
brain–machine interface (BMI) is about transforming neural activity into action and 
sensation into perception (Figure 1). In a BMI system, neural signals recorded from the 
brain are fed into a decoding algorithm that translates these signals into motor outputs 
to control a variety of practical devices for motor-disabled people [1]–[5]. Feedback 
from the prosthetic device, conveyed to the user either via normal sensory pathways 

or directly through brain stimulation, establishes a closed control loop.
An important aspect of a BMI is the capability to distinguish between different patterns of brain 

activity, with each being associated with a particular intention or mental task. Hence, adaptation is a 
key component of a BMI because, on the one hand, users must learn to modulate their neural activity 
to generate distinct brain patterns, while, on the other hand, machine-learning techniques need to 
discover the individual brain patterns characterizing the mental tasks executed by the user. In es-
sence, a BMI is a two-learner system that must engage in a mutual adaptation process [6], [7].

Future neuroprosthetics—robots and exoskeletons controlled via a BMI—will be tightly coupled 
with the user in such a way that the resulting system can replace and restore impaired limb func-
tions because they are controlled by the same neural signals as their natural counterparts. However, 
the robust and natural interaction of subjects with prostheses over long periods of time remains a 
major challenge. To tackle this challenge, we can take inspiration from natural motor control, where  
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goal-directed behavior is dynamically modulated by per-
ceptual feedback resulting from executed actions.

Brain signals for a BMI can be recorded from single 
neurons using microelectrode arrays implanted in the 
brain (single-unit activity) or as the concerted activity 
of neuronal populations of different sizes depending on 
the position of the electrodes—either implanted in the 
brain (local field potential), on the surface of the brain 
(electrocorticography), or outside the scalp (electroen-
cephalography). These approaches provide complemen-
tary advantages, and a combination of technologies may 
be necessary to achieve the ultimate goal of controlling 
neuroprostheses capable of replicating any kind of body 
movement as easily as able-bodied people control their 
natural limbs [8].

No matter the origin of the brain signals, current BMIs 
partly emulate human motor control as they decode cor-
tical correlates of movement parameters—from the onset 
of a movement to directions to instantaneous velocity—to 
generate the sequence of movements for the neuropros-
thesis. However, a closer look shows that motor control 
results from the combined activity of the cerebral cortex, 
subcortical areas, and spinal cord. In fact, many elements 
of skilled movements, from manipulation to walking, are 
mainly handled at the brain stem and spinal cord level, 
with cortical areas providing an abstraction of the desired 
movement. This hierarchical organization supports the 
hypothesis that complex behav-
iors can be controlled using the 
low-dimensional output of a BMI 
in conjunction with intelligent de-
vices in charge to perform low-level 
commands, akin to the role of the 
subcortical and spinal cord levels 
in human motor control.

Our brain-controlled wheelchair 
(Figure 2) illustrates the future of 
intelligent neuroprostheses that, 
like our spinal cord and musculo-
skeletal system, work in tandem 
with motor commands decoded 
from the user’s brain cortex [9]. Us-
ers can drive it reliably and safely over long periods of time 
thanks to the incorporation of shared-control (or context-
awareness) techniques. This relieves users from the need 
to continuously deliver all the necessary low-level control 
parameters and, therefore, reduces their cognitive workload 
and facilitates split attention [10].

A further component that will facilitate intuitive and 
natural control of motor neuroprosthetics is the incorpo-
ration of rich multimodal feedback and neural correlates 
of perceptual processes resulting from this feedback. Re-
alistic sensory feedback must convey artificial tactile and 
proprioceptive information—i.e., the awareness of the po-
sition and movement—of the neuroprosthesis [11]. This 
type of sensory information has the potential to signifi-

cantly improve the control of the 
prosthesis by allowing the user to 
feel the environment in cases in 
which natural sensory afferents 
are compromised—either through 
other senses or by stimulating the 
body or even the brain directly to 
recover the lost sensation. Fur-
thermore, rich multimodal feed-
back is essential to promote the 
user’s agency and owernship of 
the prosthesis.

Finally, we can decode and in-
tegrate the prosthetic control-loop information about per-
ceptual cognitive processes of the user that are crucial for 
volitional interaction, such as awareness to errors made 
by the device [12], anticipation of critical decision points, 
and lapses of attention. As in natural motor control, this 
information is associated with processing feedback and 
should dynamically modulate interaction.
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Figure 1. a bmI loop: a bmI transforms brain activ-
ity (recorded at the micro-, meso-, or macrolevel) into 
actions by decoding the user’s intention. the estimated 
intention is enlarged with contextual information (exter-
nal input plus the internal state of the neuroprosthesis) 
using shared control. the execution of actions conveys 
rich multimodal feedback to the user, who makes per-
ceptual cognitive decisions that dynamically modulate 
his or her goal-directed behavior.
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Figure 2. a brain-controlled wheelchair: users can 
drive it reliably and safely over long periods of time 
thanks to the incorporation of shared-control (or 
context-awareness) techniques.
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