189, 190] have been incorporated into
photodiodes and dark currents can be reduced to the range of nA/cm? [189, 191, 192, 193].
For example, a wide bandgap of MeO-TPD layer with high LUMO level was used as EBL in
cyanine photodetectors as will be shown in Chapter Ill. In order to choose suitable blocking

layers, following requirements should be satisfied,

- the LUMO level of EBL should be high enough and the HOMO level of HBL should
be low enough to create a Schottky barrier for the effective suppression of misdirected
charge extraction and electron injection;

- the charge mobility should be high and the HOMO level of EBL and LUMO level of
HBL should be positioned between the energy levels of the active materials and the
Femi level of the respective electrodes, charge collection efficiency is not significantly
hindered,;

- Materials should not absorb light to be sensed and should not influence the absorption

of the active layers.

5.3.3.2 Johnson Noise

Johnson noise is also called thermal noise, which is generated by the thermal agitation of the
electrons inside the photodetector and occurs regardless of any applied voltage. The shunt re-
sistance in a photodetector has a Johnson noise associated with it. The magnitude of the John-

son noise [, 1s defined as,
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4kgT Af
m Rsh
Where, kz is Boltzmann constant, 7 is the absolute temperature in degrees Kelvin and Ry, is
the shunt resistance of the photodiode. This type of noise is the dominant current noise in un-

biased operation mode.

In organic photodetectors, the main source of lj, is the carrier generation at the donor/acceptor
interface via heat induced ground state charge transfer, and the generated carrier concentration

(n;) is dependent on the activation energy (E;) of the semiconductor [186],

_Ea
n, e 2kT

This effect is non negligible and can hardly be avoided especially for NIR light sensitive low
band gap semiconductors. In bulk heterojunction devices, the interpenetrating networks be-
tween the donor and acceptor inherently increase the interface area for charge recombination
and consequently increase I;,. Using planar heterojunctions instead of bulk heterojunctions
[193] is therefore a promising way to reduce the cross section of donor and acceptor pairs. In-
creasing active layer thicknesses is another method to decrease dark current by increasing the
shunt resistance, but it causes a parasitic reduction in carrier collection efficiency [192]. A

compromise must be reached to obtain a maximum ratio of photo current to dark current.

5.3.3.3 Total noise

The total noise current generated in a photodetector is determined by

In most of cases, photodetectors are operated under biased condition, the shot noise dominates

the total noise current and the Johnson noise can be neglected.

5.3.3.4 Noise equivalent power

Noise equivalent power (NEP) is the power of incident optical signal required to generate a
photocurrent equal to the noise current of the photodetector at a specified wavelength region

within a specific bandwidth. It is defined as:

I
NEP = =
R

The unit of NEP is Watts/ HzY/2. Since the power to current conversion of a diode depends on

the wavelength, the NEP is always quoted at a particular wavelength.

37|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

5.3.4 Detectivity

The specific detectivity D* is defined as

JALS

D* =
Iy

R

Where, A is the effective area of the detector in cm?, R is the responsivity and lq is the noise
current in ampere, D* is in unit of cm Hz” W™ or Jones for memory of the Robert Clark Jones
[194]. With the assumption that under reverse bias the shot noise from the dark current is the

dominant contribution to the overall electronic noise of the device, the D* can be expressed as,

R
V24q]a

Where, Jq is the dark current density, D* produces a figure of merit and indicates the ability to

D* =

detect levels of radiant power.
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Abstract: A selective near-infrared absorbing heptamethine cyanine dye (Cy7-P) electron
donor was used for the fabrication of bilayer solar cells with the acceptor Cg. Using a reflec-
tive metal top electrode, solar cell optimization resulted in an external power conversion effi-
ciency (n) of 1.5% for layer thicknesses of ~20 nm for Cy7-P and of ~40 nm for Cgg, with us-
ing either PEDOT:PSS or M0Os3 as anode and Alqgs as cathode buffer layers. Highly
transparent devices were then fabricated by using silver/Alqs cathodes. Average visible
transmittance (450 — 670 nm) values of, for example, 67.2% (1 = 0.7%), 62.1% (n = 0.9%) or
50% (n = 1%) were obtained for different thickness combinations of silver and Algs. Opti-
mized solar cells had a maximum transparency of 79.8% at 568 nm. The operational stability
under 1 sun illumination was Tgo = 30 hours, after which 80% of the initial cell performance

was reached.
Keywords: Organic photovoltaics, cyanine dye, transparent solar cell, fullerene
1. Introduction

Solution-processed, small molecule-based organic photovoltaic (SM-OPV) cells are attracting
interest in research and industrial laboratories due to their potential as low-cost, flexible and
lightweight devices for solar energy conversion [1,2]. Power conversion efficiencies (1) of
SM-OPV devices are rapidly increasing. For simple bilayer cells and using Cg as electron ac-
ceptor, n = 1.5% (using subnaphthalocyanine [3]), N = 2.6% (using azadipyrromethenes [4]),
n = 3.3% (using diketopyrrolopyrrole derivatives [5]) or n = 5.7% (using squaraine dyes [6])
have been reported. Bulk heterojunction SM-OPV cells with soluble fullerenes as acceptors
performed even better, and 1 ranging between 4.4% and 6.7% were achieved, with donors
based on diketopyrroropyrrole [7], thiophenes end-capped with alkyl cyanoacetate [8] or

rhodanine groups [9], such as a push-pull thiophene-thiadiazolopyridine chromophore [10].

As for polymeric systems [11], high-performing SM-OPV cells require tailored redox energy
levels of the donor-acceptor components, high and balanced charge-carrier mobilities and a
film morphology that allows for loss-free charge transport pathways to the electrodes. In addi-
tion, a broad optical absorption around the peak (~700 nm) of the solar spectral photon irradi-
ance is prerequisite for efficient light capture and a high resulting photocurrent. Therefore,
small molecule dyes for OPV applications have primarily been developed so far that absorb
over the whole wavelength region of visible light and into the near-infrared (NIR) region [3-
10].

By making the organic layer thin enough, not all of the incoming light is absorbed and the ac-

tive film becomes semitransparent. Combined with transparent, non-reflecting electrodes, this
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has allowed for the fabrication of semitransparent (SM and polymeric) OPV cells that have
been proposed for applications such as power-generating windows that provide sun shading at
the same time. For example, by using the poly(3-hexylthiophene) / soluble fullerenes material
combination, which absorbs in the visible wavelength range between ~400 — 650 nm, semi-

transparent solar cells with n between 1.5% and 3% were manufactured [12-15].

Clearly, for many window-integrated applications OPV cells that do not absorb visible light at
all would be advantageous. Visible photopic light corresponds to the wavelength range of
~450 — 670 nm, where the relative spectral sensitivity of the human eye is above 5% [16,17].
Not many organic materials with selective NIR absorption are available [18] and important
steps towards transparent OPV cells were reported only recently [19]. Using chloroaluminum
phthalocyanine as electron donor and Cg as acceptor, SM-OPV cells were designed with n =
1.7% and a visible transparency of >55% [17]. In another example, a SM-OPV solar cell with
the Ph,-benz-bodipy/Cgo combination resulted in = 2.4% with an average transmittance in
the 400 — 750 nm wavelength range of 47.9% [20]. Finally, by using a NIR light-sensitive
polymer (PBDTT-DPP) as electron donor and [6,6]-phenyl-Cs;-butyric acid methyl ester
(PCBM) as electron acceptor, promising solution-processed polymer OPV cells with n ~ 4%,
an average visible transmittance (AVT) of 61% and a maximum transmittance of 66% at 550

nm were fabricated [21].

Cyanine dyes are charged polymethine colorants where a usually positive charge is delocal-
ized over an odd number of sp® carbon atoms forming the n-conjugated bridge between elec-
tron-donating or —accepting groups [22,23]. Cyanine dyes are characterized by a sharp, very
intense absorption band. The absorption maximum is shifted to longer wavelength with in-
creasing number of double bonds (~100 nm per additional methine group) [24]; therefore, a
desired absorption throughout the visible and into the NIR region (with absorption peak max-
ima > 1000 nm [25]) can be adjusted by synthesizing cyanine dyes with the appropriate num-
ber of methine units. Similarly, a conjugated polymer that absorbs solely in the NIR wave-
length region with an absorption maximum of 1000 nm was obtained by connecting cyanine
dyes in a head-to-tail fashion [26].

Cyanine dyes were also studied for photovoltaics. As an important advantage, cyanine dyes
are relatively cheap and commercially available in large quantities or they can be synthesized
by straightforward chemistry. The best performance (n = 3.7% [27]) for a purely organic solar
cell was achieved for a bilayer heterojunction when using a trimethine cyanine dye with a

film absorption maximum in the visible at 578 nm as electron donor and Cg as acceptor. An
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organic salt consisting of a heptamethine cyanine cation and a cyanine anion was used with
PCBM in organic bulk heterojunction cells (n ~ 0.4% [28]). Thin films of this cyanine-
cyanine salt displayed pronounced light-harvesting properties in the NIR range with peak ab-
sorptions at ~820 nm and ~940 nm. In both cases, a non-transparent metal cathode was used
as top contact for solar cells [27,28]. A heptamethine cyanine dye was synthesized for use in
dye-sensitized solar cells with a maximum spectral response at 800 nm [29].

Here, we report on bilayer solar cells using a commercially available heptamethine dye with
terminal benzindol moieties as electron donor and Cg as electron acceptor. Solar cell perfor-
mance was first optimized using a reflective aluminium back contact. In a second step, semi-
transparent devices were fabricated by using thin silver/Alqs top electrodes. The feasibility of
cells with an average visible transmittance of over 65% and a performance of 1% was demon-
strated. For any semitransparent solar cell application, a compromise must then be made be-
tween maximized transparency and performance.

2. Experimental
3-Butyl-2-(2-[3-[2-(3-butyl-1,1-dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-ethylidene]-2-
chloro-cyclohex-1-enyl]-vinyl)-1,1-dimethyl-1H-benzo[e]indolium hexafluorophosphate
(Cy7-P, FEW Chemicals), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),
(PEDOT:PSS, Sigma-Aldrich, conductivity 1 S cm™), 2,2,3,3-tetrafluoropropanol (TFP) and

chlorobenzene (CB, Sigma-Aldrich) were used as received.

Indium tin oxide-coated glass substrates (ITO, Thin Film Devices, 140 nm, resistivity 20
Ohms square™) were sequentially cleaned in acetone, ethanol, detergent and de-ionized water.
As hole-extracting layer, PEDOT:PSS (75 + 10 nm) was spin coated onto ITO followed by
heating to 120 °C for 15 min. Alternatively, thin anode films of MoO3 (Alfa Aesar, 99.9995%)
were deposited by thermal evaporation from a tungsten boat at a base pressure of <10°® mbar
onto unheated ITO substrates which were rotated during deposition. Although we designate
MoOj3; throughout, Rutherford backscattering spectroscopy on silicon substrates showed that

the material was actually slightly oxygen deficient (O/Mo = 2.94).

Cy7-P layers were spin coated from CB solutions inside a nitrogen-filled glove box (< 5 ppm
H.0, <6 ppm O,). Layers with different thicknesses of the Cg fullerene (SES Research,
99.9%) and of the exciton blocking layers tris-(8-hydroxyquinoline) aluminium (Alqgs, Sigma-
Aldrich, 99.995%) or bathocuproine (BCP, Sigma-Aldrich, 96%) were then deposited by
thermal sublimation under vacuum at a pressure of 3x10° mbar. As cathodes, either a 35 nm
thick film of Al (Cerac, 99.999%) or Ag (Cerac, 99.99%, different thicknesses) were
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evaporated through a shadow mask to define eight solar cells on each substrate with active

areas of 3.1 mm? or 7.1 mm>.

Film thicknesses were determined by profilometry (Ambios XP1), AFM measurements were
performed on a Nanosurf Mobile S in tapping mode at a resonance frequency of 170 kHz us-
ing silicon cantilevers. Current-voltage (J-V) characteristics were measured using 100 mwW
cm? simulated AM 1.5G solar irradiation on a calibrated solar simulator from Spectra-Nova.
The incident photon-to-current conversion efficiency (IPCE) was measured using a mono-
chromator and the light from a 300 W Xe lamp together with an AM1.5G filter set. The mon-
ochromatic light intensity was determined using a calibrated Si-diode. Absorption spectra for
solutions and thin films were measured on a Varian Cary 50 UV-vis spectrophotometer using
a quartz cuvette or a glass substrate as baseline. Thin films and solar cells were characterized
via illumination through the anode side (glass/ITO) only.

To study the intrinsic lifetime, cells were stored in the glove box in the dark. A homemade
airtight transfer box was used to measure cell J-V characteristics outside the glove box. The
degradation over a period of 100 h was measured under N at 1 sun illumination intensity. For
TEM measurements (CM 30 Philips, 300 kV operating voltage), amorphous carbon coated
TEM grids (Agar Scientific) were dip-coated in CB (6.5 mg mL™) Cy7-P solutions and were
then dried overnight. Optical constants for Cy7-P and Ag were determined by spectroscopic
ellipsometry (M-2000, J.A. Woolam Co., Inc.). For the ellipsometry measurement, a 23.1 nm
thick Cy7-P film was spin coated from CB onto a silicon wafer, and 12 nm Ag were evapo-
rated onto an ITO/glass substrate. Optical constants were taken from the literature for glass,
ITO and PEDOT:PSS [30], for Cg [31], for Al [32], for Algs [33] and for the 8 nm Ag layer

[34]. For thicker Ag layers (12 — 100 nm) the measured values from ellipsometry were taken.

Cyclic voltammetry measurements were recorded on a PGStat u30 potentiostat (Autolab) us-
ing a standard three electrodes cell system with a glassy carbon rotating disc (3 mm in diame-
ter) as the working electrode, a platinum counter electrode and a water-free double junction
Ag/AgCl reference electrode system separated by a ceramic and a sleeve diaphragm, respec-
tively (Metrohm). Electrolyte of the inner couple system was 0.1 M tetrabutyl ammonium
chloride in acetonitrile, whereas the outer bridging system was 0.1 M tetrabutyl ammonium
perchlorate in acetonitrile. Cy7-P (100 mg) and Cgo (140 mg) were measured in degassed or-
tho-dichlorobenzene (ODCB) solutions (~40 mL) in an argon atmosphere using 0.1 M tet-
rabutyl ammonium hexafluorophosphate as supporting electrolyte. The ferrocene/ferrocenium
(Fc/Fc™) redox couple was used as internal reference. As an approximation of the formal po-
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tential of the redox couples, half-wave potentials E., = ¥%2(Ey. + Epa) Were evaluated, with the
cathodic and anodic peak potentials, Ep and Eps. Ey, for Fc/Fc* was 1.17 V against the
Ag/AgCl reference electrode.

3. Results and discussion

3.1. Optical, thin film and electrochemical properties of Cy7-P
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Figure 2- 1 (a) Molecular structure of Cy7-P. (b) Absorbance spectra of separate Cgo and Cy7-
P films, and transmittance spectrum of the corresponding bilayer film. (c) The Empa logo
covered with a Cy7-P coated glass plate. Cgo Was evaporated on the lower half. (d) Schematic
of the device architecture for a semitransparent Cy7-P/Cg solar cell.

Cy7-P (Fig. 2-1a) is a low band gap dye (Amax = 839 nm in CB) with a high molar extinction
coefficient (gcp, x39 nm) = 2.7x10° L mol™ cm™). From the onset absorption edge A =
880 nm at higher wavelengths, the optical band gap in CB solution E,”™ = 1.41 eV was deter-
mined. For Cy7-P films, the maximum absorption was at Amax = 885 nm (Fig. 2-1b). The pic-
ture of Fig. 2-1c demonstrates that a 20 nm thick film of Cy7-P is highly transparent to visible
light with a faint green color. The lower part of the glass plate (2.5 cm x 2.5 cm) in Fig. 2-1c
was covered with an additional 40 nm thick film of Cg, resulting in a shade of brown for the

active, light-absorbing organic layer. This Cy7-P/Cg, photoactive layer has a maximum visi-
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ble transmittance of 80.7% at 666 nm and an AVT of 68.5%, but is strongly absorbing in the
UV and NIR wavelength region (Fig. 2-1b).

Cy7-P films were smooth with root mean square, rms, roughnesses < 0.4 nm from AFM im-
ages, and rms values did not change upon mild annealing (up to 100 °C for 1h). TEM experi-
ments were carried out to demonstrate possible film crystallinity. However, from TEM dif-

fraction mode images, no crystallinity could be detected and films appeared amorphous (Fig.

2-2a).
a) b) 607

5000 1/um

Figure 2- 2 (a) TEM diffraction mode image of a thin Cy7-P film. (b) Cyclic voltammograms
of Cy7-P, Cgo and Fc. (c) AFM phase image of a Cy7-P / PCBM blend film, and (d) after se-

lective removal of Cy7-P.

In cyclic voltammetry experiments, the first half-wave oxidation potential for Cy7-P was
Ey.ox = +0.18 V against Fc/Fc*, and the first half-wave reduction potential was Ey, reg = -1.31

V against Fc/Fc* (Fig. 2-2b). For Ceo, Ey,req = -1.25 V against Fc/Fc”, in agreement with liter-
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ature [35] (Ewreq = -1.13 V). Assuming that E., ox and Eu, req cOrrespond to the HOMO and
LUMO levels, and with an energy level of -5.10 eV vs. vacuum for Fc/Fc¢* [36], the redox
levels vs. vacuum can be calculated: Cgo (LUMO) =-3.85 eV, Cy7-P (LUMO) =-3.79 eV,
Cy7-P (HOMO) = -5.28 eV. For Cy7-P, the electrochemical band gap (Ege' =1.49 eV) and the
optical band gap differed by 0.08 eV.

Thin films (~100 nm) of spin-coated blends of Cy7-P and PCBM (1:1 weight ratio in CB)
were tested for use in bulk heterojunction solar cells. AFM images of as-prepared films
showed almost flat surfaces (Fig. 2-2c). Removal of Cy7-P by elution with the selective sol-
vent TFP left the fullerene phase that was composed of a network of individual ~100 nm large
PCBM domains (Fig. 2-2d). This blend film was thus composed of scattered PCBM droplets
within a continuous film-forming matrix of Cy7-P. The situation resembles morphologies ob-
served for spin coated blends of PCBM and trimethine cyanine dyes, where film formation
occurred via a transient bilayer which finally destabilized through effective electrostatic inter-
actions [37]. The Cy7-P/PCBM blend morphology is clearly unfavourable for photovoltaic
applications where phase-separated domains with dimensions in the exciton diffusion range
and continuous pathways for charge extraction are required. Consequentially, no diode behav-
ior and performance could be measured for corresponding PEDOT:PSS/Cy7-P:PCBM/AI so-

lar cells.
3.2. Solar cell optimization

In a first step, Cy7-P/Cgo bilayer solar cells were systematically optimized for different active
layer thicknesses, hole-extracting buffer layers (PEDOT:PSS vs. MoQ3) and electron-
extracting buffer layers (Algs vs. BCP). For these experiments, a reflective Al back electrode
was used. First, Cy7-P layers with thicknesses between ~10 nm and 40 nm were used, with
fixed layers for PEDOT:PSS (75 nm), Cso (40 nm) and Algs (2 nm). The short-circuit current
(Jsc) increased with increasing Cy7-P thickness up to a maximum of J,. = 6.6 mA cm™ at 20
nm, and decreased for thicker films again (Fig. 2-3a). The open-circuit voltage (Vo) remained
almost constant at ~0.38 V with varying Cy7-P thickness between 20 nm and 40 nm, but V.
decreased markedly to 0.33 V for very thin dye layers. This might be due to the formation of
pinholes in thin Cy7-P films. Cg then contacts both electrodes at the same time. These direct
paths between cathode and anode act as a shunt resistance in parallel with the active part of
the device, resulting in a lowering of V. [38]. Irrespective of the Cy7-P thickness, high fill
factors (FF > 58%) were observed. The best performance (n = 1.5%) was measured for a Cy7-

P thickness of 20 nm (Table 2-1). The average performance from 4 independent cell fabrica-
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tion cycles was Jgc = 6.2 MA cm™, Ve = 0.38 V, FF = 58.4%, 1 = 1.4%. These cells showed
dark currents at -0.5 V of 10° A cm™ and rectification factors at +1 V of ~3500.

% ] % 10nmC <)
= 11 nm Cy7-P 40nm| == 10nm Ceo -
’ = 50nm| = 18nm ™\ 10 nm Ceo Gk
. = 20nm J 4 t—60nm 30 nm 40 / \ = 18 nm >
£ 29 nm J "E . [\ T
S W% g S \ 40 nm b 9
T L [ TTE T [ maZ® < 0 w o
i i — %\
3 ] )
=3 D f—
-4 -4
_,————/—/
———
-8 -8
0 0.2 0.4 0 0.2 0.4 470 670 870
Voltage (V) Voltage (V) Wavelength (nm)

Figure 2- 3 (a) White light (solid lines) and dark (dotted lines) J-V characteristics of
ITO/PEDOT:PSS/Cy7-P/Cg(40nm)/Algs/Al solar cells with different Cy7-P thicknesses.
White light J-V characteristics (b) and IPCE values (c) for corresponding Cy7-P(20nm)/Cg

solar cells with different Cg thicknesses.

Table 2- 1 Selected performance data of Cy7-P(20 nm)/Cso (40 nm) bilayer solar cells with Al

as cathode.
Device structure Jse (MA cm™) Voo (V) FF (%) n (%)
ITO/Cy7-P/Cgo/2nmAlgs/Al 4.9 0.12 46.2 0.3
ITO/PEDOT:PSS/Cy7-P/Cgo/Al 4.3 0.29 27.6 0.3
ITO/PEDOT:PSS/Cy7-P/Cgo/2nmBCP/Al 5.2 0.38 53.3 1.1
ITO/PEDOT:PSS/Cy7-P/Cgo/2nmAlgs/Al 6.6 0.38 58.7 15
ITO/PEDOT:PSS/Cy7-P/Cg/9nmAlgs/Al 1.0 0.40 16.9 0.07
ITO/3nMM0o03/Cy7-P/Cqo/2nmAlgs/Al 5.6 0.40 53.2 1.2
ITO/5nmMoO3/Cy7-P/Cgo/2nmAlqgs/Al 6.0 0.44 55.1 15

As a next step, the Cg layer thickness (between 10 nm and 60 nm) was varied while keeping
the Cy7-P film at 20 nm (Fig. 2-3b). As observed for Cy7-P, V. collapsed for very thin Cg
layers. Jsc increased sharply with increasing Cgo thickness and leveled off at ~40 nm. This val-
ue corresponds to the exciton diffusion length of Cg (40 £ 5 nm [39]). For a layered solar cell
configuration, the thicknesses of the active layers should correspond to the exciton diffusion
lengths [39]. This is because for thicker films, light is undesirably absorbed in regions too far
away from the donor-acceptor heterointerface. The IPCE data shown in Fig. 2-3c confirm that
for increasing fullerene layer thickness the additional current is predominantly generated in

the wavelength region where Cg absorbs.
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For bilayer solar cells with Cg as acceptor and a wide band gap cyanine dye [40] or copper
phthalocyanine [41] as donors, it has been demonstrated that the insertion of a thin electron
conducting and exciton blocking layer between Cgo and the Al cathode greatly improves de-
vice performance. These findings could be reconfirmed for the Cy7-P/Cg, material combina-
tion. Omitting such a buffer layer resulted in poor performance (Table 2-1), mainly because of
a collapse of FF due to defects at the Cgo/Al cathode interface. Using 2 nm of BCP or Algs as
buffer layers resulted in an Ohmic contact at the cathode, with Algs slightly outperforming
BCP. The interlayer has to be chosen very thin, however [42], and a resistive 9 nm thick Alqs

layer suppressed the electron extraction effectively (Table 2-1).

MoOs is a widely used hole injection material that has been proposed as an effective replace-
ment for PEDOT:PSS [43,44]. V. values for MoOs; solar cells (~0.42 + 0.02 V) were larger
than for PEDOT:PSS (Table 2-1), probably due to the higher MoOj3 valence band energy (Ey
=5.2-5.3 ¢V [45]). In contrast, FF were lower, resulting in n ~ 1.5%, as was obtained for
PEDOT:PSS.

Solar cell performance is currently limited by the V. of ~0.4 V. For a related trimethine cya-
nine dye with the same counter anion PFg’, that absorbs in the visible, HOMO and LUMO en-
ergy levels of -5.5 and -3.4 eV were determined by cyclic voltammetry [46]. The open-circuit
voltage of corresponding trimethine cyanine/Cg bilayer solar cells was Vo = 0.65 V. In gen-
eral, V. correlates with the difference of the LUMO of the acceptor (Cgo for both the trime-
thine [46] and heptamethine cyanine solar cell in our case) and the HOMO of the donor
[36,44]. The difference in V. (0.65 V — 0.4 V = 0.25 V) between the trimethine cyanine and
Cy7-P | Cgo cells agrees with the difference of the corresponding HOMO energy levels (5.5
eV —5.28 eV = 0.22 eV). Therefore, the low V. for Cy7-P solar cells is the direct result of

the lower HOMO energy of Cy7-P, as compared to trimethine cyanines.
3.3. Towards a transparent Cy7-P solar cell

Starting with a non-transparent 100 nm thick Ag cathode resulted in very similar device char-
acteristics as measured with Al as top contact (Table 2-2). Semitransparent solar cells were
then fabricated by replacing the reflective Ag cathode with thinner layers of Ag (8 — 20 nm)
[47]. To increase the transparency, Algs (20 — 80 nm) was used as an additional external die-
lectric coating on top of Ag (Fig. 2-1d) [19,20,48]. A comprehensive set of devices with dif-
ferent Ag and Algs thickness combinations was fabricated with fixed Cy7-P and Cg layers at
20 nm and 40 nm, respectively (Fig. 2-4a,b). Due to interference effects in semitransparent
metal films [19], the highest AVT (46.9%) was measured for a 12 nm thick pure Ag layer. For
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all Ag thicknesses, the additional Algs capping layer considerably improved transmittances,
and AVT reached 67.2% for a cathode composed of a 12 nm thick Ag and a 60 nm thick Alqgs
layer (Table 2-2). In the wavelength range 400 — 750 nm, the average transmittance for this

cell was 57.9%.

Table 2- 2 Selected experimental and calculated average visible transmittances (AVT) and
performance data of Cy7-P(20 nm)/Cso(40 nm) solar cells.

Device structure, Jsc Vo (V) FF (%) n(%) AVT450-670 AVT 450-670
cathode composition (mA cm?) nm (%), exp.  nm (%), calc.
100 nm Ag (non-transparent) 6.4 0.40 59.2 1.5

8 nm Ag 3.0 0.35 47.4 0.5 42.1 42.8

8 nm Ag /60 nm Algs 2.6 0.36 46.9 04 59.4 59.7

12 nm Ag 4.2 0.36 51.3 0.8 46.9 47.9

12 nm Ag /20 nm Alg; 3.7 0.39 51.3 0.7 56.0 56.3

12 nm Ag /40 nm Alg; 3.7 0.39 51.2 0.7 66.3 66.6

12 nm Ag/ 60 nm Alqg; 3.8 0.39 49.6 0.7 67.2 69.6

12 nm Ag /80 nm Alg; 4.0 0.39 50.1 0.8 58.8 62.4

16 nm Ag 51 0.36 46.0 0.8 39.0 39.2

16 nm Ag/ 60 nm Alqgz 4.7 0.40 46.3 0.9 62.1 62.6

20 nm Ag 5.2 0.37 53.5 1.0 29.5 31.0

20 nm Ag /60 nm Algz 4.8 0.39 53.3 1.0 50.0 53.7
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Figure 2- 4 (a) Transmittance spectra of ITO/PEDOT:PSS/Cy7-
P(20nm)/Cgo(40nm)/Algs/Ag(12nm)/Algs solar cells with different external Algs layer thick-
nesses. (b) AVT data for solar cells using different thicknesses for the Ag/Algs top electrode.

(c) Round (arrows) solar cells with a 12 nm thick Ag cathode.

Insight into the influence of the external Alqs capping layer on the optical electric field distri-
bution in these thin film multilayer devices was obtained from optical simulations. An optical
field simulation program (implemented in Mathematica™) based on the transfer matrix meth-
od [31,39] was used to calculate the normalized spatial distributions of the squared electric
field strengths for different individual layer thicknesses. Optical constants were taken from
literature or were obtained from ellipsometry measurements for thick Ag films and Cy7-P
(Fig. 2-5a, Experimental). As an example, Fig. 2-5b shows simulated optical field distribu-
tions for A = 568 nm of ITO/PEDOT:PSS/20nmCy7-P/40nmCgo/2nmAlgs/12nmAg/XnmAlqs
stacks with external Algs layer thicknesses ranging from 0 — 80 nm. Apparently, the optical
electric field distributions inside the device vary considerably by changing the Algs thickness.

The strength of E? leaving the device corresponds directly to the transmittance. These calcu-

66|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

lated transmittances at A = 568 nm were 57% (0 nm Alqs), 65% (20 nm), 81% (60 nm) and
76% (80 nm) (Fig. 2-5b), in good agreement with the experimental values of 54.5% (0 nm
AlQ3), 62.7% (20 nm), 79.8% (60 nm) and 72.9% (80 nm) (Fig. 2-4a).

4 1.8
a) Cy7-P

T15
T12
§ 0.9
T 0.6

T 03

-0
-0.3

350 550 750 950
Wavelenght (nm)

b) ITO + PEDOT  Cy7-P C60 Ag +Alg3

160 260 3(.)0 400
Distance from glass substrate (nm)
Figure 2- 5 (a) Refractive index (n) and extinction coefficient (k) of Cy7-P. (b) Calculated
spatial distributions of the normalized squared optical electric field strengths for A = 568 nm

inside semitransparent Cy7-P/Cg solar cells.

Wavelength-dependent optical modeling was carried out to simulate full transmittance spectra
from which calculated AVT were extracted. Data in Table 2-2 demonstrate an excellent
agreement between experimental and calculated AVT values. Simulations also suggested that
highest AVT will always result for a cathode composed of 12 nm Ag and 60 nm Alggs, irre-
spective of the Cy7-P (20 — 40 nm) and Cg (30 — 50 nm) active layer thicknesses.

For a particular cathode composition, calculated AVT values varied only slightly for different
thicknesses of the light-harvesting layers. We also fabricated selected semitransparent solar
cells with fixed top cathodes but different thickness combinations of Cy7-P and Cg layers
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(Fig. 2-6). In agreement with modeling, experimental AVT variations were indeed rather

small.

Performance data in Fig. 2-6 showed again highest values for Js; and n for layer thicknesses of
20 nm cyanine and 40 nm Cg, in agreement with results found for cells with an Al top con-
tact. It is obvious that semitransparent solar cells have a lower performance compared to de-
vices that use a highly reflective back metal contact. For thin Ag layers, Js. decreased due to
reduced light reflection and a compromise must be found between overall transmittance and
solar cell performance (Table 2-2, Fig. 2-4c). Addition of the Algs capping layer showed the
beneficial influence of increasing AVT strongly with only small losses of Js.. For the Cy7-
P/Cg solar cell, promising semitransparent cathodes could consist of 16 nm or 20 nm thick
Ag with a 60 nm thick Algs coating, resulting in AVT of over 50% and n close to 1% (Table
2-2).
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Figure 2- 6 AVT, normalized Js; and n for solar cells with different Cy7-P/Cg thickness com-
binations. In (a), the cathode was always 12 nm Ag, in (b) 12 nm Ag/60 nm Alqgs. Variations
of Vo (£ 0.01 V) and FF (£ 3%) were small.
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Initial measurements of the stability of Cy7-P films and solar cells showed promising results.
Pure Cy7-P films on glass were stored in the glove box at room temperature in the dark. UV-
vis spectra suggested that Cy7-P thin films did chemically not degrade over a period of at
least two months under inert conditions, as demonstrated by the unchanged absorption at A =
885 nm (data not shown). Performance characteristics for Cy7-P cells under inert storage
conditions using a PEDOT:PSS anode layer and different top electrodes are shown in Fig. 2-
7a-c. Irrespective of the top electrode used, V. values increased by ~5% over a period of 28
days. Using a 50 nm thick Ag cathode, Jscand FF were stable over time. For pure 12 nm thin
Ag layers, Jsc and FF decayed by ~20% and ~50%, respectively. Covering by a 60 nm thick
Alqgs layer seems to protect the thin Ag layer and the Jsc and FF decay was slower. We note
that the careful exclusion of oxygen and water is essential for any solar cell application using
cyanines, as the performance of solar cells that were stored at ambient conditions decay com-

pletely within 5 hours.
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Figure 2- 7 (a-c) Performance characteristics of solar cells stored under N, at room tempera-

ture in the dark. (d) Decay of PV parameters under N, at 1 sun illumination intensity.

Solar cells were finally exposed to light under N, (Fig. 2-7d). Cell parameters decayed almost
linearly by ~10% (Voc), ~20% (Jsc) and ~30% (FF) over an illumination period of 100 hours.
The ISOS protocols [49,50] define the time Tgo when the performance has decayed to 80% of
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the initial value Ty immediately after fabrication (Table 2-2). Tgy was ~30 hours. After a test
period of 100 hours, the performance has decayed to 50% of T,. Clearly, more extensive stud-

ies on the degradation are required in future work.
4. Conclusions

Here, we introduced cyanine dyes as a suitable class of small molecules for the fabrication of
semitransparent organic solar cells with AVT values > 65% and peak transmittances close to
80%. This level of transmittance needs to be increased further to AVT values above 80% for
practical display applications in, for example, mobile electronic devices. Therefore, a number
of cyanine dyes can be used that are visibly transparent with absorption maxima at 1000 nm
and beyond. For the semitransparent Cy7-P/fullerene solar cells demonstrated here, it appears
that the visible transmittance can already be substantially increased by replacing Cgo by a

more transparent acceptor material.
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Abstract: Organic photodetectors are interesting for low cost, large area optical sensing ap-
plications. Combining organic semiconductors with discrete absorption bands outside the vis-
ible wavelength range with transparent and conductive electrodes allows for the fabrication of
visibly transparent photodetectors. Visibly transparent photodetectors can have far reaching
impact in a number of areas including smart displays, window-integrated electronic circuits
and sensors. Here, we demonstrate a near-infrared sensitive, visibly transparent organic pho-
todetector with a very high average visible transmittance of 68.9%. The transmitted light of
the photodetector under solar irradiation exhibits excellent transparency color perception and
rendering capabilities. At a wavelength of 850 nm and at -1 V bias, the photoconversion effi-
ciency is 17% and the specific detectivity is 10" Jones. Large area photodetectors with an ar-

ea of 1.6 cm? are demonstrated.
Keywords: cyanine dyes; near infrared; organic; photodetectors; transparent
Introduction

Photodetectors are present in a vast variety of devices used in private households, industry
and research. Organic photodetectors may be well-suited for applications that require large ac-
tive area, mechanical flexibility, low-cost processing, or wavelength specificity®. Applications
where organic photodetectors with a narrow spectral response in the near-infrared (NIR)
wavelength range would be beneficial are remote control, reflective sensors such as optical
communication®. Another example can be found in the field of biochemical sensing. A fluo-
rescent molecule can serve as a reporting group when tagged to a biomolecule. When using
NIR fluorescent dyes, the background noise caused by the auto-fluorescence of the biosub-
strate can be greatly reduced. In addition, the high tissue penetration of NIR light enables in
vivo imaging applications®.

Multicolor organic photodetectors with sensitivity extending to the NIR wavelength range
have been presented using low band gap polymers®* or small molecules®”. When exclusive
NIR light sensing is required, these photodetectors must be operated using a visible light fil-
ter. Recently, organic photodetectors with selective NIR sensitivity have been reported®*°.
These detectors used squaraines and J-aggregated cyanine small molecules with narrow and

intense absorption features in the wavelength range from ~ 650 — 850 nm.

Combining organic NIR dyes with transparent, non-reflective electrodes allows for the fabri-
cation of visibly transparent devices, thereby adding new functionality to organic photodetec-
tors, such as integration in displays or invisible electronic circuits'. (Semi-)transparent organ-

ic solar cells are intensively being investigated for applications such as building-integrated
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photovoltaics or chargers of portable electronics'®*3, but only few attempts were made to
demonstrate transparent organic photodetectors. A visibly transparent photoconductor was re-
ported using a naphthalocyanine molecule with an absorption maximum at ~1000 nm®*. Semi-
transparent photodetectors with an average visible transmittance (AVT) of 45% were fabricat-
ed with molecules that absorb strongly in the ultraviolet and NIR region but relatively weakly
in the visible®. A stacked device was reported that consisted of an organic light-emitting diode
(OLED) and a semitransparent (AVT ~45%) photodiode®. The device acts as an image sensor
by emitting light from the OLED through the photodiode onto a surface and detecting reflect-
ed light by the photodiode.

Results and Discussion

Here, we demonstrate a sensitive, fast responding and transparent organic photodetector with
a high average visible transmittance of over 65%. The transmitted light of the photodetector
under solar irradiation exhibits excellent transparency color perception and rendering capa-
bilities. The photodetector consists of a TiO; electron transport layer'® on ITO that is sensi-
tized by a near-infrared absorbing heptamethine cyanine dye layer, Cy7-T (Figure 3-1a). Re-
cently, we fabricated transparent organic photovoltaic cells using Cy7-T with an average
visible transmittance of 66% and a power conversion efficiency of 2.2%"". The device further
contains poly-Ceo (photo-polymerized Cg) and MeO-TPD (N,N,N’,N’-Tetrakis-(4-
methoxyphenyl) benzidine) interfacial layers that are inserted to reduce the dark current (Fig-
ure 3-1b and 3-1c).
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Figure 3- 1 Molecular structure of the cyanine dye, schematic of the device architecture and

absorption spectra.
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(a) Chemical structure of the cyanine dye Cy7-T with the anion A-TRISPHAT. (b) Energy level diagram of the

photodiode. (c) Schematic representation of the photodiode with an average visible transmittance (AVT 450670 nm)
of 68.9%. (d) Absorption spectral of individual materials with thicknesses indicated in (c), and the transmittance
spectrum of the layer stack ITO/TiOy/poly-Cgo/Cy7-T/MeO-TPD/M0O:s.

Light absorption in the visible is small for all materials and the transmittance of the multilayer
stack, excluding the top electrode, is above 90% between 530 and 640 nm (Figure 3-1d). Pho-
todetectors were fabricated with either non-transparent 80 nm thick Ag anodes or a semi-
transparent Au / MoQj; top contact (Figure 3-1c). Gold was the hole-collecting electrode and
MoOj3 an additional external dielectric coating to increase the device transmittance. Wave-
length-dependent optical modelling was carried out for different Au and MoOs film thickness
combinations to simulate full transmittance spectra from which calculated average visible
transmittance values were extracted. For pure Au layers, AVT values increased monotonically
with decreasing thickness. However, a balance must be achieved between optical transparency
and electrical conductivity (Supplementary Information 3-S1). A low electrode sheet re-
sistance is important for photodetector scale-up, in order to reduce losses in transporting
charge to external circuitry. To ensure that Au is forming a continuous film in a reproducible
way the gold thickness was fixed to 8 nm (AV T3g0.720 nm. calc. = 64%)™®. This value increased to
a maximum of AVT390-720 nm, calc. = 71.5% when adding 40 nm MoO3 on top. The optical elec-
tric field distribution inside the device varies considerably by changing the MoO3 thickness.
As an example, Figure 3-2a shows simulated normalized spatial distributions of the squared
electric field strengths at A = 620 nm for MoOs layer thicknesses ranging from 0 to 60 nm.
The strength of E? leaving the device corresponds directly to the transmittance. For a 40 nm
thick MoOs layer, the calculated transmittance was 86.4% at A = 620 nm, in fair agreement

with the experimental value of 77.8% (Figure 3-2b).

! Absorption (A) in this chapter is equal to Logm('TO), where |y is the incident light intensity and | is the transmit-
ted light intensity.
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Figure 3- 2 Optical device properties.

(a) Calculated spatial distribution of the normalized squared optical electric field strengths for A = 620 nm inside
transparent photodetectors. (b) Transmittance spectrum and (c) image of the transparent photodetector with an
active area of 1.6 cm?.

The value of the AVT of the photodetector depends on the definition of the visible wave-
length range. Common assessments for the visible range are defined for photopic responses >
0.1% or > 5% peak sensitivity, resulting in visible spectral ranges of ~390 — 720 nm and ~
450 — 670 nm, respectively™®. For these wavelength ranges, experimental average visible
transmittance values are AVT3g0.720 nm, exp. = 66.4% and AV T 450670 nm, exp. = 68.9%.

The photodetector exhibits a very high and uniform measured transmittance over a large range
of the visible spectrum, resulting in a greyish and color neutral appearance (Figure 3-2c).
There are several ways how the measured transmitted light can be related to the human per-

ception of transparency and color. Since the sensitivity of the human eye is different for every
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visible wavelength, the human perception of transparency (HPT) can differ from the radio-
metric AVT value. To calculate HPT, the measured transmittance is folded with the eye sensi-
tivity?®. A HPT3g0.720 nm Value of 68.4% was obtained, in good agreement with the AVT value.
For analyzing the transparency color perception, color coordinates were calculated in the CIE
1931 color space. As light source, we used the AML1.5 solar spectrum folded with the trans-
mittance spectrum of the photodetector®*. Color coordinates were (0.350, 0.342), very close to
the so called “white point” (1/3, 1/3). This implies that the transparency color perception is
similar to the color perception of the original light source and the device is acting nearly as a

neutral density filter.

The color rendering index (CRI) is a quantitative measure for how well a light source, in our
case the transmitted light from the photodetector, renders the colors of objects in comparison
to a reference light source. CRI was evaluated following published procedures®*??. Therefore,
the special color rendering index (SCRI) was calculated for eight standard test color samples.
The correlated color temperature of the photodetector was T = 4760 K and the blackbody ir-
radiator was used as the reference light. A CRI of 100 means that the eight specified colors
have the same appearance when illuminated by the transmitted light from the photodetector or
by the reference light source, by definition. We obtained eight sCRI values (96, 96, 98, 98,
96, 95, 98, 98) and from these, a general (i.e. the mean) CRI of 96.7. This high general CRI
implies an excellent color rendering capacity that is comparable with the highest reported CRI
values for semitransparent organic solar cells?.
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Figure 3- 3 Electrical device properties.
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(a) Current-voltage (J-V) characteristics of photodetectors measured in the dark (solid lines) and under 1 sun il-
lumination (dashed lines). Labels designate devices shown in Table 1. (b) External quantum efficiency versus
wavelength for a transparent photodetector (device F) at various biases. (c) Photocurrent response of photodetec-
tors (device F) to a 5 ns long light pulse at 850 nm. (d) Responsivity and specific detectivity at 850 nm of photo-

detector F for different applied biases.

To tune the electrical properties of the photodetector, we omitted in a first step the interfacial
layers and fabricated TiO, / Cy7-T heterojunction devices (Table 3-1, device A). Operated in
the photovoltaic mode under 1 sun illumination, the short-circuit current was Jsc = 2.7 mA cm’
2 the open-circuit voltage Vo. = 0.74 V, and the fill factor FF = 37%, resulting in a power
conversion efficiency of 1= 0.7% (Figure 3-3a). This confirms the electron transfer process
from the photoexcited dye into the TiO, conduction band, and the regeneration of the Cy7-T
ground state by hole transfer across MoO:s.

However, the dark current (J4 = 4.3 x 10 mA cm™ at -1 V) is too high for using device A as a
photodetector. The dark current is an inherent source of detector noise, and the entity of noise
determines the lower limit of light detection. In general, applying a reverse bias across a pho-
todetector increases its speed of response. However, the dark current tends to increase as well
with applied reverse bias resulting in an increase of the shot noise. Therefore, the choice of
operation mode is a trade-off between the required speed of response and the maximum noise
that can be accepted in the actual application.

A major contribution to the dark current in organic photodetectors under reverse bias is the in-
jection of charge carriers through the electrode contacts into the semiconductor materials®%,
A proven strategy to suppress these injection processes is the use of interfacial blocking lay-
ers™*°. We selected MeO-TPD as suitable electron blocking layer (Supplementary Infor-
mation 3-S2). MeO-TPD does not absorb light in the visible and has a high LUMO energy to
block electron injection. In addition, the HOMO energies of MeO-TPD and Cy7-T closely
match, which is essential for efficient photogenerated carrier collection. TiO, / Cy7-T / MeO-
TPD devices with increasing thickness of MeO-TPD were fabricated (Table 3-1, B — D).
From spectral response measurements, we observed no photocurrent generation in the wave-
length range below 400 nm where MeO-TPD absorbs light. This means that MeO-TPD acts
solely as an electron blocking and hole transporting layer. The optimum layer thickness of 40
nm MeO-TPD resulted in a dark current reduction by three orders of magnitude (J4 = 5.5 x 10°
*mA cm? at -1 V; Table 3-1, C) while reducing Js. from 2.73 mA cm™ for device A to 1.70
mA cm only slighty. The dark current decreased further by increasing the MeO-TPD thick-
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ness to 100 nm, but Js. collapsed due to the strong increase in the series resistance (Table 3-1,
D).

Table 3- 1 Current-voltage characteristics of ITO / TiO,(50 nm) / poly-Cgo/ Cy7-T(20 nm) /
MeO-TPD / MoO3(30 nm) / (top electrode) photodiodes.

Device® poly-Cqy MeO-TPD  Jjat 0\ Jgat-1V Ren Rs Jse
(nm) (nm) (MAcm?  (MAcm? (kQcem?) (Qcmd) (MAcm?d

A 0 0 1.9x10° 43 x 10" 3.9 5 2.73
B 0 10 7.1x10* 5.7 x 10 20 40 2.01
C 0 40 4.9 x 107 5.5x 10 2 x10° 53 1.70
D 0 100 1.4x10°® 3.6x 10" 4x10° 400 0.50
E 9 40 3.2x107 5.7 x 10 28 x 10° 83 3.40
=2 9 40 3.7x107 33x10°  30x10° 63 1.99
G 9 40 2.7x 107 6.9 x 10° 20 x 10° 260 2.05

“The top electrode for devices A — E was 80 nm Ag, for the transparent devices F and G gold
(8 nm) / MoOs (40 nm). The device area was 3.1 mm? for A — F, and 1.6 cm? for G; "J; de-
notes the dark current, Rg, the shunt resistance, R the series resistance, and Js. the short-
circuit current density measured at 100 mW cm™ simulated AM1.5G solar irradiation;

9Rectification of the dark current at +1V was 6.6 x 10*.

A Cqg film was evaporated onto TiO, and photo-polymerized by illumination (Supplementary
Information 3-S3)%*. Poly-Cg, is partially insoluble in the solvent chlorobenzene that was used
to spin coat the Cy7-T film on top. In agreement with results from related Cy7 / Cg photovol-
taic cells, we observed a strong increase of the forward injection current under illumination
compared to the dark current (Figure 3a)*"?*. This photoconductivity effect?® probably origi-
nates from light absorption in the Cgo layer?”?. Insertion of the Cg interfacial layer between
Ti0, and Cy7-T improved the performance of the photodetector in several ways. First, the use
of poly-Cgo reduced the dark current further by one order of magnitude (Jg = 5.7 x 10° mA
cm?at -1 V; Table 3-1, E). Secondly, external quantum efficiency (EQE) measurements

(Figure 3-3b) showed a small current contribution resulting from direct poly-Cg excitation in
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the wavelength region below 550 nm. This is much less, however, than the observed doubling
of the short-circuit current when inserting poly-Ceo (Jsc = 3.4 mA cm). This suggests that

poly-Cgo can assist in efficient charge separation between Cy7-T and TiO, and prevents back
recombination. Such a beneficial role of interfacial modifiers in hybrid solar cells incorporat-

ing both organic and inorganic materials has been demonstrated several times?*.

The enhanced charge transfer process across the metal oxide — organic interface resulted also
in a faster response speed of the photodiode. The temporal electrical response to nanosecond
optical excitation at zero applied bias was used to probe photogenerated carrier extraction.
The response decayed over ~2 ps when omitting poly-Ceo (Figure 3-3c), but light detection
was well accomplished within 1 us when adding poly-Ceo, potentially allowing for applica-
tions requiring response frequencies up to 1 MHz. Optimized non-transparent and transparent
devices (Table 3-1, E and F) showed very similar dark current values. Replacing the highly
reflective back metal contact with a transparent electrode resulted in a lower Js value, as ex-
pected. Finally, we were able to fabricate photodetectors with larger active area without sig-
nificant performance losses (Table 3-1, G). Large-area organic photodetectors have promising
applications in X-ray medical imaging or industrial quality control, particularly because of the

potential reductions in the costs when producing devices of several square centimeter™.

To characterize the photodiode sensitivity, we determined the specific detectivity D* (in units
of cm Hz™ W™ or Jones). D* is given as (A Af)*R / J,, where A is the effective area of the de-
tector in sz, Af the electrical bandwidth in Hz, R the responsivity in A W and J, the noise
current in A. With the assumption that under reverse bias the shot noise from the dark current

is the dominant contribution to the overall electronic noise of the device>*°

, the specific de-
tectivity can be expressed as D* = R / (2q Jg)”*, where q is the absolute value of the electron
charge and Jq is the dark current density (Table 3-1). The responsivity is given by R = Jyn /
liight, Where Jpn is the photocurrent and ljign: is the incident light intensity. To determine R,
EQE values were measured under short-circuit conditions and under reverse bias (Figure 3-
3b). The maximum EQE (at A = 850 nm) increased from 13% electron per photon at zero bias
to 23% at -2 V. Correspondingly, R increased with reverse bias to a maximum value of R =
165 mA W™ at -2 V (Figure 3-3d). Specific detectivities were calculated based on the respon-
sivity values and the dark current values (Figure 3-3d). D* monotonically decreased with in-
creasing reverse bias from D* = 3 x 102 Jones at -0.1 V/ to 1 x 10" Jones at -2 V. The trend
of D* demonstrates that the key to obtaining a high detector sensitivity is a high responsivity

while keeping the dark current low.
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We note that specific detectivities were calculated using responsivity values that were meas-
ured using light intensities in the ~ 0.1 mW cm™ range. The linearity of the photodetector’s
responsivity was addressed by measuring the photocurrent for different light intensities (Sup-
plementary Information 3-S4). We applied light intensities ranging from 10? — 10 mw cm™
and measured a linear response of the photocurrent. Care must be taken when organic photo-
detectors are used to detect much lower light intensities, such as a few nW cm™ in medical X-
ray imaging®’. This is because of the density of charge traps that is usually higher than in in-
organic semiconductor materials. Trapped charges cause enhanced recombination and are ex-
tracted at a reduced speed from the organic material, deteriorating the responsivity and the
bandwidth of the photodetector. These effects become important when the charge density

generated by low-level light conditions is comparable to the charge trap density.

The figure of merits of our photodetector at A = 850 nm, such as photoconversion efficiencies
of 13% - 23% and specific detectivities of ~10*2 cm Hz"” W, compare favourably with re-
sults presented so far for selective NIR organic photodiodes®*°. Ultimately, the required level
of device transparency and photometric perception will depend on the type of application. For
example, a dual wavelength range specific photodetector can be envisioned by stacking a
transparent NIR detector with a detector that selectively senses visible light. In that case the
required transparency would be relatively low, because the combined photodetector appears
colored or grey, respectively. On the other hand, reasonable transparency perception and good
color rendering properties will be required for display or window-integrated applications.

Methods

Photodetectors were fabricated in a glove box under N, atmosphere (H,O < 1 ppm, O, < 10
ppm). TiO, films were prepared on cleaned ITO glass substrates (Geomatec, resistivity ~11
Ohms square™) via a sol-gel process using titanium iso-propoxide as precursor®. Spin coated
TiO; films were heated within 3 h to 460 °C in air, were kept for 2 h at that temperature, and
were then cooled to room temperature. Before deposition of the active layers, TiO, coated
substrates were heated for 10 min at 120 °C inside the glove box. Cy7-T was synthesized as
described®’ and spin coated as a 20 nm thick film from chlorobenzene solution. Layers of Cgo
(SES Research, 99.5% or 99.9%), MeO-TPD (Sigma-Aldrich, 98%) and MoO3 (Sigma Al-
drich, 99.99%) were deposited by thermal evaporation (< 5x10°® mbar). Cgo Was photopoly-
merized under illumination (100 mW cm, N,) for 12 h. Ag (Cerac, 99.99%) and Au (Kurt J.
Lesker, 99.99%) was evaporated through a shadow mask to define devices with active areas

of 3.1 mm?, 7.1 mm?, or 1.6 cm?.
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Absorption and transmission spectra were measured on a Varian Cary 50 UV-vis spectropho-
tometer. For the transmission spectrum shown in Figure 1d, glass was defined as the baseline.
For the spectrum shown in Figure 2b, air was defined as the baseline. Film thicknesses were
determined by profilometry (Ambios XP1). White light J-V characteristics were measured us-
ing 100 mW cm™ simulated AM1.5G solar irradiation on a calibrated solar simulator from
Spectra-Nova. EQE was measured using a monochromator and the light from a 300 W Xe
lamp together with an AM1.5G filter set. The monochromatic light intensity was determined
using a calibrated Si-diode. Bias on the device was applied using a Keithley 2400
sourcemeter. Photodiodes were characterized via illumination through the glass / ITO side on-
ly. For dark current measurements, devices were serially connected with resistors and currents

were recorded using a Keithley 2000 multimeter by measuring the voltage drop.

Transient photocurrent experiments were carried out using a frequency-tripled Q-switched
Nd:YAG laser (Ekspla NT-342) running at 20 Hz repetition rate. The excitation wavelength at
850 nm was generated by an optical parametric oscillator (idler output, 5 ns FWHM) and at-
tenuated by grey filters (0.5 - 220 wJ cm™®). Temporal responses (photocurrent into 50 — 500 Q
loads) were measured with no bias applied on an oscilloscope (Tektronix DPO 7104C). Full

lines in Figure 3c correspond to the best exponential fit.

Energy values shown in Figure 1b were taken from the literature: ITO%, TiO,*, Cy7-TY,
MeO-TPD*, Au®*® and MoO3?*. For poly-Cgo, values from Cgo>® were adopted. The thickness
of the transparent Au / MoOj electrode was optimized using the optical model implemented in
Setfos (www.fluxim.ch). Optical constants were taken from the literature: ITO¥, TiO,*,
MeO-TPD*, MoO;* and for Au from the Setfos database. For poly-Cgo, values from Cgo*

were adopted. Optical constants for Cy7-T were determined by spectroscopic ellipsometry

(Supplementary Information 3-S5).
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The growth mode of thin metal films depends on the metal type, substrate, film deposition
method, or temperature. Large scale coalescence of metal islands during deposition eventually
forms a continuous layer that allows for electrical conduction over macroscopic distances.
The best compromise between increasing conductivity and decreasing transparency is close to
that coalescence point. For Ag deposited on MoOs, sheet resistance values of ~45 Q square™
(8 nm Ag) or ~10 Q square™ (10 nm Ag) were measured>'. In reference S12, these sheet re-
sistance values were reported as ~95 Q square™ (8 nm Ag) and ~40 Q square™ (12 nm Ag).
The conductivity for thin Au films on MoO; seems to be even slightly higher, and sheet re-
sistances <10 Q square™* were measured for 10 nm thick Au films®*. In all cases, sheet re-
sistances decreased with increasing metal film thickness. We calculated AVT values of pho-
todetectors with different thickness combinations of the top Au / MoOjs electrode (Figure S1).
For a 40 nm thick MoOs layer, AVT values are 71.5% and 68% for Au thicknesses of 8 nm
and 12 nm, respectively. This indicates that when the electrode sheet resistance value needs to

be decreased, this can be accepted with a relatively small drop in the AVT .
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Figure 3S- 1 Calculated average visible transmittance (AVT) values for different thickness

combinations of the top Au / MoOjs electrode.
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Figure 3S- 2 Current-voltage characteristics in the dark (full lines) and under illumination

(dotted lines, 100 mW cm™) of ITO / TiO,(50 nm) / Cy7-T(20 nm) / EBL(10 nm) / MoOs(30 nm) / Ag(80 nm)
devices using different electron-blocking layers EBL. m-MTDATA is 4,4,4°,4’-Tris[(3-methylphenyl) phenyla-
mino] triphenylamine (Sigma-Aldrich, >99.0%), TPD is N,N’-Bis(3-methylphenyl)-N,N’-diphenylbenzidine
(Sigma-Aldrich, 99%).

Table 3S- 1 Device performance / parameters for J-V curves shown in Figure 3S-2.

Device performance

EBLY
HOMO LUMO  Hole mobility Voc Jse Eff FF ora”
V) V) (cm® Vs ) (MA cm?) (%) ©)  (@-01V)
no 0.74 2.73 0.75 37 1.5x10?
m-MTDATA 5.1 2.0 3x10° 0.74 2.20 0.50 31 2.2x10°
TPD -5.4 2.4 1.4x10° 0.51 2.16 0.40 37 2.6x10°
MeO-TPD 5.1 -1.9 1.1x10° 0.77 2.01 0.50 32 4.9x10?
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% HOMO, LUMO energies and hole mobility values were taken from

He, G., Walzer, K., Pfeiffer, M., Leo, K., Pudzich, R. & Salbeck, J. Proceedings of SPIE
5519, 42-47 (2004);

Kulshreshtha, C., Choi, J. W., Kim, J.-k., Jeon, W. S., Suh, M. C., Park, Y. & Kwon, J. H.
Appl. Phys. Lett. 99, 023308 (2011);

Shirota, Y. J. Mater. Chem. 10, 1-25 (2000);

Lee, J., Kim, S.-Y., Kim, C. & Kim, J.-J. Appl. Phys. Lett. 97, 083306 (2010);
Goushi, K., Yoshida, K., Sato, K. & Adachi, G. Nature Photon. 6, 253-258 (2012).
") r,i4 is the ratio between the photocurrent and the dark current.

We observed that for comparable Js. current values, the dark current was smallest when using

MeO-TPD, resulting in the largest value for ryq.
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Figure 3S- 3 Absorption spectra of a ~15 nm thick Cg film

after evaporation (black line), after illumination (100 mW cm™) for 12 h under nitrogen atmosphere (red line),
and after spin coating with chlorobenzene (orange line). During light exposure Cg, polymerizes ** and becomes

partially insoluble in chlorobenzene. The Cg, film thickness after solvent treatment is ~ 9 nm.

S3. Zhang, H., Borgschulte, A., Castro, F. A., Crockett, R., Gerecke, A. C., Deniz, O., Heier,
J., Jenatsch, S., Nuesch, F., Sanchez-Sanchez, C., Zoladek-Lemanczyk, A. & Hany, R. Adv.
Energy Mater. 5, 1400734 (2014).
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Figure 3S- 4 Photocurrent versus light intensity (wavelength range 780 — 880 nm).
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Figure 3S- 5 Refractive index (n) and extinction coefficient (k) of Cy7-T.

Optical constants for Cy7-T were determined by spectroscopic ellipsometry (M-2000, J.A. Woolam Co., Inc.).

For the ellipsometry measurements, cyanine films were spin coated from chlorobenzene onto silicon wafers.

92|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Chapter IV. Tandem OPVs

Cyanine Tandem- and Triple-Junction Solar Cells

Hui Zhang', Bjoern Niesen?, Erwin Hack®, Roland Hany", Frank Niiesch'*”

'Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Func-

tional Polymers, CH-8600 Dubendorf, Switzerland.

2Ecole Polytechnique Fédérale de Lausanne (EPFL), IMT, Photovoltaics and Thin Film Elec-
tronics Laboratory, Breguet 2, CH-2000 Neuchatel, Switzerland

SEmpa, Swiss Federal Institute for Materials Science and Technology, Reliability Science and
Technology, CH-8600 Diibendorf, Switzerland.

*Institut des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL, Station 12, CH-

1015 Lausanne, Switzerland.

* Correspondence should be addressed to  Prof. Dr. Frank Niesch
Empa
Uberlandstr. 129
CH-8600 Diibendorf
Switzerland

Phone: +4158 765 4740; fax: +41 58 765 4012;

e-mail: frank.nueesch@empa.ch

Declaration: | fabricated all the devices, performed the AFM, UV-Vis, IPCE, I-V measure-
ments and optical simulation, prepared samples for ellipsometry, carried out all data analysis,

contributed to project planning and manuscript preparation.

In preparation for submission, 2015

Copyright from the authors

93|Page


mailto:frank.nueesch@empa.ch

NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Abstract: Ultrathin bilayer heterojunction solar cells using cyanine electron donors and elec-
tron acceptor Cgp are used to fabricate monolithically stacked tandem and triple junction de-
vices. Sub-cell stack sequences as well as Cg layer thicknesses are optimized by optical mod-
elling and maximum efficiency is corroborated experimentally. The highest power conversion
efficiency of 4.3% under full sun irradiation is achieved with a tandem cell where heptame-
thine and trimethine cyanine dyes are used in the front and back cell, respectively. The open
circuit voltage matches the sum of the two respective open circuit voltages of the individual
single junction solar cells within 3%. Triple junction cells using an additional sub-cell with a
pentamethine cyanine suffer from electrical series resistance. At low light irradiation intensity,
however, both triple and tandem solar cells reach power conversion efficiencies above 5% in

agreement with the performance increase predicted from numerical simulation.

Keywords: organic photovoltaics, tandem cell, triple junction solar cell, cyanine dye, inter-

mediate layer
1. Introduction

Cyanine dyes are well known as sensitizers in silver halide photography?, as fluorescent bi-
omarkers? or as light-absorbing layer in optical data storage devices®. These polymethine dyes
have rarely been used as solid organic semiconductors but show high promise due to very
high absorption coefficients, tuneable absorption spectrum and the ability to form aggregates
with highly delocalized excitons®. Facile and cost effective synthesis of soluble cyanines with
good film forming properties add to the merits of this materials class as active semiconductors
in organic photovoltaic devices (OPV)>. The first use of cyanine dyes as solid organic semi-
conductor material dates back to 1965 when Meier et al. discovered photoconductivity in this
class of materials®. Much later first attempts were undertaken to use trimethine carbocyanine
dyes as donors and acceptors in planar bilayer heterojunction devices’. Even though maxi-
mum external quantum efficiencies of close to 75% were achieved®, best power conversion
efficiencies (PCE) of 3.7% in cyanine devices® still lag behind other small molecular semi-

conductors™® and polymers**®

that recently reached PCE in excess of 8%. The main reason
for this shortcoming lies in the narrow absorption band of cyanine dyes, but also in the rather
low charge carrier mobility which limits the active layer thickness to 20 nm-30 nm*’. While
the small width of the absorption spectrum limits photocurrent in single junction devices, well

defined complementary absorption spectra are beneficial in multi-junction devices.

Organic multi-junction solar cells have been realized as a stacked assembly of single junction

18
I

devices being electrically connected either in series or in parallel™. First multijunction solar
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cells were simple mechanical stacks that hardly enabled to increase the power conversion ef-
ficiency in comparison with the constituting single junction solar cells**#. In some work, the
tandem cells were constructed out of single junctions employing the same materials which
raised the efficiency due to an increased collection of photons and charge carriers. By now,
design rules are well established to optimize efficiency in monolithically stacked multi-
junction organic solar cells. Optical and electrical modelling are invaluable tools for hitting
the maximum efficiency spot in the fabrication of these multilayer solar cells. When organic
semiconductors with non-overlapping absorption spectra can be used, optical device optimi-
zation is particularly eased®**%, For example, it enables to position the low band-gap material

2526 and triple-junction®’ devic-

to the front in order to optimize absorption®*. To date, tandem
es with PCE exceeding 10% and 11%, respectively, have been reported. In both cases the
multijunction solar cell outperformed the best constituting single junction cell by about 30%.
The big challenge for further improvements is to find organic semiconductors with comple-
mentary bandgaps in the near infrared domain as well as transparent and lossless recombina-
tion layers between the monolithically stacked cells. Furthermore, solution processed cells
with low energy input are of particular economic and ecologic interest. Owing to their wide
range of bandgaps, high extinction coefficients and solution processability, cyanine dyes are

interesting candidates for organic multijunction solar cells.

In previous work, we have demonstrated single junction solar cells based on trimethine dyes
(Cy3-P) with a band gap of ~1.8 eV?® as well as NIR absorbing heptamethine dyes®® (Cy7-T)
with a band gap of 1.2 eV using a simple bilayer structure with Cg as electron acceptor. In
this work we investigate tandem solar cells with Cy3-P and Cy7-T as well as triple-junction
solar cells using the latter dyes and a complementary absorbing pentamethine cyanine dye
(Cy5-P). We optimized the multilayer structures by varying the thickness of the Cgo acceptor
layers and changing the sub-cell sequence of the multijunction architecture using optical
modelling based on transfer matrix formalism. Also, an efficient recombination layer com-
posed of MoOs and a very thin metal layer was optimized by varying the metal and its nomi-
nal thickness. The maximum efficiency reached for tandem solar cells at AM1.5G solar irra-
diation conditions was 4.3% which is approximately 34% higher than the efficiency of the
best single junction cell employed in the stack. Triple-junction devices were optimized in the
same way as tandem cells and reached 3.6% at full solar irradiation. Tandem and triple-

junction devices both reached a PCE of 5.2% at one tenth of the full sun intensity.

2. Experimental
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2.1. Device fabrication

All single, tandem and triple-junction solar cells were fabricated and stored in a glove box
under nitrogen (H,O < 1 ppm, O, < 10 ppm). Indium tin oxide-coated glass substrates (ITO,
Thin Film Devices, 140 nm, resistivity 20 Ohm/square) were sequentially cleaned in acetone,
ethanol, detergent and de-ionized water. Layers of electron acceptor Cg (SES Research,
99.5% or 99.9%), anode buffer MoOj3 (Sigma Aldrich, 99.99%) , recombination metals Ag
(Kurt J. Lesker, 99.99%), Al (Kurt J. Lesker, 99.999%) and Au (Kurt J. Lesker, 99.99%) as
well as cathode buffer tris(8-hydroxyquinolinato)aluminium (Algs, Sigma-Aldrich, 99.995%)
were deposited by thermal evaporation under high vacuum (< 5x10° mbar). Active electron
donor films consisting of cyanine dyes 1-ethyl-2-[3-(1-ethyl-3,3-dimethyl-1,3-dihydro-indol-
2-ylidene)-propenyl]-3,3-dimethyl-3H-indolium hexafluorophosphate (Cy3-P, FEW Chemi-
cals), 1,3,3-trimethyl-2-[5-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-penta-1,3-dienyl]-
3H-indolium hexafluorophosphate (Cy5-P, FEW Chemicals) and heptamethine cyanine dye
2-[2-[2-chloro-3-[2-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)ethylidene]-1-
cyclohexen-1-yl]ethenyl]-1-ethyl-3,3-dimethyl-3H-indolium trisphate (Cy7-T, synthesized in
our group) were spin coated from filtered 2,2,3,3-tetrafluoropropanol (TFP, Sigma-Aldrich)
or chlorobenzene (CB, Sigma-Aldrich) solutions. The top silver electrode (Cerac, 99.99%)
was evaporated through a shadow mask to define devices with active areas of 3.1 mm? or 7.1

mm?.

Bilayer single-junction devices with the general architecture ITO/MoQOj3 (10 nm)/Cyanine dye
(20 nm)/Cgo (40 nm)/Algz (2 nm)/Ag (100 nm) were fabricated by subsequent deposition
steps on cleaned ITO substrates. The cyanine donor layers were deposited from solution and
left for 2 h under vacuum before depositing the Cgo electron acceptor. TFP was used for Cy3-
P and Cy5-P whereas CB was used in the case of Cy7-T. All other layers were deposited in

the same vacuum chamber.

Tandem devices were fabricated by using ten consecutive deposition steps to form two
stacked junctions with general architecture ITO/MoO3 (10 nm)/ Cy7-T (20 nm)/Cgp (X
nm)/Algs (2 nm)/RL (z nm)/MoOs3 (10 nm)/ Cy3-P (20 nm)/Cg (y nm)/Algs (2 nm)/Ag (100
nm). The recombination layer (RL) consisted of evaporated Au with nominal thickness z
varying form 0.1 nm to 1nm. For comparison, Ag and Al were also used. In the best perform-
ing device structure (Tan 7-3), the Cg layer of the front cell had varying thicknesses x ranging
from 14 nm to 35 nm, while the Cgo thicknesses of the back cell was varied between 25 nm

and 40 nm.
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Triple-junction solar cells consisted of fifteen deposited layers with the general structure
ITO/M0O;3 (10 nm)/ Cy7-T (20 nm)/Cgo (x nm)/Algs (2 nm)/Au (0.5 nm)/MoO3 (10 nm)/
Cy3-P or Cy5-P (20 nm)/Cgo (y nm)/Algs (2 nm)/Au (0.5 nm)/MoOj3 (10 nm)/ Cy5-P or Cy3-P
(20 nm)/Cgo (20 nm)/Algs (2 nm)/Ag (100 nm). Two promising sequences, both comprising
Cy7-T as front cell were investigated. The first (Tri 7-3-5) embeds Cy3-P in the middle cell
and Cy5-P in the back cell, while the second (Tri 7-5-3) incorporates Cy5-P in the middle cell
and Cy3-P in the back cell. As for single and tandem devices, only the cyanine films were de-

posited from solution, the other layers being deposited by vapor deposition under vacuum.
2.2. Methods

For solar cell characterization, the substrates were sealed in a vacuum tight box with current
feedthroughs and an optical window. Current-voltage characteristics of the solar cells were
measured by a Keithley 2400 source/measure unit in the dark and under simulated AM1.5G
solar irradiation of 100 mW cm™ from a calibrated solar simulator (Spectra-Nova). For re-
duced irradiation conditions, the white light intensity P;, was passed through neutral density
filters (Andover Corporation Optical Filter). Open-circuit voltage (Voc) and short-circuit cur-
rent-density (Jsc) were obtained directly from the current-voltage characteristics. Power con-
version efficiencies (PCE) were calculated as PCE = FF xV,. x J,. x P, where

FF = (I xV), xVoe " xJs - and (I xV),, relates to the current-density and voltage measured
at the maximum power point. A Cornerstone 130 monochromator (Oriel) was used together

with a 300 W Xe lamp to measure the incident photon-to-current conversion efficiencies (IP-

CE). They were calculated as IPCE = h%ex Jec x P, "where h is Planck’s constant, e is the

elementary charge and / is the monochromatic irradiation wavelength. The monochromatic
light intensity was determined using a calibrated Si-diode. Reflection losses at the solar cell

substrate were not considered in the calculation.

The IPCE of multijunction solar cells was measured with a custom-built spectral response set-
up equipped with lock-in amplifiers, a monochromator, and a xenon lamp whose light was
chopped at a frequency of 43 Hz, without applying a bias voltage. The individual sub cells
were measured utilizing appropriate combinations of blue, red, and near-infrared bias light, to
generate high photocurrents in the sub cells not being measured. For this purpose, a halogen
lamp with optical filters and LEDs were used. Specifically, for tandem cells, the Cy3-P IPCE
was measured using a long pass filter with a cut-off wavelength of 630 nm (Schott RG-630)

and the Cy7-T sub cell IPCE was measured using a Schott BG-23 band pass filter and a blue
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LED (470 nm emission peak). For triple-junction cells, the Cy3-P sub cell IPCE was meas-
ured with a RG-630 long pass filter and a blue LED, the Cy5-P sub cell IPCE with a RG-830
long pass filter and a blue LED, and the Cy7-T sub cell IPCE with a BG-23 band pass filter
and a red LED (emission peak at 650 nm).

Absorption spectra were measured on a Varian Cary 50 UV-vis spectrophotometer. Film

thicknesses were determined by profilometry (Ambios XP1).

Optical constants n and k (see Supplementary Information) for Cy3-P, Cy5-P and Cy7-T were
determined by spectroscopic ellipsometry (M-2000, J.A.Woolam Co., Inc.) and served as in-

put for the optical modeling based on the software setfos (www.fluxim.ch). The modelling

took into account the full device layer stack including the conducting ITO glass substrate.
3. Results and discussion

Cyanine dyes are characterized by a cationic chromophore with two end-standing nitrogens
connected by a polymethine bridge. The absorption spectra of these dyes in solution are char-
acterized by a narrow absorption spectrum and a huge maximum extinction coefficient, e.g.
for Cy7-T the molar extinction coefficient at the maximum absorption wavelength of 796 nm
reaches up to 360000 M*cm™ in CB. When coated as a thin solid film, the absorption maxi-
mum is red shifted and significantly broadened due to intermolecular interaction of the conju-
gated pi-systems, which is particularly important for dyes with strong transition dipole mo-
ments. The molecular structures and thin film absorption spectra of the cyanines Cy3-P, Cy5-
P and Cy7-T as well as fullerene Cg are shown in Fig.4-1. By combining the tri-, penta- and
heptamethine dyes, solar light in the range between 450 nm and 900 nm can be captured. As
deduced from the intersection of the absorption onset with the axis of abscissae, band gap en-
ergies of 1.8 eV (Cy3-P), 1.4 eV (Cy5-P) and 1.2 eV (Cy7-T) are obtained. It appears that the
bandgaps of 1.8 eV and 1.2 eV would be quite ideal for inorganic semiconductor tandem
cells, but that a lower bandgap would be needed for ideal triple layer devices. However, given
the fact that the bandwidth of organic conjugated materials is much smaller than for inorganic

semiconductors, organic multi-junction solar cells require case-by-case optimization.
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Figure 4- 1 Absorption spectra and molecular structures of Cgp, Cy3-P, Cy5-P and Cy7-T

The performances of single junction solar cells composed of the different materials as well as
the characteristic energy levels of the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) are given in Table 4-1. We have previously optimized
the cyanine layer thickness in bilayer heterojunction solar cells and found that the optimum
cyanine film thickness of 20 nm balances light absorption, exciton diffusion and charge carri-
er transport. Despite the small cyanine layer thickness used for all three devices, PCE of about
3% could be obtained for all three cyanine solar cells. More important for constructing multi-
junction devices is the fact that the short circuit current-density is matched between the cells,
which is not the case for the optimized single layer devices in Table 4-1. For comparing mod-
elled current densities with experimentally determined ones, light absorption was simulated
using setfos software. The optical model implemented in the setfos absorption module is
based on a modified transfer matrix formalism that allows calculating the photon flux across
any optical stack. Input regarding layer thicknesses as well as the optical constants n and k as
a function of wavelength are required to compute the optical electric field distribution through
the multilayer device in a coherent way. Thicker layers such as the 1 mm thick glass substrate
are treated in an incoherent way. If it is assumed that every absorbed photon in the electron
donor and acceptor material generates one photon in the external electric circuit, the maxi-
mum short circuit current Jsc max Can be computed. A series of single junction cells with differ-
ent active layer thicknesses were fabricated to determine the average ratio of Jsc exp/ Jsc, max,
these values were then used as input to calculate Jsc, ¢ for multijunction cells. We found that
the experimental values Js. exp are about 75% of the theoretical maximum and reflect losses

due to either exciton diffusion, exciton dissociation or charge carrier collection. The high se-
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ries resistance imposed by the low hole mobility in cyanine films accounts for part of these
losses, but for the ultrathin cyanine layers used, the FF of 50-60% is nevertheless appreciably
high for organic solar cell devices. The precise origin of the major bottleneck in this class of
semiconductors is not fully understood, but is believed to be partly due to charge trapping in-
duced by structural disorder. The exciton diffusion limitation accounts for another part of the
loss and is governed by the very short luminescence lifetime in cyanine films of about 50 ps.
Efficient excited state quenching in pure cyanine films occurs via twisted excited state inter-
mediates also leading to cis isomers. Exciton localization in the disordered films is another

possible mechanism that has been evidenced.

Table 4- 1 Experimental performances of single junction cyanine solar cells

Device LUMO HOMO Voc Jsc.exp FF n Thhest

leV leV N /mAcm 1% 1% 1%

single Cy7-T 4.2 54 0.63 7.1 52 2.3 2.8
cells (CB)

single Cy5-P 4.0 54 0.64 7.2 62 2.8 2.9
cells (TFP)

single Cy3-P 3.9 5.7 0.90 6.2 55 3.0 3.2
cells (TFP)

All single junction devices have the same architecture ITO/MoO (10 nm)/Cyanine dye (20 nm)/Cgo (40 nm)
/Algs (2 nm)/Ag (100 nm). The solvents used to deposit the cyanine films are also indicated (CB: chlorobenzene,
TFP: tetrafluoropropanol)

An ideal tandem device configuration using inorganic semiconductors has the wide band gap
subcell positioned to the front, followed by smaller bandgaps with the smallest bandgap to the
very back of the multijunction stack. However, due to the specific absorption profiles and in-
terference effects in thin layer organic solar cells, certain devices in reversed layer sequence
are performing better®*>".

Given the large number of stacked layer possibilities in multijunction devices, it is tedious to
optimize the performance experimentally by altering the cell configuration in the stack and by
varying the active layer thicknesses. Therefore the first step was to simulate tandem and tri-
ple-junction solar cells based on the single junction devices described above. For this purpose
we used the optical module in setfos to calculate the Jsc ca. TO estimate the maximum PCE of
the multiple junction devices, the open circuit voltage Voc is assumed to be equal to the sum
of the open circuit voltages of the constituting sub cells (data taken from Table 4-1) and
FF=65% was taken for the fill factor. Besides the different combinations of cell sequences,

device optimization also includes variation of the Cg layer thickness from 6 nm to 40 nm for
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each sub-cell in the multilayer device. Due to the physical constraints of cyanine bilayer het-
erojunction devices explained above, all cyanine layer thicknesses were fixed to 20 nm. Re-
combination layers consisting of an Algs (2 nm)/Au (1 nm)/ MoOs (10 nm) structure were
taken for the simulations. Fig.4-2 displays the optimization procedure to find the ideal Cgo
layer thickness in the subcells composed of a tandem device using Cy7-T and Cy3-P. Clearly,
higher efficiencies are obtained when Cy7-T is used as the front cell (denoted as Tan 7-3)
reaching a PCE up to 5.2 % while tandem cells with Cy3-P as the front cell reach only about
4.1%. Closer inspection of the light intensity distribution through the multilayer stack for the
different device types reveals that the maximum NIR light intensity at 840 nm is always lo-
cated in the front cells due to the thin active layer thickness for both sub-cells (see supplemen-
tary material Fig.4S-1).
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Figure 4- 2 Tandem device architecture (a) and simulated efficiencies of tandem devices (b)
Tan 7-3 and (c) Tan 3-7.

A similar nomenclature is used for triple junction devices. For example Tri 7-5-3 means that
the cell incorporating Cy7-T is used as front cell, the one using Cy5-P constitutes the middle
cell and Cy3-P the back cell, respectively. Fig.4-3 displays all the calculated efficiency results
of tandem and triple-junction devices that were obtained by optimizing the Cg layer thick-
nesses as described above. Additionally, the single layer devices (e.g. single Cy3) of Table 4-
1 are also included. The latter provide the highest short circuit densities but have lower effi-
ciencies when compared to the multi junction devices. Clearly, Tan 7-3 outperforms all other
tandem device configurations and was therefore chosen for experimental investigation. Re-
garding triple-junction solar cells, Tri 7-5-3, Tri 3-7-5 and Tri 7-3-5 revealed the highest effi-
ciencies. Due to experimental difficulties of coating CB solutions of Cy7-T in Tri 3-7-5 de-
vices without re-dissolving the underlying Cgo layer, only triple layer devices Tri 7-5-3 and

Tri 7-3-5 were chosen for further experimental investigations.

101|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

(o]

']SC, cal (mA/CmZ)
wv (2] ~N
I !

H
! !
e

w
B
B i
K
B i
e

~
o
c
©
-

0 I
n un
c C
© @©
- -

Tan 3-5

LLLLLLLL

Single Cy3
Single Cy5
Single Cy7

Figure 4- 3 Calculated current density and efficiency of single junction and multi-junction de-

vices with different layer sequences.

The fabrication of monolithically stacked multjunction devices is analogous to single junction
device fabrication, but bears additional difficulties. First, a recombination layer is necessary
between two subsequent sub-cells in the stack. Negative charges from the front cell have to
recombine with positive charges from the back cell through an Ohmic contact, such that no
voltage drop occurs across the interface. In classical inorganic tandem solar cells this is
achieved by a tunneling contact between highly p- and n-doped layers. A similar approach has
been adopted for organic solar cells deposited by vapor deposition®2. Though, the difficulty is
to avoid parasitic absorption and therefore the most widely used approach consists of using a
combination of oxide films and ultrathin metallic layers. The advantage of connecting the
subcells in series is the fact that lateral conductivity is not required for the recombination lay-
er. In order to increase optical transmission, the thin metallic layer therefore must not be con-
tinuous and can consist of fine clusters or even metallic nanowires®. If solution processing is
applied, the intermediate layer also serves as protecting layer in order to avoid diffusion of
solvent into the underlying layers. Therefore the oxide layer in the stack has to be continuous
and preferably dense. In this work we used a combination of ultrathin metal layers evaporated
on Algs covered by a 10 nm thick MoOs layer. This system provides an excellent recombina-
tion path between n- and p-contacts of front and back cell, respectively. Numerous works con-
firmed that various metals such as Au, Ag or Al do form Ohmic contacts to Cgy when evapo-

rated on a thin Algs layer®. To find the optimum recombination layer in the cyanine devices
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presented in this work, tandem solar cells with Tan 7-3 architecture were fabricated using dif-

ferent thin metal recombination layers.
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Figure 4- 4 (a) dark and light J-V curves of devices Tan 7-3 for different metals Al (1 nm), Ag
(1 nm) and Au (1 nm) as internal recombination centers and combinations with 2 nm Alqgs/
metal/ 10 nm MoOQs, (b) thickness variation of RL layer combinations using Au, the other lay-

ers thicknesses were kept the same as for device 0 in Table 4-2

In absence of the highly conductive metal layer a strong S-shape and reverse diode character-
istics under forward bias is evidenced (see Fig.4-4a). Such behavior has already been ob-
served in tandem devices missing a recombination layer****. Reverse diode behavior can
therefore originate from inverse junction formation between Cy3-P and Cg, across the non-
continuous MoOjs layer. The growth of thin MoOg layers on gold is known to proceed via a
first, strongly interacting oxide monolayer that serves as wetting layer for the subsequent ox-
ide layer®®. Therefore the growth of the oxide intermediate layer depends also on the metal
clusters being used as intermediate layers. Thin 1 nm films of Al or Ag did not provide the
same quality of recombination layer and lead to S-shapes and reduced V. in the tandem de-
vices (Fig.4-4a). AFM analysis of 10 nm thick MoOs films deposited on Au, Ag or Al films
reveal the lowest film roughness on gold surfaces, thus supporting a more compact and con-
tinuous MoOg film (see supplementary materials Fig. 4S-2). Still, the thickness of MoO3 was
quite crucial since layers thinner than 5 nm always lead to low fill factors and S-shaped cur-

rent-voltage characteristics. We attribute this behavior to the interdiffusion of Cy3-P when
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spin coating the back cell on top of the noncontiguous MoOs. In order to search for maximum
cell performance, reflectivity and electrical resistance of the RL were minimized by further
reducing the gold and MoOg thickness to 0.1 nm and 5 nm, respectively (see Fig.4-4b). It has

to be pointed out, however, that the device yield was lower than 40% in this case.

Table 4- 2 Experimental and calculated Jscs for tandem devices Tan 7-3 with different Cg

layer thickness

Device | Cg @ thickness Voc Jsc, e Jsc.cal FF n Thest
/nm W /mAcm™ /mAcm™ ! % | % 1 %

0 14, 32 1.46 4.52 5.31 59.6 3.93 3.98
1 15, 25 1.49 3.98 4.89 58.6 3.48 3.77
2 15, 30 1.49 4.01 5.17 57.5 3.45 3.51
3 15, 35 1.44 3.94 5.12 58.3 3.31 3.40
4 15, 40 1.43 3.82 4.94 59.2 3.23 3.61
5 20, 35 1.42 3.69 5.12 59.5 3.13 3.18
6 25, 35 1.44 3.78 4.98 59.2 3.22 3.56
7 35, 35 1.43 3.05 4.65 61.1 2.67 2.78
g 14, 32 1.52 4.99 5.41 55.3 4.19 431
R 14, 32 1.55 4.81 5.41 53.3 3.98 4.10

a) X, y refer to the Cg thicknesses in the front and back cells, respectively. device 0-7 RL layer: 2 nm Algz/1 nm
Au /10 nm MoOjs, b) RL layer: 2 nm Algs/0.5 nm Au /5 nm MoO;, averaged from 3 independent devices (24
cells), ¢) RL layer: 2 nm Algs/0.1 nm Au/5 nm MoOs.

In order to optimize tandem devices experimentally and to verify the modeling results, multi-
layer solar cells with different Cg layer thicknesses were fabricated using a recombination
layer incorporating a 1 nm thick Au layer and a 10 nm thick MoOgs film. For further optimiza-
tion, thinner gold and MoOs films were also used in specific cases (see Table 4-2). Given the
short exciton diffusion length and limited hole transport mobility of cyanine films, the layer
thicknesses of all cyanine donor films were kept to 20 nm, same as in optimized single junc-
tion devices. As shown in Table 4-2 the variation of the Cg thicknesses in the front and back
cell greatly influences the efficiency of the tandem devices. The open circuit voltage of 1.4 V
to 1.5 Vis only slightly affected and in the best case comes very close to the sum of V¢ of
the two single junction cells (the difference is only 2.6%). On the other hand, the short circuit
current density Jsc exp Varies considerably from 3 mA/cm? to 5 mA/cm?. Given the good quali-
tative agreement with the modeled short circuit current Jsc ca1, We conclude that the efficiency
differences correlate with the light absorption profiles in the different multilayer stacks. The

average ratio Jsc exp/Jsc.ca Of 80£6% indicates that important losses are reducing the power
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conversion efficiency besides incomplete light absorption. As explained before, losses could
be due to exciton diffusion, exciton dissociation or charge transport. The latter point was as-
sessed by reducing the full sun light irradiation intensity from 100% to 10% using neutral
density filters (Fig.4-5). The efficiency at one tenth of the solar irradiation intensity is about
5.3%, which is very close to the calculated maximum values as shown in Fig.4-3. Since Jsc exp
in single junction solar cells depends linearly on light intensity, we attribute the current loss in
tandem devices to charge accumulation at the recombination layer. As we will show below,

the loss is even more pronounced for triple junction solar cells using two such junctions.
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Figure 4- 5 Jsc, Voc, FF and efficiency of the tandem cell and triple cell as functions of light

intensity

Triple junction devices were constructed with Cy7-T incorporated in the front cel. In analogy
to tandem devices, we varied the Cgp layer thicknesses of the individual junctions in the triple
layer device stack (Table 4-3). This time, Voc varied quite substantially from 1.47 V to 2.11
V. The reason is not so clear until now, but we identified that coating Cy3-P on a Cy5-P cell
as the problematic step leading to inhomogeneous films. In the optimized Tri-7-3-5 cell, Voc
remarkably approaches the sum of the single junction cells (difference of 4.6%). The short
circuit current Jsc exp Showed less variation from 3.03mA/cm? to 3.61 mA/cm?. Again, a good
qualitative agreement of the experimental current density values with the modeled ones is ob-
served. The intensity dependence shown in Fig.4-5 underlines the losses of Jsc exp. AS @ matter
of fact the efficiency of triple junction solar cells of 5.2% measured at 0.1 solar irradiation in-

tensity comes very close to the one for tandem cells of 5.3% measured under the same condi-
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tions. Almost identical efficiencies for ideal devices have indeed been predicted by the model-

ing studies.

Table 4- 3 Experimental and calculated Jscs for triple junction devices Tri 7-3-5 and Tri 7-5-3

with different Cgo layer thicknesses

Devices Ceo? thick- Voc Jsc, exp Jsc cal FF n Toest

ness /nm NV ImAcm™ /mAcm™ ! % % /%
Tri 7-5-3 10, 12, 20 1.87 3.21 3.81 54.9 3.3 3.5
Tri 7-5-3 8, 10, 20 1.47 3.61 3.86 494 2.6 3.0
Tri 7-5-3 10, 10, 20 1.81 3.00 3.79 51.8 2.8 2.9
Tri 7-3-5 8, 10, 20 2.08 3.38 3.66 474 3.3 3.5
Tri 7-3-5 10, 12, 20 211 3.03 3.54 50.3 3.2 3.6
Tri 7-3-5 10, 10, 20 2.03 3.22 3.58 46.1 3.0 3.2

a) x,y,z refer to the Cg thicknesses in the bottom, middle and top sub-cell, respectively

In order to verify the short term stability of the multijunction solar cells, tandem and triple
junction devices were aged in inert nitrogen atmosphere for more than one month in the ab-
sence of light. At room temperature, an initial degradation of the power conversion efficiency
of 35% set in during the first 10 days (Fig.4-6¢). After this initial aging period the PCE stabi-
lized and stayed constant for the next 40 days. When the same type of aging was carried out at
the lowered temperature of -15°C, PCE did not noticeably change during the first 15 days of
aging (Fig.4-6c¢). Looking at the device characteristics (Fig.4-6c¢) it appears that the Voc
stayed unaffected by aging while the fill factor and to a lesser extent also Jsc were most seri-
ously reduced. The precise nature of this stabilization is not fully understood at the moment.
However, since this phenomenon is not observed in single junction devices, there is strong ev-
idence that deterioration of FF and Jsc is related to the reconstruction of the RL. Gold atoms
and clusters are able to diffuse into the organic layer during evaporation. They may also dif-
fuse at organic interfaces and agglomerate. As we have shown in Fig.4-4, the effectiveness of
the RL depends strongly on Au nanocluster formation. If the clusters are more widely spaced
from each other, e.g. when agglomerating at the interface, negative photogenerated charges
may not be removed quickly enough by the RL and would therefore charge up the interface
and lead to an S-shaped I-V curve. At low temperature, diffusion processes are slowed down
which we also observe by the striking stabilization of PCE when reducing the storage temper-

ature of devices.
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Figure 4- 6 a) Current-voltage characteristics of a tandem device Tan 7-3 and triple junction
device Tri 7-3-5 freshly prepared (full symbols) and after 10 days of aging in the dark under
nitrogen (empty symbols). b) IPCE spectrum of tandem device Tan 7-3 after 10 days of aging
in the dark, (c) degradation trend of the performance of tandem device Tan 7-3 at room tem-

perature and at -15°C.

To avoid effects of aging, stabilized tandem devices were used for the IPCE measurements as
described in the experimental section. The maximum quantum efficiency is rather low and re-
flects not only the aging of the devices, but also the fact that bilayer heterojunctions are used
in this work. IPCE measurements of the individual sub-cells in the tandem stack show almost
identical spectra as compared with single junction solar cells, except for the lower quantum
yield in the region where Cgo absorbs. This comes from the smaller Cg thickness used in the
Cy7-T front cell as compared to optimized single layer junctions. In accordance to numerical
simulation, current matching is obtained by decreasing the Cgo layer thickness of the Cy7-T

based front cell with respect the Cgo layer thickness used in the back cell. When integrating
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the IPCE in Fig.4-6b with the AM1.5G solar irradiation spectrum, we obtain a short circuit
current density Jsc of 3.50 mA/cm? and 3.12 mA/cm? for Cy3-P and Cy7-T based sub-cells,
respectively. The currents match quite well and indeed, the short circuit current coming from
the Cy7-T cell is limiting Jsc as predicted by modelling. Furthermore, the integrated IPCE
spectra correspond quite well to the Jsc of stabilized devices measured under white light irra-
diation (Fig.4-6a).

The IPCE spectra also reveal the fact that only very little photocurrent is produced between
600 nm and 700 nm which led us to the investigation of triple junction devices using Cy5-P
with an absorption maximum in precisely above spectral region. As we have elucidated exper-
imentally and by modelling, addition of the supplementary cyanine junction absorbing in this
range does not increase the power conversion efficiency with respect to the tandem device
(see Fig.4-3). To investigate this effect experimentally, we attempted to measure the IPCE of
triple junction solar cells. Unfortunately, this was not possible with our setup, mainly because
the Cy5-P sub-cell could not be saturated selectively. Therefore the IPCE spectra of the front
Cy7-T and middle Cy3-P cell always showed a contribution of the Cy5-P cell (supplementary
materials Fig.4S-3). By integrating the IPCE spectra of the individual cells in the stack with
the AM1-5G spectrum, it clearly appears that Jsc= 1.58 mA/cm? in the Cy3-P based middle
cell of the triple junction solar cell is about 35% lower than in the bottom and top cell, which
contradicts the much higher current density of Jsc= 2.8 mA/cm? observed under white light ir-
radiation of the stabilized triple junction cell Tri 7-3-5.

4. Conclusion

Soluble trimethine, pentamethine and heptamethine cyanine dyes with bandgaps of 1.2 eV,
1.4 eV and 1.8 eV, respectively, were used to construct tandem and triple junction devices.
This result is remarkable, if one considers that cyanine dye semiconductors with low charge
carrier mobility were employed in this work. Optical simulation of the devices revealed losses
in the extracted current of 25% if an internal quantum efficiency of 1 is assumed. The model-
ling studies showed also that tandem and triple junction architectures constructed by stacking
cyanine bilayer solar cells with different bandgaps and optimizing the Cg electron acceptor
thicknesses of the sub-cells could increase efficiency by 50 % with respect to the best single
junction solar cells. At full AM1.5G simulated sunlight irradiation an appreciable increase of
34% was observed which is believed to be limited by the series resistance induced by the re-
combination layers. At low light intensity, the power conversion efficiency increase over the

best single junction device was over 60% and demonstrates the potential of multijunction de-
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vices made from bilayer heterojunction sub-cells. Future work has now to address stability
and efficiency of the recombination layers.
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Figure 4S- 1 Normalized optical electric field distribution for device (a) Tan 7-3 (14, 32), (b)
Tan 3-7 (14, 32) and (c) Tan 3-7 (12, 18) at wavelengths of 450 nm, 576 nm and 840 nm
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Figure 4S- 3 IPCE spectra of Tri 7-3-5 after 2 days of aging in the dark
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Abstract: Thin films of fullerene Cg, and molybdenum oxide (MoQOs3) are ubiquitously used
as electron acceptor material and hole extraction interfacial layer for the fabrication of organic
photovoltaic (OPV) cells. It is well known that light exposure induces color changes in MoO3
(photochromism) and the formation of intermolecular bonds between Cg molecules (photo-
polymerization). The influence of these photoinduced reactions on the long-term stability of
OPV cells, however, has not previously been studied in detail. We present a study and discuss
the early (< 5 days) aging mechanisms occurring in illuminated ITO/MoOs/organic cyanine
dye/Ceo/ Algs/Ag bilayer solar cells under nitrogen atmosphere. We identify a degradation
process at the organic heterojunction and the formation of Mo®* species during illumination
that adversely affect cell behavior. For these widely used materials, our results suggest that

light processing is a first necessary step before OPV characteristics can be meaningfully rated.

Keywords: fullerene, molybdenum oxide, photopolymerization, photochromism, organic so-

lar cell
1. Introduction

Rapid progress is made in the field of organic photovoltaics and power conversion efficien-
cies of 8-10% have repeatedly been reported.”®! As exciting as these advances are, an im-
portant requirement for their commercialization is the demonstration of OPV cells that main-
tain the initial performance over an operating time of several years. However, increasing the
lifetime of OPV cells remains a major challenge, with extrinsic (water, oxygen or light) and
intrinsic (e.g. morphology changes) stress factors inducing cell degradation in a complex and

often interrelated way.[*®!

Buckminsterfullerene Cgo and molybdenum trioxide MoOs are very widely used materials in
OPV cells. Cg has been a key molecule in the development of the entire OPV field and is still
frequently used as electron acceptor material.®*? More recently, MoOs has been recognized
as a promising anode interfacial layer in OPV cells. The low charge injection/extraction barri-
er at MoOs/organic interfaces is believed to be due to the favorable energy level alignment be-
tween the high work function value of MoO3 and the highest occupied molecular orbital of an
organic molecule.*® However, due to the complex chemistry of that material and the strong
impact of sample preparation history on the electronic properties, a coherent understanding of
the hole extraction process across MoOs in OPV cells is still lacking.'*** Thin MoOs films
have been deposited by thermal evaporation®® or via coating-processes using precursor solu-

tions or nanoparticle dispersions.4202323]
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It is well known that both Cgo and MoO3 are photosensitive materials, but possible implica-
tions on the stability of OPV cells are largely unidentified. Visible and UV light exposure of
oxygen-free solid Cgo can transform monomers into dimers, oligomers and polymers via the
formation of intermolecular bonds in a 2+2 cyclo-addition process.’?®?” The thermal decom-
position reaction back to the monomers must be taken into account for temperatures above
100 °C.?® The distance between neighboring Ce; molecules decreases by ~10% when a weak
van der Waals bond is replaced by two covalent bonds. Therefore, the polymerization reaction
is associated with a decrease of the bulk volume.?*3?! A similar photochemical reaction oc-
curs for [6,6]-phenyl Cg1-butyric acid methyl ester (PCBM) films. Exposing PCBM mono-
mers to light leads to the formation of dimers, although higher oligomers are not produced,
probably for steric reasons. The importance of this process has been realized for high-
resolution electronic active pattering purposes of fullerene thin films.B%?! In the OPV field,
the PCBM dimerization has recently been found to be responsible either for a device perfor-
mance loss, due to a reduced electron mobility, or an enhanced morphological stability of the
active blend film, resulting in an increase of the overall cell lifetime under modest thermal

stress conditions.[F334

Thin films of MoOj3 can be permanently coloured blue by excitation using UV light.?® The
photochromic mechanisms are still not fully resolved and controversially discussed. The oc-
currence of optical absorption in the visible and near-infrared wavelength region is associated
with oxygen vacancies and the presence of lower valence Mo®" states in M0O3.***¥ since
pure MoOj; shows little photochromism.2%3! In one model, it is proposed that colour centres
are formed when photo-excited electrons are trapped in oxygen vacancies.®® These trapped
electrons can be excited into the conduction band by red light resulting in a blue film colour.
In the presence of hydrogen donors, an additional mechanism must be considered. When ex-
cited with UV light, electrons and holes are formed in MoOg, followed by reaction of the
holes with surface-absorbed molecules, causing the film to be negatively charged. The posi-
tive ions on the surface then diffuse into the film driven by Coulomb force, forming the hy-
drogen molybdenum bronze HyMo,> M01.03.2%“% The film colour develops due to charge
transfer between Mo>* and neighbouring Mo®*. A similar charge transfer can occur after self-
trapping of excited electrons in low-energy sites leading to Mo®*" .2 Irrespective of the pro-
cesses leading to film colour, the presence of Mo®" seems to be a necessity. Notably, the Mo>*
content has been reported to increase during illumination, concomitant with the increase of

the visible absorption. 25383
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Interestingly, it seems that despite these extensive research activities on the phototransfor-
mations occurring in Cgp and MoOj5 thin films, their importance in conjunction with the stabil-
ity of OPV cells containing these materials has not been identified and addressed to date.’®4"
501 Here, we present a detailed study on the early aging mechanisms in such solar cells during
illumination and link degradation to the occurrence of photopolymerization in Cg and photo-
chromism in MoOs directly. To avoid morphological stability issues known from blended or-
ganic donor-acceptor films, we have chosen a simple bilayer film design composed of an or-
ganic cyanine dye (Cy3-P) donor / Ceg acceptor heterojunction.® OPV cells were fabricated
in the so-called regular geometry by sandwiching the organic film between an ITO/MoO; an-
ode and an Ag cathode. In this architecture, impinging light travels first through MoO3 fol-
lowed by the organic bilayer. Thereby, both photosensitive materials are simultaneously ex-

posed to sunlight and can be studied at the same time.
2. Results and Discussion
2.1. Kinetics of Phototransformations

Figure 5-1 shows the temporal evolution of UV-vis spectra for thin films of Cy3-P, Cg and
MoO; that were irradiated for 24 h under OPV device relevant conditions at 1 sun intensity.
No changes are observed for the dye film indicating that Cy3-P is photostable when illumi-
nated in the absence of oxygen and water (Figure 5-1a).°Y For Cgo, the energy of the lowest,
optically forbidden, singlet excitation is at about 1.9 eV, the spectral intensity in the region
2.4-2.8 eV is due to charge-transfer-type excitations between molecules in the film, and the
first allowed electronic transitions is at about 3.6 eV.[?75253 Upon irradiation, the Cgo absorp-
tion band at 349 nm broadens and the maximum blueshifts slightly to 342 nm after 24 h (Fig-
ure 5-1b). Note the characteristic increase in absorption at 321 nm during illumination. No
further changes in absorption were observed for irradiation times longer than 24 h. For MoOs,
illumination continuously increases the absorption in the near-infrared region (Figure 5-1c).
Changes in the UV-vis absorption spectra are best visualized for pure Cgo and MoOs films,
but very similar trends were observed for Cy3-P/Cg, and MoO3/Cy3-P bilayer films and for
the full ITO/Mo00O3/Cy3-P/Cg solar cell layer stack as well (Figure 5-S1).
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Figure 5- 1. Absorption spectra and kinetics of phototransformations.

UV-vis absorption? spectra of films on glass upon illumination by a xenon lamp at 1 sun intensity under nitrogen
of (a) 20 nm cyanine dye Cy3-P, (b) 40 nm Cg, (c) 30 nm MoOs. (d) Kinetics of light-induced Cgq transfor-
mation from Raman spectra. (€) Correlation between changes in UV-Vis (Agps 321nm=

Abst321nm—AbSt=0,321nm

be ) and Raman spectra. (f) Kinetics of light-induced MoO; transformation from UV-vis spec-
t=0,321nm

__ Abst700nm—Abst=0,700nm

tra (Aaps,700 nm= yToT—

For Cgp, changes in the UV-vis spectrum are due to the light-induced dimerization, oligomeri-
zation and finally three-dimensional polymerization between fullerene molecules.'?® This re-

action can be followed by Raman spectroscopy (Figure 5-52).181 We used the decrease of the

2 Absorption (A) in this chapter is equal to LoglO(ITO), where |y is the incident light intensity and | is the transmit-
ted light intensity.
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1468 cm™ band representing the pristine Cgo molecules as a direct measure for the kinetics of
the dimerization reaction (Figure 5-1d). The reaction proceeds rapidly during the first ~6 h

with a dimerization yield of ~70% and then levels off, both for pure Cgy and Cy3-P/Cg films.

We found a good correlation between Raman data and the relative increase of the UV-vis ab-
sorption at 321 nm (Figure 5-1e). Therefore, UV-vis spectroscopy can be used as a convenient
tool to follow the light-induced Cg transformation. Even after 24 h light irradiation, however,
the polymerization is not complete and Cgo monomers, oligomers and polymer chains coexist
in the film, as inferred from Raman spectra. Despite this incomplete transformation, Cgo films
became insoluble in the solvent toluene during light processing (Figure 5-S3), confirming the

intermolecular bond formation process. 262329

The kinetics of the MoOj3 phototransformation was evaluated from the increase in the absorp-
tion spectra at 700 nm (Figure 5-1f). Similar to Cg, changes are most pronounced during the
first few hours of illumination, but pure MoOj films transform more effectively than
MoO3/Cy3-P bilayers. Optical modeling showed that the integrated absorbance is ~ 6% higher
for a pure MoO3 sample compared to the one with an additional Cy3-P layer (Figure 5-S4 and
Figure 5-S5). This is much less than the observed difference in Figure 5-1f. Therefore, it is
likely that the reaction routes leading to film coloration are different when comparing pure
MoO; with a metal oxide that is covered with an organic layer.

2.2. Device Performance During Light Processing

Figure 5-2 shows the J-V characteristics for a cell during 24 h illumination. At time = 0, Vo =
0.86 V, Jsc = 4.4 mA cm™ and FF = 68% were measured, resulting in a power conversion effi-
ciency of n = 2.6%. For longer times, both Vo and Jsc decayed in a two-step process, and a
fast initial decrease during the first ~ 6 h leveled off for longer irradiation times. This trend
very much resembles the kinetics of phototransformations observed in Cgy and MoOs. Fill fac-
tors (FF) of our solar cells were high and changes in FF were small. During the first hour, FF
increased to 73% and then slightly decreased to a final value of 65%. Similar small relative
FF changes of less than 10% were found throughout this study (Figure 5-S6).

We have measured the stability of cells using three different approaches in order to identify
the critical materials inducing degradation and to rate their relative importance. In a first set of
experiments, individual layer stacks were pre-irradiated for 24 h at room temperature before
completing the cells. J-V characteristics of these devices were then measured for another 24 h
under continuous irradiation. Because each additional layer also creates an interface with the

subjacent material, J-V trends cannot be related clearly to bulk material or interface processes
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without further experiments. Starting values of V.. and Js are indicated in Figure 5-2c and 5-
2d (V1 —4), the temporal development over the following 24 h is shown in Figure 5-2e and
5-2f. It should be noted that we can only extract trends from this analysis rather than quantita-
tive data. First, the scattering in currents from different samples was relatively large (+ (0.2—
0.4) mA cm, Table 5-S1). In addition, the amount of light absorbed by individual materials
changes when present in different layer stacks. When a full device is illuminated, the top Ag

electrode acts as a mirror and light that is not absorbed is reflected back through the active
layers.
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Figure 5- 2. Cell performance during white light illumination.

(a) Schematic representation of the cyanine dye/Cg solar cell and the molecular structure of Cy3-P. (b) Current-
voltage characteristics of glass/ITO/MoO3/Cy3-P/Cgy/Algs/Ag solar cells upon illumination at 1 sun intensity

under nitrogen at 43 °C. Temporal development of (c) the open-circuit voltage (V) and (d) the short-circuit cur-
rent (Jsc), shown are average values from 5 cells. ¥ denote starting values using individual layer stacks that were

pre-irradiated for 24 h before completing the device, ¥ 1 =1TO, ¥2 =ITO/Mo00Q;, ¥3 =1TO/Mo0O,/Cy3-P, ¥4
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= ITO/Mo0Os/Cy3-P/Cgy/Algs. Temporal development of normalized (e) V. and (f) Js. upon illumination. Labels

0 and 5 indicate complete cells that were irradiated at 43 °C and at - 30 °C, respectively.

Pre-irradiation of a glass/ITO substrate (¥ 1) had no influence on the initial cell performance
and the subsequent degradation followed the typical two-stage behavior. On the other hand,
pre-irradiation of MoOgs-containing layers resulted in decreased, but stable for the long-term,
V¢ values after cell fabrication, with values almost matching those of an untreated cell after
24 h illumination (Figure 5-2c and 5-2e). This result strongly suggests that mainly MoOg is
responsible for the observed voltage decay, since pre-irradiation of this layer alone is suffi-
cient to induce the observed changes.

The results in Figure 5-2d further show that pre-irradiation of a Cgo-containing layer (¥ 4) in-
duced the largest drop in starting current, indicating the adverse influence of the photopoly-
merization reaction. During further illumination, however, the current remained stable. Addi-
tionally, pre-treated MoO3; and MoO3/Cy3-P cells started at reduced current values, but these
devices showed the known current decay trend, due to the proceeding Cg phototransfor-
mation. An interesting question is whether the overall long-term stability can be improved by
a pre-irradiation step of individual layers before the cell is completed. This is not the case,
since un-treated and pre-irradiated cells all ended up a = 1.3% (Table 5-S1) after 24 h of il-

lumination. This corresponds to a performance loss of 50%.

In a further approach, we were able to separate the phototransformation kinetics of Cg and
MoOj3 to some extent by lowering the temperature during illumination. It is well known that
Ceo molecules rotate above ~ -15 °C almost freely about their lattice positions. Below that
temperature the rotation becomes restricted and finally freezes below ~ -190 °C.5¥ It has fur-
ther been shown that the photopolymerization efficiency is correlated with the Cgq rotation
rate. For low temperatures, the reaction is effectively absent, and at the threshold temperature

the polymerization starts.!®!

Cell stability was measured at -30 °C. At this temperature, the Cgo photopolymerization is
considerably slowed down and reached 20% after 24 h of illumination. This corresponds to a
degree of transformation that is attained after ~ % h at 43 °C. On the other hand, no tempera-
ture dependence was found for the photoreaction of MoO3 (Figure 5-S7). Voltage trends at
low and high temperatures were identical (Figure 5-2¢, labels 0 and 5). This supports our
above findings that mainly the phototransformation in MoQs is responsible for the drop in V..
We can further approximate that at 43 °C phototransformations in Cs and MoOj3 almost

equally contribute to the observed current decay (Figure 5-2f).
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Figure 5- 3. Cell performance using selective irradiation wavelengths.

(a) UV-vis absorption spectra of Cgoand MoOj; films upon illumination with a xenon lamp at room temperature
and using a cutoff filter that blocks light at wavelengths below 550 nm. Temporal development of (b) V. and (c)
Jsc upon illumination. During the first 96 h, a cutoff filter was used. Open circles indicate measurements after

cooling the cell to room temperature.

Finally, irradiation in selective wavelength regions was used to address the influence of pho-
totransformations in Cgo and MoO3 on cell stability individually. We used a cutoff filter that

blocks light at wavelengths below 550 nm to separately excite Cgo from MoOs.238 [lluminat-
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ing MoO;3 with filtered light did not induce any changes in the UV-vis absorption spectrum,
but the polymerization of Cg still took place (Figure 5-3a). After 24 h, the Cg photo trans-
formation reached a degree of about 50%, lower than the 80-90% transformation observed

when white light was used.

J-V characteristics were measured over a period of 120 h and for the first 96 h of illumination
filtered light was used. During the first 24 h Vo, decayed by ~ 6% only (Figure 5-3b), much
less than the ~ 32% when using white light. In addition, part of the V. drop is due to heating
the cell during illumination.*™ Open circles in Figure 5-3b indicate V. values measured after
storage in the dark allowing the cell to cool down to room temperature. During 24 - 96 h of il-
lumination, Vo, remained essentially constant. This clearly confirms that the major part of V.
degradation is not induced by the Cgo photopolymerization. After 96 h the filter was removed
and white light was used for illumination. The drop in V, during the time period 96 - 120 h
must be due to photoinduced transformations in MoO3 and/or at the metal oxide/Cy3-P inter-
face, since the Cgo polymerization has already taken place using filtered light. The Js trend
over a period of 120 h illumination supports our findings that both phototransformations in
Cso and MoO3 contribute approximately equally to the current decrease (Figure 5-3c). Js
drops by ~ 13% during the first 96 h of filtered light illumination due to the polymerization of
Cse0, and another ~ 12% due to MoO3 when using white light during 96-120 h.

2.3. Degradation Mechanisms

It is clear that temporal trends in UV-Vis spectra and J-V characteristics cannot be linked to
specific failure mechanisms directly.®™ The unchanging dye absorption spectrum during illu-
mination and the similar J-V characteristics of cells using pre-irradiated MoO3 and
MoO3/Cy3-P layers indicate that the bulk of the dye film is stable and that the influence of
Cy3-P on degradation must be small. This is also supported by the relative stability of cells
during 96 h illumination using wavelengths above 550 nm where a Cy3-P film has actually
the absorption maximum (Amax = 578 nm). To detect small amounts of Cy3-P degradation
products at the metal oxide/dye interface, we carried out ESI-HRMS experiments (Supporting
Information 5-S8). Also these measurements confirmed the photostability of Cy3-P and no
transformation products could be clearly assigned to photoinduced reactions during white
light illumination under nitrogen. The experimental observation (Figure 5-1f) that the increase
in visible absorbance is relatively suppressed for MoO3; when coated with Cy3-P remains un-
explained at this time, but probably cannot be linked to the chemical instability of Cy3-P. A
similar result on the complex metal oxide/organic interface has been reported recently, and it
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was found that the evolution of Mo®" states upon thermal annealing was larger for pure MoOj

when compared to a MoOs/organic layer.*”!

We now consider the impact of light-induced Cgo polymerization on cell performance. Firstly,
it has been reported that the Cgo electron mobility L. drops by 10% upon full polymeriza-
tion.” In our case the transformation is not complete, and a partial polymerization is ex-
pected to induce the formation of traps due to spatial and/or energetic heterogeneity, effec-
tively lowering . further. By opto-electrical simulations (Supporting Information 5-S9),
however, we could show that a lowering of pe over 2 orders of magnitude (from 8-10 to
8-10™ cm? V! s) does not explain the observed drop in Jsc and V. (Figure 5-3). This is sup-
ported by the very high fill factors of our devices.
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Figure 5- 4. Effects of Cg photopolymerization.

AFM phase images of a Cy3-P/Cq, film (a) before and (b) after illumination. (c) Fluorescence spectra on
glass/MoO; substrates of a bilayer film with simultaneous excitation of the dye and Cg. Emission signals are
shown for as-prepared films, and after 96 h irradiation with filtered (A > 550 nm) light. For Cy3-P, the emission
peak is at L = 589 nm. The emission peak of pristine Cgg is at A = 725 nm with a shoulder at 693 nm, after illu-
mination the emission shifts to A = 734 nm. (d) Incident photon-to-current conversion efficiency (IPCE) spectra

during illumination at 1 sun intensity.
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Next, we examine the impact of the volume decrease of a Cg film upon polymerization. We
suggested previously that this could result in the formation of voids effectively decreasing the
contact area between Cgo and the adjacent layers.®™ AFM images of pristine and illuminated
Cy3-P/Cqg bilayer films are shown in Figure 5-4. Before illumination, the film is pinhole-free
with a root-mean square (rms) roughness of 1.6 nm. During phototransformation, cracks are
formed and the topography smoothens (rms roughness 0.3 nm). At the Cgo/top metal interface,
a decrease of the physical contact area would diminish the active electrode area leading to a
reduction in charge extraction. This phenomenon has been experimentally found for solar
cells using a calcium/aluminium electrode and resulted in a rapid decay of Js;, while FF and
V. remained relatively stable.®® We found the same Js; values for full cells that were illumi-
nated for 24 h and for devices were the Ag electrode was evaporated only after pre-irradiation
of the ITO/MoO3/Cy3-P/Cgy/Algs layer stack (Figure 5-2d). This indicates that in our case a
reduction of the contact area between Cg and Ag is probably not occurring.

To examine a possible formation of voids at the hidden dye/Cgo heterojunction, we used fluo-
rescence spectroscopy as a probe that is sensitive to a changing charge generation yield. By
comparing bilayer film spectra before and after illumination, we indeed observed a substantial
increase of the dye emission (Figure 5-4c, Figure 5-S10). Additionally, the Cg, emission in-
creased after light treatment with a concomitant redshift due to the fullerene polymerization,
in agreement with literature.?®*4 This supports the proposal that, due to a reduction of the in-
terface contact area when the polymerizing Cgo film contracts, a fraction of excitons in Cy3-P
and Cgo cannot be separated anymore and must decay partly by fluorescence. This scenario is
further consistent with the spectrally resolved external quantum efficiency data displayed in
Figure 5-4d. During illumination, IPCE values uniformly decreased across the entire spectral
range where Cgo and Cy3-P absorb. This excludes degradation processes which affect the ex-
citon diffusion lengths in Cy3-P or Cg individually, since then the IPCE change would exhibit

a wavelength dependency.

We cannot clearly relate the small relative (8%) V. drop during 96 h of filtered light illumi-
nation to the Cgo photopolymerization. Again, initial V. values of cells fabricated by evapo-
rating the top metal electrode after a pre-illumination period were lowered, excluding an ad-
verse effect occurring at the Cgo/Ag interface during photopolymerization. In addition, the
reduced charge generation yield at the heterojunction does not induce a V. drop (Supporting
Information 5-S9). In principle, an increase of the energy of the Cgo lowest unoccupied mo-

[57,58]

lecular orbital could explain the observed V.. decay. It appears, however, that while
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polymerization of Cg induces a small decrease of the optical bandgap (as inferred from pho-
toluminescence), this change is primarily associated with an energy shift of the highest occu-
pied molecular orbital, as measured by UPS (Figure 5-511).55%6%

Our results show that illumination of a MoO3 thin film with UV light induces a substantial
drop in cell performance over time. We can connect this trend with the photochromic phe-
nomenon in MoOs, and thereby to the presence of Mo®" species directly. XPS was used to de-
tect the presence of reduced Mo species (Figure 5-S12). Experiments were carried out for as-
deposited MoOs films and after 24 h illumination. While for untreated films Mo®" was not de-
tected, Mo>*/Mo®" was ~ 0.03 after 24 h. This clearly confirms that during illumination Mo>*

is formed and that these species are closely linked to the occurrence of photochromism.

Slightly sub-stoichiometric MoOy<s is n-doped, 193 with the presence of Mo®" resulting
in the formation of isolated, occupied gap states during illumination close to the conduction
band.™3* These states cause the Fermi level (Ef) to be shifted upwards, thus reducing the
work function. UPS spectra were measured on as-prepared and illuminated MoOs films (Fig-
ure 5-S13). The work function for untreated MoO3 was measured at ~5.6 eV, and was reduced
to ~5.3 eV after illumination, consistent with the expected trend. At the same time, a substan-

tial amount of gap states arose between 1 eV and 2 eV below Er.

Cy3-P has a deep-lying HOMO energy of ~5.7 eV, as measured by cyclic voltammetry.[®!

This suggests a balanced energetic situation at the MoOs/dye interface for short illumination
times, allowing for efficient hole extraction via electrons that travel towards the organic inter-
face and recombine with photogenerated holes. During illumination, the reduction of the work
function results in an unfavorable change in the energy alignment between MoO3 and Cy3-P,

reducing cell performance.

In general, the presence of Mo>* and their subtle influence on solar cell performance is not
fully elucidated so far and results seem to be contradictory in some cases. Using the poly(3-
hexylthiophene), P3HT, /PCBM material system and ITO/MoO3 as anode, it was reported that
an increased density of Mo®" is detrimental to the device performance.l?® These findings are
contrary to the results of experiments that showed that Mo®" can play a dominating role in im-
proving cell performance.’? For PBHT/PCBM OPV cells, it was found that Vo and Js. Were
reduced when using a MoOs hole collection layer as compared to poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate).™! At the same time, FF was enhanced due
to the reduced series resistance in MoOy. This was explained by charge recombination at

Mo>* gap states.
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One issue relates to the varying reported values of electronic states in MoOj that so sensitive-
ly depend on the processing history before characterizing the device. For example, the elec-
tron affinity, work function and ionization energy of vacuum-deposited MoQO; are at 6.7, 6.9
and 9.5 eV, respectively.*® A short air exposure reduces the values by about 1 eV. A quick
shift to lower values was even found for MoO3 samples that were stored under nitrogen for

several hours, due to residual water in the glovebox.!*®!

For organic molecules in contact with metal oxides, it was observed that energy level align-
ment between the materials donor and acceptor states occurs when the organic’s ionization
energy equals the substrate’s Fermi energy.!*® Ground state electron transfer was also ob-
served from organic semiconductors to freshly evaporated MoOs;.®! De-doping over time was
explained by changes in the MoO3 energy levels, resulting in a suppression of charge transfer
when the MoOjs electron affinity becomes smaller than the ionization energy of the organic

material.

These results imply that the influence of the MoO3 photochromism on OPV cell stability
might depend sensitively on the ionization energy of the used organic donor material and
must be studied from case to case. We note that the photochromism is not limited to the pure
metal oxide and the MoO3/Cy3-P material system we studied here in detail. In preliminary
work, we found similar absorbance changes in illuminated MoO3 when coated with P3HT or
PTB7 (Figure 5-S14), notably polymers that are among the most widely used and best-
performing OPV materials. Possible implications on the long-term stability of these OPV

cells are the subject of ongoing work.
3. Conclusions

Our results suggest that for regular OPV cell architectures comprising MoO3 and Cg, perfor-
mances should be measured and reported only after a preceding light processing step. The
polymerization of Cgo appears to be an inevitable consequence when exposed to light, and
when using sunlight the relevant photochemistry influencing device behavior develops over a
timescale of a few hours. The same timescale was found here for the film coloration to occur
in MoQg, but in the general case, this might be sensitive to the chemical and electronic nature
of the overlying organic donor layer. There are two apparent routes to prevent the photo-
chromic effect in MoQg. In the regular device geometry, a filter that blocks light at wave-
lengths below ~ 400 nm can be used, corresponding to the optical bandgap of MoQg3. This
prevents film coloring but such OPV cell will display a lowered performance, because a con-

siderably fraction of current is generated in the UV wavelength region, typically due to light
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absorption by the fullerene component. The second possibility is to use MoOj in the so-called
inverted device structure. In this geometry, the metal oxide is situated next to the top elec-
trode and protected by the underlying organic materials that will absorb most of the impinging
light.

4. Experimental Section

Solar cells with active areas of 3.1 and 7.1 mm? in the configuration glass/140 nm 1TO/30 nm
M0O3/20 nm Cy3-P/40 nm Cego/2 nm Algs/80 nm Ag were fabricated as reported.! Materials
were ITO (Geomatec, resistivity 20 Ohms square™), 1-ethyl-2-[3-(1-ethyl-3,3-dimethyl-1,3-
dihydro-indol-2-ylidene)-propenyl]-3,3-dimethyl-3H-indolium hexafluorophosphate (Cy3-P,
FEW Chemicals), MoOs (Sigma Aldrich, 99.99%), Cso (SES Research, 99.5% or 99.9%),
tris-(8-hydroxyquinoline) aluminium (Alqs, Sigma-Aldrich, 99.995%) and Ag (Cerac,
99.99%). All evaporations were carried out in the same vacuum chamber (~4-10° mbar) with
deposition rates of 0.2 A s™* for Ceo, Algs and MoOs, and of 0.5 A s for Ag.

Film thicknesses were determined by profilometry (Ambios XP1). AFM measurements were
performed on a Nanosurf Mobile S in tapping mode at a resonance frequency of 170 kHz us-
ing silicon cantilevers. Current-voltage (J-V) characteristics were measured using 100 mW
cm? simulated AM 1.5G solar irradiation on a calibrated solar simulator from Spectra-Nova.
IPCE spectra were measured using a monochromator and the light from a 300 W Xe lamp to-
gether with an AM1.5G filter set. The monochromatic light intensity was determined using a
calibrated Si-diode. Raman measurements were performed in ambient conditions with a Hori-
ba Labram Evolution 800 spectrometer. Absorption spectra were measured on a Varian Cary
50 UV-vis spectrophotometer. Fluorescence spectra were measured on Horiba Jobin Yvon
Fluorolog. Electrospray-high resolution mass (ESI-HRMS) measurements were performed on
an Agilent 6530 QTOF mass spectrometer. Ultraviolet photoelectron spectroscopy (UPS)
measurements were performed in an OMICRON photoelectron spectrometer under UHV
(5x10™ mbar range) conditions. A discharge lamp (He I: hv: 21.2 eV) and VSW EAC 300HR
energy analyzer were used. MoO3 samples were biased at -9.6 V relative to the spectrometer
and measured at room temperature. The Fermi level of the spectrometer was determined by
measuring the Fermi edge of a Cu crystal. A 300 W Xe lamp was used as a light source for il-
lumination of Cg films between consecutive UPS spectra. In situ X-ray photoelectron spec-
troscopy (XPS) surface analysis was performed in a modified VG Escalab spectrometer with
a base pressure below 10~° mbar. XPS spectra were collected with a SPECS PHOIBOS 100
analyzer using a non-monochromatic x-ray source (Mg K alpha: 1253.6 eV). The binding en-
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ergy was re-calibrated using the O1s peak set to 530.0 eV. Further experimental details on

Raman, ESI-HRMS, UPS and XPS measurements are given in the Supporting Information.

Samples were never exposed to ambient atmosphere during fabrication and light processing.
Devices were fabricated in a glove box under nitrogen (H20 < 1 ppm, O, < 10 ppm) and were
then mounted into a homemade air-tight transfer box. J-V characteristics were measured and
light processing was carried out outside the glovebox using the solar simulator. The actual
temperature in the transfer box during illumination at ambient was 43 °C. For the pre-
irradiation of individual layer stacks, samples were transferred under N into a separate glove
box (H20 < 1 ppm, O, <1 ppm). Light from a Xe lamp was directed from outside into the
glove box and the intensity was adjusted to ~1 sun with a radiant power meter from LOT Ori-
el using a calibrated thermopile. Similarly, experiments at -30 °C were carried out in a climate
chamber equipped with a glass front door. Cells were placed in the transfer box and the Xe
lamp with an intensity of 60-70 mW cm™ was directed from outside into the chamber. The J-

V characteristics during light processing were measured in-situ at -30 °C.
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Supporting Information

Photochemical Transformations in Fullerene and Molybdenum Oxide Affect the Stabil-

ity of Bilayer Organic Solar Cells

Hui Zhang, Andreas Borgschulte, Fernando A. Castro, Rowena Crockett, Andreas C. Gerecke,
Okan Deniz, Jakob Heier, Sandra Jenatsch, Frank Niesch, Carlos Sanchez-Sanchez, Alina

Zoladek-Lemanczyk, Roland Hany*
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Figure 5S- 1 UV-vis absorption spectra of film stacks on glass upon illumination by a xenon
lamp at 1 sun intensity under nitrogen.

(a) 20 nm Cy3-P/40 nm Cgp, (b) 30 nm MoO3/20 nm Cy3-P, (c) ITO/30 nm MoOs/20 nm Cy3-P/40 nm Cg,.
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Figure 5S- 2 Raman spectra of a 40 nm Cg film (left) and a 20 nm Cy3-P/40 nm Cg film

(right) upon illumination by a xenon lamp at 1 sun intensity under nitrogen.

Raman measurements were performed in ambient conditions using a Horiba Labram Evolu-
tion 800 spectrometer with a resolution of 1.65 cm™. The excitation laser wavelength was 785
nm and the power on the sample was ~200 mW. No visible sample degradation was induced
during measurements. Each spectrum is the average of 4 spectra from different points on the
sample. The acquisition time for a single spectrum was 10 sec. Raman spectra were baseline
corrected and smoothed. Fitting (lower parts) was achieved by Gaussian-Lorentzian peak
convolution. Dotted lines indicate the experimental spectra, solid black curves the fitted peaks,

the solid red curve is the sum of all fitted curves.

The strongest mode at 1468 cm™ represents the pristine Cgo molecule. The formation of in-
termolecular bonds softens this mode and downshifts by ~5 cm™ per additional bond, such
that Cgo dimers are represented by a Raman band at ~1463 cm™, Cgo linear chains at ~1458

cm, and branched Cgo molecules with three bonds at ~1453 cm™.
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Figure 5S- 3 Solubility of Cg.

In (a) a 40 nm thick untreated Cg, film on a 2.5 x 2.5 cm glass substrate was rinsed with 6 mL toluene. This film
was almost completely removed. In (b) the Cgq film was irradiated for 24 h before rinsing with toluene. This film

was insoluble in toluene.

a) 0.15 b)
- 0.10
[ = S8 c X

- 0.05

0.00

1 1 1 1 N 5 4 0.0
400 500 600 700 800 400 500 600 700 800
Wavelength [nm] W avelength [nm]

Figure 5S- 4 Refractive indices of MoOj3 (a) and Cy3-P (b) measured by ellipsometry.
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Figure 5S- 5 Simulated layer absorbance of MoOjs in the device structure glass/ MoOj3 (30

nm)/Cy3-P (20 nm) (black) and without Cy3-P (red).

The integrated absorbance is shown in the insert table for each device. The layer absorbance

was simulated using the optical model implemented in Setfos (www.fluxim.ch). For the sam-

ple without Cy3-P layer we observe a higher absorbance in the wavelength range 370 — 450
nm. The integrated absorbance is ~6% higher for the glass/MoO3; sample compared to the one

with an additional Cy3-P layer.
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Figure 5S- 6 Temporal development of solar cell fill factors upon illumination.
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Table 5S- 1 Performance of solar cells upon light irradiation at 1 sun intensity

at t = 0 and after 24 h. Average values from # solar cells are indicated. For cells 1 — 4, individual layers stacks

were pre-irradiated for 24 h before completing the device.

Wavelength (nm)

t=0 t=24hat1sun
Device Ve Jse FF Voe Jse FF
V) (mA cm?) (%) V) (mA cm?) (%)
0 | Full cell (#5) 0.80+0.06 | 46+0.2 67 2 0.54 +0.03 3.7%£0.2 67+1
1 | ITO (#2) 0.82+0.01 | 43+03 69+1 0.56 + 0.03 3.3+04 69 +2
2 | ITO/MoO; (#5) 0.60+0.04 | 41+03 75+3 0.55 +0.04 3.4+0.2 69+3
3 | ITO/MoO3/Cy3-P (#3) | 0.50+0.04 | 43+04 68 +2 0.50 + 0.04 3.7+0.3 68 +2
4 | ITO/MoO,/Cy3-P/ 0.62+0.05| 3.6+0.2 66 +3 0.54 +0.03 35+0.2 67+1
C60/A|Q3 (#4)
a
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Figure 5S- 7. UV-vis absorption spectra of a (a) 40 nm thick Cg film and (b) ITO/30 nm

MoO3/20 nm Cy3-P/40 nm Cg layer stack upon illumination by a xenon lamp at 1 sun inten-
sity at 243 K.

Supporting Information 5S-8. ESI-HRMS experiments
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To identify possible transformation processes at the MoO3/Cy3-P interface, samples were ir-
radiated and analyzed by electrospray-high resolution mass spectrometry (ESI-HRMS).

Sample preparation and irradiation.

4 samples were prepared:

S1 glass/MoOs3 non-irradiated

S2 glass/Mo0O5/Cy3-P non-irradiated

S3 glass/Mo0O5/Cy3-P irradiated for 12 h at 1 sun under N2 atmosphere
S4 glass/Mo0O3/Cy3-P irradiated for 12 h at 1 sun under ambient air

Samples were rinsed five times with 0.4 mL acetonitrile in a petri disk. The wash solutions
were combined and 0.6 mL was transferred to a separate vial. To this solution, 3 uL ofa1 M
solution of acetic acid was spiked. This resulted in a concentration of 5 mM acetic acid. Also,
3 uL of a 1000 ng/uL solution of reserpine were added as an ion abundance reference com-

pound. This resulted in a reserpine concentration of 5 ng/pL.
ESI-HRMS measurement.

ESI-HRMS were performed on an Agilent 6530 QTOF mass spectrometer. The samples were
directly infused by a syringe pump at a flow rate of 9 uL/min. lonization was achieved by
electrospray in the positive mode. The scan range of the TOF was 50 - 700 m/z at a resolution

of 10'000 Am/m. The relative uncertainty of the accurate mass measurement was 5 ppm.
Results.

ESI-HRMS spectra are shown in Figure 5-S8-1 and data evaluation is summarized in Table 5-
S8. Irradiation had an effect on the observed mass spectra. The signal of Cy3-P was within
experimental uncertainty unaffected by irradiation under nitrogen (sample S3), whereas the
signal of Cy3-P decreased in the sample irradiated under air (sample S4). Air-irradiation led
to a new signal at m/z 188.144. This mass matches with a possible fragment of Cy3-P (Figure
5-S8-2, compound no. 1 in Table 5-S8). Two signals (compound no. 2 and 3), which were
found in all samples containing Cy3-P corresponded to Cy3-P with the loss of one or two me-
thyl groups. As the ratio to Cy3-P was unaffected by irradiation, these structures cannot be
linked to irradiation, but rather originate from in-source fragmentation. Compound no. 5 in
Table 5-S8 corresponds to the addition of oxygen to Cy3-P. Also this ion appeared in all sam-
ples and cannot be clearly linked to irradiation conditions. Other ions (compounds no. 7-24)

appeared also in the control sample (S1) and therefore do not originate from Cy3-P.
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In summary, air irradiation led to one new ion signal, which matches a possible transfor-
mation product. Irradiation under nitrogen did not exhibit clear transformation products and

the observed decrease of Cy3-P was within measurement uncertainty.
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Figure 5S- 8-1 Mass spectra of irradiated Cy3-P and control samples.

In the upper part (A) spectra were scaled to the maximum intensity of all spectra. Lower part (B-spectra): all
spectra were scaled to 4 x 105 counts, so that the signal of the reference compound (reserpine at m/z 609.28) is
clearly visible. A0 and BO: solvent control; Al and B1: spectra S1; A2 and B2: spectra S2; A3 and B3: spectra
S3; Ad and B4: spectra S4.
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Cy3-P

+
Cp7H33N,
m/z: 385.2639

Fragment 1 of Cy3-P
+
C13H18N2

m/z: 188.1434 N+/

\

Figure 5S-8-2 Structure of the Cy3-P cation and a possible transformation fragment of Cy3-P
(compound no. 1 in Table 5-S8).
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Table 5S- 2 lon abundances and signal ratios of direct infusion ESI-HRMS experiments. Generally only ions with an abundance of larger than 15'000 counts were evaluated. For

ions which are probably related to Cy3-P, also signals above 1'000 counts were evaluated. Of each isotope cluster, only the most intense signal is listed.

solvent control Cy3-P-S1 Cy3-P-S2 Cy3-P-S3 Cy3-P-54
measured matching mass
# mass® formulae interpretation exact mass  difference
[Da] [Da] mDa abundance [counts]
probably 1 188.144 [CisH17N]* fragment 1 of Cy3-P* 188.1434 -0.6 <1000 <1000 <1000 <1000 1.00E+05
related 2 355.218 [CasH2N,]* Cy3-P* -2 x (CHa) 355.2169 -1.1 <1000 <1000 6.51E+04 5.58E+04 1.06E+04
to Cy3-P 3 370.241 [C26H30N,]* Cy3-P* - CH3 370.2404 -0.6 <1000 <1000 7.33E+04 6.34E+04 1.20E+04
4 385.266 [CarH3N,]* Cy3-P* 385.2638 -2.2 6.64E+04 3.61E+04 1.29E+07 1.20E+07 2.43E+06
5 401.260 [C2H3:3N,0O]* Cy3-P*+0 401.2587 -1.3 5.90E+03 2.80E+03 3.20E+03 1.81E+04 3.00E+04
6 609.282 [CssHa1N,Og]" reserpine + H* 609.2807 -1.3 1.37E+05 2.48E+05 1.57E+05 1.68E+05 1.53E+05
signal ratio to reserpine
1 fragment 1 of Cy3-P <0.007 < 0.004 < 0.007 <0.01 0.66
2 Cy3-P - 2 x (CHy) <0.007 <0.004 0.42 0.33 0.07
3 Cy3-P - CH; <0.007 <0.004 0.47 0.38 0.08
4 Cy3-P 0.48 0.15 82.10 71.78 15.96
5 Cy3-P+0 0.04 0.01 0.02 0.11 0.20
ratio of reserpine normalized signals to Cy3-P - S2
- (at least 66
times lower
than ratio of
1 fragment 1 of Cy3-P - - 1.00 S4) >94
2 Cy3-P - 2 x (CH3) <0.02 <0.01 1.00 0.80 0.17
3 Cy3-P - CH3 <0.01 <0.01 1.00 0.81 0.17
4 Cy3-P 0.006 0.002 1.00 0.87 0.19
5 Cy3-P+0O 211 0.55 1.00 5.28 9.64
abundance [counts]
no known 7 62.930 [Cul* Cu* 62.9291 -0.9 < 1.5E+04 < 1.5E+04 1.85E+04 1.66E+04 2.02E+04
relation 8 90.936 [CuN,]* Cu"+N; 90.9352 -0.8 7.41E+04 5.14E+04 8.83E+04 7.88E+04 9.62E+04
to Cy3-P 9 103.956 [CuC,HsNT* Cu*+ ACN 103.9556 -0.4 1.62E+06 1.12E+06 1.97E+06 1.75E+06 2.24E+06
10 121.967 [CuC,HsNOT* Cu” + ACN + H,0 121.9662 -0.8 3.72E+04 2.83E+04 4.09E+04 3.85E+04 4.63E+04
11 131.962 [CuC2H3N3]* Cu"+ACN + N, 131.9617 -0.3 9.79E+04 6.77E+04 1.18E+05 1.05E+05 1.34E+05
12 136.113 ? ? - - < 1.5E+04 < 1.5E+04 3.05E+04 < 1.5E+04 2.52E+04
13 144.934 ? ? - - < 1.5E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04 2.80E+04
14 144.982 [CuC4HeN,]* Cu"+2*ACN 144.9822 0.2 1.78E+05 < 1.5E+04 2.17E+05 1.97E+05 < 1.5E+04
15 185.960 [CuCeHoN3]* Cu"+3*ACN 186.0087 48.7 < 1.5E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04 3.00E+04
16 217.105 ? ? - - 2.96E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04
17 239.163 ? ? - - < 1.5E+04 5.12E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04
18 286.949 ? ? - - 5.74E+04 6.51E+04 3.81E+04 2.68E+04 5.33E+04
19 358.981 ? ? - - < 1.5E+04 2.49E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04
20 368.953 ? ? - - 9.94E+04 1.42E+05 6.73E+04 3.80E+04 7.44E+04
21 423.909 ? ? - - < 1.5E+04 1.84E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04
22 425.288 ? ? - - < 1.5E+04 1.81E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04
23 450.956 ? ? - - < 1.5E+04 2.29E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04
24 473.322 ? ? - 6.18E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04 < 1.5E+04

2 average of measured mass (m/z ratio) in all samples with abundance larger than 15'000 ¢

ounts. The relative sta

ndard deviation was always < 6 ppm.
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Supporting Information 5S-9. Simulated J-V curves during illumination with filtered
light

The opto-electronic simulation tool implemented in Setfos (www.fluxim.ch) was used to
model the current-voltage characteristics of the device ITO (140 nm)/MoO3 (30 nm)/Cy3-P

(20 nm)/generation layer (1 nm)/Cgo (40 nm)/Algs (2 nm)/Ag (80 nm). The introduction of an
artificial generation layer ensures that charges are only generated at the heterojunction inter-
face. Similar to the experimental conditions the illumination spectrum was set to zero below A
=550 nm. First, the parameters in the active layers and the electrode work functions were ad-
justed to simulate the experimentally measured J-V curve of an untreated device. In Table 5-
S9 we summarize the used parameters to obtain the green solid line (Figure 5-S9-1) which is
in good agreement with the experimental J-V characteristics after 0 h of illumination (red
squares).

Table 5S-9 Parameters used for the simulation of the green solid line in Figure 5S-9-1.

Active lay- | p, [cm? Uy [em? | e | opt. HOMO | LUMO Electrodes | Work func-
ers Vvish vish gen. eff. | [eV] [eV] tion [eV]
Cy3-P le-6 5e-5 4510 5.68 3.9 anode 5.4
Generation | 0.008 5e-5 43185 5.68 4.28 cathode 4.55
layer
Ceo 0.008 le-6 4110 6.4 4.28
6 < experiment ' r
§ .]——0h *
£ °l——o6hn /|
<é2 4| simulation ) I
= 3] - p,=00008
2 ,1——n,=0008 \’J‘/,
b =0.08 ®
e 17 He 1‘1
‘l’ A (’11 8
5 09 Vol/if
o ,r(\’{'/ .
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voltage [V]

Figure 5S- 9-1 Experimentally measured cells after O h (red squares) and 96 h (blue circles) of

illumination, respectively.

For the green solid line the simulation parameters (Table 5-S9) were optimised to model the
pristine device (red squares). For the dashed and the dotted green curve the electron mobility

in Cgo Was varied according to the legend.
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All simulated curves have the same short-circuit currents of 1.16 mA cm™ although we
changed the electron mobility by two orders of magnitude. Thus we cannot explain the

change in Js after 96 h of illumination by a decrease of the Cgo electron mobility. Furthermore,
a reduction of L results in a shift of the open circuit voltage to higher values. This effect is

due to the reduced Langevin recombination R = nnp(u, + uh)gwhich is used in our model

when the mobility is lowered. An increase in the electron mobility would lower the open cir-
cuit voltage as observed in the experiment, but in this case the J-V curve develops a slight S-
kink at higher voltages which contradicts the experiment. Therefore we suppose that the ex-

perimentally observed change in the J-V characteristics upon illumination is not caused by a

change in electron mobility in polymerised Cgo compared to pristine layers.

A change in short-circuit current can be achieved by varying the optical generation efficiency
in the generation layer. Figure 5-S9-2 shows the simulated J-V curve for two different optical
generation efficiencies. The short-circuit current for the 96 h illuminated cell was obtained by
a reduction of this value by 14% compared to the initial simulation that matches the pristine
sample. A decrease of the Cgo / Cy3-P interface area - induced by a volume decrease of the
polymerised Cgo compared to the fresh one - would probably have a similar effect on charge
generation at the heterojunction interface. However, the simulated reduction of charge genera-
tion at the interface did not lead to the lowering of the open circuit voltage as experimentally
observed.
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Figure 5S-9-2 Experimentally measured cells after 0 h (red squares) and 96 h (blue circles) of
illumination, respectively. For the cyan solid line the simulation parameters (Table 5-S9) were
optimised to model the pristine device (red squares). For the dashed cyan curve the optical

generation efficiency in the generation layer was lowered by 14%.
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Figure 5S- 10 Fluorescence spectra on glass/MoO3 substrates

of (a) a pure Cy3-P film, and (b) a bilayer film with selective excitation of Cg. In (b), emission signals are
shown for as-prepared films, and after 96 h irradiation with filtered (A > 550 nm) light.
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Figure 5S- 11 UPS spectra of as-deposited and illuminated Cgy.

Ceo (Aldrich, 99.9%) films were grown on an atomically clean Cu(111) single crystal at room
temperature. The crystal was cleaned by successive cycles of Ar* sputtering at 1 keV and 5
mA, followed by annealing at 740 K. The crystal surface cleanness was verified by X-ray
photoelectron spectroscopy. Cgo films with a thickness of ~75 A were prepared by vapor dep-
osition from a resistively heated quartz crucible in the preparation chamber. Samples were

transferred to the analysis chamber without breaking the vacuum.

It has been demonstrated that V. correlates with the energies of the highest occupied molecu-
lar orbital (HOMO) of the donor and the lowest unoccupied molecular orbital (LUMO) of the
acceptor material in the case of Ohmic contacts to the electrodes. Therefore, an increase of the
Cso LUMO level (to more negative values) upon photopolymerization could explain the ob-
served V. drop during illumination. From the displayed UPS spectra we measure a decrease

of ~ 0.1 eV of the HOMO energy during phototransformation. At the same time, we observe a
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redshift of the luminescence peak originating from the first excited Cg State. It thus appears
that polymerization of Cg induces a small decrease of the HOMO-LUMO energy gap, but
that this change is primarily associated with an energy shift of the HOMO level.
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Figure 5S- 12 XPS data of the Mo 3d core level peaks for 30 nm thick molybdenum oxide
films on ITO/glass, as-prepared and after 24 h illumination in the glove box.

The samples were inserted via an Ar glove box (O, <1 ppm and H,O < 0.1 ppm) directly
connected to the spectrometer and transferred without exposure to air. From a fit to Mo®" be-
fore illumination, an energy difference of 3.2 eV was found between Mo®*(3d*?) and
Mo®*(3d°?), and this value was used as constraint for the fitting of Mo®*. As further constraint,
the intensities for the Mo®* peaks were fixed to 1(3d*?) = 0.6 x (3d°?). Before illumination,

Mo°" is not detected. Mo®* is formed during illumination, and after 24 h Mo>*/Mo®* = 0.03.
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Figure 5S- 13 UPS spectra of as-deposited and illuminated MoO:s.

(a) Secondary-electron cut-off, (b) full scan, and (c) magnified spectra of the density of states near the valence

band edge.

10 nm thick MoOg films were deposited on molybdenum substrate holders by thermal evapo-
ration at a pressure of ~4-10"® mbar. Illumination was performed for 15 h under nitrogen using
the solar simulator. To minimize exposure to ambient atmosphere, samples were transferred
under nitrogen and introduced in a counter flow of nitrogen into the UPS analysis system.
Since MoO; is a photosensitive material, radiation damage due to He | irradiation must be
carefully excluded. We observed identical spectra when increasing the measurement time
from to 3 to 10 and then to 20 minutes, but the work function was reduced by ~0.2 eV when

the sample was irradiated with He I light for 1 hour before measuring the UPS spectra.
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Figure 5S- 14 UV-vis absorption spectra of thin films of organic materials

on glass/30 nm MoO; (a — ¢) or glass (d, e). Spectra were measured directly after film deposition and after
illumination for 8 h at 1 sun intensity under nitrogen. Spectra (a — ¢) demonstrate that the photochromism in
MoOs is taking place irrespective of the overlying organic material, spectra (d) and (e) show that P3HT and
PTB7 are stable during light processing. P3HT = Poly(3-hexylthiophene), PTB7 = Poly({4,8-bis[2-
ethylhexyl)oxy]benzo[1,2-b:4,5-b"]dithiophene-2,6-diyl }{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-
b]thiophenediyl}), MTDATA = 4,4°,4”-Tris(N-3methylphenyl-N-phenylamino)triphenylamine.
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Chapter VI. Conclusions and outlook

Conclusions

In this thesis, I showed a way how to produce and optimize visibly transparent organic solar
cells and photodetectors using NIR absorbing cyanine dyes. AV'T of over 65% were achieved,
and device performances were on par with reported values for similar, but less transparent,
devices. Integration of NIR cyanines into multi-junction structures enhanced the efficiency of
solar cells by 34%. I also found that the photostability of cyanines is better than usually as-
sumed. Indeed, during operation in the absence of oxygen and water, degradation processes in

other device layers were responsible for the observed limited long term stability.

Transparent photovoltaic cells were fabricated by using a selective NIR absorbing heptame-

thine cyanine dye (Cy7-P) as electron donor and Cg as acceptor, Alqs as cathode bufter layer
and silver/Alqs as cathode. Devices with an AVT of 67% and an efficiency of 0.7% were fab-
ricated. In a second step, the PF¢ anion was exchanged with the bulky anion trisphate™ (Cy7-

T). Thereby, the high AV'T level could be maintained, but the efficiency increased to 2.2%.

Transparent photodetectors with a high 4V'T value of 68.9% were fabricated by using the
same cyanine dye Cy7-T as electron donor and TiO; as electron acceptor. A broad band gap
semiconductor MeO-TPD was introduced as electron blocking layer to reduce the dark cur-
rent noise, and polymerized Cg as TiO, interface modifier to avoid back recombination of
separated carriers. The transparent photodetector further contained a combination of a thin Au
film and a MoOj capping layer as transparent top electrode. The figures of merit of our pho-
todetector at 4 = 850 nm, such as photoconversion efficiencies of 13% - 23% and specific de-
tectivities of ~10'2 cm Hz” W' compared favorably with reported values for organic photode-

tectors so far.

Tandem solar cells were fabricated by using Cy3-P as a wide band gap donor and Cy7-T as
low band gap donor, Cg as acceptor for each subcell and a thin Alqs/Au/MoOs layer as trans-
parent recombination interlayer. Experimental device optimization was based on optical simu-
lations. The maximum current density generated from the two subcells was calculated and ad-
justed to achieve current matching and to select the proper layer sequence. A maximum
efficiency of 4.3% was measured for tandem devices. The Vpc of 1.5 V was exactly the sum
of the Vocs of both individual single cells. Triple-junction devices were fabricated in the same
way by introducing an additional, complementary pentamethine cyanine dye (Cy5-P), and ef-

ficiencies of 3.6% and a high Vpc of 2.1 V were measured. I demonstrated that low mobility
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organic semiconductors with extremely high absorption coeeficients can provide decent pow-
er coversion efficiencies in multijunction solar cells, even though bilayer heterojunctions were

used for the individual subcells.

It is well-known that light exposure induces the formation of intermolecular bonds between
Cso (photo-polymerization) and color changes in MoOj3; (photo-chromism). The influence of
these reactions on the long-term stability of organic solar cells, however, has not been ad-
dressed so far. We studied the degradation of ITO/MoO3/Cy3-P/C¢o/Alqs/Ag solar cells. We
found that the cyanine dye was photostable when illuminated in the absence of oxygen and
water. The kinetics of photo-transformations in C¢o and MoOj closely followed the trend of
the solar cell performance decrease. Irradiations in selective wavelength regions were used to
separate the adverse influence of the two photochemical transformations. We found that the
major part of the V¢ decay was due to transformations in the MoOj layer, and that changes in

MoOs3 and Cg contributed almost equally to the observed drop in the short-circuit current.
Outlook

For window- and display- integrated applications of transparent organic electronics, 4V'T val-
ues above ~75% will be required. To achieve this goal, cyanine dyes with absorption maxima
at 1000 nm and beyond could be used in similar devices as proposed here. However, this
might be accompanied by a decrease in device performance and stability issues of cyanines
with long polymethine chains. A further increase of device AV'T values could also be achieved
by integrating highly transparent and conductive electrodes. The development of such materi-

als is a nascent field of research.

Cyanine dyes possess other interesting properties that can be exploited for organic electronic
devices in future work. For example, cyanine dyes can self-assemble into supramolecular ag-
gregates. These aggregates have outstanding opto-electronic properties such as narrow ab-
sorption bands with very high extinction coefficients or high charge mobility values. Integra-
tion of cyanine aggregates into devices could increase the fundamental processes of charge-
generation and transport considerably. The problem encountered so far is the reproducible
fabrication of cyanine aggregates from organic solvents. Another issue is the pronounced
phase separation between cyanine dyes and fullerene derivatives when coated as a blend thin
film from solution. This prevents at the moment the fabrication of high-performing bulk-

heterojunction cyanine solar cells.

Multi-junction bilayer structures are one way to circumvent the problem. Further improve-

ments of these devices can be expected by replacing Cgy with C79. This might be accompa-
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nied by a positive side-effect on the long-term device stability. Indeed, it is known that the

photo-polymerization reaction in Cy is substantially suppressed.

151|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Curriculum Vitae

Hui Zhang

Date of birth: October 8", 1984
Place of birth: Hubei, China

Nationality: the People’s Republic of China

Education

11/2011-04/2015, PhD student, in the Group of Prof. Frank Niiesch, Swiss Federal Institute of
Technology Lausanne (EPFL) & Swiss Federal Laboratories for Materials Science and Tech-
nology (EMPA), Switzerland.

Thesis topic: NIR sensitive organic dyes for tandem solar cells and transparent photodiodes
9/2010-10/2011, research assistant in the group of Prof. Massimo Morbidelli in department of
chemistry and applied biosciences, Swiss Federal Institute of Technology Zurich (ETH Zur-
ich), Switzerland.

Research topic: Modification of carbon nanotubes for organic solar cells

9/2007-7/2010: Master of Chemical Engineering, School of Chemistry and Chemical Engi-
neering, South China University of Technology (SCUT), China.

Thesis topic: Research on Waterborne polyurethane and polyacrylate adhesive by emulsion
polymerization

9/2003-7/2007: Bachelor of Chemical Engineering, Department of Chemical Engineering and
Technology, Wuhan Institute of Technology (WIT), China.

List of publications

[1] H. Zhang, A. Borgschulte, F. A. Castro, R. Crockett, O. Deniz, J. Heier, S. Jenatsch, F.
Niiesch, C. Sanchez, A. Zoladek-Lemanczyk, R. Hany, photochemical transformations in full-

erene and molybdenum oxide affect the stability of bilayer organic solar cells, Adv.Energy

152|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Mater., 2015, 5, 1400734.

[2] H. Zhang, S. Jenatsch, J.R. Jonghe, F. Nuesch, R. Steim, A.C. Veron, R. Hany, transparent
photodetector using a near infrared absorbing cyanine dye, Sci. Rep., 2015, 5, 9439.

[3] H. Zhang, G. Wicht, C.Gretener, M. Nagel, F. Niiesch, Y. Romanyuk, J.N. Tisserant, R.

Hany, semitransparent organic photovoltaics using a near-infrared absorbing cyanine dye, Sol.

Energy Mater. Sol. Cells, 2013, 118, 157-164.

[4] H. Zhang, H. Wu, role of surfactant adsorption in controlling morphology of single-walled
carbon nanotubes/ polythiophene, Ind. Eng. Chem. Res., 2014, 53, 9088-9093.

[5] H. Zhang, B. Niesen, E. Hack, R. Hany, F. Niesch, cyanine tandem- and triple- junction
solar cells, In preparation, 2015

[6] A.C. Veron, H. Zhang, A. Linden, F. Niiesch, J. Heier, R. Hany, T. Geiger, NIR-absorbing
heptamethine dyes with tailor-made counterions for application in light to energy conversion,

Org. Lett., 2014, 16, 1044-1047.

[7] L. Wang, C. Hinderling, S. Jenatsch, F. Niiesch, D. Rentsch, R. Steim, H. Zhang, R. Hany,
cyanine dye polyelectrolytes for organic bilayer solar cells, Polymer, 2014, 55, 3196-3201.

[8] G. Wicht, S. Biicheler, M. Dietrich, T. Jager, F. Niiesch, T. Offermans, L. Wang, H. Zhang,
R. Hany, stability of bilayer trimethine cyanine dye / fullerene organic solar cells, Sol. Energy

Mater. Sol. Cells, 2013, 117, 585-591.

[9] E. Berner, T. Jager, T. Lanz, F. Niiesch, J.N. Tisserant, G. Wicht, H. Zhang, R. Hany, in-
fluence of crystalline titanium oxide layer smoothness on the performance of inverted organic
bilayer solar cells, Appl. Phys. Lett., 2013, 102(18), 183903.

[10] H.Q. Fu, L.N. Wang, W.T. Lai, H. Zhang, the film properties of waterborne polyurethane
modified by epoxidized soybean oil and styrene, Int. J. Polym. Mater., 2011, 60, 654-664.

[11] H.Q. Fu, H. Huang, Q. Wang, H. Zhang, H.Q. Chen, properties of aqueous polyurethane
dispersion modified by epoxide resin and their use as adhesive, J. Disper. Sci. Technol., 2009,
30(5), 634-638.

List of conferences

H. Zhang, F. Niiesch and R. Hany, oral presentation “Photochemical Transformations in Full-
erene and Molybdenum Oxide Affect the Stability of Bilayer Organic Solar Cells” Solar Fuels
and Solar Cells (SFSC 2014), Dalian, China, October 21-24, 2014.

153|Page



NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

H. Zhang, F. Niiesch and R. Hany, oral and poster presentation “Light Induced Degradation
Mechanism of Cyanine Dye / Fullerene Organic Solar Cells” Exploring and Improving Dura-
bility of Thin Film Solar Cells, Winterthur, Switzerland. February 5-6, 2014.

H. Zhang, G. Wicht, F. Niiesch, R. Hany, oral presentation “Near infrared absorbing cyanine
dyes for visibly transparent organic solar cells”, Nanotechnology for Next Generation High

Efficiency Photovoltaics, IES Cargese, Corsica, France, April 1-6, 2013

H. Zhang, G. Wicht, F. Niiesch, R. Hany, oral presentation “Semitransparent organic photo-
voltaics using a near-infrared absorbing cyanine dye”, Global Organic Photovoltaic Confer-

ence (GOPV 2012), Suzhou, China, 2012

154|Page



