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Abstract

One of the most frequent problems in both decision making and reinforcement learning (RL) is expectation maximization
involving functionals such as reward or utility. Generally, these problems consist of computing the optimal solution of a
density function. Instead of trying to find this exact solution, a common approach is to approximate it through a learning
process.

In this work we propose a functional gradient rule for the maximization of a general form of density-dependent function-
als using a stochastic gradient ascent algorithm. If a neural network is used for parametrization of the desired density
function, the proposed learning rule can be viewed as a modulated Hebbian rule. Such a learning rule is biologically
plausible, because it consists of both local and global factors corresponding to the coactivity of pre/post-synaptic neurons
and the effect of neuromodulation, respectively.

We first apply our technique to standard reward maximization in RL. As expected, this yields the standard policy gradi-
ent rule in which parameters of the model are updated proportional to the amount of reward. Next, we use variational
free energy as a functional and find that the estimated change in parameters is modulated by a measure of surprise sig-
nal. Finally, we propose an information theoretical equivalent of existing models in expected utility maximization, as a
standard model of decision making, to incorporate both individual preferences and choice variability. We show that our
technique can also be applied into such novel framework.

Keywords: Stochastic gradient ascent, reinforcement learning, decision mak-
ing, expected utility maximization, multi-factor learning rules,
free energy, surprise, neuromodulation.
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1 Introduction

Theoretical descriptions of synaptic plasticity have been dominated by Hebb’s rule [1] which is based on two major
factors: locality and coactivity. According to Hebb’s rule, both pre- and post-synaptic neurons have to be active to make
their connection stronger. Empirical studies, however, show the existence of other global factors that can influence synaptic
plasticity [2]. These global factors correspond to diffusive action of neuromodulators or feedback from the activity
state of a whole population. Deficits in activity of the neuromodulatory system (corresponding to global factors) in
humans and animals leaves many tasks un-learnable [3]. For instance, Dopamine (DA) as a neuromodulator is used in
signaling reward prediction error that takes part in temporal difference (TD) learning algorithms such as Q-learning and
SARSA [4]. Acetylcholine (Ach) is another candidate neuromodulator used in signaling alertness [5]. It is thus of interest
to expand on Hebbian learning rules and formulate general new synaptic plasticity rules that combine two Hebbian
activity factors with one or multiple global factors. The simplest 3-factor learning rule, including two Hebbian terms
modulated by a third factor, is an example.

Expectation maximization, on the other hand, is one of the most frequently encountered problems in both decision mak-
ing [6] and reinforcement learning (RL) [4]. It consists of computing the optimal solution of a density function. It might
represent a learning agent’s policy in RL, or the likelihood of selecting different choices in a decision making process. We
introduce a functional gradient rule for the maximization of a general form of density-dependent functionals, such as
reward or utility, using a stochastic gradient ascent algorithm. We obtain a learning rule by which we approximate the
optimal solution through a learning process. This learning rule benefits from a biological plausibility if a neural network
is used for parametrization of the desired density function. This is consistent with a modulated Hebbian learning rule
(i.e., 3-factor learning rule) in which both global and local factors influence the synaptic connections among the neurons.
We apply our technique to standard reward maximization in RL and a variational learning problem to show that reward
and surprise signals can be interpreted as third factors in this framework. We further propose a more general formal-
ism of expected utility maximization, a standard model of decision making, that can be solved using functional gradient
rule. The aim of such a novel approach is to incorporate both individual preferences and choice variability in the decision
making process regardless of the specific details of the model used.

2 Methods

We apply a stochastic gradient ascent technique to approximate the optimal density function that maximizes a functional
F[P ] = 〈F [P ]〉P where 〈.〉P denotes the average with respect to the probability density P (x) of the random variable X .
The term F [P ] might be considered as a general form of reward or utility function which itself depends on the density
function P . The general form of the online gradient rule will be derived in the following.

Theorem 1 (functional gradient rule): The stochastic gradient ascent algorithm for maximizing a functional F[P ] =
〈F [P ]〉P over all possible distributions P parametrized by θ ∈ Rn yields the online learning rule,

∆θ ∝ F̃∇θ lnP, (1)

where the multiplier factor F̃ is defined as

F̃ =
∂

∂P
(PF [P ]) = F [P ] +

∂F [P ]

∂ lnP
. (2)

Proof: In order to have an online learning rule for θ ∈ Rn, we need to find a term ∆θ such that 〈∆θ〉P = ∇θF[P ]. Using
the nice trick P∇θ lnP = ∇θP we have

∇θ 〈F [P ]〉P =

∫
dx P∇θF [P ] + F [P ]∇θP =

∫
dx P

(
∂F [P ]

∂P
∇θP

)
+ F [P ] (P∇θ lnP )

=

〈
∂F [P ]

∂P
∇θP + F [P ]∇θ lnP

〉
P

=

〈
∂F [P ]

∂P
(P∇θ lnP ) + F [P ]∇θ lnP

〉
P

=

〈(
∂F [P ]

∂P
P + F [P ]

)
∇θ lnP

〉
P

=

〈
∂ (PF [P ])

∂P
∇θ lnP

〉
P

. (3)

Corollary 1: The multiplier factor F̃ in the learning rule (1) can be replaced by F̃ + c where c ∈ R is a constant term
because 〈(

F̃ + c
)
∇θ lnP

〉
P

=
〈
F̃∇θ lnP

〉
P

+ c 〈∇θ lnP 〉P , (4)

and 〈∇θ lnP 〉P =
∫
dx P∇θ lnP =

∫
dx ∇θP = ∇θ

∫
dx P = ∇θ(1) = 0.
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Corollary 2: If F [P ] does not explicitly depend on P or is linear in lnP , then the multiplier factor F̃ can be replaced by
F [P ]. The proof is simply done by using Corollary 1 in (2).

We want to stress that our proposed learning rule (1) can indeed be embedded in the class of biologically plausible
3-factor learning rules, if a neural network is used for parametrization. The term F̃ represents a globally modulating
third factor, depending on the properties of the neuronal ensemble in a nonlocal fashion. The term ∇θ lnP represents a
Hebbian term, which can be shown to depend on both pre- and postsynpatic activity. As an example, we use a population
of spiking neural network for learning the density function P . The neuron model that we use here is a generalized linear
model (GLM). This model has the form of a Spike Response Model (SRM) with escape noise [7, 8]. The membrane
potential ui(t) of neuron i at time t is given as ui(t) =

∑
j wij(Xj ∗φ)(t)+ηi(t), where wij is the synaptic efficacy between

pre-synaptic neuron j and post-synaptic neuron i, Xj(t) =
∑
f δ(t − t

f
j ) denotes the presynaptic spike train, φ(t) is the

somatic EPSP, and ηi(t) = −η0

∫ t
0
ds e−

t−s
τa Xi(s) is the adaptation potential (η0 and τa are constants). The spikes are

then generated by a stochastic Poisson process with an exponential escape rate ρi(t) [8] conditioned on the membrane
potentials,

ρi(t) = ρ0 exp(
ui(t)− θ

∆U
), (5)

where θ and ∆U are physical constants of the neuron. Free parameters θ ∈ Rn by which P is parametrized are synaptic
efficacies wij between neurons. Each sampled observed data x is modeled as a set of spike trains {Xi} generated by all
the neurons within a neuronal population. P (x) is then modeled as the likelihood of generating each set of spike trains,
corresponding to each sampled observed data x, in that population. The likelihood of a particular spike train x = {Xi}
which is observed in the interval [0, T ] can be written as [9, 10]

lnP (x) =
∑
k

∫ T

0

dt [ln ρk(t)Xk(t)− ρk(t)], (6)

and its gradient with respect to the particular synaptic weight wij is calculated as (see [10, 11] for details)

∇wij lnP (x) =
1

∆U
(Xj ∗ φ)(t) [Xi(t)− ρi(t)]. (7)

Therefore, we conclude that the learning rule for synaptic weights wij according to gradient ascent ∆wij ∝ ∇wij lnP (x)
can be calculated locally and is written as a product of two local (Hebbian) factors: (Xj ∗ φ)(t) which depends on the
pre-synaptic neuron j and [Xi(t)− ρi(t)] that depends on the state of the post-synaptic neuron i.

3 Results

In this section we describe two examples of using our proposed functional gradient rule. First, reward maximiza-
tion in the context of RL can be formulated as finding the optimal policy π(a|s) that maximizes the expected reward
〈R(s, a)〉π(a|s)f(s) where R(s, a) denotes the reward for taking action a in state s and f(s) is the density function of state
space. The online learning rule (1) for reward maximization in RL is

∆θ ∝ R∇θ lnπ, (8)
where θ is used to parametrize policy π. Note that since reward R(s, a) does not explicitly depend on the policy π, the
multiplier factor F̃ in (1) is the reward R := R(s, a) itself, according to Corollary 2. The learning rule (8) is the standard
policy gradient rule used in the reward maximization approach known as R-max [12].

Second, variational methods are typically used in complex statistical models which are defined by a joint distribution
p(v, h) over a set of observed (visible) v and unobserved (hidden) h variables. The joint distribution p is known as a
generative model governed by some adaptive parameters θ ∈ Rn. Two main purposes of using variational methods are
to analytically approximate the posterior distribution p(h|v) of hidden variables (for statistical inference over them) or to
derive a lower bound for a marginal likelihood p(v) =

∑
h p(v, h) of the visible variables (usually for model selection). A

computationally tractable lower bound L(q;w, θ) for the marginal likelihood p(v) of the visible variables is calculated as

ln p(v) = ln
∑
h

p(v, h) = ln
∑
h

q(h|v)
p(v, h)

q(h|v)

≥
∑
h

q(h|v) ln
p(v, h)

q(h|v)
:= L(q;w, θ), (9)

where we have applied Jensen’s inequality. Here w ∈ Rm denotes adaptive parameters used for expressing q(h|v). It is
easy to see that the difference between the true log likelihood ln p(v) and its approximated lower bound L(q;w, θ) is

ln p(v)− L(q;w, θ) =
∑
h

q(h|v)
q(h|v)

p(h|v)
:= DKL(q||p). (10)
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Therefore, maximizing the lower boundL(q;w, θ) is equivalent to minimizing the Kullback-Leibler divergenceDKL(q||p)
of the true posterior distribution p(h|v) from the approximated one q(h|v). The lower bound L(q;w, θ) is known as
(negative) variational free energy F[q; v] in statistical learning [13] that can be expressed as

F[q; v] = −L(q;w, θ) = 〈− ln p(v, h)〉q −H(q). (11)

The variational free energy F[q; v] for each observed variable v can be considered as a measure of its novelty indicating
how much the new observed data v is surprising. Here surprise is taken to be the negative log-likelihood − ln p(v) of
observed data v. One can express variational free energy F[q; v] as 〈F [q; v]〉q where F [q; v] = − ln p(v, h) + ln q(h|v),
denotes the instantaneous amount of free energy for observed data v. The online learning rule, suggested by Theorem 1,
for variational free energy minimization is then given by

∆w ∝ −F∇w ln q, (12)

where the minus sign is because of the minimization and F = F [q; v] is the instantaneous amount of free energy for
observed data v. Note that since F [q; v] is linear in ln q, the multiplier factor F̃ in (1) would be equal to F [q; v] according
to Corollary 2. The significance of learning rule (12) is that it explicitly shows that the amount of estimated change in
parameters w for learning q is proportional to the amount of surprise or information contained in the observed data v.
In other words, the surprise signal measured by the instantaneous free energy modulates the learning rate such that
surprising observed data v yields more change of the parameter w for learning the approximate posterior distribution q.

4 Discussion

A standard model of decision making is expected utility maximization [14] in which a decision maker selects a choice x∗ ∈ X
with the highest subjective expected utility U(x∗) among all other alternatives x ∈ X . In a probabilistic framework, it can
be interpreted as selecting choice x∗ with probability 1 and choosing the rest with probability 0 (i.e. P (x) = δ(x − x∗) is
the corresponding choice selection density function which determines the likelihood of selecting different choices, where
δ(.) denotes the Kronecker delta function). The density function P (x) = δ(x − x∗) maximizes the expected value of the
utility function 〈U(x)〉P among all possible density functions P (x) because

〈U(x)〉P =
∑
x

U(x)P (x) ≤
∑
x

U(x∗)P (x) = U(x∗) = 〈U(x)〉δ(x−x∗) . (13)

In reinforcement learning, however, choosing the action with the highest value function does not allow for sufficient
exploration; this requires choice variability, e.g., by adding noise. Furthermore, individual preferences should be incor-
porated into the decision making processes, such as action selection in RL.

Expected utility theory accounts for individual differences by explicitly modeling different beliefs about the probabilities
of different outcomes. Instead of using a stochastic action selection function (such as a sigmoid) we propose an informa-
tion theoretical equivalent of existing models to incorporate both individual preferences and choice variability. As such
we do not need to impose any specific form of constraints existing in different models. In contrast to maximizing just the
average utility 〈U(x)〉P , maximizing the functional

F[P ] = 〈U(x)〉P +
1

λ1
H(P )− 1

λ2
H(P, P0)

=

〈
U(x)− 1

λ1
lnP (x) +

1

λ2
lnP0(x)

〉
P

, (14)

yields a choice selection density function P (x) which not only leads to a relatively high average utility, but also allows
exploration. Further, it does not allow the solution to be highly different from a reference P0. While the entropy H(P ) =
〈− lnP (x)〉P of a density function P in (14) models choice variability, the relative entropy H(P, P0) = 〈− lnP0(x)〉P
models subjectivity by involving a subjective reference density function P0. The minus sign in the last term of the first
line in (14) penalizes those density functions that are highly different from a subjective reference P0. The parameters λ1

and λ2 control the fuzziness of the solution by changing the weights of the second and third terms, respectively. By taking
the derivative of (14) with respect to P and setting it equal to zero, one could find that the functional (14) is maximized
by

P ∗(x) = arg max
P

F[P ] =
P0(x)

λ1
λ2 eλ1U(x)

Z(λ1, λ2)
, (15)

where Z(λ1, λ2) =
∑
x P0(x)

λ1
λ2 eλ1U(x) is the normalizing factor. Equation (15) resembles a (modified) Bayes’ rule in the

sense that the effect of utility U in making the posterior density function P ∗ is controlled by a free parameter λ1 and a
prior belief P0 that is affected by the ratio λ1

λ2
. Although the optimal density P ∗ that yields the maximal functional value
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F[P ∗] = 1
λ1

lnZ(λ1, λ2) is explicitly derived in (15), it can also be learned using the functional gradient rule (1). This
is because the functional (14) can be expressed as 〈F [P ]〉P where F [P ] = U(x) − 1

λ1
lnP (x) + 1

λ2
lnP0(x) is a density-

dependent functional.

If the maximizer P ∗ is approximated by any other density P̃ , then its corresponding functional value F[P̃ ] differs from
its maximal value F[P ∗] in proportion to the KL divergence DKL(P̃ ||P ∗) ≥ 0. This is because,

F[P ∗]− F[P̃ ] =
1

λ1
lnZ(λ1, λ2)−

〈
U(x)− 1

λ1
ln P̃ (x) +

1

λ2
lnP0(x)

〉
P̃

=
1

λ1

〈
lnZ(λ1, λ2)− ln eλ1U(x) + ln P̃ (x)− λ1

λ2
lnP0(x)

〉
P̃

=
1

λ1

〈
ln

Z(λ1, λ2)P̃ (x)

eλ1U(x)P0(x)
λ1
λ2

〉
P̃

=
1

λ1

〈
ln

P̃ (x)

P ∗(x)

〉
P̃

=
1

λ1
DKL

(
P̃ ||P ∗

)
. (16)

As an example, we investigate a binary decision making task (such as the two-armed bandit problem) in which a subject
has to make a decision between two alternatives x = 1 and x = 0. The probability P (x) of making decision x is modeled
by a Bernoulli distribution parametrized by θ such that P (x) = θx(1 − θ)(1−x). We use P0(x) = 0.5 to incorporate no a
priori preference in making different decisions. We further assume that λ1 = λ2 = λ to make the formula simpler. As
such, the optimal probability of making the decision x = 1 in our binary example is equal to

P ∗(x = 1) =
eλU(x=1)

eλU(x=1) + eλU(x=0)
=

1

1 + e−λ∆U
, (17)

where ∆U = U(x = 1) − U(x = 0) is the difference between the decisions’ utilities. If U(x = 1) > U(x = 0), the
probability P ∗(x = 1) of making decision x = 1 in (17) is greater than 0.5. The parameter λ then determines how big that
probability should be for different values of ∆U . Note that the stochastic (sigmoid) action selection function, which is
used in the expected utility theorem for modeling choice variability, is explicitly derived in (17) as the optimal solution
in the sense that it maximizes the functional (14).
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