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Abstract— This article describes a system for participation
in the Facial Expression Recognition and Analysis (FERA2015)
sub-challenge for spontaneous action unit occurrence detection.
The problem of AU detection is a multi-label classification
problem by its nature, which is a fact overseen by most
existing work. The correlation information between AUs has the
potential of increasing the detection accuracy. We investigate the
multi-label AU detection problem by embedding the data on low
dimensional manifolds which preserve multi-label correlation.
For this, we apply the multi-label Discriminant Laplacian
Embedding (DLE) method as an extension to our base system.
The system uses SIFT features around a set of facial landmarks
that is enhanced with the use of additional non-salient points
around transient facial features. Both the base system and the
DLE extension show better performance than the challenge
baseline results for the two databases in the challenge, and
achieve close to 50% as F1-measure on the testing partition in
average (9.9% higher than the baseline, in the best case). The
DLE extension proves useful for certain AUs, but also shows
the need for more analysis to assess the benefits in general.

I. INTRODUCTION

Facial Action Unit (AU) recognition and its applications
have become one of the most important fields in facial
analysis and computer vision research almost 40 years af-
ter their first standardization by the Facial Action Coding
System [1]. Also with more commercial tools available, it
is being more commonly used for, for example, psychology
and psycho-pathology research, in addition to personal use
such as Human Computer Interaction, leisure and so on since
many years now. However, it is still far from being treated as
a solved problem, especially due to difficulties caused by low
intensity and short duration of the facial muscle contractions
during spontaneous behavior, uncontrolled scene configura-
tions during natural interactions and subjective appearance
variations among many other reasons. The Facial Expression
Recognition and Analysis Challenge 2015 (FERA2015) [2] is
important since it addresses these factors within the datasets
used. Both SEMAINE [3] and BP4D [4] databases include
spontaneous facial expressions that contain AUs of various
intensities and durations that were recorded in a mostly
unconstrained manner.

Since the first FERA challenge (FERA 2011 [5],[6]) many
advances have been proposed. Variants of Local Binary
Patterns (LBP) are still popular for static and dynamic 2D
or 3D action unit detection because of their efficiency, e.g.
[7],[8]. SIFT (Scale Invariant Feature Transform) descriptors
have also been used efficiently within various frameworks
([9],[10]). We participate in the challenge with a system

that also uses SIFT as features on an enhanced set of
facial landmarks that includes points around transient facial
features with support vector machine (SVM) classification.

The AUs generally occur in combinations during natural
behaviour and these combinations form a correlation pattern
between them. However, there is not a lot of work in
the literature on the use of multi-label information for AU
detection rather than treating them as independent labels.
This information may prove valuable since AU recognition
is actually a multi-label problem, i.e. a data point belongs
to multiple labels. A well-known work that uses this infor-
mation in a temporal manner is the one by Tong et al. [11].
Mahoor et al. have combined Laplacian Eigenmaps, which
is a locality preserving method for embedding the data on
a lower dimensional manifold, with spectral regression to
learn separate sub-spaces for AUs to detect their intensity
[12]. There have also been other attempts to use manifold
learning type of projections for facial expression recognition,
e.g. [13]. In this work we also propose an extension to
our system that uses Discriminant Laplacian Embedding
(DLE) [15]. DLE is a method that combines the concept of
Laplacian Eigenmaps [14] and a multi-label adaptable variant
of Linear Discriminant Analysis (LDA), which constitutes
the discriminative part of the system. It has been applied
successfully for classification of multi-label data[15], and
this is the first time it is applied on the AU detection problem.

The challenge data is composed of three partitions: train-
ing, development and test. The test set is the one that is
used for ranking and it is not available to the participants.
Therefore, in contrast to the development set, the results
used for ranking are obtained in a blind fashion via sending
a running software to the organizers without possibility of
parameter tuning etc. We show that our proposed system
performs successfully on both of the challenging datasets
used (BP4D and SEMAINE) and outperforms the challenge
baseline for both the development and test sets. In addition,
we present the initial analysis on the effect of the proposed
DLE extension on both the development and test partitions.
We show improvement for certain AUs, while also observing
that the performance is quite data dependent.

In the rest of the paper we first explain the proposed
base system in Sec. II, then the proposed extension of
multi-label DLE in Sec. III. Sec. IV presents our results
on the development and test partitions of the two challenge
datasets in comparison with the baseline results as well as
between the two proposed methods. In Sec. V we present our

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148012371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(a) 8 Additional facial landmarks (green) and (b) The full 57 points mask on a sample
the landmarks (red) used in their computation image from the SEMAINE database.
on a sample image from the BP4D database.

Fig. 1. Facial landmarks obtained from the face tracker and 8 additional points.

conclusions on the challenge results and effectiveness of the
proposed method and list potential improvement methods.

II. PROPOSED SYSTEM OVERVIEW

Common to any automatic facial analysis system, the
initial step for AU detection is to locate the face region
and facial landmarks in the images, for which we employ
a face tracker based on the supervised descent method
(SDM) [16], similarly to the baseline paper [2]. The SDM
starts with an initial guess and estimates the shape using a
cascade of regression models that are learned at each step
using local texture features (e.g. SIFT) extracted from the
landmarks estimated in the previous step. The tracker in the
end provides 49 landmarks on the face for each frame in
the tracked video sequence. Using the locations of these 49
points we estimate the position of eight additional points
that contain important local appearance information related
to certain AUs. The positions of these points are calculated
after an affine warping performed to correct for the in-
plane rotation. They mostly mark the non-salient landmarks
on the face, which generally appear as result of a muscle
contraction, compared to the main set of 49, which locate
the salient facial features. The locations of these additional
points (AP ) are illustrated on an example image from the
BP4D database in Fig. 1(a) as well as the landmarks that are
used in their calculation.
AP1 is located at the center of the inner most points of

the two eyebrows and locates a critical region mostly for
AU4 (brow lowerer) but also for AU1 (inner brow raise).
AP2 and AP3 are located around the crow-feet wrinkles
close to the two eyes and their positions are calculated
using the corners of the eye-brows and the center of the
eye. These wrinkles are important indicators of AU6 and
are potentially correlated to AU7 (eye-lid tightener). AP4
and AP5 are located on each side of the nose and mainly

added to include appearance information that occurs during
AUs such as AU10 (lip raiser) or AU9 (nose wrinkler, not
included in this challenge). The positions of AP6 and AP7
are calculated as the x position of the corresponding corner
of the mouth and the y location of the nose tip. These points
mark the nasolabial furrows, whose appearance change with
action units like AU6 (cheek raiser) and AU10. Finally,
AP8 is the point located on the chin that is obtained such
that it is equidistant to the nose tip with AP1, assuming a
vertical symmetry on the face. This point is mainly important
for AU17 (chin raiser) but also contains information for
other AUs that cause a shape and appearance change on
the chin. These eight points provide more coverage on the
face and thus additional appearance information. Note that
the locations of these points are invariant to pose change
since they are calculated relatively to the 49 points obtained
from the SDM face tracker after correction for the in-plane
rotation.

After aligning the face using the eye locations and scaling
to a fixed size of 200 by 200 pixels we extract local
appearance features around the 57 landmarks in total (Fig.
1(b)) using SIFT [17]. SIFT features have recently been
successfully applied on AU detection on the GEMEP-FERA
and CK+ databases ([9],[18]). The SIFT descriptors are
extracted in the 32 by 32 local neighborhood around each
landmark, resulting in a feature vector of size 128 × 57 =
7296. The dimensionality is reduced using PCA and the
number of features to retain for use in the classification is
selected separately for each AU such that the F1 measure is
maximized on the development sets.

Finally these features are used to train an L1-regularized
linear-SVM for each of the 14 action units in the challenge.
The training is performed on a custom training set that is the
combination of the neutral and peak frames of each sequence
in the CK+ database [19], non-speech frames of the training



partition of the GEMEP-FERA database [5] and examples
from the SEMAINE [3] and BP4D [4] training partitions
down-sampled such that there is a certain minimum number
of examples of each AU that is present in each sequence. The
resulting combination is a set of 6713 data points and each
AU retains a positive/negative sample ratio of at least 10%.
The C parameters of the linear-SVMs are learned through a
5-fold cross-validation within this training set. For the final
system submission we also learn a threshold for the distance
to the separating hyper-plane in a way that maximizes the
F1-score on the development set. This threshold can be
an effective biasing parameter between the precision and
recall and may depend on factors such as database recording
conditions or subjective appearance differences. However,
the results reported on the development set still use the
default 0 as the decision threshold in order to have a fair
comparison.

III. DISCRIMINANT LAPLACIAN EMBEDDING
FOR MULTI-LABEL DATA

The problem of AU detection has rarely been treated as a
multi-label problem. In this work we apply the multi-label
DLE method proposed in [15] to investigate the advantage of
using the mutual information between AUs instead of treating
them independently. DLE makes use of the similarities of
samples in the training data in terms of both the features and
labels, allowing the integration of the correlation between
multiple labels.

The method can be summarized as the combination of
LDA and Laplacian Embedding [14] in a multi-label setting
in order to utilize the locality information of the data in a
supervised manner. Given a data matrix X of n samples
and the corresponding label matrix Y of size n × P (P is
the number of different labels, meaning Y contains a binary
vector for each sample indicating the existence of each AU
in our case) the embedding is performed by solving the
eigenvalue problem:

(A− 1
2Sw

1
2SbSw

− 1
2A− 1

2 )U = ΛU (1)

Λ being the set of eigenvalues and U the combination of
eigenvectors, that will be used to project the data matrix X .
Sw and Sb are the within-class and between-class scatter ma-
trices, defined similarly to those in standard LDA (explained
in detail later on) and A = XLXT , with L being the graph
Laplacian [14]. L = D−W , D being the diagonal of W and
W is defined as the ”Label Correlation Enhanced Pairwise
Similarity” in the work that we have adopted [15] and is
formulated as the weighted sum of the feature similarity
matrix, Wx and the label similarity matrix, WL:

W =Wx + µWL (2)

Wx is the n × n pairwise similarity matrix, similar to
most embedding algorithms, and is calculated through the
Gaussian kernel similarity function (aka. heat kernel). The
bandwidth of the kernel function σ is fixed as the average
of all absolute pairwise differences in the training set.

Fig. 2. Action Unit Correlation Matrix on the Training Set

WL, on the other hand, is calculated using the pairwise
similarities between the label vectors y of each sample and
for two samples i and j is formulated as:

WL(i, j) =
yi

TCyj

||yi||||yj ||
(3)

C is the P × P label-correlation matrix calculated from the
training data. Embedding C in WL allows weighting the
pairwise label similarities by how correlated two labels are
and thus results in placing two samples that have co-existence
in highly correlated labels close to each other in the final
embedding space. To give an example, if two samples are
both labeled as AU1 = 1 and AU2 = 1 these samples
will be close to each other in the final space because of
the high correlation between AU1 and AU2 (c.f. Fig. 2),
whereas they would have been placed further if we had
not incorporated this correlation of labels. Fig. 2 shows the
correlation between every AU, where the high correlation
between certain AUs can be marked with a lighter color.
Samples from the BP4D database were excluded in the
computation of AU25 and AU45 correlations, since these
were not annotated. In addition to the labels defining whether
each of the 14 AUs under question within this challenge exist
or not, we add a 15th binary label to include the cases where
none of these AUs exist. This additional label, of course is
not correlated to any of the 14 AUs (Fig. 2).

Finally, µ in (2) is the balance parameter between the pair-
wise feature and label similarity matrices and was optimized
on the development partition of the challenge data separately
for each AU.

The second component of the DLE is the multi-label LDA.
The standard LDA aims to project the data on a lower
dimensional space in which the distance between samples
with different labels are maximized and samples with the
same labels are densely placed close to each other. This
is performed by maximizing the between-cluster scatter and
minimizing the within-class scatter. In the multi-label case
the corresponding matrices are defined as the sum of the



single-label scatter matrices for each type of label p ([15]):
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where mp is the mean of all samples belonging to the label
p and m is the multi-label global mean:
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These two kinds of projections allow us both to learn
a correlation enhanced lower-dimensional manifold and a
multi-label discrimination of the data. Projecting the data
on the embedding space defined by U , which is learned by
solving (1), we obtain a lower dimensional feature vector as
input to the classifier. These features are more discriminative
while still containing the correlations between the AUs in
addition to the locality properties of the original data. In
our tests, the data matrix X of size n by d is obtained
by projecting the full data matrix on the PCA space. This
initial dimension reduction step enables removing most of
the redundancy in the data and thus, allows for a more
efficient embedding. The final number of eigenvectors to
be used is chosen by optimizing the F1-score, which is a
balanced compromise between precision and recall, on the
development partitions for both datasets and separately for
each AU.

IV. RESULTS ON THE FERA-15 CHALLENGE
DATA

The FERA 2015 challenge consists of three sub-
challenges: AU occurrence detection, AU intensity recogni-
tion with prior occurrence knowledge and full AU occur-
rence and intensity detection. The challenges are on two
spontaneous facial expression databases with AU annota-
tions: SEMAINE database [3] and BP4D database [4]. The
participants are provided with a training and development
set for each database and are asked to run their programs
on independent test sets, which they do not see and they
have no prior knowledge about, except that they are part
of the same database. The test partitions of both datasets
contain subjects from the development and training sets as
well as unseen subjects. For more details on the databases
and partitions the reader is referred to the challenge baseline
paper [2].

We have participated in the AU occurrence detection
sub-challenge and in this section report our results on the
development and test partitions. The fact that these databases
are recorded spontaneously makes the task more challenging
since the recorded subjects act completely naturally without
any instructions about their facial behaviour. This causes
more variant AU appearance and occurrences in terms of
intensity and combination compared to databases with con-
straints on the action units or facial expressions performed
(e.g. [19], [5], [20]).

A. Results on the Development Set

We first test our proposed system and the Discriminant
Laplacian Embedding extension on the development set. No
image from the development sets of the 2 datasets were
included in the training of the classifiers or learning the
PCA and embedding bases. However, the development set
allows us to obtain the number of features that are optimal
for each action unit and also to learn the threshold for the
SVM decision value to be used on the test partition. This
threshold was kept at 0 in order to obtain a fair comparison
with the baseline results and also between the two proposed
methods. The DLE was applied to the PCA projected matrix
of dimension d = 1000.

Table I shows the average Overall Accuracy (OA) and
F1 measures obtained using the two systems (PCA-SIFT
and DLE-SIFT) in comparison with the baseline results.
Tables II and III present our results for each AU on the
BP4D and SEMAINE development partitions, respectively
in terms of OA, Area Under ROC Curve (AUC) and F1. As
can be seen from Table I both systems achieve significantly
better performance than the baseline systems (with geometric
and LGBP-TOP [7] features) on the development set. For
a detailed per-AU comparison the reader is referred to the
baseline paper [2]. The increased accuracy compared to the
baseline shows the efficacy of the chosen features and also
the advantage of the enhanced set of facial landmarks. The
enhanced set indeed results in an average F1-score increment
of 0.7% and 2.6% on the BP4D and SEMAINE development
partitions respectively, compared to the 49 point standard set,
tested under the same conditions.

The advantage of using a DLE with multi-label informa-
tion over standard PCA, on the other hand, is not very clear.
Although for some AUs the method is more efficient, in
average the improvement remains marginal. The difference
is clearer when tested on the SEMAINE database, which
suggests that the success of the method may depend on
the data distribution or the similarity of the distribution of
data between the training and test sets. On the SEMAINE
database the clearest improvement is on AU28, while on
BP4D it is on AU4 and 17 . The same improvement
not appearing on the two databases further suggests that
the data distribution is an important factor. More training
data will probably provide better variability and thus better
generalization of the success of embedding.

B. Challenge Results for AU Occurrence Detection on the
Unseen Test Set

This section presents the results we have obtained on
the test partitions, which constitute the main challenge.
Tables IV and V show the F1-scores obtained on the BP4D
and SEMAINE test partitions respectively using the two
proposed systems and in comparison with the challenge
baseline results obtained with the geometric and appearance
features. The first observation is that both of the proposed
systems clearly outperform the challenge baseline on the
test set except for some AUs, namely AUs 2, 12, 14 and 45,
for which geometric features are apparently more effective.



TABLE I
COMPARISON WITH AVERAGE BASELINE RESULTS ON THE DEVELOPMENT PARTITIONS

SEMAINE BP4D
OA F1 OA F1

Baseline Geometric 0.735 0.351 0.712 0.580
Baseline Appearance 0.680 0.298 0.639 0.539
PCA-SIFT (Prop. 1) 0.793 0.417 0.735 0.589
DLE-SIFT (Prop. 2) 0.802 0.435 0.735 0.591

TABLE II
RESULTS ON THE BP4D DEVELOPMENT PARTITION

PCA-SIFT DLA-SIFT
AU OA AUC F1 OA AUC F1

1 (Inner Brow Raiser) 0.717 0.674 0.395 0.694 0.695 0.41
2 (Outer Brow Raiser) 0.669 0.563 0.284 0.664 0.563 0.262

4 (Brow Lowerer) 0.791 0.786 0.472 0.805 0.78 0.509
6 (Cheek Raiser) 0.809 0.888 0.802 0.801 0.873 0.783
7 (Lid Tightener) 0.698 0.765 0.761 0.691 0.756 0.746

10 (Lip raiser) 0.734 0.795 0.781 0.729 0.789 0.789
12 (Lip Corner Puller) 0.859 0.933 0.877 0.839 0.914 0.857

14 (Dimpler) 0.606 0.699 0.611 0.598 0.706 0.616
15 (Lip Corner Depressor) 0.732 0.779 0.447 0.728 0.769 0.43

17 (Chin Raiser) 0.642 0.724 0.573 0.70 0.761 0.604
23 (Lip Tightener) 0.831 0.782 0.486 0.838 0.783 0.487

Average 0.735 0.762 0.589 0.735 0.763 0.591

TABLE III
RESULTS ON THE SEMAINE DEVELOPMENT PARTITION

PCA-SIFT DLA-SIFT
AU OA(%) AUC(%) F1(%) OA(%) AUC(%) F1(%)

2 (Outer Brow Raiser) 0.804 0.753 0.308 0.822 0.732 0.306
12 (Lip Corner Puller) 0.671 0.677 0.480 0.682 0.731 0.512

17 (Chin Raiser) 0.957 0.889 0.394 0.957 0.886 0.303
25 (Lips Part) 0.757 0.74 0.482 0.725 0.74 0.494

28 (Lip pucker) 0.978 0.906 0.509 0.982 0.947 0.672
45 (Blink) 0.591 0.683 0.329 0.649 0.668 0.324
Average 0.793 0.775 0.417 0.803 0.784 0.435

As weighted average on the two databases, the best F1
score (0.499) is obtained with the PCA-SIFT system and
is 0.099 higher than the challenge baseline with appearance
features (improved by 24.8%) and 0.054 higher than that
with geometric features (improved by 12.3%).

TABLE IV
F1-SCORES ON THE BP4D TEST PARTITION

Our Results Baseline
AU PCA-SIFT DLE-SIFT Geo. App.
1 0.261 0.226 0.188 0.180
2 0.167 0.149 0.185 0.159
4 0.283 0.233 0.197 0.225
6 0.729 0.697 0.645 0.671
7 0.785 0.802 0.799 0.751
10 0.802 0.742 0.801 0.799
12 0.779 0.784 0.801 0.792
14 0.625 0.599 0.72 0.666
15 0.348 0.223 0.238 0.139
17 0.380 0.325 0.311 0.245
23 0.441 0.424 0.320 0.239

Average 0.508 0.473 0.473 0.442

For BP4D, the accuracies obtained are much lower com-
pared to the development set. This is expected as the few
parameters (number of features, decision thresholds and µ

TABLE V
F1-SCORES ON THE SEMAINE TEST PARTITION

Our Results Baseline
AU PCA-SIFT DLE-SIFT Geo. App.
2 0.655 0.663 0.569 0.755
12 0.769 0.759 0.595 0.517
17 0.215 0.255 0.091 0.066
25 0.623 0.613 0.445 0.400
28 0.251 0.262 0.250 0.009
45 0.325 0.347 0.396 0.209

Average 0.481 0.483 0.391 0.326

in 2) that we have were optimized on the development
set. However, on the SEMAINE test partition we obtain
better results than the development set, which is possibly an
indicator that the SEMAINE test and development partitions
are more similar to each other compared to BP4D and that
our classifiers are able to generalize well enough to this
unseen dataset. As explained in the definitions of the sets
[2], the test set of BP4D was indeed recorded at a different
time, possibly under different conditions.

Our results show that the DLE system achieves a marginal
increase in the mean accuracy on the SEMAINE database,
compared to the system with standard PCA. Better results



are obtained for AUs 2, 17, 28 and 45. However, this is not
the case for the BP4D, with higher F1 measure only for AUs
7 and 12. This probably implies once again that the DLE is
highly dependent on the data distribution and that the BP4D
development and test partitions contain more variation of
AU combinations than that is contained in the training set
compared to the SEMAINE database. More tests with more
variability and a higher number of training data is needed to
reach a conclusion on the benefits of the method, which will
be performed next as an extension to this work. Better tuning
of the parameters may also greatly increase the accuracy.
Another possible cause of the problem is the very low rank
of the between-class scatter matrix. Our further work will
include using the Laplacian of a dissimilarity matrix instead
of the LDA terms in the formulation.

V. CONCLUSIONS

We have presented an AU detection system that uses SIFT
features obtained from an enhanced facial landmarks config-
uration that includes points around transient facial features
and also an extension that uses Multi-label Discriminant
Laplacian Embedding with integrated correlation between
AUs. The system is applied to the FERA 2015 sub-challenge
for spontaneous AU occurrence detection on the SEMAINE
and BP4D databases. We obtain a significant increase of
accuracy compared to the challenge baseline with both the
proposed systems and in the best case obtain 49.85% F1
score as average on the test sets of the two databases.

Comparing the efficiency of the proposed extension of
DLE, we observe better results on certain AUs, but only
a small increase in the average accuracy is obtained. Using
multi-label information in AU detection is a difficult task
mainly due to the large number of labels and huge variability
in terms of their co-occurence. In this work, taking into
account the different performances on the two test partitions
we reach the conclusion that the success of the multi-
label DLE might also be data dependent and needs further
analysis. The high accuracy of the method on some AUs
suggests that the DLE is worthy of more investigation. Future
work includes integrating a dissimilarity matrix instead of
the LDA related matrices, which are generally of very low
rank. Another extension for further improvement would be
to include the temporal adjacency of data points in the
embedding or classification scheme.
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