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Abstract. We investigate the relationships between theoretical stud-
ies of leaking cryptographic devices and concrete security evaluations
with standard side-channel attacks. Our contributions are in four parts.
First, we connect the formal analysis of the masking countermeasure
proposed by Duc et al. (Eurocrypt 2014) with the Eurocrypt 2009 eval-
uation framework for side-channel key recovery attacks. In particular,
we re-state their main proof for the masking countermeasure based on a
mutual information metric, which is frequently used in concrete physical
security evaluations. Second, we discuss the tightness of the Eurocrypt
2014 bounds based on experimental case studies. This allows us to conjec-
ture a simplified link between the mutual information metric and the suc-
cess rate of a side-channel adversary, ignoring technical parameters and
proof artifacts. Third, we introduce heuristic (yet well-motivated) tools
for the evaluation of the masking countermeasure when its independent
leakage assumption is not perfectly fulfilled, as it is frequently encoun-
tered in practice. Thanks to these tools, we argue that masking with
non-independent leakages may provide improved security levels in cer-
tain scenarios. Eventually, we consider the tradeoff between measurement
complexity and key enumeration in divide-and-conquer side-channel at-
tacks, and show that it can be predicted based on the mutual information
metric, by solving a non-linear integer programming problem for which
efficient solutions exist. The combination of these observations enables
significant reductions of the evaluation costs for certification bodies.

1 Introduction

Side-channel attacks are an important concern for the security of cryptographic
hardware, and masking is one of the most investigated solutions to counteract
them. Its underlying principle is to randomize any sensitive data manipulated
by a leaking implementation by splitting it into d shares, and to perform all
the computations on these shared values only. Intuitively, such a process is ex-
pected to force the adversary to combine several leakages corresponding to the
different shares in order to recover secret information. As a result, it has first
been shown by Chari et al. that the measurement complexity of a specialized
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attack – namely a single-bit Differential Power Analysis (DPA) [35] – against
a carefully implemented masked computation (i.e. where the leakages of all the
shares are independent and sufficiently noisy) increases exponentially with d [14].
Following this seminal work, a number of progresses have been made in order
to state the security guarantee of masking in both general and rigorous terms.
For example, Ishai, Sahai and Wagner introduced a compiler (next referred to as
the ISW compiler), able to encode any circuit into an equivalent (secret-shared)
one, and proved its security against so-called probing adversaries, able to read
a bounded number of wires in the implementation [33]. A practical counterpart
to these results was published at Asiacrypt 2010, where Standaert et al. ana-
lyzed the security of several masked implementations [61], using the information
theoretic framework introduced in [60]. While this analysis was specialized to
a few concrete case studies, it allowed confirming the exponential security in-
crease provided by masking against actual leakages, typically made of a noisy
but arbitrary function of the target device’s state. Following, Faust et al. at-
tempted to analyze the ISW compiler against more realistic leakage functions,
and succeeded to prove its security against computationally bounded (yet still
unrealistic) ones, e.g. in the AC0 complexity class [25]. Prouff and Rivain then
made a complementary step towards bridging the gap between the theory and
practice of masking schemes, by providing a formal information theoretic analysis
of a wide (and realistic) class of so-called noisy leakage functions [49]. Eventu-
ally, Duc et al. turned this analysis into a simulation-based security proof, under
standard conditions (i.e. chosen-message rather than random-message attacks,
without leak-free components, and with reduced noise requirements) [22]. The
central and fundamental ingredient of this last work was a reduction from the
noisy leakage model of Prouff and Rivain to the probing model of Ishai et al.

Our contribution. In view of this state-of-the-art, one of the main remaining
questions regarding the security of the masking countermeasure is whether its
proofs can be helpful in the security evaluation of concrete devices. That is,
can we state theorems for masking so that the hypotheses can be easily fulfilled
by hardware designers, and the resulting guarantee is reflective of the actual
security level of the target implementation. For this purpose, we first observe
that the proofs in [22, 49] express their hypothesis for the amount of noise in the
shares’ leakages based on a statistical distance. This is in contrast with the large
body of published work where the mutual information metric introduced in [60]
is estimated for various implementations (e.g. [4, 12, 27, 30, 32, 42, 50, 51, 57, 63,
66]). Since the latter metric generally carries more intuition (see, e.g. [3] in the
context of linear cryptanalysis), and benefits from recent advances in leakage
certification, allowing to make sure that its estimation is accurate and based
on sound assumptions [23], we first provide a useful link between the statistical
distance and mutual information, and also connect them with easy-to-interpret
(but more specialized) tools such as the Signal-to-Noise Ratio (SNR). We then
re-state the theorems of Duc et al. based on the mutual information metric in
two relevant scenarios. Namely, we consider both the security of an idealized



implementation with a “leak-free refreshing” of the shares, and the one of a
standard ISW-like encoding (i.e. capturing any type of leaking computation).

Interestingly, the implementation with leak-free refreshing corresponds to
the frequently investigated (practical) context where a side-channel attack aims
at key recovery, and only targets the d shares’ leakage of a so-called sensitive
intermediate variable (i.e. that depends on the plaintext and key) [17]. So despite
being less interesting from a theoretical point of view, this scenario allows us
to compare the theorem bounds with concrete attacks. Taking advantage of
this comparison, we discuss the bounds’ tightness and separate parameters that
are physically motivated from more “technical ones” (that most likely result of
proof artifacts). As a result, we conjecture a simplified link between the mutual
information metric and the success rate of a side-channel adversary, which allows
accurate approximations of the attacks’ measurement complexity at minimum
(evaluation) cost. We further illustrate that the noise condition for masking has
a simple and intuitive interpretation when stated in terms of SNR.

Next, we note that the published results about masking (including the pre-
viously mentioned theorems and conjecture) assume independence between the
leakages corresponding to different shares in an implementation. Yet, concrete
experiments have shown that small (or even large) deviations from this assump-
tion frequently occur in practice (see, e.g. [5, 16, 41, 54]). Hence, we complete
our discussion by providing sound heuristics to analyze the impact of “non-
independent leakages” which allow, for the first time, to evaluate and predict
the security level of a masked implementation in such imperfect conditions.

Eventually, we consider the tradeoff between measurement complexity and
time complexity in the important context of divide-and-conquer attacks. Previ-
ously known approaches for this purpose were based on launching key enumera-
tion and/or rank estimation algorithms for multiple attacks, and to average re-
sults to obtain a success rate [64, 65]. We provide an alternative solution, where
success rates (possibly obtained from estimations of the mutual information met-
ric) are estimated/bounded for all the target key bytes of the divide-and-conquer
attack first, and the impact of enumeration is evaluated only once afterwards.
We also connect the problem of approximating the enumeration cost for a given
number of measurements with a non-linear integer programming problem, and
provide simple heuristics to estimate bounds on this enumeration cost.

Summarizing, the combination of these observations highlights that the se-
curity evaluation of a masked implementation boils down to the estimation of
the mutual information between its shares and their corresponding leakages. In-
cidentally, the tools introduced in this paper apply identically to unprotected
implementations, or implementations protected with other countermeasures, as
long as one can estimate the same mutual information metric for the target in-
termediate values. Therefore, our results clarify the long standing open question
whether the (informal) link between information theoretic and security metrics
in the Eurocrypt 2009 evaluation framework [60] can be proved formally. They
also have important consequences for certification bodies, since they translate



the (worst-case) side-channel evaluation problem into the well-defined challenge
of estimating a single metric, leading to significantly reduced evaluation costs.

Notations. We next use capital letters for random variables, small caps for
their realizations and hats for estimations. Vectors will be denoted with bold
notations, functions with sans serif fonts, and sets with calligraphic ones.

2 Background

2.1 Leakage traces and assumptions

Let y be a n-bit sensitive value manipulated by a leaking device. Typically, it
could be the output of an S-box computation such that y = S(x⊕ k) with n-bit
plaintext/key words x and k. Let y1, y2, . . . , yd be the d shares representing y
in a Boolean masking scheme (i.e. y = y1 ⊕ y2 ⊕ . . . ⊕ yd). In a side-channel
attack, the adversary is provided with some information (aka leakage) on each
share. Typically, this leakage takes the form of a random variable Lyi that is the
output of a leakage function L with yi and a noise variable Ri as arguments:

Lyi = L(yi,Ri) . (1)

The top of Figure 1 represents a leakage trace corresponding to the manipulation
of d shares. Concretely, each subtrace Lyi is a vector of which the elements
represent time samples. Whenever accessing a single time sample t, we use the
notation Ltyi = Lt(yi,R

t
i). From this general setup, a number of assumptions are

frequently used in the literature. We will consider the following three.

a. Selection of points-of-interest / dimensionality reduction. For conve-
nience, a number of attacks start with a pre-processing in order to reduce each
leakage subtrace Lyi to a scalar random variable Lyi . Such a pre-processing
is motivated both by popular side-channel distinguishers such as Correlation
Power Analysis (CPA) [11], which can only deal with univariate data, and by
the easier representation of small dimensional data spaces. In this respect, even
distinguishers that naturally extend towards multivariate data (such as Template
attacks (TA) [15], Linear Regression (LR) [58] or Mutual Information Analysis
(MIA) [28]) generally benefit from some dimensionality reduction. This step can
be achieved heuristically, by looking for leakage samples where one distinguisher
works best, or more systematically using tools such as Principal Component
Analysis (PCA) [2] or Linear Discriminant Analysis (LDA) [59]. An example of
reduced leakage trace is represented at the bottom of Figure 1.

b. Additive noise. A standard assumption in the literature is to consider
leakage functions made of a deterministic part G(yi) and additive noise Ni [40]:

Lyi = L(yi,Ri) ≈ G(yi) + Ni . (2)

For example, a typical setting is to assume reduced leakages to be approximately
generated as the combination of a Hamming weight function (or some other
simple function of the shares’ bits [58]) with additive Gaussian noise.



Fig. 1. Leakage trace & reduced leakage trace of a d-shared secret.

c. Independence condition. A secure implementation of the masking counter-
measure requires that the leakage vectors Lyi are independent random variables.
If respected, it implies that a d-share masking will lead to a (d−1)th-order secure
implementation as defined in [17]. That is, it guarantees that every d-tuple of
leakage vectors is independent of any sensitive variable. This means that any ad-
versary targeting the implementation will have to “combine” the information of
at least d shares, and that extracting information from these d shares will require
to estimate a dth-order moment of the leakage PDF (conditioned on a sensitive
variable) – a task that becomes exponentially hard in d if the noise is sufficient.
As witnessed by several prior works, this condition may be hard to fulfill in prac-
tice. In software implementations, it typically requires avoiding transition-based
leakages (i.e. leakages that depend on the distance between shares rather than
directly on the shares) [5, 16]. In hardware implementations, physical defaults
such as glitches are another usual issue that can invalidate the independence
assumption [41], which motivates various research efforts to mitigate this risk,
both at the hardware level (e.g. [43]) and at the algorithmic level (e.g. [46]).

Note that only this last (independence) assumption is strictly needed for the
following proofs of Section 3 to hold. By contrast, the previous assumptions (a)
and (b) will be useful to provide practical intuition in Section 4. Furthermore,
it is worth noting that slight deviations from this independence assumption (i.e.
slight dependencies between the shares’ leakages) may still lead to concrete se-



curity improvements, despite falling outside the proofs’ formal guarantees. Such
(practically meaningful) contexts will be further analyzed in Section 4.2.

2.2 Evaluation metrics

Following [60], one generally considers two types of evaluation metrics for leaking
cryptographic devices. First, information theoretic metrics aim to capture the
amount of information available in a side-channel, independent of the adversary
exploiting it. Second, security metrics aim to quantify how this information can
be exploited by some concrete adversary. As will be clear next, the two types of
metrics are related. For example, in the context of standard DPA attacks [41],
they both measure the prediction of the (true) leakage function with some model,
the latter usually expressed as an estimation of the leakage Probability Density
Function (PDF). Yet they differ since information theoretic metrics only depend
on the leakage function and model, while security metrics also depend on the
adversary’s computational power. For example, the capacity to enumerate key
candidates may improve security metrics, but has no impact on information
theoretic ones [64, 65]. Our goal in the following is to draw a formal connection
between information theoretic and security metrics, i.e. between the amount of
leakage provided by an implementation and its (worst-case) security level.

In the case of masking, proofs informally state that “given that the leakage
of each share is independent of each other and sufficiently noisy, the security
of the implementation increases exponentially in the number of shares”. So we
need the two types of metrics to quantify the noise condition and security level.

b. Metrics to quantify the noise condition. In general (i.e. without as-
sumptions on the leakage distribution), the noise condition on the shares can be
expressed with an information theoretic metric. The Mutual Information (MI)
advocated in [60] is the most frequently used candidate for this purpose:

MI(Yi;LYi
) = H[Yi] +

∑
yi∈Y

Pr[yi] ·
∑
lyi∈L

Pr[lyi |yi] · log2 Pr[yi|lyi ] , (3)

where we use the notation Pr[Yi = yi] =: Pr[yi] when clear from the context.
Note that whenever trying to compute this quantity from an actual implemen-
tation, evaluators face the problem that the leakage PDF is unknown and can
only be sampled and estimated. As a result, one then computes the Perceived
Information (PI), which is the evaluator’s best estimate of the MI [54]:

P̂I(Yi;LYi) = H[Yi] +
∑
yi∈Y

Pr[yi] ·
∑
lyi∈L

Pr
chip

[lyi |yi] · log2 P̂r
model

[yi|lyi ] , (4)

with Prchip the true chip distribution that can only be sampled and P̂rmodel the
adversary’s estimated model. For simplicity, we will ignore this issue and use the
MI in our discussions (conclusions would be identical with the PI).



Interestingly, when additionally considering reduced leakages with additive
Gaussian noise, and restricting the evaluation to so-called “first-order informa-
tion” (i.e. information lying in the first-order statistical moments of the leakage
PDF, which is typically the case for the leakage of each share), simpler met-
rics can be considered [40]. For example, the SNR introduced by Mangard at
CT-RSA 2004 in [38] is of particular interest for our following discussions:

SNR =
v̂arYi

(
Êni

(LYi
)
)

ÊYi
(v̂arni

(LYi
))

, (5)

where Ê is the sample mean operator and v̂ar is the sample variance. Summa-
rizing, stating the noise condition based on the MI metric is more general (as
it can capture any leakage PDF). By contrast, the SNR provides a simpler and
more intuitive condition in a more specific but practically relevant context.

Eventually, the previous works of Prouff–Rivain and Duc et al. [22, 49] con-
sider the following Statistical Distance (SD) to state their noise condition:

SD(Yi;Yi|LYi
) =

∑
lyi∈L

Pr[lyi ] · d(Yi;Yi|lyi) , (6)

with d the Euclidean norm in [49] and d(X1, X2)= 1
2

∑
x∈X |Pr[X1 = x]−Pr[X2 =

x]| in [22]. In their terminology, a leakage function L is then called “δ-noisy” if
δ = SD(Yi;Yi|LYi

), which was useful to connect different leakage models.

As previously mentioned, some of these metrics can be related under certain
conditions. For example, in the context of univariate Gaussian random variables,
the MI can be approximated from Pearson’s correlation coefficient [40], which
was also connected to the SNR by Mangard [38]. The combination of those links
corresponds to the classical MI bound in Cover and Thomas [19]:

MI(Yi;LYi) ≈ −
1

2
log

1−

 1√
(1 + 1

SNR )

2
 ≤ 1

2
log
(

1 + SNR
)
· (7)

In Section 3.1, we show that the MI and SD metrics can be connected as well.

c. Metrics to quantify the security result. Quantifying security requires
defining the adversary’s goal. Current side-channel attacks published in the lit-
erature mostly focus on key recovery. In this context, one can easily evaluate the
exploitation of the leakages with the success rate defined in [60], i.e. the proba-
bility that an adversary recovers the key given the observation of some (typically
known or chosen) plaintexts, ciphertexts and leakages. We will next denote it
with SRkr. Key recovery is a weak security notion from a cryptographic point of
view. As a result, rigorous proofs for masking such as the one of Duc et al. in [22]
rather define security using the standard real/ideal world paradigm, which con-
sider two settings: the ideal world where the adversary attacks the algorithm of a



cryptographic scheme in a black-box way, and the real world where he addition-
ally obtains leakages. A scheme is said to be secure in the real world, if for any
adversary in the real world there exists an adversary in the ideal world. In other
words: any attack that can be carried out given the leakages can also be carried
out in a black-box manner. A proof of security usually involves constructing
an efficient simulator that is able to simulate the leakages just giving black-box
access to the attacked cryptographic scheme. Whenever considering this (stan-
dard) indistinguishability-based security notion, we will denote the adversary’s
success probability of distinguishing the two worlds with SRdist.

3 Making proofs concrete: theory

In this section, we discuss theoretical tweaks allowing to improve the concreteness
of masking proofs. For this purpose, we recall three important leakage models
that are relevant for our work. First, the t-probing and ε-probing (aka random
probing) models were introduced in [33]. In the former one, the adversary obtains
t intermediate values of the computation (e.g. can probe t wires if we compute in
binary fields). In the latter one, he obtains each of these intermediate values with
probability ε, and gets ⊥ with probability 1− ε (where ⊥ means no knowledge).
Using a Chernoff-bound it is easy to show that security in the t-probing model
reduces to security in the ε-probing model for certain values of ε. Second, the
noisy leakage model describes many realistic side-channel attacks and allows an
adversary to obtain each intermediate value perturbed with a δ-noisy leakage
function L [49]. As mentioned in the previous section, a leakage function L is
called δ-noisy if for a uniformly random variable Y (over the field F) we have
SD(Y ;Y |LY ) ≤ δ. In contrast with the conceptually simpler ε-probing model,
the adversary obtains noisy leakages on each intermediate variable. For example,
in the context of masking, he obtains L(Yi,R) for all the shares Yi, which is
more reflective of actual implementations where the adversary can potentially
observe the leakage of all these shares, since they are all present in leakage traces
such as in Figure 1. Recently, Duc et al. showed that security against probing
attacks implies security against noisy leakages (up to a factor |F|, where F is the
underlying field in which the operations are carried out) [22]. In the rest of this
section, we first connect the statistical distance SD with the mutual information
metric MI, which shows that both can be used to quantify the noise condition
required for masking. Next, we provide alternative forms for the theorems of Duc
et al. and show (i) the security of the encoding used in (e.g. Boolean) masking
and (ii) the security of a complete circuit based on the ISW compiler.

3.1 From statistical distance to MI

The results from Duc et al. require to have a bound on the SD between the shares
and the shares given the leakage. For different reasons, expressing this distance
based on the MI metric may be more convenient in practice (as witnessed by
the numerous works where this metric has been computed, for various types



of devices, countermeasures and technologies – see the list in introduction). For
example, the MI metric is useful to determine whether the leakage model used in
a standard DPA is sound (see the discussion in Section 4.1) and for analyzing the
impact of key enumeration in divide-and-conquer attacks (see the discussion in
Section 4.3). Very concretely, Equations (3) and (4) are also expressed in a way
that requires summing over the intermediate values first and on the leakages
afterwards, which corresponds to the way security evaluations are performed
(i.e. fix the target device’s state, and then perform measurements). Thus, we
now show how to express the SD in function of the MI. We use a previous result
from Dodis [21], which proofs follows [9] that we rephrase with our notations.

Lemma 1 ([21], Lemma 6). Let Yi and LYi
be two random variables. Then:

1

2

 ∑
(y∈Y,`∈L)

|Pr[Yi = y,LYi = `]− Pr[Yi = y] Pr[LYi = `]|

2

≤ MI(Yi;LYi) .

Using this lemma, we can now express the SD in function of the MI as follows.

Theorem 1. Let Yi and LYi
be two random variables. Then:

2 · SD(Yi;Yi | LYi
)2 ≤ MI(Yi;LYi

) .

Proof. The proof follows the proof of [8], Lemma 4.4. We have:∑
(y∈Y,`∈L)

|Pr[Yi = y,LYi
= `]− Pr[Yi = y] Pr[LYi

= `]| ,

=
∑
`∈L

Pr[LYi
= `]

∑
y∈Y
|Pr[Yi = y | LYi

= `]− Pr[Yi = y]| ,

= 2 · SD(Yi;Yi | LYi
) .

The final result directly derives from Lemma 1. ut

3.2 Security of the encoding

In this section, we analyze the security of an encoding when m measurements
are performed and the encoding is refreshed between each measurements using
a leak-free gate. More precisely, we assume that a secret y is secret-shared into d
shares y1, . . . yd, using an additive masking scheme over a finite field F. Between
each measurement, we assume that we take fresh y1, . . . , yd values such that
y = y1 + · · · + yd (e.g. it could be the Boolean encoding of Section 2.1). We
also assume that this refreshing process does not leak and first recall a previous
result from [22] that relates the random probing model to the noisy model.
For conciseness, we call an adversary in the random-probing model a “random-
probing adversary”, an adversary in the δ-noisy model a “δ-noisy adversary”,
and an adversary having access to leakages such that MI(Y ;Y |LY ) ≤ δ a “δ-MI-
adversary”. However, note that the physical noise (and its quantification with
the MI) is a property of the implementation rather than of the adversary.



Lemma 2 ([22], Lemma 3). Let A be a δ-noisy adversary on Fd. Then, there
exists a δ ·|F|-random-probing adversary S on Fd such that for every (y1, . . . , yd),
A and S produce the same view when applied on (y1, . . . , yd).

This result enables us to work directly in the random-probing model instead
of the noisy leakage model. Next, we study the security of the encoding. As
mentioned in introduction, the adversary’s goal in this case is to recover the
encoded value, which is equivalent to key recovery if this value is a key. In order
to make it completely comparable with actual attacks, we also add the number
of measurements m used by the adversary as a parameter in our bounds.

Theorem 2. Let d be the number of shares used for a key encoding, m be the
number of measurements, and MI(Yi,LYi) ≤ t for some t ≤ 2/|F|2. Then, if
we refresh the encoding in a leak-free manner between each measurement, the
probability of success of a key recovery adversary under independent leakage is:

SRkr ≤ 1−
(

1−
(
|F|
√
t/2
)d)m

. (8)

Proof. In the random probing model with parameter ε, an adversary learns noth-
ing about the secret if there is at least one share that did not leak. Since all the
measurements are independent and we use leak-free refreshing gates, we have:

SRkr ≤ 1−
(
1− εd

)m
. (9)

Let A be a t-MI-adversary on Fd. From Theorem 1, we know that A implies a√
t/2-noisy-adversary on Fd and, by Lemma 2, we obtain a |F|

√
t/2-random-

probing adversary on Fd. Letting ε := |F|
√
t/2 in (9) gives us the result. ut

Note that Equation (9) focuses on the impact of the adversary’s measurement
complexity m on the success rate, which is usually the dominating factor in con-
crete side-channel analyses. Yet, the impact of time complexity when considering
key enumeration will be discussed in Section 4.3. Besides and for readability, this
equation only includes the terms corresponding to attacks taking advantage of
the leakages. We ignore the additional terms corresponding to mathematical
cryptanalysis (e.g. exhaustive search) that should be added for completeness. In
order to allow us comparing this result with the case where we study the security
of a complete circuit encoded with the ISW compiler, we also write our result
according to the following corollary (which is less general than Theorem 2).

Corollary 1. Let d be the number of shares used for a key encoding and m the
number of measurements. Then, if we refresh the encoding in leak-free manner
between each measurement and for any α > 0, the probability of success of a key
recovery adversary under independent leakage is:

SRkr ≤ m · exp (−αd) , (10)

if we have:

MI(Yi;LYi) ≤ 2

(
1

eα|F |

)2

. (11)



Proof. We have:

1−
(
1− εd

)m ≤ melog(ε)d .
We want log(ε) = −α. Hence, from Theorem 2, we get our result. ut

3.3 Security of the whole circuit

In this section, we restate the theorems from Duc et al. when securing a whole
circuit with the seminal ISW compiler. The main theorem from [22] bounds the
probability of success of a distinguishing adversary in the noisy leakage model.
We provide an alternative version of their theorem and, as in the previous section,
we relate it to the mutual information instead of the statistical distance.

Theorem 3. Suppose that we have a circuit of size |Γ | protected with the ISW
compiler with d shares. Then, the probability of success of a distinguishing ad-
versary under independent leakage is:

SRdist ≤ |Γ | · exp

(
− d

12

)
= |Γ | · 2

(
− d·log2(e)

12

)
≤ |Γ | · 2−d/9, (12)

if we have:

MI(Yi;LYi
) ≤ 2 ·

(
1

|F | · (28d+ 16)

)2

. (13)

Similarly to what we did in the previous section, we also write this corollary.

Corollary 2. Suppose that we have a circuit of size |Γ | protected with the ISW
compiler with d shares. Then, if MI(Yi,LYi

) ≤ t, a distinguisher adversary under
independent leakage needs:

d ≥
1− 16|F |

√
1
2 t

28|F |
√

1
2 t

(14)

shares in order to obtain:

SRdist ≤ |Γ | · exp

(
− d

12

)
≤ |Γ | · exp

−1− 16|F |
√

1
2 t

336|F |
√

1
2 t

 . (15)

Note that the ISW compiler can actually be used to efficiently compute any
circuit. For example, the work of Rivain and Prouff at CHES 2010 showed how to
adapt the compiler to |F | = 256 which leads to efficient masked implementations
of the AES [56] (see also various following works such as [13, 18, 31, 57]).



4 Making proofs concrete: practice

In this section, we complement the previous theoretical results with an experi-
mental analysis. Our contributions are threefold. First, we provide and empirical
evaluation of the encoding scheme in Section 3.2, which allows us to discuss the
noise condition and tightness of the bounds in our proofs. We use this discussion
to conjecture a simple connection between the mutual information metric and the
success rate of a (worst-case) side-channel adversary, and argue that it can lead
to quite accurate approximations of the attacks’ measurement complexity. Next,
we discuss possible deviations from the independent leakage assumption and
provide tools allowing one to approximate the security level of concrete devices
in such cases. Eventually, we consider the tradeoff between measurement com-
plexity and time complexity in the context of divide-and-conquer side-channel
attacks. We show how one can build a side-channel security graph (i.e. a plot of
the adversary’s success probability bounds in function of both parameters [65]),
based only on the estimation of the MI metric for each share of a masking scheme.
Along these lines, we eventually provide a formal justification for the physical
security evaluation framework proposed at Eurocrypt 2009 [60].

4.1 Experimental validation

In order to discuss the relevance of the proofs in the previous section, we take
the (usual) context of standard DPA attacks defined in [40]. More precisely, we
consider the simple case where an adversary targets a single S-box from a block
cipher (e.g. the AES) as specified in Section 2.1, and obtains leakage variables
Lyi = L(yi,Ri) for 1 ≤ i ≤ d (the case of multiple S-boxes will be studied in
Section 4.3). For convenience, we mainly consider the context of mathematically-
generated Gaussian Hamming weight leakages, where Lyi = HW(yi) +Ni, with
HW the Hamming weight function and Ni a Gaussian-distributed noise, with
variance σ2. In this respect, we note that we did not mount concrete attacks
since we would have had to measure hundreds of different implementations to
observe useful trends in practice. Our experiments indeed correspond to hun-
dreds of different noise levels. Yet, we note that devices that exhibit close to
Hamming weight leakages are frequently encountered in practice [39]. Further-
more, such a simulated setting is a well established tool to analyze masking
schemes (see, e.g. [18] for polynomial masking, [4] for inner product masking
and [12] for leakage squeezing). Besides, we also consider random Gaussian leak-
age functions, of which the deterministic part corresponds to random functions
over Y, to confirm that all the trends we put forward are also observed with
leakage functions that radically differ from the usual Hamming weight one.

a. Computing the MI metric. In this DPA setting, we aim to compute the
MI between the key and the plaintext and leakages. For conciseness, we use the
notations Y = [Y1, . . . , Yd] and L = [LY1

, . . . ,LYd
] for vectors containing the d

shares and their corresponding leakages. Then we compute:



MI(K;X,LY ) = H[K] +
∑
k∈K

Pr[k] ·∑
x∈X ,y∈Yd

Pr[x, y] ·
∑

ly∈Ld

Pr[ly|k, x, y] · log2 Pr[k|x, ly] . (16)

While this expression may look quite involved, we note that it is actually simple
to estimate in practice, by sampling the target implementation. Evaluators just
have to set keys k in their device and generate leakage traces corresponding to
(known) plaintexts x and (unknown) shares y. Say there are |K| = nk key candi-
dates and we generate nt leakage traces li, then, one just assigns probabilities p̂ji
to each key candidate k∗j , for each measured trace, as in Table 1. This is typically
done using TA or LR. Following, if the correct key candidate is k, the second
line of (16) can be computed as Êi log2(p̂ki ). Note that whenever considering the
standard DPA setting where the target operations follow a key addition, it is
not even necessary to sum over the keys since MI(K = k;X,LY ) is identical for
all k’s, thanks to the key equivalence property put forward in [40].

Table 1. Computing key candidate probabilities for MI metric estimation.

Key candidates
State & leakage k∗1 k∗2 . . . k∗Nk

(k, x1) l1 p̂11 p̂21 . . . p̂
nk
1

(k, x2) l2 p̂12 p̂22 . . . p̂
nk
2

. . . . . . . . . . . . . . .

(k, xnt) lnt p̂1nt
p̂2nt

. . . p̂
nk
nt

Intuitively, MI(K;X,LY ) measures the amount of information leaked on the key
variable K. The framework in [60] additionally defines a Mutual Information
Matrix (MIM) that captures the correlation between any key k and key candi-
dates k∗. Using our sampling notations, it can be simply defined as MIMk,k∗ =
H[K] +

∑
i log2(p̂k

∗

i ), which directly leads to MI(K;X,LY ) = Ek(MIMk,k).

b. Intuition behind the noise condition. Theorems 2 and 3 both require that
the MI between the shares and their corresponding leakage is sufficiently small.
In other words, they require the noise to be sufficiently large. In this section,
we compute the MI metric for both an unprotected implementation (i.e. d = 1)
and a masked one (i.e. d = 2) in function of different parameters.1 In order to
illustrate the computation of this metric, we provide a simple open source code
that evaluates the MI between a sensitive variable Y and its Hamming weights,
for different noise levels, both via numerical integration (that is only possible for
mathematically-generated leakages) and sampling (that is more reflective of the
evaluation of an actual device) [1]. In the latter case, an evaluator additionally

1 For the masked case, we consider univariate leakages corresponding to the parallel
setting in [7], for which computing the MI is slightly faster than in the serial one.



has to make sure that his estimations are accurate enough. Tools for ensuring
this condition are discussed in [23]. In the following, this sufficient sampling is
informally confirmed by the smooth shape of our experimental curves.

We start with the simplest possible plot, where the MI metric is computed
in function of the noise variance σ2. Figure 2 shows these quantities, both for
Hamming weight leakage functions and for random ones with output range Nl
(in the latter context, the functions for different Nl’s were randomly picked up
prior to the experiments, and stable across experiments). We also considered
different bit sizes (n = 2, 4, 6, 8). Positively, we see that in all cases, the curves
reach a linear behavior, where the slope corresponds to the number of shares d.
Since the independent leakage condition is fulfilled in these experiments, this d
corresponds to the smallest key-dependent moment in the leakage distribution.
And since the measurement (aka sampling) cost for estimating such moments
is proportional to (σ2)d, we observe that the MI decreases exponentially in d
for large enough noises. Note that this behavior is plotted for d = 1, 2, but was
experimented for d’s up to 4 in [61], and in fact holds for any d, since it exactly
corresponds to Theorem 2 in a context where its assumptions are fulfilled.

Fig. 2. MI metric in function of σ2. HW (left) and random (right) leakages.

Negatively, we also see that the noise level that can be considered as high
enough depends on the leakage functions. For example, the random leakage func-
tions in the right part of the figure have signals that vary from approximately
2
4 for Nl = 2 to 16

4 for Nl = 16. It implies that the linearly decreasing part of
the curves is reached for larger noises in the latter case. Yet, this observation in
fact nicely captures the intuition behind the noise condition. That is, the noise
should be high enough for hiding the signal. Therefore, a very convenient way
to express it is to plot the MI metric in function of shares’ SNR, as in Figure 3.
Here, we clearly see that as soon as the SNR is below a certain constant (10−1,
typically), the shape of the MI curves gets close to linear. This corroborates the
condition in Theorem 2 that masking requires MI(Ki;X,LYi

) to be smaller than



a given constant. Our experiments with different bit sizes also suggest that the
|F| factor in this noise condition is a proof artifact. This is now formally proven
by Dziembowski, Faust and Skorski in [24]. Of course, and as discussed in Sec-
tion 2.2, the SNR metric is only applicable under certain conditions (univariate
Gaussian leakages). So concretely, an evaluator may choose between computing
it after dimensionality reduction (leading to a heuristic but intuitive condition),
or to directly state the condition in function of the MI. For completeness, we also
plot the MI metric for an unprotected and masked implementation in function
of the share’s MI in Appendix, Figure 10. It clearly exhibits that as the share’s
MI decreases, this reduction is amplified by masking (exponentially in d).

Fig. 3. MI metric in fct. of the shares’ SNR. HW (left) and random (right) leakages.

c. Tightness of the bounds. Given that the noise is high enough (as just
discussed), Theorems 2 and 3 guarantee that the success rate of a side-channel
adversary can be bounded based on the value of the share’s leakage, measured
with MI(Ki;X,LYi

). This directly leads to useful bounds on the measurement
complexity to reach a given success rate, e.g. from (8) we can compute:

m ≥ log(1− SRkr)

log

(
1−

(
|F|
√

MI(Ki;X,LYi
)

2

)d) · (17)

We now want to investigate how tight this bound is. For this purpose, we com-
pared it with the measurement complexity of concrete key recovery TA (using
a perfect leakage model).2 As previously mentioned, the |F| factor in this equa-
tion can be seen as a proof artifact related to the reduction in our theorems –
so we tested a bound excluding this factor. For similar reasons, we also tested

2 Our attacks exploit the leakages of an S-box output, as specified in Section 2.1. We
took the PRESENT S-box for n = 4, the AES one for n = 8, and picked up two
random S-boxes for n = 2, 6, as we did for the random leakage functions.



a bound additionally excluding the square root loss in the reductions (coming
from Theorem 1). As illustrated in Figure 4, the measurement complexity of
the attacks is indeed bounded by Equation (17), and removing the square root
loss allows the experimental and theoretical curves to have similar slopes. The

latter observation fits with the upper bound MI(Yi;LYi
) ≤ |F|

ln(2) ·SD(Yi;Yi | LYi
)

given in [49] that becomes tight as the noise increases.3 As expected, the bounds
become meaningless for too low noise levels (or too large SNRs, see Appendix,
Figure 11). Intuitively, this is because we reach success rates that are stuck to
one when we deviate from this condition. For completeness, we added approx-
imations obtained by normalizing the shares’ MI by H[K] to the figure, which
provide hints about the behavior of a leaking device when the noise is too low.

Fig. 4. Measurement complexity and bounds/approximations for concrete TA.

Interestingly, these results also allow us to reach a comprehensive view of
the parameters in Theorem 3, where the security of a complete circuit encoded
according to the ISW compiler is proven. That is, in this case as well we expect
the |F| and 1/9 factors in Equation (12) to be due to proof technicalities. By
contrast, the |Γ | factor is physically motivated, since it corresponds to the size
of the circuit and fits the intuition that more computations inevitably means
more exploitable leakage. The d factor appearing in the noise condition of Equa-
tion (13) can also be explained, since it directly relates to the fact that in the ISW
compiler, any multiplication will require to manipulate each share d times. It typ-
ically reflects the distance between standard (divide-and-conquer) side-channel
attacks (such as analyzed in this section) and more powerful (multivariate) ad-
versaries trying the exploit the leakage of all the intermediate computations in
a block cipher, e.g. based on algebraic cryptanalysis (see [52, 53] and follow up
works). Taking all these observations into account, we summarize the concrete
security of any masking scheme with the following informal conjecture.

3 Since their inequality comes from a log(1 + x) < log(x) inequality that gets close to
an equality when x gets close to 0, which happens for large noise levels.



Informal conjecture. Suppose that we have a circuit of size |Γ | masked with d
shares such that the information leakage on each of these shares (using all avail-
able time samples) is bounded by MI(Yi;LYi). Then, the probability of success of
a distinguishing adversary using m measurements and targeting a single element
(e.g. gate) of the circuit under independent and sufficiently noisy leakage is:

SRdist
1 ≤ 1−

(
1−MI(Yi;LYi)

d
)m

, (18)

and the probability of success targeting all |Γ | elements independently equals:

SRdist
|Γ | ≤ 1− (1− SRdist

1 )|Γ | . (19)

Interestingly, Equation (19) (like Theorem 3) assumes that the leakages of the
|Γ | gates (or target intermediate values) are exploited independently. This per-
fectly corresponds to the probing model in which the adversary gains either full
knowledge or no knowledge of such computing elements. Thanks to [22], it also
implies a similar result against noisy leakages if the noise condition is fulfilled.
However, as the noise level decreases, some advanced (e.g. algebraic) side-channel
attacks can sometimes take advantage of different computations jointly in a more
efficient manner. Note that this informal conjecture is backed up by the results
in [3] (Theorem 6) where a similar bound is given in the context of statistical
cryptanalysis. By using the approximation log(1 − x) ≈ −x that holds for x’s
close to 0, Equation (18) directly leads to the following simple approximation of
a standard DPA’s measurement complexity for large noise levels:

m ≥ log(1− SRdist
1 )

log(1−MI(Yi;LYi)
d)
≈ c

MI(Yi;LYi)
d
, (20)

where c is a small constant that depends on the target success rate. A similar
approximation can be obtained from Equation (19) for multi-target attacks.

d. Relation with the Eurocrypt 2009 evaluation framework. The evalua-
tion of leaking cryptographic implementations with a combination of information
and security metrics was put forward by Standaert et al. at Eurocrypt 2009. In
this reference, the authors showed a qualitative connection between both met-
rics. Namely, they proved that the model (i.e. the approximation of the leakage
PDF) used by a side-channel adversary is sound (i.e. allows key recoveries) if and
only if the mutual information matrix (defined in paragraph (a) of this section)
is such that its diagonal values are maximum for each line. By contrast, they
left the quantitative connection between these metrics as an open problem (i.e.
does more MI imply less security?). Our results provide a formal foundation for
this quantitative connection. They prove that for any implementation, decreas-
ing the MI of the target intermediate values is beneficial to security. This can be
achieved by ad hoc countermeasures, in which case it is the goal of an evaluation
laboratory to quantify the MI metric, or by masking, in which case we can bound
security based only on the value of this metric for each share taken separately.



4.2 Beyond independent leakage

The previous section evaluated an experimental setting where the leakage of each
share is independent of each other, i.e. Lyi = G(yi) + Ni. But as discussed in
introduction, this condition frequently turns out to be hard to fulfill and so far,
there are only limited (in)formal tools allowing to analyze the deviations from
independent leakages that may be observed in practice. In order to contribute
to this topic, we first launched another set of experiments (for 2-share masking),
where the leakage of each share can be written as:

Ly1 = G1(y1) + f · G1,2(y1, y2) +N1 ,

Ly2 = G2(y2) + f · G2,1(y1, y2) +N2 .

Here the Gi functions manipulate the shares independently, while the Gi,j func-
tions depend on both shares. We additionally used the f (for flaw) parameter in
order to specify how strongly we deviate from the independent leakage assump-
tion. As in the previous section, we considered Hamming weight and random
functions for all G’s (and we used Gi,j(yi, yj) = G(yi ⊕ yj) for illustration). Ex-
emplary results of an information theoretic analysis in this context are given in
Figure 5 for the n = 4-, and 8-bit cases (and in Appendix, Figure 12 for the n = 2-
and 6-bit S-box cases). We mainly observe that as the noise increases, even small
flaws are exploitable by an adversary. Indeed, breaking the independence con-
dition makes smaller-order moments of the leakage distribution key-dependent.
Consequently, for large enough noise, it is always this smaller-order moment that
will be the most informative. This is empirically confirmed by the slopes of the
IT curves in the figures, that gradually reach one rather than two.

Fig. 5. MI metric for masked implementation with flaw (n = 4, 8).

Following these experiments, let us consider a chip that concretely exhibits
such a flaw for a given noise level σ2

exp (corresponding to its actual measure-
ments). Despite falling outside the masking proofs’ guarantees, an important



question is whether we can still (approximatively) predict its security level based
on sound statistical tools. In this respect, a useful observation is that the MI
metric cannot directly answer the question since it captures the information lying
in all the statistical moments of the leakage PDF. So we need another ingredient
in order to reveal the informativeness of each moment of the leakage PDF, sep-
arately. The Moments-Correlating DPA (MC-DPA) recently introduced in [44]
is a natural candidate for this purpose. We now describe how it can be used to
(informally) analyze the security of a flawed masked implementation.

In this context, we first need to launch MC-DPA for different statistical
moments, e.g. the first- and second-order ones in our 2-share example. They are
illustrated by the circle and square markers in the left part of Figure 6. For
concreteness, we take the (most revealing) case where the second-order moment
is more informative than the first-order one. Assuming that the noise condition
in our theorems is fulfilled, the impact of increasing the noise on the value of
the MC-DPA distinguisher can be predicted as indicated by the curves of the
figure. That is, with a slope of 1/2 for the first-order moment and a slope of 1
for the second-order one.4 Hence, we can directly predict the noise level σ2

exp +
∆ such that the first-order moment becomes more informative. Eventually, we
just observe that concrete side-channel attacks always exploit the smallest key-
dependent moment in priority (which motivates the definition of the security-
order for masking schemes [17]). So starting from the value of the MI at σ2

exp

(represented by a circle in the right part of the figure), we can extrapolate
that this MI will decrease following a curve with slope 2 until σ2

exp + ∆ and a
curve with slope 1 afterwards. Taking advantage of the theorems in the previous
sections, this directly leads to approximations of the best attacks’ measurement
complexity. Furthermore, extending this reasoning to more shares and higher-
order statistical moments is straightforward: it just requires to add MC-DPA
curves in the left part of Figure 6, and to always consider the one leading to the

Fig. 6. Evaluating non-independent leakages with MC-DPA (left) and MI (right).

4 Slopes are divided by 2 when considering Pearson’s correlation rather than the MI
since this correlation is essentially proportional to the square root of the SNR. This
is also reflected by the measurement complexity of CPA, that is proportional to the
inverse of the squared correlation vs. the inverse of the MI for TA [62].



highest MC-DPA value to set the slope of the MI curves, in the right part of the
figure. To the best of our knowledge, such figures (despite informal) provide the
first concrete tools to approximate the security level in such contexts.

Note finally that the shape of the non-independent leakages (i.e. theGi,j func-
tions) observed in practice highly depends on the implementations. For example
in hardware, multiple shares can leak jointly in a hardly predictable manner [41,
54]. By contrast in software, the most usual issue (due to transition-based leak-
ages) is easier to analyse [5]. It typically divides the order of the smallest key-
dependent moment in the leakage distribution by two, which corresponds to the
additional square root loss in the security bounds of Duc et al. when considering
leakages that depend on two wires simultaneously (see [22], Section 5.5).

4.3 Exploiting computational power

In this section, we finally tackle the problem of divide-and-conquer DPA attacks,
where the adversary aims to combine side-channel information gathered from a
number of measurements, and computational power. That is, how to deal with
the practically critical situation where the number of measurements available is
not sufficient to exactly recover the key? As discussed in [64, 65], optimal enu-
meration and key ranking algorithms provide a concrete answer to this question.
They allow building security graphs, where the success rate is plotted in func-
tion of a number of measurements and computing power, by repeating attacks
multiple times. We next discuss more efficient and analytical strategies.

a. Why MI is not enough? Whenever trying to exploit both side-channel
leakage and brute-force computation (e.g. key enumeration) the most challenging
aspect of the problem is to capture how measurements and computation actually
combine. This is easily illustrated with the following example. Imagine two hy-
pothetical side-channel attacks that both succeed with probability 1/100. In the
first case, the adversary gains nothing with probability 99/100 and the full key
with probability 1/100. In the second case, he always gains a set of 100 equally
likely keys. Clearly, enumeration will be pretty useless in the first case, while
extremely powerful in the second one. More generally, such examples essentially
suggest that the computational cost of an enumeration does not only depend on
the informativeness of the leakage function (e.g. measured with the MI) but also
on its shape. For illustration, a line of the mutual information matrix computed
from Hamming weight leakages for two noise levels is given in Figure 7, where we
can clearly identify the patterns due to this leakage model. While MIMk,k only
corresponds to a single value of the matrix line (here k = 111), which bounds the
measurement complexity to recover this key without additional computation (as
previously discussed), how helpful is enumeration will additionally depend on
the relative distance between the MIMk,k and MIMk,k∗ values [68]. Incidentally,
this example also puts forward some limitations of the probing leakage model
when measuring computational cost, since it describes an all-or-nothing strategy
– as already mentioned in Section 4.1, paragraph (c) – which is not the case for



Fig. 7. Exemplary line of the mutual information matrix (for k = 111).

the noisy leakage setting. Hence, whereas the probing model is easier to manip-
ulate in proofs, and therefore useful to obtain asymptotic results, noisy leakages
are a more accurate tool to quantify concrete security levels as in this section.

b. Measurement and computational bounds per S-box. Interestingly,
one can easily derive bounds for attacks combining side-channel measurements
and enumeration power against a single S-box, by re-using exactly the same
material as we anyway need to estimate MI(K;X,LYi) for a single secret share.
In the following, we will assume that the key equivalence property mentioned
in Section 4.1, paragraph (a) holds, and focus on a single line of the mutual
information matrix (if it does not, evaluators simply have to compute all its
lines), next denoted as MIMk,−. In order to characterize the distance between
a key k and its close candidates k∗, we first sort this line and produce s =
sort(MIMk,−). As a result, the key candidate k∗s(1) is the best rated one (i.e. the

correct k if the leakage model is sound), k∗s(2) is the second best, . . . From there,
we compute a “computational version” of the mutual information matrix as:

MIMc
k,k = H[Ki] + Ej

(
log

(
c∑
l=1

p̂
s(l)
j

))
. (21)

It essentially corresponds to the amount of information an adversary obtains
about a random variable that aggregates the c most likely key candidates. As-
suming that these c key candidates are equally likely (which can only be pes-
simistic), it directly provides simple bounds on the success rate of an attack
combining m measurements with the enumeration of c keys:

SRkr(m, c) ≤ 1−
(
1− (MIMc

k,k)d
)m

, (22)

For illustration, a couple of such bounds are given in Figure 8, where we see
the impact of increasing the number of shares d and number of measurements
m. Note that despite requiring similar characterization efforts, these bounds are



Fig. 8. Key recovery success rate against a single S-box, in function of the time com-
plexity for the leakage function of Figure 7 (right), after m measurements.

conceptually different from the previous approaches to approximate the success
rate of side-channel attacks. In particular, works like [20, 26, 37, 55] are specific
to popular distinguishers (and usually require specialized assumptions about the
distribution of these distinguishers), while our results directly connect to security
proofs that are independent of the adversarial strategy and hold for any leakage
distribution. Nevertheless, the only requirement to analyze the combination of
multiple S-boxes in the next paragraph (c) is to have success rates curves for
each S-box. So while this paragraph (b) describes an efficient way to build such
curves, the following contribution is in fact general, and could be used as a
complement to any security evaluation obtained for separate S-boxes.

c. Combining multiple S-boxes. We finally generalize our analysis of the
previous paragraph to the case where we target ns S-boxes (e.g. ns = 16 for
the AES), gained information about their respective input key bytes, and want
to recover the full master key. We assume that we perform the same amount of
measurements m on each S-box. This can be easily justified in practice, since a
leakage trace usually contains samples corresponding to all S-boxes. By contrast,
we make no assumption about how informative the leakages of each S-box are.
For example, it could completely happen that one S-box is very leaky, and an-
other one perfectly protected (so that enumeration is the only option to recover
its corresponding key byte). As just explained, we then characterize the mea-
surement vs. complexity tradeoff with ns success rate curves SRkr

i (m, ci) with
1 ≤ i ≤ ns. Typically, we will then set a limit β to the adversary’s computational
power and try to solve the following optimization problem:

max
c1,...,cns

ns∏
i=1

SRkr
i (m, ci) ,

subject to

ns∏
i=1

ci ≤ β .
(23)



Taking the logarithm of both products, we get:

max
c1,...,cns

ns∑
i=1

log
(

SRkr
i (m, ci)

)
,

subject to

ns∑
i=1

log(ci) ≤ log(β) .

(24)

For general functions SRkr
i , this problem is known as a “separable, non-linear

integer programming problem”. Surveys about non-linear integer programming
problems are various (e.g. [10, 36]). There exist many well-studied heuristics to
solve them, including branch-and-bounds and convex envelop techniques. Note
that the problem generally becomes easier when dealing with convex functions.

We conclude this section with a simple and cheap heuristic algorithm which
approximates well the optimal solution for the problem sizes and leakage func-
tions we considered. The approach we propose is inspired by [29], and based on
a tradeoff between the computational cost and accuracy of the solutions found,
that is controlled by downsampling the success rate curves and keeping track
of quantization errors. Intuitively, enumerating the combination of the possi-
ble success rates for two n-bit S-boxes requires the computation of 22n product
complexities ci · cj . Since combining more S-boxes exhaustively will increase the
complexity exponentially (i.e. 2ns·n for ns n-bit S-boxes), the idea of our heuris-
tic is simply to ignore some samples. Namely, we will fix a bound Nmax which
will designate the maximum number of samples we save per success rate curve
(or combination of them). Such a well-known downsampling process is informally
illustrated in the left part of Figure 9, where we can see that the original curve
can be easily upperbounded and lowerbounded, since it is increasing.

Fig. 9. Downsampling SR curves (left) and enumeration complexity bounds (right).

This solution is described more formally in Algorithm 1 and works as follows.
First, we downsample each success rate curve SRi(m, c) to Nmax linearly spaced
points that we can write as Nmax pairs (si,1, ci,1), . . . , (si,Nmax

, ci,Nmax
). Next,



we take the first S-Box and combine it with the second one, obtaining Nmax
2

values. These values are then downsampled again to Nmax linearly spaced points,
so that we can iteratively combine them with the next S-boxes. We denote the
aggregation of the i first success rate curves with SR1:i. We also add an additional
output to our algorithm, namely a list of complexities `i, describing how the effort
is distributed among the S-boxes. Indeed, suppose for example that we combine
the success rate pair (0.1, 24) of S-box 1 with the success rate pair (0.2, 25) of
S-box 2. We obtain a success rate of 0.02 for a complexity of 29, but nothing tells
us how the effort is distributed between S-box 1 and S-box 2. Hence, we write
the result as (0.02, 29, {24, 25}) which shows how the complexities are shared.

Algorithm 1 Heuristic to combine the SR curves of ns S-boxes.

Require: Pairs [(si,1, ci,1), . . . , (si,Nmax , ci,Nmax)] =: SRi for each S-box i.
Require: A bound Nmax on the number of samples and a bound β on the complexity.
Ensure: Triplets (s1, c1, `1), . . . , (sNmax , cNmax , `Nmax) approximating the success rate

curve of the combination of the ns S-Boxes, where the `i-s are ordered lists of
complexities showing how they should be distributed among the S-boxes.

1: SR1:1 ← [(s1,1, c1,1, {c1,1}), . . . , (s1,Nmax , ci,Nmax , {ci,Nmax})];
2: for i = 2 to ns do
3: SR1:i ← ∅;
4: � Combination of aggregated S-Boxes 1 : i-1 with S-Box i.
5: for (sj , cj , `j) ∈ SR1:i−1 do . For all Nmax values in aggregated curve.
6: for (si,k, ci,k) ∈ SRi do . For all Nmax values of the new S-Box.
7: if cj · ci,k < β then . If we did not reach the bound β.
8: SR1:i ← SR1:i ∪ (sj · si,k, cj · ci,k, `j ∪ ci,k); . Merge.
9: end if

10: end for
11: end for
12: � Downsampling.
13: Sort SR1:i and keep only Nmax linearly spaced pairs.
14: end for
15: return SR1:ns

For illustration, the right part of Figure 9 provides such bounds for the combi-
nation of 8, 12 and 16 AES S-boxes, for a noise level and number of measurement
such that the rank estimation problem is challenging (i.e. with full key rank for
the 16-byte master key around 280). The complexity of this heuristic is propor-
tional to ns · (N2

max + log(Nmax)) and the results in the figure were obtained
within seconds of computation on a desktop computer, using a simple Matlab
prototype code. We leave the investigation of better solutions to obtain accurate
time complexity bounds with minimum efforts as a scope for further research.

Summarizing, our results show that the (complex) task of evaluating the
worst-case security level of a masked implementation against (divide-and-conquer)
DPA can be simplified to the evaluation of a couple of MI values, even in con-
texts where the independence assumption is not fulfilled. This provides a solid



foundation for the Eurocrypt 2009 evaluation framework. It also makes it easier
to implement, since success rate curves for full keys can now be derived from
the MI values, rather than sampled experimentally by repeating (many) sub-
key recovery experiments and key rank estimations, which is an expensive task.
Taking advantage of the tools in this paper therefore allow reducing both the
number of measurements and the time needed to evaluate leaking devices.

Acknowledgements. Alexandre Duc is supported by the Swiss National Sci-
ence Foundation, grant 200021 143899/1. Sebastian Faust received funding from
the Marie Curie IEF/FP7 project GAPS (grant 626467). François-Xavier Stan-
daert is a research associate of the Belgian Fund for Scientific Research. This
work has been funded in parts by the ERC project 280141 (CRASH).

References

1. http://perso.uclouvain.be/fstandae/PUBLIS/154.zip.
2. Cédric Archambeau, Eric Peeters, François-Xavier Standaert, and Jean-Jacques

Quisquater. Template Attacks in Principal Subspaces. In Louis Goubin and Mit-
suru Matsui, editors, CHES, volume 4249 of LNCS, pages 1–14. Springer, 2006.

3. Thomas Baignères, Pascal Junod, and Serge Vaudenay. How Far Can We Go
Beyond Linear Cryptanalysis? In Pil Joong Lee, editor, ASIACRYPT, volume
3329 of LNCS, pages 432–450. Springer, 2004.

4. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede. The-
ory and Practice of a Leakage Resilient Masking Scheme. In Wang and Sako [67],
pages 758–775.

5. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the Cost of Lazy Engineering for Masked Software Imple-
mentations. IACR Cryptology ePrint Archive, 2014:413, 2014.

6. Lejla Batina and Matthew Robshaw, editors. Cryptographic Hardware and Em-
bedded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings, volume 8731 of LNCS. Springer, 2014.
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65. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security
Evaluations beyond Computing Power. In Johansson and Nguyen [34], pages 126–
141.

66. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
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Fig. 10. MI metric in fct. of the shares’ MI. HW (left) and random (right) leakages.

Fig. 11. Measurement complexity and bounds/approximations for concrete TA.

Fig. 12. MI metric for masked implementation with flaw (n = 2, 6).


