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Introduction

Efficient collection of recyclables in Geneva
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Introduction

In more detail...

Sensorized containers periodically send waste level data to a
centralized database

Level data is used for container selection and vehicle routing, with
tours often planned several days in advance
Vehicles are dispatched to carry out the daily schedules produced by
the routing algorithm
Efficient waste collection thus depends on the ability to:

make good forecasts of the container levels at the time of collection
and optimally route the vehicles to service the selected containers

In this talk we will focus on the first part, i.e. short-term operational
container level forecasting
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Background

Routing problem illustration

The routing problem was presented at STRC 2014 (Markov et al.,
2014)
It is a rich VRP with intermediate facilities, which integrates:

a heterogeneous fixed fleet with fixed and vairable costs
a flexible assignment of start and end depot

The constraints and features are inspired by practical applications to
collectors in Switzerland and France

Figure 1: Example of a tour
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Background

Solution and results

The problem was modeled as a MILP

It was solved using a local search algorithm

Applied to a set of executed tours for collecting white glass and PET
in Geneva, it reduced travel distance by 15% on average

Figure 2: Executed vs. optimized tours in Geneva
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Literature

Literature

The literature on waste generation forecasting is abundant and varied
(for a survey see Beigl et al., 2008)

Much of it is focused on city and regional level: Tainan, Taiwan
(Chen and Chang, 2000); San Antonio, US (Dyson and Chang, 2005);
Beijing, China (Li et al., 2011), etc...

And a fairly small amount on the container (micro) level, e.g.:
Inventory levels in pharmacies (Nolz et al., 2011, 2014)
Recyclable materials from old cars (Krikke et al., 2008)
Charity donation banks (McLeod et al., 2013)
Waste container levels (Johansson, 2006; Faccio et al., 2011; Mes,
2012; Mes et al., 2014)

Contribution:
Operational container level forecasting
We develop a forecasting model estimated and validated on real data,
whereas most of the container level literature is focused on critical
levels. Moreover, much of it uses simulated data.
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Methodology

Data preparation

Container levels are:

detected by internal ultrasound sensors
periodically transmitted to a central database
post-processed for noise removal
extrapolated at the end of each date

Let Li ,t denote the level of container i at the end of date t

Let Ci denote the usable capacity of container i

Then the observed quantity deposited in container i at date t is:

Qi ,t = Ci (Li ,t − Li ,t−1) (1)

In case there was an emptying event at date t, we have:

Qi ,t = CiLi ,t (2)
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Methodology

Formulation

Let ni ,t,k denote the number of deposits in container i at date t of
size qk . We define the data generating process as follows:

Q?
i ,t =

∑K

k=1
ni ,t,kqk (3)

Let ni ,t,k
iid−→ P (λi ,t,k) with probability πi ,t,k . Then we obtain:

E
(
Q?

i ,t

)
=
∑K

k=1
qkλi ,t,kπi ,t,k (4)

We minimize the sum of squared differences between observed and
expected over all containers and dates:

min
λ,π

∑N

i=1

∑T

t=1

(
Qi ,t −

∑K

k=1
qkλi ,t,kπi ,t,k

)2

(5)

assuming strict exogeneity
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Methodology

Formulation

Given vectors of covariates xi ,t and zi ,t and vectors of parameters βk

and γk , we define Poisson rates and logit-type probabilities:

λi ,t,k (θ) = exp
(

xT
i ,tβk

)
(6)

πi ,t,k (θ) =
exp

(
zT
i ,tγk

)
∑K

j=1 exp
(

zT
i ,tγ j

) (7)

Then, in compact form, the minimization problem writes as:

min
θ∈Θ

N∑
i=1

T∑
t=1

Qi ,t −
K∑

k=1

exp
(

xT
i ,tβk + zT

i ,tγk + ln (qk)
)

∑K
j=1 exp

(
zT
i ,tγ j

)
2

(8)

Θ := (βk ,γk : ∀k), and γk? = 0 for one arbitrarily chosen k?

We will refer to this minimization problem as the mixture model
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Methodology

Formulation

In case of only one deposit quantity, it degenerates to a pseudo-count
data process:

min
θ∈Θ

∑N

i=1

∑T

t=1

(
Qi ,t − exp

(
xT
i ,tβ + ln(q)

))2
(9)

We will refer to this minimization problem as the simple model
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Methodology

Forecasting

Using new sets of covariates ẋi ,t and żi ,t , and the estimates β̂k and
γ̂k , we can generate a forecast as follows:

Q̇i ,t =
∑K

k=1

exp
(

ẋ>i ,tβ̂k + ż>i ,t γ̂k + ln (qk)
)

∑K
j=1 exp

(
ż>i ,t γ̂ j

) (10)

Given the operational nature of the problem, the covariates should be
quick and easy to obtain

Examples include days of the week, months, weather data, holidays,
etc...
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Numerical Experiments

Data

36 containers for PET in the canton of Geneva with capacity of 3040
or 3100 liters

Balanced panel covering March to June, 2014 (122 days), which
brings the total number of observations to 4392

The final sample excludes unreliable level data (removed after visual
inspection)

Missing data is linearly interpolated for the values of Qi ,t
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Numerical Experiments

Residual plots

Figure 3: Residual plot of the mixture model
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Figure 4: Residual plot of the simple model
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Numerical Experiments

Seasonality pattern

Waste generation exhibits strong weekly seasonality
Peaks are observed during the weekends
There also appear to be longer-term effects for months

Figure 5: Mean daily volume deposited in the containers
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Numerical Experiments

Covariates

Based on the above observations, we use the following covariates

They are all used both for xi ,t (rates) and zi ,t (probabilities)

Table 1: Table of covariates

Variable Type

Container fixed effect dummy
Day of the week dummy
Month dummy
Minimum temperature in Celsius continuous
Precipitation in mm continuous
Pressure in hPa continuous
Wind speed in kmph continuous
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Numerical Experiments

Evaluating the fits

Coefficient of determination

R2 = 1− SS res

SS tot
(11)

with higher values for a better model

Akaike information criterion (AIC):

AIC =

(
SS res

N

)
exp(2K/N) (12)

with lower values for a better model. The exponential penalizes
model complexity

SS res is the residual sum of squares

SS tot is the total sum of squares

K is the number of estimated parameters

N is the number of observations
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Numerical Experiments

Estimation on full sample

Mixture model: R2 of 0.341 (AIC 52900)

Simple model: R2 of 0.300 (AIC 53700)

Table 2: Estimated coefficients of mixture model

β̂1 (5L)*** β̂2 (15L)*** γ̂2***

Minimum temperature in Celsius 1461.356 0.022 -0.037
Precipitation in mm -0.821 -0.009 0.018
Pressure in hPa -13.724 -0.001 0.010
Wind speed in kmph 7.580 -0.004 0.020
Monday 402.235 2.166 -9.693
Tuesday 1908.233 2.293 -9.977
Wednesday -844.662 1.432 0.202
Thursday 1937.385 1.198 1.453
Friday 1876.162 1.239 4.419
Saturday -6981.339 1.358 4.723
Sunday 1831.715 1.905 2.832
March -27.136 2.955 -1.453
April 1071.406 2.746 -1.532
May 1689.979 2.988 -1.603
June -2604.520 2.901 -1.452
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Numerical Experiments

Validation

We performed 50 experiments

Both the mixture and the simple model are estimated on a random
sample of 90% of the panel

They are validated on the remaining 10%

It was made sure that all containers and all months appeared in the
random samples

Table 3: Mean R2 for estimation and validation sets

Mixture model mean R2 Simple model mean R2

Estimation 0.364 (AIC 51400) 0.302 (AIC 53600)
Validation 0.286 0.274
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Numerical Experiments

Validation

Figure 6: Histograms for estimation and validation samples
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Conclusion

Conclusion

Mixture model representing the data generating process of a realistic
underlying behavior

Preliminary testing shows its better in- and out-of-sample performance

Future research will focus on:

reformulating the objective function as a likelihood function
testing a higher number if discrete deposit sizes
and a continuous distribution of the deposit size
integrating the forecasting approach and the vehicle routing algorithm
into an inventory routing platform
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Conclusion

Thank you for your attention!

Questions?
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