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Abstract— This paper presents an approach for formation
control of multi-lane vehicular convoys in highways. We extend
a Laplacian graph-based, distributed control law such that
networked intelligent vehicles can join or leave the formation
dynamically without jeopardizing the ensemble’s stability.
Additionally, we integrate two essential control behaviors for
lane-keeping and obstacle avoidance into the controller. To
increase the performance of the convoy controller in terms
of formation maintenance and fuel economy, the parameters
of the controller are optimized in realistic scenarios using
Particle Swarm Optimization (PSO), a powerful metaheuristic
optimization method well-suited for large parameter spaces.
The performances of the optimized controllers are evaluated in
high-fidelity multi-vehicle simulations outlining the efficiency
and robustness of the proposed strategy.

I. INTRODUCTION

Developing cooperative strategies for groups of future
intelligent vehicles is one of the main objectives in the
automotive industry aiming at improving road traffic flow
and safety, reducing CO- emissions and enhancing driving
comfort. Grouping neighboring vehicles (in form of platoons
or convoys) is one possible way to achieve these objectives.
Many previous research projects in this field (e.g., PATH
[1], CHAUFFEUR 1 and II [2], and SARTRE [3]) have
proven that fuel consumption could be decreased by 15% to
30% while the road throughput on motorways can potentially
be multiplied by a factor of 3 to 5 through group control
of vehicles. This current study is integrated in an ongoing
European project named AutoNet2030' and proposes a
methodology for dynamic convoying of intelligent vehicles
in highway scenarios.

Differently from other -contributions, in our work
we consider not only single-lane pre-established fixed
formations, but also multi-lane loose formations able to
dynamically accommodate joining and leaving vehicles. In
this context, a group of three or more cooperative vehicles
maintaining a loose formation (typically their distance and
speed) is defined as convoy [4]. In contrast to platoons,
in convoys neither a leading vehicle nor a centralized
controller/supervisor exists, the formation is not constrained
to a single lane, and its structure is loose and dynamic.
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Obtaining such features pose difficult challenges to design
control strategies for convoys.

The cooperation, control, and management of the vehicles
in a cooperative area can be done either in a centralized
or decentralized fashion. Although centralized techniques
can usually result in optimal solutions, they impose the
requirement of high level of connectivity in the system and
generate a substantial computational burden in the central
unit. In systems with a large number of inputs and outputs,
distributed architectures have several inherent advantages
over their centralized counterparts, including fault tolerance,
reliability, and scalability [5]. This study tackles the convoy
problem without using any point of centralization, leveraging
a fully distributed control law.

To state the problem, consider an unknown number of
intelligent vehicles in a road which are able to communicate
with each other locally and can localize themselves. The
problem is how these vehicles can establish a dynamic multi-
lane convoy which remains stable while allowing new cars
to join, as well as the current cars to leave. The convoy
control strategy should integrate essential driving behaviors,
namely lane-keeping and obstacle avoidance, and should
maximize the overall fuel economy of the vehicles and
minimize formation errors.

Most of the works in group control of vehicles have been
focused on single-lane platooning problems using reactive
spacing control methods for consecutive vehicles. Point-
follower and vehicle-follower [1], [6], adaptive cruise control
(ACC) [7], [8], cooperative ACC (C-ACC) [9] and local
controllers [10] are the main approaches for single lane
platooning control. In these strategies, the desired inter-
vehicular spacing is maintained through basic (usually first or
second order) control laws such that every controlled vehicle
matches its distance and speed with the vehicle ahead. It is
mathematically proven and experimentally shown that these
reactive control methods lead to string stability issues [7],
especially if the group size is large. Moreover, it is very
challenging to adapt these methods to multi-lane convoy
control where there is no leading vehicle in front and the
number of involved vehicles is dynamically changing.

Kato et al. [11] introduced the concept of multi-lane
platooning for increasing the safety levels of cooperative
intelligent vehicles in highways. They showed that in a
multi-lane group control, the safety level can be increased
since vehicles cooperate and coordinate not only within the
same lane but also with the vehicles in the neighboring
lanes. The downside of this work was that the number of
vehicles in this study was fixed (to 5) and the first vehicle
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acted as the leader. A notable exception is represented by
the work of Gowal et al. [12], which proposed leaderless
graph-based control [13] for multi-lane platooning. Their
proposed graph-based controller is capable of driving the cars
to any arbitrary formation. Using distributed graph-based
control, each vehicle can independently compute its next
goal point. The result is that the whole group will eventually
converge to the desired formation. One drawback of this
work is that since the formation graph is apriori defined, the
topological location of each vehicle in the formation structure
as well as the number of vehicles are pre-established, which
implies that no vehicle can leave or join the group. Another
downside of the three contributions above is that their control
algorithms do not take into account neither road and lane
geometries nor dynamic obstacles, meaning that the platoon
may get established in any random position which can be
outside of the roads and will not have the ability of avoid
possible obstacles.

In this paper, we improve the scalability of the graph-
based formation control by defining two new concepts, local
identifiers and neighborhood, such that vehicles can generate
dynamic graphs with their neighbors. This way, vehicles can
join or leave the group dynamically without jeopardizing
the group’s stability. Moreover, we integrate lane-keeping
and obstacle avoidance behaviors for the intelligent vehicles
into the proposed convoy control strategy. Finally, we
also optimize the parameters of the formation topology
using Particle Swarm Optimization (PSO), a powerful
metaheuristic method well adapted for optimization in spaces
characterized by large dimensions and real numbers. To the
best of our knowledge, no previous work has proposed a
graph-based control strategy which leads to dynamic multi-
lane convoy formations.

II. DYNAMIC GRAPH-BASED CONVOY CONTROL

In this section we briefly describe the static graph-based
formation and then upgrade it to dynamic multi-lane convoy
control.

A. Static graph-based formation control

Considering a fixed number of vehicles initially placed in
random locations in the space, the question is how to design
a distributed control algorithm which guides the individual
vehicles to converge into a desired spatial formation (e.g.,
the ones shown in Fig. 1 and Fig. 2). As already mentioned,
graph-based formation control [12], [13] is a solution
for solving this problem. In graph-based formation, an
undirected graph G = (V, E) is defined in which vertexes
V' correspond to controlled agents (vehicles in this case)
and edges E correspond to inter-vehicle communication and
relative positioning links. Built upon basic linear algebra,
a stable solution to the formation control problem in two
dimensions [14] is given by:
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with £ = Z-W - I7T, where £ (called Laplacian matrix)
is obtained from the incidence matrix 7 that defines the
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Fig. 1. Trajectories of four cars converging to a rectangular formation
using static graph-based control. The picture is adapted from [12].

edges of G and the weight matrix VW which is a diagonal
matrix used to tune the weights assigned to the edges. I
is simply a 2 x 2 identity matrix (since we work only in a
two-dimensional plane). The (z,y) absolute position vector
for all vehicles is given by x, and the desired offsets of
the vehicles to the formation centroid are given by the bias
matrix b. The parameter vg represents the desired (goal)
velocity of the vehicles.

Since usual vehicles are non-holonomic systems, an
appropriate translation between the holonomic state variables
#(t), y(t) and the non-holonomic control variables of a
vehicle (longitudinal speed and steering) is needed. Similar to
[12], we model the non-holonomic vehicles using a kinematic
bicycle model which is readily studied in the literature [15].
As Fig. 1 demonstrates, Eq. (1) guides the vehicles on
trajectories which will lead to the desired formation defined
by the biases. Additional details about non-holonomic graph-
based control are provided in [12], [13].

B. Dynamic graph-based convoy control

In the real world, vehicles are obliged to respect lanes;
we therefore take this into account in the definition of
our formation topologies (i.e., single-lane convoy, two-lanes
convoy, three-lanes convoy, etc.). On the other hand, the
vehicles occasionally need to avoid obstacles on their lane
due to any possible reason. We propose an interleaved multi-
lane topology shown in Fig. 2 and Fig. 4 to allow vehicles
to merge into their side lanes in case of avoiding obstacles
without colliding with the other vehicles. This topology
provides enough space on the left and right of the vehicles
for temporary usage and thus increases their safety. The
illustration in Fig. 2 shows the most general case, when there
are many vehicles in the convoy (both in terms of length and
number of lanes); however, in practice the same principles
can be followed to establish convoys with the same topology
in fewer lanes.

To make the static graph-based formation control scalable
and dynamic (i.e., to enable vehicles to join or leave the
convoy or to change lanes within the convoy), we propose
an approach in which graphs containing connections between
vehicles are dynamically created, locally maintained, and
automatically modified on the fly. We first explain the main
ingredients of the dynamic graphs in our system, namely
local neighborhood and local identifiers.

Local neighborhood: We define a neighborhood Ap
of a vehicle using topological distance, that is, distance
measured in number of vehicles (as opposed to a metric
distance measured in meters). See Fig. 2 for an illustration of



Fig. 2. Topological neighborhood Np of the vehicle shown in red. The
green dashed line depicts Np = 1, while the blue dotted line depicts
Np = 2. Vehicles are enumerated in the local coordinate system of the
vehicle shown in red. b, and by represent the longitudinal and lateral bias
offsets between the immediate neichbors. Py

7

Fig. 3. The distance and azimuth of one car relative to another. The red
line shows the road path.

neighborhoods for Np = 1 and A'p = 2. The same principle
can be applied in the cases where the number of lanes is
limited or when there are no vehicles in front or behind the
vehicle for which the neighborhood is determined.

Local identifiers: In this method, each vehicle enumerates
the other vehicles in its vicinity using its local coordinate
frame, by assigning them local identifiers which are ordered
pairs (2-tuples) containing topological distances in z- and
y-axes (in its local right-handed coordinate system). For
instance, a vehicle driving directly in front and in the
immediate left lane will be assigned an identifier (1, 1), while
a vehicle driving behind in one lane to the right will be
considered to have an identifier (—1, —1). This concept is
depicted in Fig. 2. Finally, each vehicle will contain a list
of local identifiers for vehicles in its neighborhood. Each
local identifier is paired with a physical (global) ID of the
corresponding vehicle, which is unique.

Graph-based formation control for multi-lane
interleaved convoys: The Laplacian control (Eq. 1) can be
upgraded to a decentralized approach, assuming a connected
(but not necessarily complete) graph, using only relative
positioning information [12], [13]. Making the assumption
that any vehicle V™ is able to measure its distance e,,
and azimuth o, , to other neighboring vehicles V", the
controller running in each vehicle (relative to its own
coordinate frame) for the desired multi-lane interleaved
formation is modified to:

Z [T — (em,n cos (Am,n —0) —m - (b—m))

[z} _ | mmyenp 2 [vcz}
Y Z Wi, - (em,nsin(ozm_’71 70)7n~by) VGy
(m,n)eENp

2
where m,n < Np represent the topological distance in x-

Fig. 4. Example of a two-lanes convoy for Np = 1 and the longitudinal
and diagonal weights.

and y-axis (local identifier) of the car to other vehicles in
its local neighborhood and @ is the angle of the road at the
current position of the car (see Fig. 2 and Fig. 3). It should
be noted that in Eq. 2, the bias distance to the neighboring
vehicles with id = (m,n) is carefully designed for the
interleaved formations presented in this paper.

For example, consider the two-lanes convoy depicted in
Fig. 4 for Np = 1. Vehicle (0,0) is aware of its four closest
neighbors, namely vehicles denoted with identifiers (—2,0),
(—=1,1), (1,1), and (2,0). Based on Eq. (2) the vehicle
(0,0) performs graph-based control using its bias offsets
and distances relative to the only four direct neighbors in
its graph. In this formula, the x-bias considered for vehicle
(2,0) will be b, where as for vehicle (1,1) it will be (%’”)
While the y-bias for vehicle (2,0) will be zero where as for
the vehicle (1,1) it will be b,.

In order to have a homogeneous formation, we categorize
the edges’ weights into two groups; the longitudinal edge
weights (w,), and the diagonal edge weights (wg), so that
all the longitudinal and diagonal edges’ weights are identical.
Fig. 4 depicts this concept. So V(m,n) € Np we have:
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In the proposed method, although an individual vehicle
is performing formation control with its neighbors only, at
the global level, the graph is collectively connected through
the sequence of smaller local graphs. Hence, vehicles can
maintain convoy formation equally stable as in the case
of the static graph-based formation control. Furthermore,
this approach is fully dicentralized, that is, each vehicle
executes its control loop locally. Vehicles do not need to
know the total number of vehicles nor their absolute position
in the formation; only the relative poses within the local
neighborhood are necessary.

C. Convoy functions

Once vehicles know how to build and maintain their
dynamic graphs, various simple message passing functions
allow vehicles to change lanes, leave the convoy, or new
vehicles to join. For example, in case of joining a convoy,
the new vehicle broadcasts a join request, which is received
by all the vehicles within its communication range. Upon
receiving a join request, each vehicle verifies if it is the
closest to the new vehicle by checking its local graph
and the position of the joining vehicle. The closest vehicle
determines the position at which the new vehicle should join
(e.g., in front or behind). Then, it communicates the relevant
convoy parameters to the new vehicle (such as the local graph
containing ID of neighboring vehicles, bias parameters,
weights of the graph-based control, convoy speed, etc.) and



also informs all the vehicles in its local neighborhood about
the new vehicle. Further details about these message passing
protocols are out of scope of this paper.

Regarding the communication protocol, all vehicles
periodically update their position through update position
broadcasts. These broadcasts can be implemented in reality
through Cooperative Awareness Messages (CAM) using
DSRC or WAVE technologies (IEEE 802.11p standard). With
respect to the current CAM specifications, a few parameters
(e.g., the Convoy-ID) should be added to the protocols.

D. Lane keeping

Alongside the distributed formation control, we have
implemented a lane-keeping behavior as a separate control
law. Its goal is to detect lane markings on the road and
keep the vehicle positioned centrally within the lane in
which it is driving. Our lane-keeping algorithm is based on
the output of one forward-looking vision sensor, mounted
frontally on each vehicle. Similar to [16] which contains
image smoothing using Gaussian filter, edge detection using
Canny detector, and line detection with the help of Hough
transform, our algorithm outputs the angle to the centerline
of the lane. The vehicle steering angle ¢; is set to match the
tangent of the centerline using a PI controller.

E. Obstacle avoidance

An obstacle avoidance behavior is also integrated in this
work. Using a LIDAR mounted in front of each vehicle,
any object in front is detected and localized relative to the
local coordinate system of the vehicle. Similar to [17], we
analyze the LIDAR’s output and extract the features of the
perceived obstacles and compute the angle of the nearest
silhouette edge of the occlusions relative to the heading of
the car. Based on this angle, the necessary deviation angle of
the planned trajectory due to the obstacles is computed and
named as ¢,. This angle is integrated in the final behavior
of the vehicle.

F. Fusing behaviors

To make the vehicles perform convoy control and also
lane-keeping and obstacle avoidance simultaneously, we fuse
the three control laws together. The steering angle of the
vehicle can be computed as:

b =ag+ oo+ (1—a— B, @

where subscript [ represents the input from the lane keeping,
o from the obstacle avoidance, and g from the graph-based
control law. The parameters « and [ are two balancing
coefficients which allow for adjusting the balance between
convoy, lane keeping, and obstacle avoidance behaviors.

G. Optimizing the parameters of the proposed method

A main challenge is how to set the parameters of the
composed convoy control law described above such that the
performance of the vehicles in the convoy is maximized.
These parameters include:

« weights of the graph-based Laplacian control law (w,,

wg) in Eq. (3),

« balancing coefficients of convoy/lane-keeping/obstacle-
avoidance behaviors (a, 3) in Eq. (4).

In particular, we are interested

performance of the system such that:

in maximizing the

o the overall fuel consumption is minimized,
« the formation errors of the vehicles in the convoy are
minimized and no collision happens.

To minimize the fuel consumption, we propose using
the following performance metric for measuring the overall
acceleration applied to a vehicle 4:
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speed of vehicle i,
- is the acceleration term for
vehicle ¢ during a short period of 7' (which is the time-
step of iteration k in the graph-based Laplacian control), N
represents the total number of iterations in an experiment,
and ajps is a constant which represents the maximum
achievable acceleration of vehicle i.

To minimize the spatial formation errors of vehicle i, the
following metric is proposed:

+ (et )’
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where e”(k) and ef-(k) are respectively the longitudinal
and lateral formation errors of vehicle ¢ during discrete-
time iteration k, and dj; represents the maximum possible
displacement distance of a vehicle in a convoy. It should
be mentioned that if one vehicle collides with an obstacle,
these errors dramatically increase in all the neighboring cars
naturally.

Fitness functions g; and h; are normalized to the interval
[0,1], and they need to be minimized. We turn this
minimization into a maximization problem by defining G; =
1 —g; and H; = 1 — h;. The total fitness function in
one experiment is the sum of aggregate fitness functions
for individual vehicles normalized by the total number of
vehicles in the convoy n:

|
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H. Optimization method

As can be seen from Eq. (7), there is no explicit
relationship between the optimization parameters (weights
and balance coefficients) and the value of the fitness function.
We therefore choose to exploit a robust metaheuristic
optimization technique to optimize our design parameters,
Particle Swarm Optimization (PSO). PSO algorithm is a
population-based metaheuristic approach which is robust to
the presence of noise on the input and output variables and is
well suited to distributed systems. Due to its robustness and
simplicity, it has been used in a wide range of applications,
including multi-robot spatial control. In this work we use a
noise-resistant version of PSO developed in our laboratory
(see [18] for more details).



Fig. 5. The vehicle used in the simulations which is equipped with camera,
LIDAR, GNSS and radio modules (left). One of the testbeds designed for
simulations with more than 1 Km length (right).

TABLE I
THE PARAMETERS USED IN THE PSO ALGORITHM, EXPLAINED IN [18]

Np N; te Nre | wp Wn Vimaz| Inertia w
8 50 125 | 1 0.1 0.1 0.2 0.8

III. EXPERIMENTS AND RESULTS

Experiments and performance evaluation of candidate
solutions are carried out using Webots [19], a powerful,
submicroscopic, high-fidelity simulator originally developed
for mobile robotics, which has recently been upgraded to
support automotive platforms>. Webots provides a useful
framework for faithfully reproducing multiple intelligent
vehicles based on the Open Dynamic Engine (ODE) [20]
library. The proposed dynamic graph-based convoy controller
is implemented in Webots using C++ language.

Our simulated vehicle model incorporates basic rigid
dynamics properties of a real car such as typical steering
dynamic response and friction of the tires. This vehicle is
developed by Cyberbotics® Ltd. and its physical appearance
is based on the BMW X5. We have added to this vehicle a
radio communication device, a laser scanner, a camera and a
realistic GNSS module. Fig. 5 (left) represents one of these
vehicles in the Webots environment. Up to 12 vehicles are
used in the various experiments of this study. We added a
Gaussian noise with 0 = 1 m to the GNSS output in order
to obtain realistic measurements for self-localization of the
vehicles. The video camera is mounted on top of the vehicle,
pointing ahead, and is used for the lane-keeping behavior. It
provides 15 frames per second at a resolution of 640 x 480
pixels. Vehicles can send and receive messages to each other
using the radio communication module. We have set the
maximum packet rate to 15 Hz for each vehicle. The LIDAR
is a simulated Sick-LMS291 with a maximum range of 80
m and an accuracy of 10 mm (1 sigma) that is mounted on
the front bumper of the vehicle, for obstacle avoidance.

We have designed several environments realistically
reproducing potential highway layouts containing rings with
multiple lanes, exit and merge points. Fig. 5 (right) shows
one of these environments. To simplify the lane-keeping
behavior, we have colored the center line of different lanes
with specific colors.

The objective is to find the best values of the discussed
parameters in various situations. Here is a list of scenarios
which we consider in the optimizations process:

Zhttp://disal.epfl.ch/RO2IVSim
3http://www.cyberbotics.com/

Fig. 6. Six cars maintaining convoy formation while dynamically avoiding a
big obstacle (the box in yellow). The videos of this experiment are provided
at the mentioned web link.
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Fig. 7.  Acceleration and formation errors for vehicle A in the obstacle
avoidance scenario shown in Fig. 6. The obstacle avoidance starts happening
at 3.3 s. Blue (dotted line) shows the result of the controller with optimal
values (wz,wq, o, B) = (0.30,0.16,0.45,0.42). Black (dashed line) and
red (solid line) show the results of the controller while the parameters are
set to (0.8,0.8,0.1,0.8) and (0.1, 0.1, 0.1, 0.1) respectively.

o Convoy control while driving in a straight forward road,

« Convoy control while driving in a curved road,

« Convoy control while there is an obstacle blocking some

parts of the road and vehicles need to avoid it,

o Convoy control while a vehicle joins,

« Convoy control while a vehicle changes its lane,

o Convoy control while a vehicle leaves.
Considering only one of the above scenarios will provide a
set of optimized values for the parameters which may not
lead to efficient functionality for the other scenarios. So we
consider all of these scenarios in the optimization process
and we look for a set of values which provides the best
overall performance. Although the proposed method does
not assume any limit for scenario parameters, to provide
comparably consistent results, hereafter we focus only on
two-lane convoy scenarios with b, = 20 m and b, = 6
m and the desired cruise speed of the convoy vg, = 60
km/h in all the experiments. The parameters of the PSO
algorithm used in this paper are presented in Table I. The
PSO performance converges after 50 iterations and its best
particle is: w, = 0.30, wqg = 0.16, a = 0.45, and § = 0.42.

The proposed method is fully functional if proper
weights (w,, wg, «, and ) are chosen for the vehicles’
controller*. The optimized parameters are used in the
scenarios mentioned above and the trajectory of the vehicles
are observed. Vehicles’ movements are notably smoother
and the convoy formations are more precise while using
optimized values for the parameters. Fig. 6 shows snapshots
of an example scenario in which six cars are convoying
in two-lanes on a highway. In this scenario, there is a
large yellow obstacle in one of the lanes which cars avoid

4A video of some experiments is provided at the following link:
http://disalw3.epfl.ch/research/AutoNet2030/IV2015.mp4



Fig. 8. Seven cars maintaining convoy formation. One car leaves the convoy
and the other cars automatically adapt their position and converge to a new
configuration converting to a six-vehicle convoy.
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Fig. 9.  Acceleration and formation errors for vehicle A in the convoy
scenario shown in Fig. 8. The parameters are the ones explained in Fig. 7.

while still maintaining the convoy formation. Fig. 8 shows
a few snapshots of another scenario in which one car exits
from a convoy. Many similar interesting behaviors are seen
in various experiments (see the video mentioned in the
footnote).

To demonstrate the effect of the parameters on the convoy
control, we repeated the above scenarios multiple times with
different sets of values (including the optimized values).
Fig. 7 and Fig. 9 show the acceleration, e and ell of vehicle
A in the two mentioned scenarios in three experiments. In
each experiment the parameters [w,,wq, o, B] were set to
a different sets of values; once to one set of optimized
values, once to [0.8,0.8,0.1,0.8] (called aggressive weight
set here), and another time all to 0.1 (called conservative
weight set). In the first scenario, the vehicles start from
zero velocity, so their acceleration is positive during the
first second. The obstacle avoidance starts happening at time
3.3 s. As can be seen from Fig. 7 and Fig. 9, compared to the
aggressive weight set, the optimal values present smoother
acceleration profile, comparable convergence in longitudinal
error, but slower convergence in lateral error. On the other
hand, although conserative weight set results in generally
lower acceleration for the vehicles, it demonstrates bigger
formation errors for longer duration. One can conclude that
the optimized solution achieves a good trade-off for both
minimizing acceleration changes and formation errors.

IV. CONCLUSION

We presented a distributed graph-based formation control
approach for multi-lane convoying on highways, which is
capable of handling dynamic changes in the formation
topology while keeping lanes and avoiding obstacles. While
an individual vehicle performs formation control with its
neighbors only, at the convoy level, the graph is collectively
connected through the sequence of the local neighborhood
graphs. Vehicles can join, leave, or change lanes without
impacting the functionality of the convoy. The designed
formation topology is an interleaved multi-lane structure
which gives enough space to the cars to use their side-lanes

while avoiding obstacles. We also investigated the impact
of optimizing the parameters of the overall resulting control
law in realistic scenarios using PSO in order to minimize
both fuel consumption of the vehicles and formation control
errors. Using optimized values for the parameters, vehicles’
movements are smoother and the convoy formations are more

faithful to the desired topology.
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