
Semester project report
Bridging Islands of Specialized Code using Macros and Reified Types

Nicolas Stucki
EPFL

{first}.{last}@epfl.ch

Abstract
Parametric polymorphism in Scala suffers from the usual draw-
backs of running on the Java Virtual Machine: primitive values are
boxed, leading to indirect access, wasteful use of heap memory and
lack of cache locality. For performance-critical parts of the code,
the Scala compiler introduces specialization, a transformation that
duplicates and adapts the bodies of classes and methods for prim-
itive types. Specialized code can speed up execution by an order
of magnitude, but only if they are called either from monomorphic
sites or by other specialized code. But if these “islands” of special-
ized code are called from generic code, their performance becomes
similar to generic code, losing its optimality.

To address this, our project builds high performance “bridges”
between “islands” of specialized code, removing the requirement
that full traces need to be specialized: We use macros to delimit
“islands” of performance-critical code, and specialize it. We then
use reified types to dispatch the correct specialized variant, thus
recovering performance across the “islands”. Our transformation1

obtains speedups up to 30x and around 12x in average compared to
generic only code, by enabling specialization to completely remove
boxing and reach it’s full potential.

1. Introduction
Whether ran in parallel or distributed across multiple nodes, the
speed of sequential code directly translates in the overall perfor-
mance of the system. In particular, code using parametric polymor-
phism will be severely slowed down compared to monomorphic
code when handling primitive values. The underlying problem is
that primitive values come in different sizes and semantics, such
as short or long integers, floating point numbers and characters.
This conflicts with the uniform nature of parametric polymorphism,
which assumes all objects have a common representation. The de-
fault translation in Scala aims at making primitive types uniform at
the bytecode level by wrapping them into heap objects, in a process
known as boxing. But boxing has several disadvantages, namely in-
direct access to values, which are accessed on the heap instead of
the stack, wasteful use of memory by allocating redundant object
headers along with values and lack of cache locality. This is a ma-
jor concern for performance-critical code, and was addressed in the
Scala compiler using the specialization transformation.

Specialization [3] is an annotation-driven transformation in the
Scala compiler that improves the performance of generic code. It
is triggered by annotating a type parameter in a method or class,
leading to the duplication and adaptation of the code body for each
primitive type. Then, whenever a class is instantiated for a primitive
type, the instantiation is rewritten to use the specialized variant
instead of the generic one, avoiding boxing. The same rewriting

1 https://github.com/nicolasstucki/specialized

is applied to method calls, where the method invoked becomes the
specialized variant.

In practice, specialization speeds up code execution by an or-
der of magnitude [8]. But invoking the specialized code to benefit
from this speedup remains difficult. Whenever a call site is either
monomorphic (statically known to use a primitive type) or special-
ized, it is redirected to use the specialized variant of the method.
Contrarily, a call site that uses a non-specialized type parameter is
left pointing to the generic version of the method, since, thanks to
erasure [1], there is no type information to dispatch the right spe-
cialized variant either at compile time or runtime. This creates little
“islands” of specialized code, which can be invoked by monomor-
phic code to obtain performance, but revert to the non-specialized
performance whenever they’re called in a generic context.

Seen from a different angle, the “islands” of specialized code
are traces in the program where the type information is encoded in
the bytecode during the specialization transformation. But when-
ever the execution leaves the “island” by calling generic code, the
type information is lost, leading to the rest of the trace being generic
and thus losing optimality. What’s worse, parts of the generic trace
may have specialized variants, but they’re not used, since types are
not available. Therefore, “islands” can call one another directly, but
not indirectly via generic code. This breaks optimality in many im-
portant use cases.

The simplest solution for this problem is to specialize the
generic code in between the “islands”. Still, the amount of bytecode
duplication makes this solution intractable. Furthermore, some of
this code may reside in a library, thus making it impossible retroac-
tively specialize. On the other hand, reified types [11] allow generic
code to record types as values, making it possible to later use them
to invoke specialized variants of the code.

This is where our project comes in: We bridge this gap between
the “islands” by allowing the use of reified types to dispatch the
correct specialized version. To this end, we allow the programmers
to select a limited scope of generic code that will be specialized and
which, in turn, will be able to call other specialized code. We then
use reified types to dispatch on the correct specialized variant of the
scope. This has two effects: we inject specialized “islands” in the
middle of generic code, and these specialized “islands” can further
call other specialized code, regaining optimality in the trace. Our
project relies on macros and specialization to transform the scope
and call the specialized variant.

In this context, we make the following contributions:

• we present a transformation that makes use reified type to ex-
tend the scope of specialization

• we validate our transformation by benchmarking it and obtain-
ing speedups of up to 30x compared to Scala specialization

The next section will introduce the running example that we’ll
use throughout the paper to explain the transformation. The third

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148012118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/nicolasstucki/specialized


Figure 1. The calls made inside the loop before (left) and after
(right) the specialized scope has been used.

section will briefly present the implementation. The forth section
will present the benchmarks we ran on both original and trans-
formed code. Finally, the fifth section will conclude.

2. Example
A situation where specialization is available but not used appears
in the following example:

def createArray[T: Manifest](f: Int=>T) = {
val a = new Array[T](size)
for (i <- 0 until size)
a(i) = f(i)

a
}

Since the createArray method is not specialized, calling it
either from generic or specialized code will yield the same slow
operation: although both the array setter and the function call have
specialized variants, the lack of specialization will mean the result
of f(i) is boxed and the generic array setter is invoked, as shown
in left side of Figure 1. To make matters worse, the generic loop
closures are not inlined by the Java Virtual Machine [6, 9], thus
preventing other optimizations that could eliminate boxing. But this
is a perfect example where the specialized macro could kick in,
since the reified type of T is available as a Manifest:

def createArray[T: Manifest](f: Int=>T) = {
val a = new Array[T](size)
specialized[T] {
for (i <- 0 until size)
a(i) = f(i)

}
a

}

In order to specialize the trace, the specialized[T] macro
creates a new method which encodes the scope which needs to
be specialized, which we will refer to it as the specialized body
method. The specialized body method will be translated by the
Scala compiler using the specialization transformation, which is
triggered by the @specialized notation on type parameter U. This
leads to the creation of multiple variants of specBody, one for each
primitive type. The last step is to invoke the correct variant:

def createArray[T: Manifest](f: Int=>T) = {
val a = new Array[T](size)
// specialized body method:
def specBody[@specialized U]

(a: Array[U], f: Int=>U) {
// existing body:
for (i <- 0 until size)
a(i) = f(i)

}

// dispatch code:
if (manifest[T] == ManifestFactory.Int) {
// simplified call, without casts shown:

specBody[Int](a, f)
} else if ...

a
}

This leads to both the array setter and f function to be rewritten
to their specialized variants in each respective specBody variant,
thus producing a completely specialized trace, shown in the right of
Figure 1. The speedup obtained by the code at the bottom compared
to the code at the top is 15x. Other examples we tried obtain
speedups of 5x to 30x.

We implemented the specialized macro [2] to wrap the code
which needs to be specialized. This macro receives the polymor-
phic parameter, denoted by T in the example. It can also take a list
of primitive types that will be specialized. If only Int and Long
need fast execution, the programmer can use the following syntax:

specialized[T](Int, Long) {
...

}

The reason the programmer might want to avoid specializing all
primitive types is to eliminate some of the overhead of dispatching
on the reified types. The dispatch consists of a long set of if state-
ments, which carry some runtime overhead. Still, for the examples
we have so far, dispatching a specialized version pays for the cost
of dispatching. The next section will present the implementation.

3. Implementation
The specialized method is a macro that is able to rewrite the AST
of the code that is inside it. It does so in the four steps shown in
Figure 2. Each will be further explored in a separate subsection.

Figure 2. The code transformations taking place in the specialized
macro and their results.

3.1 Checking Macro Call Parameters
The specialized macro takes four parameters:

• the polymorphic type parameter T to be specialized;
• any number of Specializable objects, where Specializable

is the trait that identifies the primitive types known to the com-
piler. In Scala these types are: Int, Long, Boolean, Float,
Double, Short, Char, Byte and Unit;

• the main parameter is the block of code inside the curly braces.
It consists of a closure of type =>Any;

• the last parameter is an implicit Manifest or ClassTag, which
carries the reified type corresponding to T and is automatically
filled in by the type checker.

Therefore the macro is defined as:

def specialized[T](types: Specializable*)
(expr_f: => Any)
(implicit classTag: ClassTag[T]): Any

= macro impl_specialized[T]



Additionally there are two other variants to handle the case
where no Specialized parameters are set (this defaults to all
primitive values) and one to handle SpecializedGroup. Those
implementations redirect to the first and main implementation. In
an unambiguous context, where we have a single polymorphic type
with a manifest in scope, the macro can also be called without the
first two parameters:

specialized {
// code goes here

}

As can be seen from the signature, the closure’s expected return
type is Any, but since our expansion takes place during the type
checking phase, the replaced AST is type-checked again and a more
precise return type is inferred. This allows us to sidestep the need
to add another type parameter for the return type, making both the
macro implementation and its use easier.

As soon as the macro is invoked, it checks if the input is
correct. It checks that the parameter T is in fact a polymorphic
parameter, issuing errors in obviously incorrect calls such as
specialized[Int] or specialized[List[T]]. It also checks
that T has a manifest and that the block of code inside it compiles
and typechecks under generic version. If any problem occurs it
stops the transformation and shows the programmer an error corre-
sponding to the problem. Other checks are also performed and can
lead to warnings that guide the programmer to the correct use of
the macro.

3.2 Extract Variables Used in the Scope
The second phase consists in extracting generic variables used in
the scope. We first identify any references to variables inside the
block of code being specialized. In the createArray example,
the variables are the array a and the function f. A more selec-
tive extraction happens in the example below, where only array
is extracted. This happens because array is of type Array[T],
therefore is generic. But size is not extracted, since its type is
monomorphic (Int):

val size = array.length
specialized[T] {
// reversing the array, using size

}

This gives the signature of the method that encloses the special-
ized body.

3.3 Specialized Body Creation
The specialized body method, which corresponds to the specBody
method in the expanded createArray example, will contain the
code that was passed to the specialize macro. Instead of using
the generic type T, it will specialize over a new polymorphic type
parameter U, such that the specialization phase can kick in. There-
fore the macro rewrites all references from type T to U.

The U type parameter receives the @specialized annotation
so the Scala compiler is informed to duplicate and adapt it for
the primitive values. The primitive values passed to the macro will
further be passed on to the @specialized annotation. Along with
duplicating the method, the specialization phase will also perform
method call and class instantiation rewriting, making use of the
specialized code available and creating new specialized traces. This
is where the transition in Figure 1 happens.

To illustrate the transformation, we will use the following code:

val func: T => T = ...
val seed: T = ...
specialized[T] {
def rec(n: Int, last: T): T =
if (n == 0) last
else rec(n - 1, func(last))

rec(2000000, seed)
}

The work needed for the creation of the specialized body
method consists in rewiring any explicit T to U before putting it
in the specialized body method, including the parameters. This re-
quires clearing all the symbols and types of the abstract syntax tree,
such that a type checking phase binds them to the new definitions
that refer to the U type parameter. An example where all this is
needed is the one where we compose n times a function and apply
it to a first element (seed in this case). Note that rec is a tail re-
cursive function, meaning that without the macro it would box and
unbox the parameter each iteration of the loop.

The specialized body method definition will also need the list of
parameters it receives; those are the ones that were identified in step
two. The types of these arguments will also be rewired to the new
polymorphic type U explicitly. The last consideration needed is that
the name of the specialized body method needs to be fresh to avoid
any conflicts, in the examples we wrote specBody for simplicity
and conciseness. This is the final specBody code:

def specBody[@specialized U]
(seed: U, func: U=>U) {

def rec(n: Int, last: U): U = { ... }
rec(2000000, seed)

}

3.4 Dispatching Code

The final step in rewriting the code is using the reified type to
dispatch the correct specialized variant of the code body. To do so,
we compare the reified type to each of the primitive types. If the
comparison succeeds, we invoke the specialized body method with
the correct type:

if (manifest[T]==ManifestFactory.Int) {
// invoke the specialized body for Int
...

} else if (manifest[T]==ManifestFactory.Long)
// invoke the specialized body for Long
...

} else {
// invoke the generic body
specBody[T](seed, func)

}

Once we know that we can simply force the specialized body
method to use the specialized version by casting all it’s parameters
(the ones identified in the second step). Finally, we wrap the entire
call to the specialized body method into a cast back to the original
type, to make the types compatible with the generic code. In the
following example, this is shown for Int:

// invoke the specialized body for Int
specBody[Int](seed.asInstanceOf[Int],

func.asInstanceOf[Int=>Int])

After the macro has transformed the code, the type checker will
refill in all the types and then the compiler will keep on going
normally. Only later, when the compiler reaches the specialization
phase, the specialized body method will be duplicated and adapted.



Once this is done, the compiler will rewrite the invocation in the
code to one of the specialized variants. This is the final missing
link in our use of reified types for dispatching specialized variants
of code.

4. Evaluation
By generating the transformation using macros we where able add
it as a simple library method. This means no modification to the
compiler was needed and that a single import is necessary. This
makes the tool extremely simple to use.

T Original Specialized speedup
interpreted Int 2458.29 255.86 9.61x
compiled with c1 Int 24.72 1.83 13.51x
compiled with c2 Int 24.57 1.97 12.47x
interpreted Double 2668.26 269.71 8.89x
compiled with c1 Double 19.12 2.06 9.28x
compiled with c2 Double 19.22 1.96 9.81x
interpreted Boolean 2040.98 266.75 7.65x
compiled with c1 Boolean 22.49 3.40 6.61x
compiled with c2 Boolean 22.67 3.13 7.24x
interpreted Any 2412.46 2336.18 1.03x
compiled with c1 Any 96.59 93.00 1.04x
compiled with c2 Any 93.89 92.87 1.01x

Table 1. Time in milliseconds necessary for executing the
createArray example with an array of size 2 million.

To evaluate the performance of this transformation we used
ScalaMeter [10] to benchmark the execution time of the original
and transformed code. The framework ran each time in a differ-
ent VM and was warmed up before the actual benchmarking. We
forced each time the compiler to use only one of the following
modes: interpreted only, compiled with client compiler (c1) only or
compile with server compiler (c2) only. This enabled us to ensure
our transformation speeds up execution in all execution modes of
the HotSpot JVM, making our transformed code consistently faster.

T Original Specialized speedup
compiled with c1 Int 74.74 7.49 9.97x
compiled with c2 Int 74.83 7.81 9.58x
interpreted Int 5,241.05 387.47 13.53x
compiled with c1 Double 68.71 8.91 7.71x
compiled with c2 Double 69.18 8.84 7.82x
interpreted Double 7,875.92 398.80 19.75x
compiled with c1 Boolean 263.00 8.60 30.57x
compiled with c2 Boolean 262.11 8.67 30.24x
interpreted Boolean 6,084.31 406.01 14.99x
compiled with c1 Any 10.18 10.37 0.98x
compiled with c2 Any 10.26 10.46 0.98x
interpreted Any 2,886.12 3,109.43 0.93x

Table 2. Time in milliseconds necessary for executing the array
reversal example with an array of size 10 million.

We implemented algorithms that use generic Array, Function1,
Function2 and Tuple2 with some combinations between them or
alone. We used code where there was at least one bridge between
the specialized components. On operations over arrays the results
yield speedups up to 14x specializing over Int, 20x specializing
over Double and 30x specializing over Boolean. Table 1 and table
2 shows the speedups for the createArray and reverseArray
examples. Table 3 shows the speedups for the last code example in
which we compose a function several times over numeric values.

5. Related work
We build upon specialization [3], by adding the ability to use reified
types. We also extend the range of code that can benefit from

T Original Specialized speedup
compiled with c1 Int 50.24 2.26 22.24x
compiled with c2 Int 50.32 2.26 22.24x
interpreted Int 4,349.99 655.01 6.64x
compiled with c1 Double 35.00 14.37 2.44x
compiled with c2 Double 34.59 14.50 2.39x
interpreted Double 7,270.90 654.54 11.11x

Table 3. Time in milliseconds necessary for executing the function
composition example, applying the function (x => 42*x) 10
million times.

the specialization transformation: we add the ability to specialize
scopes of code to the already existing abilities to specialize methods
and classes.

Although the lack of global reified types significantly compli-
cates the work of the specialization phase, their performance impact
and memory footprint makes them undesirable in practice [11].

The .NET framework [5] is one example where specialization
is greatly simplified by the existence of reified types. This happens
for two reasons: reified types are implemented and optimized in
the virtual machine, allowing for better handling. Also, the virtual
machine provides hooks for runtime specialization, which allow
just-in-time creation of specialized variants. This is hard to achieve
in Java using the class loader mechanism [7], since they require
having control of the entire Java stack.

Some JavaScript interpreters proposed trace specialization [4].
These require profiling and opportunistic trace transformations,
that may need to be undone later if they prove too optimistic. In our
case the static type system protects us from such cases, although we
pay the cost of generating all the code up-front.

6. Conclusion
Our project was able to build high performance bridges between
specialized code inside a generic context, allowing traces to be only
partially specialized without changing their characteristics. We use
reified types to identify the different types at runtime allowing us
to force the execution of specialized code.

Overall, our transformation obtained speedups up to 30x and
around 12x in average compared to generic only code, by offering
the full performance of specialization and reducing unnecessary
boxing.

References
[1] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for

the past: adding genericity to the java programming language. SIGPLAN Not.,
33(10), Oct. 1998. ISSN 0362-1340.

[2] E. Burmako. Scala macros. URL http://scalamacros.org/.

[3] I. Dragos and M. Odersky. Compiling generics through user-directed type
specialization. In Proceedings of the 4th workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS ’09, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-541-3.

[4] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, et al. Trace-based just-in-time
type specialization for dynamic languages. In ACM Sigplan Notices, volume 44.
ACM, 2009.

[5] A. Kennedy and D. Syme. Design and implementation of generics for the
.NET Common language runtime. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation, PLDI ’01,
New York, NY, USA, 2001. ACM. ISBN 1-58113-414-2.

[6] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox.
Design of the java hotspot client compiler for java 6. ACM Transactions on
Architecture and Code Optimization (TACO), 5(1), 2008.

[7] S. Liang and G. Bracha. Dynamic class loading in the java virtual machine. SIG-
PLAN Not., 33(10):36–44, Oct. 1998. ISSN 0362-1340. doi: 10.1145/286942.
286945. URL http://doi.acm.org/10.1145/286942.286945.

http://scalamacros.org/
http://doi.acm.org/10.1145/286942.286945


[8] E. Osheim. Generic numeric programming through specialized type classes.
ScalaDays, 2012.

[9] M. Paleczny, C. Vick, and C. Click. The java hotspot tm server compiler. In
Proceedings of the 2001 Symposium on Java TM Virtual Machine Research and
Technology Symposium-Volume 1. USENIX Association, 2001.

[10] A. Prokopec. ScalaMeter. URL http://axel22.github.com/
scalameter/.

[11] M. Schinz. Compiling scala for the Java virtual machine. PhD thesis, École
Polytechnique Fédérale de Lausanne, 2005.

[12] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer. Self-
optimizing AST interpreters. In Proceedings of the 8th symposium on Dynamic
languages. ACM, 2012.

http://axel22.github.com/scalameter/
http://axel22.github.com/scalameter/

	Introduction
	Example
	Implementation
	Checking Macro Call Parameters
	Extract Variables Used in the Scope
	Specialized Body Creation
	Dispatching Code

	Evaluation
	Related work
	Conclusion

