
Preprint of an article in press 2015 at
Journal of Wavelets, Multiresolution and Information Processing
http://www.worldscientific.com/worldscinet/ijwmip
c© World Scientific Publishing Company

RECONSTRUCTION OF IMAGES FROM GABOR GRAPHS WITH

APPLICATIONS IN FACIAL IMAGE PROCESSING

Manuel Günther

Idiap Research Institute, Martigny, Switzerland

manuel.guenther@idiap.ch

Stefan Böhringer
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Graphs labeled with complex-valued Gabor jets are one of the important data formats

for face recognition and the classification of facial images into medically relevant classes
like genetic syndromes. We here present an interpolation rule and an iterative algorithm

for the reconstruction of images from these graphs. This is especially important if graphs

have been manipulated for information processing. One such manipulation is averaging
the graphs of a single syndrome, another one building a composite face from the features

of various individuals. In reconstructions of averaged graphs of genetic syndromes, the
patients’ identities are suppressed, while the properties of the syndromes are emphasized.

These reconstructions from average graphs have a much better quality than averaged

images.
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1. Introduction

Graphs labeled with Gabor jets – so-called Gabor graphs – have proven very useful

for face detection and recognition.16,25 Recently, the data format has been applied

successfully to the classification of different syndromes, which influence the facial ap-

pearance, from static facial images.5,10,12,15,18,21,23 To better interpret which kind
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of features are contained in the Gabor graphs and for inspection by the clinician, it

is important to visualize Gabor graphs by reconstructing images from them.

Daugman6,7 used a neural network to approximate the expansion coefficients

of a Gabor wavelet transform in full resolution. Attempts at reconstructing images

from sparsely sampled Gabor wavelet responses include the ones by Wundrich26–28

and Pötzsch.19,20 Wundrich et al.27 used an iterative algorithm to reconstruct im-

ages from densely sampled amplitudes of the Gabor wavelet responses. Furthermore,

Wundrich26 presented the framework for our reconstruction algorithm by using dual

Gabor wavelets, which are presented and optimized in Section 3.1. On the other

hand, Pötzsch19 reconstructed single complex-valued Gabor jets and removed back-

ground information from them. He20 also established an algorithm for visualizing

Gabor graphs by reconstructing the Gabor jets locally and defining Voronoi areas

around the nodes. This introduces artifacts like abrupt gray value changes at the

borders of Voronoi cells.

In this paper, we extend the iterative reconstruction algorithm proposed by

Wundrich26–28 using complex-valued Gabor wavelet responses at sparse node posi-

tions of Gabor graphs. In Section 2, the Gabor wavelet transform is recapitulated

and discrete Gabor wavelet families are introduced, which can be used for gray or

color image transform and reconstruction. Section 3 presents an iterative recon-

struction algorithm, which is able to reconstruct an image from a Gabor graph, and

an approximative algorithm that interpolates Gabor wavelet responses from the

landmark positions of the graph to yield better initial conditions for the iteration.

Finally, Section 4 shows applications of the reconstruction algorithm by reconstruct-

ing composite face graphs or face graphs that average over different identities. As

an example, face graphs of patients with the same genetic syndrome were averaged.

The reconstructed images emphasize the characteristics of the genetic syndrome,

while suppressing patient identity.

2. Gabor graphs

A Gabor graph G = (L, E ,J ) consists of a certain number L of landmarks L, which

are labeled with Gabor jets J (see Section 2.1 for details) and linked by edges

E . These graphs were shown to be useful for detection and recognition of objects

and faces.1,16,24,25 For object detection and recognition, usually grid graphs are

employed, i. e., the landmarks are arranged in a grid structure and the edges link

horizontal or vertical neighboring nodes. For frontal faces, a face graph is created.

An example of a hand-labeled face graph including the underlying image is shown

in Figure 3(a). The landmarks of the face graph are located at significant facial

positions like nose tip and inner and outer eye corners. The edges of face graphs

link neighboring landmarks and are used for landmark detection, face recognition,

or syndrome classification, which are not discussed in this article. The reconstruc-

tion algorithm proposed in Section 3 is able to reconstruct images from any graph

topology as long as the landmark sampling is dense enough. In this paper, only
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(a) Common Gabor wavelet

family Γ
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(b) Extended Gabor wavelet

family Γ{g}

for gray channel
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(c) Extended Gabor wavelet

family Γ{c}

for color channels

Figure 1. Discrete families of Gabor wavelets. This figure displays the (extended) Gabor
wavelet families in frequency domain that are used in this paper. Each circle displays one Gabor

wavelet with standard deviation
kζ
σ

. The black circles in (a) and (b) depict the common Gabor
wavelet family. In (b) and (c), the green circles illustrate the additional levels of Gabor wavelets,

the red circle marks the Gaussian ψ̌0, and the blue circles show Gabor wavelets that not required

due to symmetry.

reconstructions from face graphs are shown, an object image reconstructed from a

regularly shaped graph using this algorithm is shown elswhere.9

2.1. Gabor jets

The face graph G shown in Figure 3(a) is derived from the image I by the following

procedure. First, landmarks are placed onto the face. Elastic bunch graph match-

ing25 (EBGM) is a well-established algorithm to locate landmark positions automat-

ically, and also other detection processes12,13 have shown up lately. Nonetheless, for

most practical applications, the best results are obtained with hand-labeled graphs.

After placing landmarks, the Gabor jets are extracted at the landmark positions.

To achieve this, image I is convolved with Gabor wavelets:8,16

ψkj(x) =
k2j
σ2

exp

(
−
k2jx

2

2σ2

)[
exp
(
ikTj x

)
− exp

(
−σ

2

2

)]
. (2.1)

The discrete Gabor wavelet family with parameters Γ = (ζmax, νmax, kmax, kfac, σ)

has a range of center frequencies kj , which are commonly16,25 calculated as:

kj = kζ

 cos(ϕν)

sin(ϕν)

 (2.2)

with:

kζ = kmax · kζfac ϕν =
ν · π
νmax

, (2.3)

where 1 < ν ≤ νmax defines the rotation of the Gabor wavelet and 1 < ζ ≤ ζmax its

scale level. The index j enumerates all J = ζmax · νmax wave vector specializations

of family Γ.
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The commonly used5,16,25 Gabor wavelet family includes ζmax = 5 scale levels

and νmax = 8 directions. kfac = 1√
2

and kmax = π
2 are adjusted such that the

Gabor wavelet family evenly fills a sub-band in frequency domain, kmax specifies

the highest investigated frequency. This family is displayed in Figure 1(a), where

each circle depicts a Gabor wavelet in frequency domain:

ψ̌kj(ω) = exp

(
−
σ2(ω − kj)2

2k2j

)
− exp

(
−
σ2(ω2 + k2j )

2k2j

)
, (2.4)

with its center at the wave vector kj . The radius σ
kζ

of the circle is one effective

standard deviation of the Gaussian in frequency domain that is defining the Gabor

wavelet, i. e., the first term of Equation (2.4). Finally, the setup of σ = 2π im-

plies that the wavelength of the Gabor wavelets is equal to one effective standard

deviation of the enveloping Gaussian.

The Gabor jet, which encodes the local texture around landmark Ll, is the

aggregation of the complex responses of all Gabor wavelets ψkj :

(Jl)j = (I ∗ ψkj )(Ll) . (2.5)

For detection, recognition, or classification, these complex values are usually used in

their polar form: (J )j = aj · exp(iφj), but for reconstruction purpose the algebraic

form, i. e., with real and imaginary values is more useful.

The convolution in Equation (2.5) is executed in frequency domain. For this

purpose, image I is transformed using the fast Fourier transform (FFT) algorithm.

The resulting image Ǐ has the same number of pixels Ǐ(y) as the original image

I.14 To perform convolution, Ǐ is multiplied with each Gabor wavelet in frequency

domain, the results are gathered in the Gabor transformed image Ť with sub-bands

Ťkj in frequency domain:

Ťkj (y) = Ǐ(y) · ψ̌kj(ω) . (2.6)

In Equation (2.6), ω ∈ [−π, π)2 covers the 2-dimensional frequency domain, while

y iterates over the image dimension (N1, N2)T. To be able to compute the multipli-

cation pixel-wise, the coordinate transform:

ω1 =

2π y1
N1

if y1 <
N1

2

2π( y1N1
− 1) if y1 ≥ N1

2

ω2 =

2π y2
N2

if y2 <
N2

2

2π( y2N2
− 1) if y2 ≥ N2

2

(2.7)

is applied. This transformation brings the frequency domain center ω0 = (0, 0)T to

the top-left pixel, as required by all common FFT implementations. Scaling is done

non-isotropically, in the case of non-square images with N1 6= N2, Gabor wavelets

in frequency domain ψ̌kj(y) become ellipses in image coordinates, cf. Figure 1. Fur-

thermore, the spatial extends of Gabor wavelets are independent of the current
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image resolution, see12 for impacts of this. For the sake of legibility, the pixels y in

frequency domain are neglected and only the frequencies ω are used.

After creating a Gabor transformed image Ť in frequency domain, the inverse

fast Fourier transform (iFFT) is applied to its sub-bands Ťkj , resulting in the Gabor

transformed image T in spatial domain. The whole procedure is called the Gabor

wavelet transform (GWT) from image I to the Gabor transformed image T . Gabor

jet information can easily be collected from T :

(Jl)j = Tkj(Ll) (2.8)

by converting the horizontal structure of T to the vertical structure of J .

2.2. Extended Gabor jets

Since the Gabor wavelet family Γ spans only a sub-band in frequency domain (see

Figure 1(a)), only this information can be reconstructed. Especially, the low fre-

quency information and the mean gray value at Ǐ(ω0) are not included in the

Gabor jets.

To be able to reconstruct full gray level or colored images, the missing informa-

tion has to be embedded, too. This is achieved with the extended discrete Gabor

wavelet family. Γ{g} = (ζ
{g}
max, νmax, k

{g}
max, kfac, σ, σ0) with ζ

{g}
max = 9 scales of Gabor

wavelets, starting with the highest frequency k
{g}
max = π. To cover the mean value

and the lowest frequencies, a Gaussian:

ψ̌0(ω) = exp

(
−σ

2
0 · ω2

2

)
(2.9)

with standard deviation σ0 = 2π centered at ω = ω0 is added. Figure 1(b) displays

the Gabor wavelets ψ̌kj and the Gaussian ψ̌0, which are used to create extended

Gabor jets J {g} with full gray value information. The black circles are equal to Fig-

ure 1(a), the green circles depict the newly included Gabor wavelet scale levels, and

the red circle displays the Gaussian. The second half of the frequency domain, which

is filled with blue circles in Figure 1(b), is not needed for the Gabor jet creation

since the responses can easily be calculated from the available ones (see Section 3).

Including color information is straightforward. The image has to be color trans-

formed into YUV color space with the gray channel Y and two color channels U and

V. The color channels are adjusted such that the neutral color, i. e., gray is centered

at U- and V-value zero. Afterwards, the Y channel is handled by the family Γ{g}

as shown in Figure 1(b), whereas the U and V channels are successively processed

with the discrete color Gabor wavelet family Γ{c} = (ζ
{c}
max, ν

{c}
max, k

{c}
max, k

{c}
fac , σ, σ0).

This family, which is shown in Figure 1(c), incorporates a sparser discretization of

Gabor wavelets and a Gaussian, the parameters are:

ζ{c}max = 4 ν{c}max = 4 k{c}max =
π√
2

k
{c}
fac =

1

2
. (2.10)
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6 Günther, Böhringer, Wieczorek, and Würtz
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Figure 2. Gabor wavelets and dual wavelets. This figure displays Gabor wavelets and their

dual wavelets. In (a) and (e), the imaginary parts of ψkj(x) and ψdkj
(x) with kj = (π

8
, π
8

)T are

shown, while (b) and (d) present ψ̌kj(ω) and ψ̌dkj
(ω) for kj = (π

2
, π
2

)T. The denominator Č(ω)

for the dual wavelets is displayed in (c).

Every other scale level is rotated by half a direction gap. Altogether, there are

J{g} = 9 · 8 + 1 Gabor wavelets for the Y channel and each 4 · 4 + 1 Gabor wavelets

for the U and V channels totaling to J{c} = 107 complex-valued responses in a

color Gabor jet J {c}.

3. Iterative Reconstruction

The reconstruction of an image I ′ from the extended Gabor graph G can be seen

as an extension of the inverse Gabor wavelet transform (iGWT). Its calculation is

made difficult by the following three problems.

(1) Missing half of frequency space: The reconstructed image I ′ in spatial

domain is not real since only half of the frequency domain is covered by Gabor

wavelets, i. e., the blue circles of Figures 1(b) and 1(c) are missing.

(2) Low sampling in frequency space: Gabor wavelets do not form a basis

of the function space, because they are overcomplete. Such function systems

are called frames.17 In frequency space, the convolution with the wavelets is a

multiplication. Therefore, image frequencies for which all wavelets have values

close to zero (outside the black circles in Figures 1(b) and 1(c)) can not be

recovered. This is not a problem if all relevant frequencies are well-covered

with wavelets (green and black circles). Nevertheless, different frequencies have

different weights (highest for the center frequencies kj . To account for this,

reconstruction is best performed using dual wavelets (see below).

(3) Low sampling in image space: Most parts of the Gabor transformed image

Ť are undefined since information is only available at the node positions of G.
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Input: Gabor graph G Output: reconstructed image I ′

(1) initialize:

(a) Reset all values of T : ∀j,∀x : T ′kj (x) = 0 + 0i

(2) iterate:

(a) Fill Gabor graph into Gabor transformed image: T ′kj(Ll) = (Jl)j
(b) Fourier transform T ′ to Ť ′

(c) Reconstruct Ť ′ to Ǐ ′
(d) If number of iterations is reached: goto step 3

(e) Forward Gabor transform: Ǐ ′ ⇒ Ť
(f) Inverse Fourier transform Ť to T

(3) finalize:

(a) Inverse Fourier transform Ǐ ′ to I ′
(b) Correct pixel range to fit into, e. g., [0, 255]

Algorithm 1: Iterative reconstruction. This iterative algorithm reconstructs the

image I ′ from the Gabor graph G.

The first problem is solved by exploiting the symmetries of images, Gabor

wavelets and Gabor transformed images:

I(x) = I(x) Ǐ(-ω) = Ǐ(ω)

ψ-kj(x) = ψkj(x) ψ̌-kj(ω) = ψ̌kj(-ω) (3.1)

T-kj(x) = Tkj(x) Ť-kj(ω) = Ťkj(-ω) .

In Equation (3.1), · refers to complex conjugation, and the term ψ̌-kj stands for

Gabor wavelets ψ̌kj point reflected at ω0, which are depicted by the blue circles in

Figure 1. Similarly, T-kj are the inexistent sub-bands of Gabor transformed image

corresponding to the Gabor wavelets ψ̌-kj .

3.1. Dual wavelets

The second problem is addressed by using dual Gabor wavelets ψdkj
and a dual

Gaussian ψd0 . The duals are reconstructing functions for the discretized wavelet

transform and correct the different weighting of different image frequencies. In the

limit of infinitely fine resolution in frequency space the dual wavelets converge to

a multiple of the wavelets themselves. The inverse transform is obtained by multi-

plying the transformed image with the duals and adding up over all kj and their

counterparts in the other half of frequency domain:
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8 Günther, Böhringer, Wieczorek, and Würtz

Ǐ ′(ω) =
∑
j

[
Ťkj(ω) · ψ̌dkj(ω) + Ť-kj(ω) · ψ̌d-kj(ω)

]
+Ť0(ω) · ψ̌d0(ω) . (3.2)

The duals themselves are calculated in frequency domain as:

ψ̌dkj(ω) =
ψ̌kj(ω)

Č(ω)
ψ̌d0(ω) =

ψ̌0(ω)

Č(ω)
(3.3)

with:

Č(ω) = max
{
Čmin, Čψ(ω)

}
(3.4)

Čψ(ω) =
∑
j

[
ψ̌kj(ω)2 + ψ̌-kj(ω)2

]
+ ψ̌0(ω)2 . (3.5)

The calculation of the denominator Čψ
2,22 in Equation (3.5) can be deduced from

wavelet theory.12 The Čmin parameter, which confines Č not to vanish, has to be

lower than the sum of squared Gabor wavelets in frequency domain, when ω is inside

of the covered sub-band, but should not be too small. We choose Čmin = 0.25. If the

family does not include a Gaussian ψ0, e. g., as in Gabor wavelet family Γ shown in

Figure 1(a), it can simply be left out of Equation (3.5).

Two pairs of Gabor wavelets and their corresponding dual Gabor wavelets are

shown in Figure 2. Figures 2(a) and 2(e) present the imaginary parts of ψkj and ψdkj
in spatial domain, employing kj = (π8 ,

π
8 )T, while Figures 2(b) and 2(d) display ψ̌kj

and ψ̌dkj
in frequency domain for kj = (π2 ,

π
2 )T. Finally, Figure 2(c) visualizes the

denominator C(ω) for the extended Gabor wavelet family Γ (g). For the continuous

Gabor wavelet family with infinite resolution in kj and without the Gaussian ψ0,

the denominator Čψ(ω) converges to the admissibility constant Cψ.12,17

We now show that these functions yield a perfect reconstruction of those image
frequencies for which Č(ω) > Čmin by inserting Equation (2.6) and Equation (3.3)



Preprint of an article in press 2015 at
Journal of Wavelets, Multiresolution and Information Processing
http://www.worldscientific.com/worldscinet/ijwmip
c© World Scientific Publishing Company

Reconstruction of Images from Gabor Graphs 9

(a) Hand-labeled Face

Graph

(b) Reconstruction

with Γ

(c) Reconstruction

with Γ{g}
(d) Reconstruction

with Γ{c}

Figure 3. Iterative reconstructions. This figure displays the iterative image reconstruction of
the face graph shown in (a) after 200 iterations. (b) presents the result for Gabor wavelet family

Γ, the gray values are auto-scaled between the lowest (black) and the highest (white) values. For

(c) and (d), Gabor wavelet families Γ{g} and Γ{c} are employed and the resulting pixel values
are cut into [0, 255].

into Equation (3.2):

Ǐ′(ω) =
∑
j

[
Ťkj(ω) · ψ̌dkj(ω) + Ť-kj(ω) · ψ̌d-kj(ω)

]
+Ť0(ω) · ψ̌d0(ω)

=
∑
j

[
ψ̌kj(ω) · Ǐ(ω) · ψ̌dkj(ω) + ψ̌-kj(ω) · Ǐ(ω) · ψ̌d-kj(ω)

]
+ψ̌0(ω) · Ǐ(ω) · ψ̌d0(ω)

= Ǐ(ω)

(∑
j

[
ψ̌kj(ω)

ψ̌kj(ω)

Čψ(ω)
+ ψ̌-kj(ω)

ψ̌-kj(ω)

Čψ(ω)

]

+ψ̌0(ω)
ψ̌0(ω)

Čψ(ω)

)

= Ǐ(ω)

∑
j

[
ψ̌kj(ω)2 + ψ̌-kj(ω)2

]
+ ψ̌0(ω)2

Čψ(ω)
. (3.6)

By comparison with Equation (3.5) the remaining fraction in Equation (3.6) is equal

to one at all frequencies where Č(ω) is larger than Čmin. All other frequencies,

which are not covered well by the Gabor wavelet family, are more or less lost in the

transform and, consequently, suppressed in the reconstruction.



Preprint of an article in press 2015 at
Journal of Wavelets, Multiresolution and Information Processing
http://www.worldscientific.com/worldscinet/ijwmip
c© World Scientific Publishing Company
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3.2. Iteration

To address the third issue, we propose an iterative algorithm that slowly fills the

Gabor transformed image T with information from Gabor graph G. This algorithm

can be launched with any of the presented Gabor wavelet families and corresponding

dual wavelets. The iterative reconstruction algorithm, which is in detail depicted in

Algorithm 1, starts with a blank Gabor transformed image T (cf. step 1a) that has

J , J{g}, or J{c} number of sub-bands.

The iteration is composed of six steps. First, the information contained in G is

inserted into T ′:

T ′kj(Ll) = (Jl)j (3.7)

by pasting the complex-valued Gabor jet information (Jl)j to the Gabor trans-

formed image at the landmark positions Ll and leaving the remaining pixels un-

changed. Successively, an FFT is applied to the Gabor transformed image (step 2b).

In step 2c, the image Ǐ ′ is reconstructed from Ť ′ using Equation (3.2). When contin-

uing the iteration with step 2e, the resulting image Ǐ ′ is forward Gabor transformed

(cf. Equation (2.6)). To be able to fill information of G into the T during the next

iteration, it needs to be in spatial domain and, thus, an iFFT from Ť to T needs

to be performed as the last step of the iteration.

The number of iterations can be varied, but at least 100 iterations are needed

for a reasonable result. Especially, if the spatial distribution of the landmarks is

unbalanced, the number of iterations need to increase. After the last iteration, the

image Ǐ ′ from step 2c is inverse Fourier transformed to spatial domain, and the pixel

values are adjusted to fit into the pixel range of usual gray level or color images.

When Gabor wavelet family Γ was employed or only few iterations were performed,

this adjustment is done by linearly scaling pixel gray values, i. e., the lowest (usually

negative) values become black, while the highest values turn white. For Γ{g} and

Γ{c} and sufficient iterations, the gray or color values are simply cut to [0, 255].

3.3. Convergence of the iterative algorithm

In order to understand why the described algorithm always converges to a solution

we regard the functions from the Cartesian product of the image domain and the

spatial frequency domain into the complex numbers as functions into a pair of real

numbers. As both domains are discrete, these form a finite dimensional real vector

space of dimension 2×N1×N2× ζmax× νmax, which we will call W. The algorithm

as described above and summarized in algorithm Algorithm 1 operates on elements

of this vector space.

The operation in step 2a replaces any given element T ∈ W to another one with

the same components except the ones at the graph positions, where the components

are set to those of the graph. The result is in

WG =
{
T | T ′kj(Ll) = (Jl)j

}
.
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(a) Triangulation (b) Linear

interpolation

(c) Original sub-band

Tkj
(d) Approximated

sub-band T ∗kj

Figure 4. Interpolation of the Gabor transformed image. This figure displays the approxi-

mation process of the face graph shown in Figure 3(a). In (a), the triangulation result including
the triangles that cross the image borders are shown. The reconstructed color image with full lin-

ear interpolation is shown in (b). In (c) and (d), the kj = (0, π
8

)T-sub-band of the original and

approximated Gabor transformed image (with limited weights) is visualized.

WG is an affine subspace ofW. The operation itself is an orthogonal projection onto

that subspace.

The operations 2b, 2c, 2e, and 2f are all linear. Their composition projects T
orthogonally onto the space WI of all wavelet transforms of some image I. This is

a linear subspace of W of dimension at most 2×N1 ×N2.

Therefore, the algorithm consists of alternating orthogonal projections onto

affine subspaces. It is guaranteed to converge to a point on the intersection of

the two spaces if the intersection is non-empty. If it is empty the procedure will end

up alternatating between a pair of points on either set with minimal distance. In

that case the result will be the inverse wavelet transform of the point on WI .

3.4. Initial conditions from interpolation

The iterative reconstruction algorithm has some drawbacks. The time needed for the

iterations is rather high (see Section 3.6 for a detailed analysis), and pixels further

away from the landmark positions keep nearly unchanged. This is an issue especially

for reconstructions with Γ{g} or Γ{c}, the reconstructed images looks blistered.

Although the result of the iterative reconstruction using the common Gabor wavelet

family Γ, an example of which is displayed in Figure 3(b), is recognizable quite well,

the gray or color image reconstructions shown in Figures 3(c) and 3(d), respectively,

are poor.

These problems can be partially solved by using better initial conditions for the

iterative reconstruction algorithm, i. e., by interpolating the missing pixel positions

of T ∗ from the given graph G.
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3.4.1. Linear weights

The approximation of the Gabor transformed image T ∗ is done pixel by pixel,

t = (t1, t2)T names the currently investigated position. To find the landmarks sur-

rounding t we use a Delaunay triangulation algorithm that tessellates the interior of

the convex hull of the graphs nodes. We adjust this algorithm to triangulate also the

exterior of the convex hull by transcending the borders of the image. The triangu-

lation of the graph shown in Figure 3(a) can be found in Figure 4(a), where the red

dots are the landmarks, the green lines show the interior triangulation, the purple

lines indicate the convex hull, and the blue lines display the exterior triangulation

result.

For each point t, the tessellation defines three surrounding landmarks, say LA =

(A1, A2), LB = (B1, B2), and LC = (C1, C2). The weights wA, wB , and wC for

these landmarks are chosen to fulfill the linear equation:

t = wA · LA + wB · LB + wC · LC . (3.8)

Since the weights sum up to unity and the landmarks are not collinear, this equation

has the unique solution:
wA
wB
wC

 =


A1 B1 C1

A2 B2 C2

1 1 1


-1

t1
t2
1

 . (3.9)

The three computed weights are used to interpolate the value of the Gabor trans-

formed image T ∗(t) from the Gabor jets JA, JB , and JC at the three surrounding

landmarks LA, LB , and LC , respectively. For the Gaussian sub-band (if existent),

the approximated value is just the weighted average of the Gaussian responses in

the Gabor jets:

T0(t) = wA · (JA)0 + wB · (JB)0 + wC · (JC)0 . (3.10)

3.4.2. Phase shift correction

As the Gabor phase changes with location the responses of the Gabor wavelets need

to be corrected in phase before being weighted. In a first approximation, the phase

shift is proportional to the frequency kj and to the distance dX = t−LX from t to

landmark LX (for X ∈ {A,B,C}):

(J ∗X)j = (JX)j · exp
(
i kTj dX

)
. (3.11)

This yields the following formula for the approximated value for the Gabor wavelet

response at t:

T ∗kj(t) = wA · (J ∗A)j + wB · (J ∗B)j + wC · (J ∗C)j . (3.12)
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LA

LB
LC

ttC
β

ε
εC

(a) Triangle with one short
edge LALB

LA

LB LC

t

tA

tBtC

εB εC

β

(b) Triangle with one long
edge LBLC

Figure 5. Limited linear interpolation. This figure shows points and factors used for the

mixed linear/nonlinear interpolation model. The triangle in (a) has one linearly (short) and two
nonlinearly (long) interpolated edges, whereas the triangle in (b) has two short and one long edge.

3.4.3. Limited linear weights

A full linear interpolation of the responses of all Gabor wavelets may lead to wavy

high frequency structures, especially in areas with sparsely placed nodes, but much

high frequency information. One example of these waves can be seen in Figure 4(b),

where specifically the background area is affected. To tackle this issue, the range

of the linear interpolation is limited by calculating weights wX;j for each Gabor

wavelet responsea independently. The limiting distance is defined by the Gaussian

envelope of the wavelet without the prefactor:

Gkj(x) = exp

(
−
k2jx

2

2σ2

)
. (3.13)

The corresponding weights wA;j , wB;j , and wC;j are assigned to:

wX;j = Gkj(LX − t) X ∈ {A,B,C} . (3.14)

Since there need to be weights for three points LA, LB , and LC , there are four

different possibilities:

(1) all three distances are short enough,

(2) all three distances are too long,

(3) one distance is short enough, but two are not,

(4) two distances are short enough, but one is not,

where “short enough” means that Gkj(L−L
′) is below a threshold (here 10-4). For

possibility 1, the linear weights from Equation (3.9) are used, while possibility 2

uses weights as given in Equation (3.14).

The remaining possibilities 3 and 4 need to be handled by a mixture model that

includes both linear and nonlinear weights. Figure 5(a) presents the calculation of

the weights for case 3, the short edge is LALB . The intersection tC of this edge with

aIt is sufficient to calculate the weights for each scale level of Gabor wavelets, but for legibility
this differentiation is avoided here.
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the ray from LC through current position t is calculated and the linear factor β:

β =
|LA − tC |
|LB − LA|

(3.15)

as well as the nonlinear weights ε and εC :

ε = Gkj(t− tC) εC = Gkj(LC − t) (3.16)

are calculated and used to compute the final weights for the nodes:

wA;j = (1− β) · ε0 · (1− εC)

wB;j = β · ε0 · (1− εC) (3.17)

wC;j = (1− ε0) · (1− εC) .

The weights for case 4, which is depicted in Figure 5(b), require more effort. First,

from each corner a ray is send through the current position t and the intersection

point with the opposite sides are calculated. Assuming LBLC to be the long edge,

the linear weight β is calculated:

β = max

{
δA

δA + δB
,

δA
δA + δC

}
(3.18)

with:

δX =
|tX − t|
|tX − LX |

X ∈ {A,B,C} . (3.19)

Then, the nonlinear weights εB and εC are computed as:

εB = Gkj(LB − tA) · (1− β)

εC = Gkj(LC − tA) · (1− β)
(3.20)

The weights for the nodes are:

wA;j = wA · β
wB;j = wB · β + εB · (1− εC) (3.21)

wC;j = wC · β + εC · (1− εB) ,

using the linear weights wA, wB , and wC from Equation (3.9).

Finally, the interpolation of the Gabor transformed image from Equation (3.12)

is rewritten:

T ∗kj(t) = wA;j · (J ∗A)j + wB;j · (J ∗B)j + wC;j · (J ∗C)j (3.22)

using the sub-band dependent weights. The interpolation of the Gaussian sub-band

of the Gabor transformed image T ∗0 – if existent – is always linear, i. e., wX;0 = wX
for X ∈ {A,B,C}. Figures 4(c) and 4(d) show an original sub-band Tkj , i. e., the re-

sult of the Gabor wavelet transform with Gabor wavelet ψkj , and the approximated

sub-band T ∗kj generated by this algorithm, both using kj = (0, π8 )T. The responses

at the border of Figure 4(c) need not be estimated properly since the nodes of the
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(a) Limited

Interpolation

(b) After 200

iterations

(c) Masked

Reconstruction

(d) Masked Original

Image

Figure 6. Reconstruction. This figure presents the final results of reconstruction from the graph
shown in Figure 3(a). In (a) and (b), reconstructions of the approximated Gabor transformed

image after 0 and 200 iterations are shown. The result from (b) is masked with the background

mask M , the result is displayed in (c). For direct comparison, the original image masked with the
same mask is added in (d).

graph are too far away from this background region and, thus, the Gabor jets do

not contain that information.

One example of the reconstruction of the approximated Gabor transformed im-

age can be obtained from Figure 6(a). It is nicely visible that, in comparison to

the fully linear interpolated image shown in Figure 4(b), the high frequency waves

are gone, while the overall face structure was kept stable. The reconstructed ap-

proximated Gabor transformed image T ∗ can also be enhanced by performing some

more iterations as described in Section 3.2. Figure 6(b) shows the reconstruction

result similar to Figure 6(a), but with 200 additional iterations. The low frequency

information is stable during the iterations, but the sharpness, which is induced by

the high frequencies, increases.

3.5. Background removal

The final step of image reconstruction is background removal, a small cosmetic

correction to the image. It applies a real-valued mask M to the pixel values of I ′:

I ′M (x) = I ′(x) ·M(x) . (3.23)

In case of a colored image, the mask is applied to all channels of the RGB color

space independently. The mask M is defined by the landmarks of the convex hull

of the graph, which are calculated by the triangulation algorithm in Section 3.4. To

create mask M for G, a closed cubic B-Spline S is fitted to the convex hull nodes

of G, resulting in a smooth curve. The values of the mask are then computed as:

M(x) =

1 if x is inside S

exp
(
−d(x,S)

2

32π2

)
else

, (3.24)
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Figure overall approx. MKL LAPACK

3(b) 11.8 s — 9.2 s 78.2 s

3(c) 21.9 s — 16.5 s 144.7 s

3(d) 33.6 s — 24.1 s 215.3 s

4(b) 6.4 s 4.2 s 0.1 s 0.6 s

6(a) 9.5 s 7.2 s 0.1 s 0.6 s

6(b) 40.6 s 7.2 s 23.9 s 215.0 s

Table 1. Time Constraints. This table contains the run times that were required to recon-
struct the images shown in Figures 4, 3, and 6. Fast Fourier transforms were executed with the

Intel R©Math Kernel Library (MKL). For comparison, the fast Fourier transform times needed by

the Linear Algebra PACKage (LAPACK) are given in a separate column.

where d(x, S) is the shortest Euclidean distance between point x and the Spline S.

The Gaussian decay factor of 32π2 = 2 · (2σ0)2 was chosen by hand and could be

altered to include more or less of the background.

The final result of the reconstruction can be inspected in Figure 6(c), which

is the masked result from Figure 6(b). For direct comparison, the original image

masked with the same mask M is given in Figure 6(d).

3.6. Time Constraints

Two important aspects of the reconstruction algorithm are the run time and the

memory requirement. Of course, both are highly dependent on the resolution N1 ×
N2 of the image to reconstruct and on the number of Gabor wavelets employed.

The required memory can be estimated by multiplying the image resolution

N = N1 · N2 with the number of sub-bands of T , resulting in the number of

complex-valued pixels of the Gabor transformed image T . Hence, relatively small

color images of size 360×480 pixel need N ·J{c} ·16 Byte ≈ 308 MB of memory, only

for the Gabor transformed image. Since T ∗ is approximated in-place, the memory

consumption is nearly identical for both initial conditions of the iteration, i. e.,

empty T (cf. Section 3.2) or approximated T ∗ as introduced in Section 3.4.

For practical applications, the duration of a single graph reconstruction should

not take longer than a couple of seconds. Table 1 shows detailed measured times

of the reconstruction algorithm reconstructing the images shown in Figures 4, 3,

and 6. All experiments were executed on a Dell Precision 670 with a 3200 MHz Intel

Xeon (64 bit) dual-core processor. For FFT and iFFT calculations, the commercial

Intel R©Math Kernel Library (MKL) and the open-source Linear Algebra PACKage

(LAPACK) were employed. The resolution of the images is 192× 256 pixel.

The iterative reconstruction schema as given in Algorithm 1 needs to execute

an FFT and an iFFT of the whole transformed image T , i. e., one FFT and one
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(a) Facial parts (b) Composite faces

Figure 7. Assembling faces. This figure displays exemplary assemblies of facial features from
different faces. The source images including the subgraphs are displayed in (a), while (b) presents

reconstructed composite graphs. In the first row of (b), combinations of the subgraphs from (a)

in different spatial alignments are reconstructed. In the second row, composite graphs combining
other subgraphs of the faces from (a) were reconstructed.

iFFT per sub-band Tkj (cf. steps 2b and 2f of Algorithm 1). Unfortunately, the

(i)FFT is the most time-consuming part of the iterative reconstruction algorithm

(cf. Table 1), especially when using the LAPACK implementation.

In contrast, the approximation of the Gabor transformed image, which can be

calculated in just a few seconds, already leads to a presentable image in one step.

To generate and reconstruct this, less than 10 seconds are required. Nonetheless,

adding several iterations increases the quality of the reconstructed image. Finally,

the computation of mask M and its application took another 7 seconds, so that the

image shown in Figure 6(c) was generated in 48 seconds (using MKL for (i)FFT).

4. Applications

The proposed reconstruction algorithm can be used for different applications. The

reconstruction of a graph that is extracted from an image directly is not the only

use case. Reconstructing modified face graphs provides a broad variety of appli-

cations, some of which are presented in this section. All images are created by

reconstructing perturbed graphs using the iterative reconstruction algorithm de-

picted in Section 3.2 with 200 iterations, starting from the approximated Gabor

transformed image introduced in Section 3.4.
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4.1. Composite faces

The first application might be useful for forensic investigations to generate face

composite drawings by integrating facial features from different persons into one

image. To achieve this, subgraphs of the face graph have to be defined, each con-

taining all nodes of one facial feature like an eye, the nose, or the mouth. Since the

subgraphs can be aligned rather freely, a huge variety of differently assembled faces

arises. As all subgraphs stem from natural facial images, the composite face graph

might be used for face recognition, e. g., in a mug shot database search, which is

not possible with commonly used sketch face composite drawings.

Figure 7 shows exemplary combinations of different facial images taken from the

CAS-PEAL database.11 Both images in the first row of Figure 7(b) are compositions

of the facial parts displayed in Figure 7(a) with different spatial alignments of the

subgraphs. Although the facial subparts are identical, clearly both images contain

different faces. To indicate the range of images to generate, the second row of

Figure 7(b) shows compositions of other parts, taken from the same original images.

4.2. Average faces and morphing

The second face graph modification is the computation of an average face graph. A

number of face graphs G (p) (1 < p ≤ P ) are extracted from different source images

I (p), which must have approximately the same size and be upright. The average

face graph Ĝ = (L̂, E , Ĵ ) is computed as the weighted average of the landmarks and

the extended Gabor jets:

L̂l =
∑
p

v (p) · L (p)
l ,

(
Ĵl
)
j

=
∑
p

v (p) · (Jl) (p)
j ,

(4.1)

where l iterates over the landmarks and j enumerates the entries of the Gabor jets.

The weights v (p) in Equation (4.1) should (but not necessarily have to) sum

up to unity. Usually, they are identical: v (p) = 1
P . Averaging face graphs can be

used for emphasizing common facial anomalies while suppressing differences due

to facial expressions, illumination conditions, or noise. Exemplary facial properties

are generated by human genome defects that have an impact on the face. The

Human Genetics Institute in Essen, Germany, investigates several syndromes with

a typical facial appearance. To classify the syndrome from static facial images (semi-

)automatically, face graphs were hand-labeled on images of frontal and left profile

views of the usually young patients. Permission to publish images was given by

patients or their wardens.4

The list of syndromes and their abbreviations, as well as the number of averaged

face graphs, is given in Table 2. As Figure 8(a) shows, averaging face graphs of

one syndrome can emphasize prominent facial properties of the syndromes while

suppressing facial expressions, illumination conditions, and patient identity. Shown
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22q- 4p- 5p- CDL FraX MPS II MPS III

Noonan Progeria PWS SLO Sotos TCS WBS

(a) Reconstructed average face graphs

22q- 4p- 5p- CDL FraX MPS II MPS III

Noonan Progeria PWS SLO Sotos TCS WBS

(b) Average images

Figure 8. Reconstruction from average graphs versus averaging gray values. This figure

displays averaged images in frontal and profile view for 14 different syndromes from the study
database.3 While in (b) the gray values of the source images were averaged, (a) shows the recon-

structions of the hand-labeled face graphs.

to medical experts, the syndromes could be identified from these images clearly.3

To show the advantage of using the reconstruction method to average images of

syndromes, the same experiment was repeated, this time averaging pixel gray values
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Abbrv. Frontal Profile Full Name

22q- 26 26 Microdeletion 22q

4p- 12 12 Wolf-Hirschhorn syndrome

5p- 16 12 Cri-du-chat syndrome

CDL 17 17 Cornelia de Lange syndrome

FraX 11 12 Fragile X syndrome

MPS2 7 7 Mucopolysaccharidosis II

MPS3 8 8 Mucopolysaccharidosis III

Noonan 15 15 Noonan syndrome

PWS 13 13 Prader-Willi syndrome

Progeria 5 5 Progeria

SLO 17 17 Smith-Lemli-Opitz syndrome

Sotos 15 15 Sotos syndrome

TCS 12 12 Treacher Collins syndrome

WBS 44 44 Williams-Beuren syndrome

Table 2. Number of images per syndrome. This table shows the subdivision of the study

database3 into the accordant syndromes and the number of images in frontal and left profile view.

instead of Gabor jets and landmark positions:

Î(x) =
∑
p

v (p) · I (p)(x) . (4.2)

Pixel averaging only works when images are aligned, e. g., to the hand-labeled eye

positions in case of frontal view. The resulting average images for the syndromes are

shown in Figure 8(b). In comparison, the reconstructions in Figure 8(a) are much

clearer since Equation (4.1) averages both local texture (Gabor jets) and geometry

(landmark positions), while Equation (4.2) averages only global texture (pixel gray

values).

Graph averaging can also be used to morph one face into another one. To do

a morph between two faces, the weights v (1) of the first graph slowly slides from

zero to one, while the second weight calculates as: v (2) = 1− v (1). Two exemplary

morphs are presented in Figure 9, morphing between the faces shown in Figure 9(a)

and Figure 9(e).

4.3. Caricatures

Combining and extending face graph averaging and face graph morphing, caricature

graphs can be created. A caricature is an image with exaggerated facial features.
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(a) v (1) = 1

v (2) = 0

(b) v (1) = 0.75

v (2) = 0.25

(c) v (1) = 0.5

v (2) = 0.5

(d) v (1) = 0.25

v (2) = 0.75

(e) v (1) = 0

v (2) = 1

Figure 9. Face morphing. This figure displays five steps of a morph from the face in (a) into

the face in (e). The weights for the two graphs are given below the images.

Similarly, caricature graphs are face graphs containing exaggerated texture and

geometrical features. To generate a caricature graph GT+v, an average graph Ĝ and

a target graph GT that includes the facial properties to be exaggerated are morphed:

GT+v = v · GT + (1− v) · Ĝ

= Ĝ + v · (GT − Ĝ) .
(4.3)

For v > 1, caricatures in different magnitudes are generated, the higher the weight,

the more the exaggeration. Weights v = 1 and v = 0 generate the target graph GT
and the average graph Ĝ, respectively. The result for v < 0 is an anti-caricature

graph, where the facial features of the target graph are inverted. Hence, reconstruc-

tions of anti-caricature graphs show what the target graph does not look like.

As an example, caricatures and anti-caricatures of six facial expressions are

displayed in Figure 10. The face graphs of 2261 images of 377 people from within the

CAS-PEAL database11 were detected semi-automatically employing the maximum

likelihood landmark localization12,13 after the images were aligned according to

their hand-labeled eye positions. The average graph shown in the second column

of Figure 10 was generated as an average of all 2261 face graphs, while the target

graphs displayed in the third column are averages of 377 face graphs containing the

same facial expression.

The last column in Figure 10 presents caricatures of the facial expressions in

magnitude v = 4. Especially, the laughing, frowning, and surprised caricatures

visualize exaggerations of the corresponding facial expression excellently. Also, the

opened mouth and surprised caricature are clearly distinguishable. Since some land-
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(a) Neutral expression (b) Closed eyes expression

(c) Surprised expression (d) Frowning expression

(e) Laughing expression (f) Opened mouth expression

Figure 10. Facial expression caricatures. This figure shows reconstructed caricature and anti-

caricature graphs of six different facial expressions. In each subfigure, the second image shows

the averaged graph over all expressions, while the third image contains the average graph for the
current expression. Image four shows the caricature in magnitude v = 4, while the first image

visualizes the anti-caricature with v = −3.

marks of the mouths in the surprised expression were misplaced during automatic

landmark localization, the mouth region is blurry in the surprised caricatures.

The first column of Figure 10 shows anti-caricatures of the expressions. Clearly,

they show how facial expressions do not look like. Apparently, the laughing anti-

caricature seems to show a sad face, although sad was not among the expressions

contained in the CAS-PEAL database. Since the definition of an anti-neutral ex-

pression is ambiguous, the anti-caricature in Figure 10(a) does not show a clear

image.

5. Outlook

In this paper, we introduced an iterative reconstruction algorithm that reconstructs

images from graphs labeled with Gabor jets, optionally using extended discrete Ga-

bor wavelet families. We further added a different initial condition for the iteration

and showed that a comparably good image can be reconstructed in reasonable time.

We showed different ways of incorporating several face graphs into one. These graph

mixtures were reconstructed to show that the different ways of graph merging lead

to valid graphs and, thus, could be used for several practical applications.

In future work, the iterative reconstruction algorithm might be improved by
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replacing step 2a of Algorithm 1 by an alternative with faster convergence. Also, the

memory load could be decreased heavily by implementing the reconstruction sub-

band by sub-band. To increase the number of applications, different, i. e., nonlinear

graph combination algorithms can be investigated. With such methods, e. g., the

aging process of people could be predicted.

Acknowledgments

We gratefully acknowledge funding from Deutsche Forschungsgemeinschaft (BO

1955/2-1, BO 1955/2-3, WU 314/2-1, WU 314/6-2). This work was part of the

CRANIRARE Network funded through a grant from the German Ministry of Re-

search and Education to D.W. (BMBF 01GM0802). Portions of the research in

this paper use the CAS-PEAL face database collected under the sponsorship of the

Chinese National Hi-Tech Program and ISVISION Tech. Co. Ltd.11

Bibliography
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plex cell responses, Neural Computation 16(12) (2004) 2563–2575.


