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Abstract—Recently, several solutions have been proposed
to address the complex challenge of protecting individuals’
genetic data during personalized medicine tests. In this short
paper, we analyze different privacy threats and propose simple
countermeasures for the generic architecture mainly used in
the literature. In particular, we present and evaluate a new
practical solution against a critical attack of a malicious
medical center trying to actively infer raw genetic information
of patients.
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I. INTRODUCTION

Recent developments in genome sequencing, in particular
the drastic reduction in sequencing costs, have enabled
an increasing use of genomic data for healthcare. At the
same time, as discussed in many studies [1], [2], genomic
information is highly sensitive because it reveals information
about an individual’s ethnicity, kinship, predisposition to
diseases, phenotype, etc. Therefore, there is a strong need
to protect the privacy of individuals’ genomic data.

One way to achieve this protection is via encryption and
there have been several systems proposed to securely store
and allow for operations on encrypted genomic data [3], [4],
[5], [6]. In this work, we focus on the systems that provide
genetic risk tests in a privacy-preserving way. One common
property of these systems is their architecture and the parties
involved. More specifically, such systems generally assume
the existence of (i) a trusted institution, responsible for the
sequencing, (ii) a data center, responsible for storing the
genomic data and performing some operations on it, (iii) one
or more medical centers (e.g., a physician, a pharmaceutical
company) that prescribe and perform the genetic tests, and
(iv) the individual (or the patient) who provides his genomic
information upon consent.

In this paper, sticking to this generic architecture, we
first analyze the privacy issues of the existing solutions and
demonstrate tractable attacks. Then, we propose efficient
and practical countermeasures. In particular, we propose a
new protocol against an attack carried out by a potentially
malicious medical center trying to learn the genetic data of
the patient (rather than the result of the test) by forging
some of the test parameters. Our protocol allows the data
center (which is unaware of the nature of the genetic test)
to iteratively check some parameters of the test until it is
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Figure 1: System model architecture. P’s genome is sequenced by
the CI, stored encrypted at the DC, and the MCs are able to perform
risk tests on it. The CI is responsible for distributing the keys, and
the MC can get only the final result of the test computation.

convinced the ongoing test is not an attack. The protocol
introduces a tradeoff between privacy and practicality. In
other words, it leaks minimum information about the test to
the data center to provide a practical protocol.

The rest of the paper is organized as follows. In Section II,
we give an overview of the system model and genetic disease
risk test between the involved parties. In Section III, we
provide a taxonomy of different privacy threats, as well as
some basic countermeasures. In Section IV, we propose an
efficient protocol against a potentially malicious medical
unit. In Section V, we study the tradeoff between the
practicality and the privacy of the proposed protocol. Finally,
in Section VI we conclude the paper.

II. SYSTEM MODEL

In this section, we describe the generic architecture
(Fig. 1), usually found in the literature, for performing
genetic risk tests in a privacy-preserving way. In short,
the genetic information of the patient (P) is processed
at a trusted certified institution (CI), which sequences the
DNA, extracts the SNPs, encrypts them, and distributes the
cryptographic keys to the other parties. A data center (DC)
is used to store the encrypted genetic information, while
one or several medical center(s) (MC) can compute genetic
risk tests for P in a privacy-preserving way. In clinical care,
the genetic risk G is usually computed as a weighted sum
of the raw SNPs’ values, G =

∑
(βi × SNP i), where βi

is the contribution (or SNP weight) of SNPi to the risk.
Such a computation is performed, in a privacy-preserving
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way, via secure multiparty computation or using a trusted
hardware (such as a smart card). The MC learns only the
final result, but not the SNPs’ raw values. In addition, the
DC does not learn the SNP weights used in the test because
the computation is performed at the MC.

III. THREATS AND COUNTERMEASURES

In this section, we investigate the different privacy issues
and propose potential countermeasures for the architecture
presented in Section II. Previous works consider the P
and the CI to be trusted parties, and they assume the DC
and the MC(s) to be honest-but-curious parties. Such an
assumption can be considered too strong for a real-life
scenario. Hence, in our analysis, we extend this threat model
beyond the honest-but-curious case, by focusing on other
possible behaviors for both the DC and the MC.

We assume that a party could be either (i) honest when
it perfectly abides by the protocol, (ii) semi-honest (or
honest-but-curious, or passive) when it honestly follows the
protocol specification without altering the data but still tries
to infer sensitive information that should remain private, or
(iii) dishonest (or malicious, or active) when it can arbitrarily
deviate from the protocol specification. In the last category,
we will focus on the interesting case of a dishonest-but-
covert adversary that is willing to actively cheat, but only if
he is not caught [7].

As shown in Fig. 2, we can distinguish three main attacks
depending on the threat model we consider. Note that more
sophisticated attacks can also be performed in this scenario.
We decided to focus on the most likely and simple ones.
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Figure 2: Table showing the different threat models and the three
main attacks that can be performed.

A. Test Inference Attack

A test inference attack can be performed by a semi-honest
data center that might try to infer the nature of the ongoing
test for a given patient P. By looking at the MC’s test
request, the DC learns which SNPs are accessed by the MC,
how many SNPs are used, and how often. For instance, the
DC can infer that P is suffering from heart disease, if the
ongoing test involves SNPs correlated with cardiovascular
risk. Such an attack can dramatically jeopardize P’s privacy
if the DC also has access to some contextual information that
can re-identify P. Re-identification of individuals has been
extensively studied in the literature [8], [9], [10], and it has

been proved to be even more effective when the attacker has
either some additional genetic information about the target
(different from the one securely stored at the DC) or about
his relatives, or some background knowledge about the test
request (i.e., location, and time).

Possible Countermeasure(s): A simple and naı̈ve ap-
proach to address this attack is to use the entire database
for each genomic risk test. In this way, the DC cannot
infer the number and the type of SNPs used for the test.
Following this idea, in [5], Danezis et al. propose a method
that computes the genetic risk test for a given patient by
involving all his SNPs in the computation. The SNPs that
do not contribute to the genetic risk are canceled out from
the final result by using zero weights. However, it is easy to
argue that such a solution does not scale for large databases,
especially if we consider the increasing discovery rate of
new SNPs with clinical relevance. A more sophisticated
approach for hiding MC’s access patterns is represented by
the use of one of the following techniques: Oblivious RAM
(ORAM) [11], or private information retrieval (PIR) [12].
In [4], to protect MC’s access patterns from DC, Karvelas
et al. propose the use of ORAM. Yet, the main drawback
of such a solution is that the protocol periodically requires
the entire database to be reshuffled, which causes significant
computational overhead. In addition, ORAM allows the MC
to obliviously write data on the DC, which is an overkill
in this scenario, and could represent a significant overhead.
Similar concerns also characterize PIR. Even though both
techniques have been proved to be more efficient than the
naı̈ve solution, they are still very expensive, unpractical
and hard to implement in real-life scenarios. Therefore,
we propose in Section IV a more practical solution that
enables the MC to calibrate its strategy according to its
privacy/efficiency preferences.

B. Passive SNP Retrieval Attack

A passive SNP retrieval attack can be performed by a
semi-honest MC that tries to infer P’s SNPs’ raw values
from the test end-result. Note this attack and the next one are
meaningful if we assume that the MC is not allowed to ask
the DC for the raw values of the SNPs but can obtain only
the end-result of a test. As the MC knows the characteristics
of the exposed SNPs (e.g., linkage disequilibrium (LD)
between SNPs), and the SNP weights, the risk computation
can be seen as a linear equation where the SNPs’ values
are the unknowns. P’s privacy decreases with the number of
tests performed by the MC that can build an overdetermined
system of linear equations and easily solve it.

Possible Countermeasure(s): Note that there is no per-
fect solution for preventing such a brute-force attack. Yet, a
potential mitigation has been proposed in [3] where the final
test result is provided as a range. Obviously, as the range size
increases, the utility at the MC decreases, but P’s genomic
privacy decreases slower. The optimal range size for a test



result might change based on the test to be performed. It
is necessary to strike a balance between clinical utility and
patients’ privacy.

C. Active SNP Retrieval Attack

An active SNP retrieval attack can be performed by a
dishonest MC that arbitrarily deviates from the protocol and
sets up new SNP weights for a given test in such a way
as to easily retrieve, from the test end-result, SNPs’ raw
values and compromise patients’ genomic privacy. Let G be
the end-result of a genetic risk test computed as described
in Section II. By setting βi = 0 ∀i except for one βj =
1, where i 6= j, the MC gets that G is trivially equal to
SNP j . Note that such an attack can be reiterated until the
MC has obtained all the raw SNPs of the target patient. In
a smarter version of the same attack, a malicious MC can
create weights as consecutive powers of a number, ρ, greater
than the highest value used for encoding the SNPs. In our
case, we assume that the additive model has been used to
encode the SNPs. According to such an encoding, a SNP
value corresponds to 0 if it is homozygous major, to 1 if it
is heterozygous, or to 2 if it is homozygous minor. Hence,
ρ should be greater than 2. Now, assume that the attacker
sets the SNP weights as a ternary base such that βi = 3i.
Consider a test of size N = 3 and the following weights:
β0 = 30 = 1, β1 = 31 = 3, and β2 = 32 = 9. If the
final results in base 10 of the risk test computation yields
to Gb10 = 22, its equivalent in base 3 is Gb3 = 211. As
G = SNP 2×β2 +SNP 1×β1 +SNP 0×β0, the attacker
can easily map each SNP to the corresponding digit and
immediately obtain the raw values: SNP 2 = 2, SNP 1 = 1,
and SNP 0 = 1.

Possible Countermeasure(s): We emphasize that such an
attack could represent the most likely and dangerous threat
for the genomic privacy of patients in a real-life scenario,
mainly for two reasons: (i) It is easy to perform in practice,
and (ii) it is hard to check whether the protocol is followed
honestly by the multitude of the MCs that could potentially
make use of the system. Indeed, given the design of the
system where the SNP weights are kept private at the MC,
the DC has no way to check if a malicious MC is trying
to run a legitimate test or an attack. In other words, if it
tries to actively retrieve the SNPs by arbitrarily setting the
SNP weights, a dishonest MC is fully covert and it gets
caught with null probability. A possible mitigation to this
attack is to make a compromise between the privacy of the
MC (i.e., the SNP weights used for a given test) and the
privacy of patients’ genetic information stored at the DC. As
such, we propose in Section IV a protocol where the MC
needs to convince the DC, before getting the final result of
the genetic risk test, that its weights are legitimate and not
meant to reveal raw SNPs.

IV. PROPOSED SOLUTION

We saw in Section III that if the MC can freely set the
SNP weights for a given test, it can efficiently recover the
SNPs’ raw values, without being detected. We propose a
practical solution for the active SNP retrieval attack, where
the MC is forced to play fair by iteratively revealing some of
the SNP weights to the DC, until the DC is convinced that
the ongoing test is legitimate. The proposed solution slightly
compromises the MC’s privacy and gives more capabilities
to the (potentially malicious) DC. Indeed, the test parameters
might allow the DC to infer the nature of the test (as seen
in Section III-A), and also might represent some valuable
private information in the eyes of the MC.1 Note that the
MC can abort the protocol at any time, if it considers the
information leakage on the test parameters being above a
given threshold. As previously done in other works, [3], we
assume that the encrypted SNPs are stored shuffled at the
DC and only the MC knows the mapping that is maintained
by the CI. The protocol is based on the scheme discussed
in Section II, and can be described as follows:

1) The MC wants to compute a genetic risk tests on a
given patient involving R SNPs and to convince the
DC that his SNP weights are legitimate. To confuse
the DC, and to prevent him from a test inference attack
based on the number of SNPs requested, it pads his
request with D supplementary dummy SNPs. Dummy
SNPs are not related to the test and their contribution
is cancelled out from the test computation by zero
weights.2 Let N = R + D be the total length of the
request including real and dummy SNPs.

2) The MC sends to the DC the request for N SNPs,
and a commitment for each SNP weight, βi, that will
be used in the test computation (both zero weights
and non-zero weights). Let Ci = Commit(βi) ∀i ∈
[0, N − 1] be such a commitment.

3) The DC randomly picks two indices j, k ∈ [0, N−1],
and sends them to the MC. As a response, the MC
sends the correspondent βj and βk, in clear, to the
DC.

4) The DC verifies the commitments Ck and Cj , and then
checks the value of the two SNP weights. If both βj
and βk are non-zero, and not different powers of the
same number, the DC is convinced that the ongoing
test is not an active SNP retrieval attack. Steps 3 and
4 are repeated until the DC is convinced, or the MC
aborts the protocol. At each new iteration, except the
first, the DC asks the MC for only one new weight.

1It is possible, for example, that a MC, being represented by a phar-
maceutical company, does not want to reveal the coefficients used for
a pharmacogenetic test on a drug under development, before the test is
patented.

2Padding the request with the entire set of SNPs stored at the DC reduces
to the naı̈ve solution described in Section III-A.



5) Once convinced, the DC sends to the MC the S
encrypted SNPs corresponding to the weights not seen
during the previous steps. These SNPs are at most
S = N − 2, if it is convinced at the first iteration.

6) Using the S encrypted SNPs, the MC homomorphi-
cally computes the encryption of the first part of the
test result, ENC(G1), and sends it to the DC.

7) The DC computes the encryption of the second part of
the test result ENC(G2), based on the other encrypted
SNPs for which it knew the weights at steps 3 and 4.
The two partial results are homomorphically added,
such that ENC(G) = ENC(G1) + ENC(G2). The final
encrypted result, ENC(G), is partially decrypted to
ENC(Ĝ) and sent to the MC.

8) The MC performs the final decryption of ENC(Ĝ) to
obtain the final test result, G. The protocol ends.

Note that once the DC is convinced from the SNP weights
revealed by the MC, it computes the encryption of the
partial test result, ENC(G2) to make sure that, whatever
other weight the MC decides to use for ENC(G1), an active
SNP retrieval attack cannot be performed. Also note that
the proposed solution protects against this specific attack.
More sophisticated attacks involving multiple requests of
the same SNPs on a given patient, or collusion of multiple
MCs can only be prevented by enforcing an access control
infrastructure maintained by the CI. We will study such a
countermeasure in future work.

V. EVALUATION AND DISCUSSION

As discussed in Section IV, for the protocol to be suc-
cessful and to preserve patients’ genomic privacy against an
active SNP retrieval attack, the MC leaks some information
about the test. We quantified the information leakage at the
MC, depending on the request length (N ), i.e., the number of
real SNPs (i.e., the test length R) along with the number of
dummy SNPs (D). As shown in Fig. 3, the colored curves,
drawn from an hypergeometric distribution, represent the
expected rate of real SNP weights leaked from the MC,
given the number of iterations performed to convince the DC
about the legitimacy of the test. The diamonds show when
DC is convinced. We can observe that the leakage of real
SNP weights is linear and slower with a higher number of
dummy SNPs. In addition, independently from the number
of dummies used by the MC in the request, the leakage is
always around 2 real SNP weights. Note that if we want to
minimize the request latency at the MC, the use of dummies
seems useless.

However, the leakage of real SNPs weights is not the
only important metric; the test length is also an important
information for an attacker at the DC trying to infer the
nature of the ongoing test. As such, we used the Shannon
entropy to measure the uncertainty on the test length of the
attacker or, in other words, the privacy level of the MC.
We implemented the convincing protocol (steps 3 and 4 of
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Figure 3: Evolution of the rate of real SNP weights leaked, given
the number of iteration done between the MC and the DC for the
convincing protocol.

the proposed solution) in Matlab and, as the DC checks the
weights randomly, we simulated it 500 times to smooth out
the results.

As expected, we observe from Fig. 4, that the more
dummy SNPs are requested from the MC, the slower the
curves decay towards zero, meaning that the uncertainty
of the adversary increases as it increases the number of
dummies.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of iterations DC−MC

E
n

tr
o

p
y
 o

n
 t

e
s
t 

le
n

g
th

 

 

Figure 4: Evolution of the loss of entropy of test size of real SNP
weights leaked, given the number of iteration done between the
MC and the DC for the convincing protocol.

The tension between privacy and efficiency is obvious.
The best tradeoff on the number of dummy SNPs to use in
the request depends on the context of the MC. For instance,
on one hand, if we consider the MC to be a pharmaceutical
company trying to make pharmacogenetic risk tests for a
clinical trial on a population of thousands of patients, the
best strategy will be not to add dummies, as it will slow
down the process and make the computation more intensive.
On the other hand, if we consider the example of a critical
genetic risk test run on a well-known personality, the MC
will not want to take any risk in leaking the nature of the
test from its length. Hence, the best strategy is to maximize
the number of dummy SNPs in the request.

VI. CONCLUSION

In this paper, we have analyzed the privacy threats of
a generic model used for privacy-preserving genetic risk
tests. We have focused on the case of a dishonest-but-covert



MC wanting to actively infer important information about
patients by purposefully modifying the test SNP weights.
We have proposed a practical solution that prevents such an
attack by checking the fairness of the MC. We emphasize
that we have focused on a practical and usable solution for
real-life scenarios, rather than designing a perfect but costly
scheme. In the same line of thought, further improvements
can be made in future work. In particular, access control is a
must for further enhancing the protection of sensitive genetic
information. Hiding the access patterns, possibly through an
efficient PIR, would be an additional improvement over the
obfuscation done when accessing data at the DC.
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