View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Improving the JVM Bytecode Generated by the Scala Compiler

Parameterised types specialization

Cristian Talau

EPFL

cristian.talau@epfl.ch

Abstract

In this semester project report I describe my work on de-
signing a new compilation strategy for Scala parameterised
types on top of JVM. I will explore existing solutions and
propose the Miniboxing strategy which has better speed and
space performance than the standard erasure implementa-
tion, while it generates less bytecode than the full specializa-
tion approach. I will also propose a strategy to take advan-
tage of the Java classloading architecture to avoid bytecode
explosion by generating specialized code lazily at runtime.

1.

One of the most important features of the Scala program-
ming language is represented by the parameterised types (or
clsses). Among the most common uses are the Scala collec-
tions, higher order functions which are desugared into in-
stances of the parameterised type FunctionN and tuples.

Although the Java programming language also has this
feature, the Java Virtual Machine [5] offers little support
for implementing it. In particular, it has different sets of in-
structions for primitive types and for reference types: e.g.
iastore for Int, lastore for Long and aastore for refer-
ences. The only way to generate code for methods of param-
eterised typs that handles with all data types is to box primi-
tive values inside objects and generate erased code that uses
reference-specific instructions. However this boxing and un-
boxing comes at the cost of space and speed performance.
For example, on a 64-bit CPU, the current versionis of JVM
would use 256 bits for an instance of java.lang.Integer
and 64 bits for each reference to it. The caching of integers
done inside Integer.valueOf can alleviate this problem,
but it usually prevents some optimizations like stack allo-
cation of Integer objects. Other disadvantages of this ap-
proach are the big memory allocation time, poor memory
locality, extra level of indirection when accessing the actual
value and the unpredictable pauses due to garbage collec-
tion.

Another approach to compile parameterised classes, cur-
rently implemented in Scala [1], is to generate one version
of the code for each kind of datatype. This implementation,
while solving the performance problems of the boxing-based

Introduction

one, suffers from the bytecode exposion problem: for a class
with N type parameters, it will generate O(10%) classes.

The Miniboxing strategy tries to combine both solutions
in order to achieve good space and speed performance with
only O(2%) classes generated. We take advantage of the re-
strictions that Scala imposes over access to fields (that needs
to be made only through setters and getters from outside the
class) and use a common representation for primitive types
similarly with the way JVM uses the same representation
for reference types. While the Java approach boxes/unboxes
primitive values to their common reference-based represen-
tation, we minibox/miniunbox primitive values to their com-
mon representation, using cheaper conversions.

The rest of the report is structured as follows: in the first
section I will analyze several existing solutions from the lit-
erature with respect to several important design decisions
that need to be made when compiling parameterised classes,
in the second section I will present some implementation de-
tails specific to the Scala programming language and com-
piler, in the next section I will include some experimental
results and finally, I will present some future research ideas
and conclusions.

2. Related Work

In this section I will discuss several design decisions that one
needs to make when compiling parameterised classes and
analyze the solutions present in the literature for other pro-
gramming languages. Since the problem of parameterised
classes is usually handled together with generic methods, I
will use generic code to refer them.

21

2.1.1 Uniform representation

What value representations do we use?

Perhaps the simplest compilation strategy of generic code is
to use a common runtime representation for all data types
(e.g. as pointers). However, in non-generic code, we may
want to store floating point numbers in special registers and
object references in other kinds of registers which allow
more complex indirect addressing modes. So, we need to
have two runtime representations: a uniform one used inside
generic code and a specialized one used outside and we need

https://core.ac.uk/display/148012119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to convert them back and forth at boundary points. This
conversions were introduced by [4] in the context of ML-like
languages and were called wrap/unwrap.

In Java all the values are represented in generic code as
object references and outside they use a natural representa-
tion [2]]. The conversion to the uniform representation works
by creating an object to box the primitive value. On the other
hand, since the natural representation of all objects is a refer-
ence anyway, their conversion reduces to just a checkcast
instruction which is needed by the bytecode verifier ([5],
4.10.2.2).

Another strategy, used in JavaScript engines [6] and pos-
sibly used in the future in the JVM [9], represents all the
values on 64 (or 128) bits by using techniques like pointer
tagging (the lowest bits of a pointer which are 0 due to
alignment constraints are reused to store the type tag) and
nan-boxing (the 2°3 bit patterns used to store NaN values
are reused for storing other datatypes like integers). Another
technique used in JavaScript uses a separate stack to track
the type tag of the values. The conversions to the natural
representation are usually cheap - just some bit shifting and
masking.

2.1.2 Non-uniform representation

At the other end of the spectrum we can use the natural repre-
sentation also inside the generic code and generate multiple
versions of the generic code, one for each possible combina-
tion of representations for the values occurring in the code.
These versions are called specializations of the code (class,
method). In the case of generic classes, this means generat-
ing BY classes where N is the number of parameters of the
class and B is the total number of representations for some
data type. For example, for uniform representation B = 1
and for the full specialization used in the Scala compiler [[1]
B = |{ Unit, Boolean, Byte, Short, Char, Int,
Long, Float, Double, AnyRef }| = 10. Note that B
can also be unbounded as in the heterogeneous translation
of the Pizza compiler [§]] or in the C++ templates [10] where
the class is specialized according to every possible type.

We can already notice that choosing B is one of the main
trade-offs between heap memory consumption, speed on the
one hand and number of generated classes on the other hand.
In our solution we chose to use a uniform representation of
all primitive types inspired from the JavaScript one and an-
other representation for reference types. Note that we cannot
represent object references on a Long because, although it
has sufficiently many bits, because object references in JVM
are changed by the garbage collector and even if we man-
aged to copy the pointer, it may became unusable after a
garbage collector pass.

2.2 When do we generate specialized code?

The approaches in the literature fall into three categories
with respect to the time when specialized code is generated:
compile time, link time, runtime.

An example of compile time approach is the current
Scala specialization which, based on user provided annota-
tions generates specialized versions of a parameterised class
for type parameters instantiated with primitives. The prob-
lem of this approach is that for a class with IV type param-
eters, it generates a O(10%") versions of it (unless the user
specifies a subset of these classes). Usually only a very small
number of such specialized version are used in a certain
application, so generating them may be avoided by waiting
until we really know what the application is going to use.

This brings up the idea to perform specialization at link
time as done by the C++ templates [[10]], where generic code
is instantiated and type-checked at use site. This approach
lacks separate compilation and tends to introduce obscure
error messages.

A third option is made possible by the execution envi-
ronment offered by the virtual machines, namely run time
specialization, in which parameterised classes are special-
ized at runtime from a template bytecode. This is the ap-
proach used in CLR generics [3] where the actual bytecode
is used as a template from which the JIT can generate spe-
cialized version for instances of generic definitions (classes
or methods) and share the code between instances whenever
the same representation is used.

A similar approach was tried for JVM in [8] where a
classloader was used to generate specialized classes for
primitive as well as for reference datatypes. The results re-
ported were negative in part due to the time spent inside the
classloader, which at that time did not benefit from the JIT
compiler optimizations, and which had to generate classes
even for instantiations with non-primitive types. This huge
amount of specialized classes can be avoided by specializing
only for primitive datatypes. Another problem came from
the fact that in Pizza (similarly to Scala) considers primitive
types to be instances of Any and functions like hashCode
can be invoked on them. These invocations perform addi-
tional boxing operations along with those done at generic
code boundary.

Although it seems very promising, there are still some
details to solve with run time specialization. First of all we
need to choose the right template format from which to gen-
erate code at runtime. The main requirement is to allow fast
code generation, otherwise any speedup of the specialization
would be shadowed by the higher classloading time. A prob-
lem specific to the Scala compiler is that generating such
a template requires type information that is not present in
the backend of the compiler because of the erasure. So, the
changes to the compiler are non trivial and in particular, this
approach is not suitable for implementing inside a compiler
plugin. In [8] the template is a normal class file with annota-
tions specifying a recipe to patch it to obtain the right version
for a given combination of type parameters.

Another problem is raised by generic methods which
need their code to be ready when the enclosing class is

loaded, so on top of JVM, we cannot wait until the method
is actually called to generate the code as the C# VM does.
It seems that a quick solution is to move them inside a fresh
object which is loaded only when the method is called. How-
ever, in the Scala standard library for example, they strongly
integrated in the inheritance hierarchy: some generic meth-
ods are interface methods which are overridden in sub-
classes. The solution of the current Scala full specialization
is to generate all possible versions for a reasonable number
of parameters and fall back to the uniform reference-based
representation above that limit [[1]]. In the Pizza compiler []],
boxing is used for all such methods since they specialize for
a possibly unbounded number of types.

A further problem is that we need to be able to run
the Scala application even when the specializing classloader
cannot be installed in the JVM (for example in application
servers like Tomcat). This means that the information that
the specializing classloader needs should be encoded as at-
tributes of the class file and which are ignored by a non-
specializing classloader.

The Miniboxing uses compile time code generation for a
smaller number of representation than the current approach.
Optionally, by using a custom classloader, it takes advantage
of the constant folding optimization implemented in JVM’s
JIT to be able to avoid the box operations due to invocation
of methods like hashCode on primitive values.

2.3 Where do we fit specialized classes in the type
hierarchy?

In this section, we will assume that we are using the refer-
ence based representation for AnyRef subtypes, and B—1 >
1 representations for primitive types, each primitive type
having a representation, possibly shared with other primitive
types. We also assume that we are generating one version
of the parameterised class for each combination of repre-
sentations for its type parameters. The version generated for
the case when all parameters are represented as references
is called the generic version the others are called specialized
versions.

First of all, in order to integrate well with the Scala’s
and JVM’s type system, the specialized classes need not
be only copies of the generic class where the representation
of the type parameters is changed, but they need also to be
integrated in the inheritance hierarchy. For example, a code
like:

case class Fool[T] { def smth : T = ... }
val foo : Foo[_] =

if (...) Foo[Long] else Foo[String]

requires that the specialized class that uses the representation
of T corresponding to Long the generic one (instantiated for
Foo[String]) have some common supertype: an abstract
class, a normal class or an interface. Let’s write FooBase
for the base type of the specialized and generic versions of
Fool[T].

It is obvious that it is not realistic to assume that we can
generated specialized code for every parameterised class.
The motivation are classes like Function20, Tuple20
which are part of the standard library and which need
O(B?%) > 0(220) specialized classes to be generated. If
we decide not to generate specialized code for a specific
class, we generate only the generic version.

Now assume that a method inside a class for which
generic code has been generated receives as a parameter an
instance of a class for which specialized version have been
generated.

class Bar[T] {

def bar(f: Fool[T]) = f.smth
}
(new Bar[Int]) .bar(Foo[Int])

Since Bar is not specialized, the method bar handles f as
if it were the generic class. On the other hand, this method
must be able to receive any of the specialized versions as
a parameter. So, it means that the methods of the generic
class can be invoked on the specialized classes also and pro-
vide the same effect as if they were invoked on the generic
class. This means that there must exist a supertype of all spe-
cialized versions of the class Foo containing the methods in
the generic class. Let’s call it FooGenericBase. Another
implication is that inside generic code we should replace
consider the expressions of type Foo[T] as having type
FooGenericBase. This is the same concept as the generic
interface from [8]].

Since some of the classes are not specialized, it turns
out to be difficult to generate code that always instantiates
the specialized version with the correct representation, es-
pecially the instantiation is done from generic code. In [8]
the authors make use of reflection to accomplish this at the
cost of execution time. Another choice is to instantiate the
generic class whenever we do not know statically the right
representation. For this reason, an expression with static type
Foo[Int] can evaluate either to an instance of the special-
ized version corresponding to Int’s representation or to an
instance of the generic class. So, symmetrically to the above
situation, there must be a supertype for each specialized
class that it shares with the generic version. This supertype
allows methods from the specialized versions to be invoked
on the generic class. As we have exponentially many spe-
cialized versions of the parameterised class, we have, at least
conceptually, exponentially many such supertypes (but they
may coincide). Let’s call them Foo*Base where * stands for
some name mangling schema. Again, as above, we need to
replace uses of Foo [Int] with the corresponding Foo*Base
super type everywhere in the specialized code.

Note that a similar problems occur in presence of contra-
variant types, where Foo [Long] is supertype of Foo [Any],
so a generic class may be encountered as the result of the
evaluation of an expression with static type Foo [Long].

2.3.1 Choosing common supertypes

If we choose to make the super types distinct, then the
generic class should implement as many interfaces as there
are specialized classes, which means BY and that these
super types must be interfaces due to single inheritance
restriction of the JVM. Note that even if we use runtime
generation for the specialized classes, the generic class must
implement the interface that corresponds to each of them
since interfaces cannot be added to an already loaded generic
class, as more specialized versions are loaded.

In the rest of the section we will focus on the case where
all the supertypes coincide and analyze the three options for
materializing this supertype: interface, abstract class, con-
crete class. We will use as a running example the following
class hierarchy, that contains most of the interesting cases:

class Bar[T] extends Base
class Foo[T] extends Bar[T]
class Baz extends Bar[Int]

Let’s denote by FooS, BarS the supertypes and by
FooP, BarP the specialized versions that use the rep-
resentation that corresponds to Int. The generic classes will
be just Foo, Bar.

Conceptually, each specialized version of a parameterised
class will contain m methods that are adapted to work with
its specific representation for its type parameters. These
methods are called the original methods of the specialized
class and the class it is called their original owner. The orig-
inal methods of the generic version of the class are called
the generic methods. The supertype will contain BN - m
methods, that is the collection of all the original methods of
the specialized classes.

Note that, as an optimization, two different specialized
may share methods if the methods operate only on values
that have as type the type parameters that use the same
representation in both classes. However, in this presentation,
we do not take this optimization into account.

Interface The resulting class hierarchy looks like in Fig-
ure |1} Since the interface has B - m methods, so do all
the specialized classes. Each of the specialized classes
will provide an implementation for its m original meth-
ods. The rest of the methods will just convert the argu-
ment and forward to the original methods. From every
specialized class only 2 methods can be ever called
(corresponding to reference-based representation or the
specialized representation of its type parameters). The
rest of the methods can just throw an exception or can
be left unimplemented and the JVM will throw an excep-
tion for us if, because of some bug in the compiler, they
happen to be called.

A limitation for this approach is that JVM allows only

public methods inside interfaces while our classes may
have private methods that need to be specialized as well.

Bar Bar$P Bar

Base

Figure 1. Class hierarchy for interface supertype

Abstract class The resulting class hierarchy looks like in
Figure2] The improvement over the interface approach is

Bar Bar$P Bar
Bar$S
Foo Foo$P
3
Foo$S
L
Base

Figure 2. Class hierarchy for abstract class supertype

that the abstract class can provide default implementation
for all methods to just forward to the original ones. This
way, the specialized classes need to implement only 2m
methods: the original ones by adapting the body from
the original class, and the generic ones to forward to
them. All the other methods will forward to the generic
ones which in turn forward to the original ones. A small
penalty is thus encountered if neither the original nor the
generic method is called.

Because of the JVM single inheritance restriction the spe-
cialized versions of Bar do not extend the corresponding
specialized versions of Foo. In order to simulate the in-
heritance, the specialized methods from Foo need to be
copied, augmenting the size of the class Bar. However,
the increase in the bytecode size is only linear with the
length of the inheritance chain.

This approach solve the problem with specialized pri-
vate methods because abstract classes are allowed to
have private members. Also, in the case of an abstract

class supertype, the specialized methods will be in-
voked with invokevirtual which is usually faster than
invokeinterface.

Concrete class In this case, the super type must be one
of the specialized versions of the parameterised class.
We chose it to be the generic class and the resulting
class hierarchy looks like in Figure [3] As there is no

Bar$P Bar

Bar$S =
Bar

Foo$P

l /
Foo$S =
Foo

Y

Base

Figure 3. Class hierarchy for concrete class supertype

notable difference in bytecode size compared to the ab-
stract class approach, the most important advantage of
using the generic class as a supertype is its simplicity: we
don’t have to replace every occurrence of Foo[X] with
the supertype as described above since they are actually
the same.

One disadvantage of this approach is the extra heap space
used because a specialized class inherits the fields generic
class and it needs another Boolean field to avoid execut-
ing both the specialized and generic version of the con-
structor. One further problem is that some private fields of
the generic class need to be accessible from the special-
ized subclasses which violates the JVM security model.

Note that in all cases, whenever we do not use the nat-
ural representation for a type parameter of a parameterised
class, we need to add add bridge methods in subclasses non-
parameterised subclasses.

Despite the fact that the last two approaches generate less
bytecode, at runtime, the size of the vtables will be the same
for all three approaches, namely BY - m .

2.4 Implementation specialization

In the previous sections, we discussed different strategies
to specialize the interface (i.e. the method signatures) of a
parameterised class and the restrictions that it must satisfy
in order to integrate nicely with the type hierarchy. The
purpose was to lower the conversion cost at class boundary,
while keeping under control the number of the methods in a
specialized class.

While in some programming languages like Haskell, the
values whose type is a type parameter can only be used as
black boxes and only passed around and stored, in Scala we
can perform a richer set of operations on them: invoke meth-
ods from Any, store them into an array (which on JVM re-
quires different opcode depending on the type of the value),
etc. These operations usually require conversions to the nat-
ural representation of the values by pattern matching on their
type at runtime.

It means that it makes sense to have specialized versions
of a parameterised corresponding to B’ > B representa-
tions, even if the interface was specialized for only B rep-
resentations. The advantage of this further specialization is
that at runtime, only the used specialized versions will use
memory and they can even be generated lazily. On the other
hand, if we have BY - m methods in the interface, the vzable
will be that big irrespective to the number of specialized ver-
sions that are actually used.

I will present the implementation specialization idea on
the following example:

def updO[T] (arr: Array[T], e: T) =
arr(0) = e
updO(Array(0, 1, 2), 3)

where the method upd0 needs to perform a pattern match at
runtime on the runtime type of arr since for different types
of arrays, it needs to use a different opcode to store the value
e (which has to be unboxed by another pattern match on its
type). If we had an implementation specialized for Int, the
above code can be rewritten to:

def upd0$Int[T] (arr: Array[T], e: T) =
arr.as[Array[Int]]1(0) = e.as[Int]
upd0$Int (Array(0, 1, 2), 3)

and the pattern match becomes just a checkcast instruc-
tion.

Moreover, if the method updO$Int is inlined, then the
boxing operation of e before the method call and its unbox-
ing inside the method will appear close to one another in the
resulting bytecode and they can be both removed by a sim-
ple peephole optimization, or after some escape analysis, the
compiler may decide to stack allocate e and to reduce the
garbage collection cost.

3. Miniboxing

We decided to use a uniform representation for all 9 Scala
primitive types: Unit, Boolean, Byte, Char, Short, Int,
Long, Float, Double. Since all of them use at most than
64 bits, we chose to encode them on a Long. However for
invoking methods like toString, ##, storing values in an
array, converting to reference based representation, etc. we
need their type at runtime. Since we have only 9 primitive
types, it is enough to represent them as a Byte tag.

The good news is that the tag is determined by the type
parameter of the class, and is constant for every class in-

stance. So, it does not need to be passed around together
with the Long represented value, but only at instance cre-
ation time, and to be stored in a special synthetic field.

We specialize the class interface and implementation at
compile time for all possible value representations. Since
each type parameter can be either reference type and repre-
sented after erasure as Object, or primitive and represented
as Long we have 2% classes for IV type parameters. At class
loading time, we optionally further specialize the implemen-
tation of the classes that use primitive values to speed up
operations that depend on the type tag.

We chose to use a single interface as the common super-
type for all specialized classes because of the nicer seman-
tic properties when we extend a specialized superclass (in
the other two approaches, we extend tin fact the generic ver-
sion). However, the other two approaches are applicable as
well.

The Scala operations that depend on the type tag of a
Miniboxed value include array access on an array whose
elements have the type given by a tag, and invocation of
methods inherited from Any on a primitive value with the
type given by a tag. Note that we do not specialize generic
methods, so the generic version is called always irrespective
to the type tags.

Only one more operation involves using the type tags,
namely instance creation. The problem is trivial whenever
the parameters are known types or type parameters of the en-
closing class. In this case, we just invoke the corresponding
constructor. However, if the type parameters are not special-
ized, but only have a tag associated, we know which con-
structor to use only at runtime, when the value of the tag
is known. This can be implemented either with reflection or
with a pattern match on the tags of the type parameters as
long as they are reasonably few (one or two). Another ap-
proach is to use a classloader to generate on the fly a factory
that will at its turn generate the instance.

Since all these solutions incur a significant overhead for
instance creation, we chose to instantiate the generic class in
such cases.

With this simplification, we can see that the operations
that depend on the type tag can be isolated as methods inside
the MiniboxTagDispatch object. Since the body of the
methods in the specialized classes is only changed to use
these tag-dispatch methods instead of the original ones, the
increase in the size of code is only linear with a small factor.
For performance reasons, we decided to mark these methods
as @inline.

3.1 Prototype compiler plugin

We implemented [7]] a prototype for the Miniboxing idea as
a compiler plugin. Being still a prototype it contains only a
part of what is described above. Based on a @minispec an-
notation, it specializes parameterised types using the Long
based representation when specializing for primitive values.
For the inheritance hierarchy, we use the interface-based ap-

proach except that only the generic class is used as super-
class to avoid generating additional bridge methods. We also
assume that our classes have only public methods.

Another tricky case is represented by the arrays which al-
ways need to use the natural representation of their elements
because converting them at class boundary would be very
expensive. For this reason, their support in the current im-
plementation is subject to several restrictions. On the other
hand, fields can escape from a class only via getters and set-
ters, so we can use our Long-based representation for them.

As in the full specialization, the compilation is split into
three steps. The first one takes care of creating specialized
version of the parameterised class and to fit them in the type
hierarchy. The second step is to replace the instantiations of
the generic class with instantiations of specialized versions
whenever we have sufficient information available about its
type parameters. The third step consists of rewiring method
calls to use the methods that would require the least number
of conversions (again, when we have sufficient information
about that). For the tests that we have made, we used our
prototype to perform the first step.

The most complicated part in implementing this in the
Scala compiler is that these specializations are easiest to un-
derstand and express in terms of representations of values.
i.e. Object or Long. However, in the compiler the conver-
sion (at least for Object) takes place during the erasure
phase while specialization happens several phases before.
Between these phases we insert casts in the body of spe-
cialized methods that are guaranteed to be identity only after
erasure.

3.2 Dynamic specialization

As noted above, since the operations like array access de-
pend on the type tag, it would make sense to specialize the
implementation of a parameterised type more than its inter-
face.

What this specialization does is to replace the tag-dispatch
methods by the operation corresponding to the runtime value
of the type tag. This can be thought of as an example of con-
stant folding on type tags that replaces the pattern matching
with the correct branch. The problem is that type tags are
constant for each instance of a class, and the body of the
method is shared by all instances, so we cannot fold the
constants into it. However if we duplicate the class for each
possible value of the tag and make the tag field static
final in that class, the JIT will fold it inside the body of
the class. Note that this duplication is very similar with pro-
cedure cloning and that our optimization is an instance of
interprocedural constant folding.

This method of specialization can be used inside the
classloader that can duplicate the classes easily and with the
cooperation of the JIT compiler which performs the local
constant folding.

A prototype classloader has been implemented that makes
the tag fields static final so that they can be constant folded
by the JIT.

4. Evaluation

In order to asses the performance of the Miniboxing ap-
proach we developed several micro-benchmarks involving a
linked list and a growable vector.

For the linked list we test insertion of N elements, com-
puting a hashCode by combining the hash codes of elements,
and lookup of 1% of the elements in a sequential fashion. For
the array we test also the insertion of N elements, the reverse
operation, and the lookup of 1% of the elements. The datas-
tructures were instantiated with Int and Double as the first
one has a very cheap conversion while the latter has the most
expensive conversion to the Long representation among all
primitive types.

We use use N = 1,000,000 elements, and we iterate
each operation several times in order to obtain a time of ap-
proximately 1 second. We measured the time only after the
VM was warmed-up and JIT compiled everything by skip-
ping the first few runs of each operation. We also forced a
full garbage collection cycle before starting the time mea-
surement.

Five compilation strategies have been compared: erasure
- the default strategy used in Scala, full specialization - avail-
able in Scala with a special annotation, Miniboxing, Mini-
boxing optimized - the tag-dispatching methods are inlined,
Miniboxing with ClassLoader - which uses a specializing
classloader in addition to the prvious strategy.

We conducted the measurements on a 64-bit Intel Core
2 Duo @ 2.5GHz computer, and JVM 1.6.0_26. The results
are summarized in Table 2l

We can notice that for some cases, the miniboxing ap-
proach was better than the full specialization which uses
natural representation for primitive values. This can hap-
pen because the full specialization do not specialize meth-
ods that do not have type parameters in their signature. In
consequence, the nullary hashCode will box/unbox the value
stored in the head of the list.

Another observation is that for operations that need run-
time type information (like accessing an array) the class-
loader approach is up to 4x faster.

In Table [I] the heap space occupied by payload of the
linked list is shown. By p we denote the pointer size - 4
or 8 bytes, by o the overhead of an object (two machine
words for klass and mark plus padding [9]]) and by s the size
of the primitive data type. For the full specialization, the p
term comes from the fact that we inherit the fields of the
generic class. In the miniboxing with classloader approach,
we get make the type tag static, so, we do not have to
keep it around in every instance. It can be seen that on 64-
bit processors, even for boolean payload, the miniboxing
approach uses less memory than the other approaches.

erasure | N -(p+o+s)

fullspec | N-(p+s+1)
MB | 9N
MB+CL | 8N

Table 1. Heap space comparison

Comparison among compilation strategies

W Array
operations

M List

15 operations

Cverall

Cverall Time (s)
=

Erasure Miniboxing Minibox & ClassLoader
Full Specialization WMinikoxing optimized

Figure 4. Overall speed performance

5. Future work

An interesting idea that we did not explore sufficiently is that
instead of creating multiple methods that receive their pa-
rameters according to each combination of representations,
we can use an single method that has one parameter for each
parameter of the original method and each representation.
For example:

def foo(x: T, y: uw)
translates to:

def foo(x$P: Long, x$R: Any,
y$P: Long, y$R: Any)

The implementation of such a method, when specialized for
primitive types will use only the parameters with primitive
representation. When calling such a method we pass some
dummy value in the parameters that are not going to be used
by the implementation. This may reduce the exponential
number of methods inside the supertype.

Another point that is far from being solved by Miniboxing
is the compilation of generic methods.

Finally, a full implementation of the Miniboxing idea
would allow us to run some macro-benchmarks and to com-
pare it more accurately to the existing implementations.

Acknowledgments

I would like to thank to Vlad Ureche and Miguel Garcia for
the close collaboration and insightful discussions. I would
also like to thank Martin Odersky and Iulian Dragos for the
feedback given during the presentation.

Parameter | erasure | full spec | MB | MB opt | MB+CL
array insert Int 1218 855 1039 952 515
Double 1544 907 1592 1300 960
array reverse Int 994 918 1226 726 406
Double 468 430 1278 1058 391
array lookup Int 1490 100 1197 446 116
Double 644 291 1378 630 273
Int
array bytecode Double 3.8K 279K | 16.1K | 19.7K 19.7K
list insert Int 1543 1913 1509 1478 898
Double 2181 2442 1111 982 849
. Int 1244 1480 1279 1142 959
listhashCode 5 P e 7510 | 1750 | 1243 | 1037 | 1057
list lookup Int 1464 1478 1045 1077 943
Double 1669 1629 1005 979 1008
. Int
list bytecode Double 2.1K 13.4K 7.6K 10.5K 10.5K

Table 2. Time and bytecode size comparison between the five approaches

References

[1] I. Dragos. Compiling Scala for Performance. PhD thesis,
Ecole polytechnique Fédérale de Lausanne, 2010.

[2] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java (TM)
Language Specification. Addison-Wesley Professional, 2011.

[3] A. Kennedy and D. Syme. Design and implementation of
generics for the. net common language runtime. In ACM
SigPlan Notices, volume 36, pages 1-12. ACM, 2001.

[4] X. Leroy. Efficient data representation in polymorphic lan-
guages. In Programming Language Implementation and Logic
Programming, pages 255-276. Springer, 1990.

[5] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The java
virtual machine specification. Addison Wesley, 2012.

[6] D. Mandelin. Jagermonkey: the ’halfway’ point.
http://blog.mozilla.org/dmandelin/2010/05/
10/jm-halfway/.

[7] Miniboxing-Plugin. Source repository. https://github.
com/miniboxing/miniboxing-plugin/tree/ctalau.

[8] M. Odersky, E. Runne, and P. Wadler. Two ways to bake your
pizza—translating parameterised types into java. Generic
Programming, pages 114-132, 2000.

[9] J. Rose. fixnums in the vm. https://blogs.oracle.com/
jrose/entry/fixnums_in_the_vm,

[10] D. Vandevoorde and N. Josuttis. C++ Templates - The Com-
plete Guide. Addison-Wesley Longman Publishing Co., Inc.,
2002. ISBN 0201734842.

http://blog.mozilla.org/dmandelin/2010/05/10/jm-halfway/
http://blog.mozilla.org/dmandelin/2010/05/10/jm-halfway/
https://github.com/miniboxing/miniboxing-plugin/tree/ctalau
https://github.com/miniboxing/miniboxing-plugin/tree/ctalau
https://blogs.oracle.com/jrose/entry/fixnums_in_the_vm
https://blogs.oracle.com/jrose/entry/fixnums_in_the_vm

	Introduction
	Related Work
	What value representations do we use?
	Uniform representation
	Non-uniform representation

	When do we generate specialized code?
	Where do we fit specialized classes in the type hierarchy?
	Choosing common supertypes

	Implementation specialization

	Miniboxing
	Prototype compiler plugin
	Dynamic specialization

	Evaluation
	Future work

