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Abstract

Similar to countless natural phenomena, cities have inherent or-
ders that can be properly captured and expressed through a complex
analysis of their components. Using Geographic Information Systems
(GIS), this work offers a ring-buffer fractal approach to analyze the
spatial characteristics of the components of an urban system. This
approach was applied to road length, number of intersections, pop-
ulation+employment, and building gross floor area for the city of
Chicago. The complex nature of these four components manifested
itself in power-law relationships and represented by their fractal di-
mensions. Results showed that road length and number of intersec-
tions were closely related, albeit their fractal patterns followed slightly
different trends. Additionally, population+employment and building
gross floor area are significantly similar and one can explain the other.
Moreover, the method developed in this study was able to identify the
boundary of the old city of Chicago, highlighting its ability to cap-
ture hidden characteristics of an urban system. The proposed method
could further be used to correlate complex properties of urban trans-
portation systems to other relevant measures, including connectivity,
accessibility, and mobility to name a few.

Key words: transportation network, road, intersection, urban
system, population, employment, complex analysis, fractal.



1 Introduction

The evolution and spread of an urban system and its components; whether
it is its transportation network, or buildings, or even distribution of people
themselves, happen over many years. It is the aggregated outcome of nu-
merous individual and collective choices, each influenced by the prevailing
conditions in its time. Each new change is overlaid on previous changes. In
other words, any urban system and its components have a starting point
when and where they were founded; tens or in some cases hundreds of
years ago. While it seems reasonable to assume that the older a city is,
the less coherent its founding blocks have been, many researchers suggest
(Batty and Langley, 1994; Batty, 2008; Batty et al., 2008), and sometimes
demonstrate (Chen, 2010a; Doménech, 2009; Friedrich et al., 1994; Rodin
and Rodina, 2000; Wong and Fotheringham, 1990), that no matter how an
urban system has evolved or what foundations it was built on, from a larger
perspective it has inherent order and organization. Having said that, and
to better understand the complex nature of an urban system, studies have
been focused on characterization of its components rather than itself as a
whole (Hillier and Hanson, 1984), because “understanding the topology of
urban networks that connect people and places leads to insights into how
cities are organized” (Samaniego and Moses, 2008).

The hidden, and presumably orderly, characteristics of different com-
ponents of a given urban system have been a matter of interest in recent
time (Levinson, 2007; Shen, 2002; Terzi and Kaya, 2011). In the case of
the transportation network of a city, one can visually observe that such
an order manifests itself in a self-similar pattern (Benguigui, 1995; Kim
et al., 2003). In other words, a transportation network is very similar to
a tree stem that grows, then splits into branches, and then each branch
grows and then that also splits into more sub-branches, and so on so forth.
One main difference, though, is that transportation networks create loops
through branch-joining. Additionally, and noteworthy, order can manifest
itself by showing similar shapes and patterns even if scales differ. This is
particularly true in road networks that tend to be denser in downtowns,
while keeping the same overall pattern of intersections throughout a city.



Nonetheless, the self-similar characteristic of urban systems is not re-
stricted to their transportation networks. In fact, the spread of other com-
ponents of an urban system, such as population (Appleby, 1996; Chen,
2010b; Lu and Tang, 2004), employment, and buildings (Batty et al., 2008,
Frankhauser, 1998a), can show self-repeating patterns as well. This phe-
nomenon clearly fits within the realm of a branch of complex system anal-
ysis, i.e. fractals. Indeed, as spatial and non-isomorphic systems with self-
repeating patterns, cities clearly exhibit the presence of fractal entities.
While this complex behavior of cities and their components has previously
been studied (Batty and Langley, 1994; Samaniego and Moses, 2008), new
technologies and more disaggregate datasets (and in particular extensive
Geographic Information Systems (GIS) data) allow for a more detailed and
comprehensive inspection.

Based on the above discussion, the objectives of this work are to: (i)
analyze the characteristics of different components of a given city using
a proposed fractal approach, (ii) determine the similarities and differences
between the complex representations of those components, and (iii) explore
and explain the reasons behind such similarities and differences.

Overall, this work fits within the global endeavor to analyze cities and
their infrastructure as complex systems (Doménech, 2009; Batty, 2005;
Bettencourt et al., 2010; Bettencourt et al., 2007; Derrible, 2012; Kennedy,
2011; Levinson, 2012; Derrible and Kennedy, 2009, 2010). Taking a frac-
tal approach to analyze an urban system and its components offers many
benefits, including the provision of a measurable metric. As we will see in
the next section, each fractal possesses a particular dimension. As a result,
although different systems are not directly comparable (e.g., people versus
buildings), comparing their fractal dimensions offers a pragmatic means to
gage how they coexist and interact within the built environment.



2 Methodology

2.1 Definition

A fractal can be described as an entity that possesses self-similarity on all
scales. It is important to note that a fractal needs to only exhibit similar
type of, but not exactly the same, structure at all scales. Moreover, accord-
ing to Mandelbrot (Mandelbrot, 2004): “A fractal set is one for which the
fractal dimension strictly exceeds the topological dimension”. In practice,
this means that while a line feature (e.g. a road) has a dimension of 1 in
classical geometry, it must have a dimension larger than 1 if it is to have
fractal properties.

The rough description of fractal dimension (as used in this work) of a
fractal object is the exponent in the expression of the form shown in Eq. 1
(Frankhauser, 1998b; Rasband, 1990):

N (r) =ar P (1)

in which r is the radius (with respect to a point of origin or center), N is
the number quantifying the object x under consideration at the radius r,
a is a constant, and D is the fractal dimension.

2.2 Box-Counting Method

One of the approaches conventionally used in analyzing the properties of a
fractal object is the box-counting method (Shen, 2002; Lu and Tang, 2004;
Song et al., 2007), as shown in Figure 1.
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Figure 1: Box-Counting Method, adapted from Biehl (2008)



The idea is that for a self-similar system one should be able to find
smaller parts, i.e. “boxes”, which demonstrate its repeating pattern. Know-
ing the geometry of the “boxes” will then result in the determination of the
fractal scale. Since the fractal scale is not known at the beginning, how-
ever, the size of such “boxes” cannot be readily determined. Thus, the box-
counting method turns into an attempt to optimize the way the system is
broken into smaller parts, which will eventually result in the determination
of the fractal dimension. While this method has been used extensively in
various fields (Song et al., 2007; Lovejoy et al., 1987; Liebovitch and Toth,
1989; Sarkar and Chaudhuri, 1994; Smith et al., 1996; Tanaka et al., 1999;
Foroutan-pour et al., 1999; Liu et al., 2003; Labedz and Ozimek, 2011), a
study by us (to be published soon) has shown that box-counting method is
incapable of properly capturing and extracting the fractal nature of physi-
cal systems such as transportation networks. For this reason, the following
alternative method is developed, applied, and presented here.

2.3 Proposed Ring-Buffer Method

The proposed ring-buffer method is based on the assumption that urban
systems evolve similar to living organisms. A living being comes to life as
a single cell; let’s call it the “center”. Then it grows and spreads around
that center, subject to its prevailing conditions and constraints. Similar
to that, a city spreads around a point of origin, or “center” (Frankhauser,
1998b; Levinson and Xie, 2011), and then gradually expands outwards,
while avoiding the physical constraints around it such as water bodies,
valleys, etc. The assumption is that the spread of any component of the
system, e.g. its road network, at a given point is proportional to its distance
from that center. Having determined its “center”, the urban system can then
be split into rings or buffers around it, as shown in Figure 2. The “center”
could be a point, or a small area, around which the urban system has grown
and evolved. By calculating the quantity of any given component of the
system as a function of the distance from the center, one should be able
to verify its fractal nature (if any) and extract its fractal dimension (Tang,
2003).



Figure 2: Rings creation in the proposed method

To demonstrate a fractal property, a power law relationship must be
present between the quantity of the component under consideration and
the radius, as discussed in Eq. 1. Nevertheless, because certain areas
have to be excluded (i.e. lakes, rivers, airports, etc.), the ring areas differ
from each other significantly. As a result, and instead of the quantity of
the component within each ring, its cumulative density within the entire
circular buffer is calculated (i.e. eq.l is integrated and then divided by the
area). Consequently, and as shown in Eq. 2, the density of a fractal entity
within a circular buffer area also follows power law of the form:

Density (1) = br P~V (2)

where b is a constant.

Showing a power law trend by the density of the fractal object will
enable one to extract the fractal dimension of the object from the slope of
the log-log plot of the data as per Eq. 3:

In (Density (r)) =In(b) — (D — 1) 1n (1) (3)

i.e. D =slope+ 1. The regression technic to be used for Eq. 3 is sufficient
in this case since there are only few data points; the reader is referred to
Clauset et al. (2009) for a further discussion regarding statistical methods
that can be used to fit power laws.



Finally, using this proposed ring-buffer approach, a question naturally
arises about the selection of the center of a city, especially in cases of mono-
versus poly-centric urban forms. This is an ongoing debate that does not
have a definite answer to date. It is, however, irrelevant in our case since
the methodology is applied to Chicago that has a well-defined center, as it
will be seen in the next section.

3 Application

3.1 Case study: Chicago

This work attempts to investigate whether the spread and evolution of
one of the oldest cities in North America, i.e. Chicago, has an inherent
fractal nature. Having verified the hypothesis, Eq. 3 will then be used
to find the fractal dimensions of its components. What made Chicago a
unique choice was not only its long history during which it had experienced
different periods of urban evolution, but also its unique topology. Chicago
is restricted on the east side by Lake Michigan (Figure 3), which means it
has only been able to expand towards the west. Moreover, two branches
of Chicago River run through it from north and south which join together
to the west of the center of the city and then run eastward towards Lake
Michigan. Such natural constraints on the evolution of its urban system,
in addition to the man-made barriers such as its two international airports,
offer intriguing challenges to the process of applying the proposed model.



Figure 3: Location Map for Chicago, Illinois (Background: Bing Maps
Hybrid)

Moreover, Chicago has a well-defined center, called the “Loop”. The
“Loop” is Chicago’s Central Business District (CBD), hosting the Chicago
Mercantile Exchange, as well as being the city’s administrative center. It
is a well-defined 1.0 km x 1.2 km rectangle surrounded by freeways and
partially the Chicago River (Figure 4).
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Figure 4: The “Loop”, CBD of Chicago (Background: Bing Maps Hybrid)

For that reason, the “Loop” seemed to be a natural choice for the “center”
(or the “heart”) of the city. Having done so, rings were then created around
it with radii from 1 km to 21 km, in increments of 1 km (Figure 5). As
shown, the physical or natural barriers to the city’s expansion, such as the
lake, rivers, valleys, airports, etc., have been cut out of the rings.
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Figure 5: Rings, splitting Chicago into rings from the center

As for the urban system component to be studied, the road network is a
natural choice. That being said, several attributes of roads can be studied.
The first attribute to consider is the road length, due to the fact that roads
are visually similar to fractals. As a second attribute, the intersections
within the road network are hypothesized to have fractal nature, as they
are directly related to the roads.

A less obvious choice was the building area within the city. The ratio-
nale was that the construction of buildings and their spread resembles the
expansion of living organisms. They start from a central area, and then
spread and expand in different directions while avoiding natural, as well as
man-made, barriers. Moreover, since a building not only spreads horizon-
tally, but also vertically, and because its footprint alone could not capture
that characteristic, total building gross floor area (equal to the footprint
multiplied by the corresponding number of floors) was chosen as another
urban system component to study.

Finally, population+employment attributes were selected as the last
candidate for fractal analysis. This essentially means that population and
employment numbers are summed together because the downtown tends to
host few households but many jobs, while the opposite is true as we move
towards suburbs. The rationale for including population+employment is



that the buildings (i.e. a supply) are constructed to meet a demand, and
this demand is mostly (though not completely) generated by the needs to
live and work. Because of that, similar properties between roads, intersec-
tions, building gross floor areas, and population+employment are expected.
This is particularly true for buildings and population+employment, where
we expect a close relationship.

3.2 Data

The data for this study was obtained from different sources, as shown in
Table 1.

Data Source
Road Network U.S. Census Bureau, TIGER/files
Census Tracts and Population Data U.S. Census Bureau, American FactFinder

Building footprints, Land-Use, and  Chicago Metropolitan Agency for Planning
Employment Data

Table 1: Data sources

Having obtained the data for each of the four urban system components,
their quantities in each ring and the areas of the rings are calculated. That
information is then used to calculate the densities of those components for
buffers around the center at the selected radii (Figure 6).
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Figure 6: Chosen urban components within equi-distance rings around the
Center

4 Results and analysis

4.1 Results

In order to come up with the metrics that are comparable at different
radii, the density (Eq. 2, as opposed to the count N from eq. 1) of each
component was calculated for buffers at the radii from 1 km to 21 km at
increments of 1 km. The results are plotted in Figure 7. The diagrams
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provide an opportunity to observe the variations in the overall cumulative
(average) value of any given component as a function of the distance from
the center.
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Figure 7: Plots of components densities vs. radius

The initial observation is that all the above plots seem to exhibit power
law properties, though not at the same level. As mentioned, the presence
of a power law is required to prove the presence of fractal characteristics.

The road length density and intersection density plots demonstrate sim-
ilar patterns, both following a downward trend at a slow pace. This means
that the percentage changes in the densities become less and less sensitive
to the changes in the radius.

Furthermore, the population+employment density as well as the gross
floor area density figures seem to show even more similar patterns. Indeed,
from figures 7c and 7d, density values for them are expectedly high at the
center (i.e. small radius). Density then drops sharply as one moves away
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from the center. Moreover, the rates of change of the slopes for both plots
gradually start decreasing, demonstrating the reduced sensitivity of the
population+employment and the gross floor area densities with respect to
the distance from the center. This is also expected; because the further
away from the center, the less percentage change in the radius.

Comparing the four figures, one can conclude that the concentration of
road segments and intersections within this urban system is less sensitive to
the distance from the center as compared to the population+employment
and gross floor area. The reason could be the fact that roads and intersec-
tions are constrained to a planar expansion, while the population+employment
and gross floor area can expand in the three dimensional space, something
which will be discussed more later.

To further study the potential fractal characteristics of these four com-
ponents, and to determine their fractal dimensions, the same data are re-
drawn on log-log plots, that transform power laws into straight lines (Figure
8).

12



t
~ by = 22,509,000t < v = 1318300
E 4 3 !—-—__ﬁ
5 —
Z y=19.5200% g
a y = 26.558x 0208 n*:bgas (=]
U - R2=0.9751 - c y = 175.69x0-388
S £ R?=0.9754 y = 104.85x0 152
£ = | 2 = 0.9509
-1 2]
=
B o e o L
e - o
1 10 1 10
Radius (km) Radius (km)
8a: Road length Density vs. Radius 8b: Intersections Density vs. Radius
o
—_— Fnd 8
: £*
> ~
b o
Z § =
2 ©
8 Py = 7163081357 . g y = 3.4231x06%
= R?=0,9988 v ;R%S_E’glg‘;’h T o [y-112650 R?=0.9974
£ - e R? = 0.9983
by =
a o 2
S g £
e 8 [ClN=]
-1 Radius (km) 10 1

Radius (km) 10

8c: Population + Employment Density vs. Radius 8d: Gross Floor Area Density vs. Radius

Figure 8: Log-log plots of components densities vs. radius

As a mega city, Chicago has absorbed many smaller urban areas within
itself during its evolution history, and therefore changes were expected in
the patterns observed over the selected range of the radii, i.e. 21 km.
The log-log plots indeed confirmed this expectation, as there are break
points in the linear trends in the plots, which one can observe in Figure 8.
Nevertheless, using the piece-wise linear patterns observed in the log-log
plots, the fractal dimension values for the chosen components of the city
were extracted. Also, statistical analyses were performed on the data and

the results are presented in Table 2. The R? and t-stat values show that all
the results are statistically significant.
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Component Radius Fractal Std.Dev. R? |t-stat| Significant?
(km)  dimension

Road Length 3 to 10 1.21 0.02 0.98 13 Yes
11 to 21 1.09 0.01 0.95 11 Yes
Intersection 3to 10 1.39 0.03 0.98 15 Yes
11 to 21 1.19 0.01 0.95 13 Yes
Population + Employment 3 to 10 1.36 0.02 0.99 77 Yes
11 to 21 1.73 0.03 0.98 22 Yes
Gross Floor Area 31to 10 1.20 0.02 0.99 66 Yes
11 to 21 1.70 0.02 0.99 45 Yes

Table 2: Fractal Dimensions of components densities

4.2 Analysis

In Figure 8, the log-log plots of both the road length and intersection den-
sities show mild linear relationships with respect to the radius. Although
there are still visible linear trends in both diagrams, they each show three
parts with three different slopes. The first parts of both plots only consist
of the first two points, which are within the first 2 km radius from the
center. A first plausible explanation is that within 1-2 km radii, areas are
small and the presence of a large park (i.e. Grant Park) affects the road
density. A second plausible explanation favors the idea that, unlike the
rest of the city, strong top-down planning decisions, as opposed to self-
organization, were taken in that area due to its commercial importance. A
third, and perhaps more likely, explanation points to the fact that the road
system may have reached a point of saturation. In other words, Chicago has
reached its full horizontal capacity during its evolution, and its expansion
has had to switch almost completely from horizontal to vertical direction
(e.g. by building skyscrapers). On the other hand, road networks, unlike
buildings, are restricted to two dimensions. Due to that, there could be no
more new intersections or roads to build.

In contrast, both the log-log plots of population+employment and gross
floor area densities show very well-defined linear relationships that start
from the center and moves outwards up to the radius of 10 km, after which
the slopes of both curves change. Interestingly, the location of the change,
which appears in all log-log diagrams, corresponds to the boundary of old
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Chicago City with old Cicero Township, which are now completely merged.
This fact explains the sudden, yet similar, changes in the trends of all
log-log plots in Figure 8. Moreover, the diagrams show that the rates
of change of both densities have slowed down beyond the 10-km radius,
which reflect the fact that after that point the sensitivities of the popula-
tion+employment and gross floor area densities with respect to the distance
to the center of the city have fallen, i.e. people and businesses are less reac-
tive to a slight change in the distance to the downtown area. Nevertheless,
the linear trends of both diagrams continue after the 10 km radius, though
with different slopes.

Returning to Figure 8, other than the first parts of both log-log dia-
grams of the road length and intersection densities, the rest of their plots
show patterns similar to each other, as well as to the log-log plots of the
population+employment and gross floor area densities, in that they follow
two distinct linear trends with a separation point at a radius of around 10
km, thus capturing the hidden boundary between the old Chicago city and
the old Cicero Township. Moreover, the decreasing slopes of the two plots
represent the fact that the further one moves away from the center of the
city, more infrastructure per capita (but less overall) will be required to
accommodate the decreasing population.

In order to further investigate the similarity between the road and Inter-
section densities on one hand and the population+employment and gross
floor area densities on the other hand, the corresponding values were plotted
against each other (Figures 9 and 10), which clearly shows linear relation-
ships between them.

As for the road and Intersection densities, the two components show a
strong statistical relationship, with R? of 0.997, as shown in Figure 9.
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Figure 9:
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With respect to the population+employment and gross floor area den-
sities, one would appreciate that their fractal dimensions are very close.
This observation points to the high degree of similarity between these
two different-in-nature components of the city. In fact, a plot of popu-
lation+employment versus Gross Floor Area densities show a very good
linear relationship between the two components, with a significant R? value
of 0.997, as shown in Figure 10.
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5 Discussion

The trends observed in the road length and intersection densities were simi-
lar, and the values obtained for their fractal dimensions are also fairly close.
On the other hand, the difference in their fractal dimensions in the 1-10 km
range may suggest that the road capacity has been reached (as experienced
every day with severe congestion), but further investigation is needed to
confirm this hypothesis. That being said, the fractal dimensions calculated
for the intersections are slightly and consistently higher than the corre-
sponding fractal dimensions found for the road lengths. An explanation is
that by moving away from the center of the city, the average land parcel
size increases, therefore leaving less space for roads and intersections. This
is particularly true for the number of intersections, since the average block
size also tends to increase in suburban areas.

The two components population+employment and building gross floor
area showed strong similarities with one another. In fact, their fractal
dimensions are close, especially in the 11-21 km range. Although a fur-
ther investigation is necessary, this result seems to attest the presence of
an equilibrium between the supply (i.e. buildings) and the demand (i.e.
population and employment) within that range.

The patterns of all diagrams therefore corresponds to the fact that the
further one moves away from the center of an urban system, the less dense it
gets in terms or population and employment, building gross floor area, and
transportation infrastructure (roads and intersections), something which is
expected. Moreover, their rates of change, expectedly, are higher at the
beginning but slow down quickly as the distance increases. This, again, is
the exhibition of the power law, which is a representative of fractal behavior.

Overall, the results strongly support the hypothesis that the four com-
ponents considered (population+employment, gross floor area, road length,
and intersection densities) in the city of Chicago are fractals in nature, as
demonstrated by the presence of power law relationships.

Nevertheless, not all fractals are exactly the same, and as such each
possess its own characteristics, including its own fractal dimension. Sudden
changes in the behavior of these fractal entities can enable one to identify
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where the inherent characteristics of a system have changed. This could
be a clue to the causes behind such changes, which can then be used to
identify the shortcomings or deficiencies of the system.

In the case of the city of Chicago, despite its old history, all of its chosen
components show fairly similar patterns. For example, they all show a
change in the characteristics of the city at its old boundary. This could be
used to identify hidden underlying attributes of an urban system.

6 Conclusion

The work presented in this article offers a simple yet efficient fractal ap-
proach to the identification, analysis, and comparison of the characteristics
of the components of an urban system. The proposed ring-buffer method
is capable of exposing the hidden features of a city, even an old and diverse
city such as Chicago with its unique physical and topological barriers.

The study was able to achieve its objectives, namely: to analyze the
characteristics of several urban system components, i.e. roads, intersec-
tions, population+employment, and gross floor area, of Chicago using the
proposed fractal approach; to determine the similarities and differences be-
tween the fractal representations of those components; and to explore and
explain the reasons behind such similarities and differences.

A further expansion of this work could be the application of the method
used in this study to other cities, so that the results can be compared
and analyzed and the findings can be used to improve the quality of the
observations and conclusions from this fractal approach. As a starter, the
same method could also be tested on polycentric cities.

Further work could also focus on the inclusion of more components
of urban systems, such as their utility networks (gas, electricity, water,
wastewater, etc.). It is expected that these components will also exhibit a
fractal nature.

Moreover, the proposed method can be used to explore the evolution
of urban complex systems through time, i.e. temporal analysis, which
could help in following their evolutionary paths and analyze the impacts of
natural or man-made events on how they are shaped today.
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Overall, this approach could potentially be used towards a better under-
standing of how a city, as a complex system, works and how its intertwined
components can be studied and improved.
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