
Asynchronized Concurrency:
The Secret to Scaling Concurrent Search Data Structures

Tudor David Rachid Guerraoui Vasileios Trigonakis ∗

School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{tudor.david, rachid.guerraoui, vasileios.trigonakis}@epfl.ch

Abstract
We introduce “asynchronized concurrency (ASCY),” a
paradigm consisting of four complementary programming
patterns. ASCY calls for the design of concurrent search
data structures (CSDSs) to resemble that of their sequen-
tial counterparts. We argue that ASCY leads to implemen-
tations which are portably scalable: they scale across differ-
ent types of hardware platforms, including single and multi-
socket ones, for various classes of workloads, such as read-
only and read-write, and according to different performance
metrics, including throughput, latency, and energy. We sub-
stantiate our thesis through the most exhaustive evaluation
of CSDSs to date, involving 6 platforms, 22 state-of-the-art
CSDS algorithms, 10 re-engineered state-of-the-art CSDS
algorithms following the ASCY patterns, and 2 new CSDS
algorithms designed with ASCY in mind. We observe up to
30% improvements in throughput in the re-engineered algo-
rithms, while our new algorithms out-perform the state-of-
the-art alternatives.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming
Keywords Concurrent data structures, scalability, multi-
cores, portability

1. Introduction
A search data structure consists of a set of elements and
an interface for accessing and manipulating these elements.
The three main operations of this interface are a search op-
eration and two update operations (one to insert and one to
delete an element), as shown in Figure 1. Search data struc-
tures are said to be concurrent when they are shared by sev-
eral processes. Concurrent search data structures (CSDSs)
are commonplace in today’s software systems. For instance,
concurrent hash tables are crucial in the Linux kernel [40]

∗ Authors appear in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694359

search(k)

k

phase1: parse(k)
phase2: modify(k)

update(k)

Figure 1: Search data structure interface. Updates have two
phases: a parse phase, followed by a modification phase.

and in Memcached [42], while skip lists are the backbone
of key-value stores such as RocksDB [18]. As the tendency
is to place more and more workloads in the main memory
of multi-core machines, the need for CSDSs that effectively
accommodate the sharing of data is increasing.

Nevertheless, devising CSDSs that scale and leverage the
underlying number of cores is challenging [4, 5, 8, 19, 47].
Even the implementation of a specialized CSDS that would
scale on a specific platform, with a specific performance
metric in mind, is a daunting task. Optimizations that are
considered effective on a given architecture might not be
revealed as such on another [4, 12]. For example, NUMA-
aware techniques provide no benefits on uniform architec-
tures [12]. Similarly, if a CSDS is optimized for a spe-
cific type of workload, slightly different workloads can in-
stantly cause a bottleneck. For instance, read-copy update
(RCU) [41] is extensively used for designing CSDSs that are
suitable for read-dominated workloads. However, it could be
argued that this is achieved at the expense of scalability in
the presence of updates.

The motivation of this work is to ask whether we can de-
termine characteristics of CSDS algorithms that favor imple-
mentations which achieve what we call portable scalability,
namely that scale across various platforms, workloads, and
performance metrics. At first glance, this goal might look
fuzzy for it raises a fundamental question: what scalability
can we ideally expect from a given data structure, architec-
ture, performance metric, and workload combination?

In fact, we can provide a practical estimation of an up-
per bound for a data structure’s scalability, on a particular
hardware and workload combination. We step on the obser-
vation that the coherence traffic induced by stores on shared
data is the biggest impediment to the scalability of concur-
rent software. This is valid for practically any contempo-
rary multi-core. Yet, some stores cannot be removed because

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148011702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

they are inherent to the semantics of the data structure; typ-
ically those stores are employed by any standard sequential
implementation of the same data structure (one that is not
supposed to be shared by several processes). Assume how-
ever that we deploy, as is, such a sequential implementa-
tion on a multi-core and have it shared by multiple threads.
Obviously, this deployment would result in incorrect (e.g.,
non-linearizable [31]) executions. The performance of these
asynchronized executions, however, constitutes a reasonable
indication of what can be ideally expected from a correct,
synchronized implementation of the same structure.

We thus consider that a CSDS achieves portable scal-
ability when its scalability closely matches that of asyn-
chronized executions (a) across different types of hardware,
including single and multi-sockets, (b) for various classes
of workloads, such as read-dominated and read-write, and
(c) according to different performance metrics. In the CSDS
context, aspect (c) means that as we increase the number
of threads, we want to remain as close as possible to the
asynchronized execution in terms of throughput and latency,
without sacrificing energy (i.e., without consuming more
power than implementations that do not scale as well in
terms of throughput or latency).

With this pragmatic objective in mind, we perform an ex-
haustive evaluation of CSDSs on six different processors: a
20-core and a 40-core Intel Xeon, a 48-core AMD Opteron,
a 32-core Oracle SPARC T4-4, a 36-core Tilera TILE-Gx36,
and a 4-core Intel Haswell. We measure four dimensions
of scalability: throughput, latency, latency distribution, and
power. We consider the state-of-the-art algorithms for linked
lists, hash tables, skip lists, and BSTs. To the best of our
knowledge, this is the most extensive CSDS evaluation to
date. We find that for each data structure, there are CSDS
algorithms whose performance is within 10% of the asyn-
chronized versions. We observe that in general, the algo-
rithms whose memory accesses to shared state best resem-
ble those of a sequential – asynchronized – algorithm tend
to achieve portable scalability. We further identify four pat-
terns through which this resemblance to sequential imple-
mentations is achieved:
ASCY1: The search operation should not involve any wait-

ing, retries, or stores.
ASCY2: The parse phase of an update operation should not

perform any stores other than for cleaning-up purposes
and should not involve any waiting, or retries.

ASCY3: An update operation whose parse is unsuccessful
(i.e., the element not found in case of a remove, the ele-
ment already present in case of an insert) should not per-
form any stores, besides those used for cleaning-up in the
parse phase.

ASCY4: The number and region of memory stores in a
successful update should be close to those of a standard
sequential implementation.

None of these patterns is fundamentally counter-intuitive
and each of them has already been identified as important in
some form or another. We find that the existing algorithms
that scale the best already apply some of these patterns.
To our knowledge however, they have never been put in a
coherent form and collectively applied and evaluated. We
refer to these patterns as asynchronized concurrency (ASCY),
for together they indeed call for the design of concurrent
algorithms to resemble that of their sequential counterparts
in terms of access to shared state.

We apply ASCY to several existing state-of-the-art algo-
rithms and obtain up to 30% improvements in throughput,
accompanied by reduced latencies. Interestingly, ASCY not
only leads to better throughput, but also results in CSDSs
that consume less power (by 1.4% in average), hence fur-
ther improving energy efficiency. We also present a hash ta-
ble (CLHT) and a BST (BST-TK), two new algorithms de-
signed and implemented from scratch with ASCY in mind.
CLHT (cache-line hash table) places each hash-table bucket
on a single cache line and performs in-place updates so that
operations complete with at most one cache-line transfer.
CLHT outperforms state-of-the-art hash tables in virtually
every scenario. BST-TK (BST Ticket) is a new concurrent
BST that significantly reduces the number of acquired locks
per update over existing algorithms. BST-TK is consistently
the best lock-based BST, compared to the state of the art.

Our evaluation also highlights a number of other interest-
ing observations. We show, for instance, that the fact that an
algorithm is lock-based or lock-free does not have a major
effect on the scalability of CSDSs. Similarly, we show that
the use of hardware transactional memory also makes lit-
tle difference. We highlight however a number of hardware-
related bottlenecks that should be taken into consideration
by system designers.

In summary, the main contributions of this paper are:
• The analysis and comparison of a large number of state-

of-the-art CSDS algorithms in a wide range of settings
(i.e., platforms, workloads, and metrics), representing the
most extensive evaluation to date. This evaluation helps
identify characteristics of portably scalable algorithms
and revisit some beliefs regarding CSDSs.

• Asynchronized Concurrency: A design paradigm which
yields portably scalable CSDSs. When ASCY is applied,
increasing throughput, reducing latency, and reducing
power consumption go hand in hand.

• ASCYLIB: a CSDS library, including 34 highly optimized
and portable implementations of linked lists, hash tables,
skip lists, and BSTs, together with a companion memory
allocator with garbage collection. ASCYLIB includes two
novel CSDS algorithms designed from scratch, namely
CLHT and BST-TK, and re-engineered versions of ten
state-of-the-art CSDS algorithms. ASCYLIB is available
at http://lpd.epfl.ch/site/ascylib.

http://lpd.epfl.ch/site/ascylib

Our patterns are not very precise guidelines and cannot
be used to automatically generate the implementation of a
CSDS from its sequential counterpart. They cannot be used
to derive any theoretical lower bound either. Yet, as we show
in the paper, they provide very useful hints both for optimiz-
ing existing CSDSs and for designing new algorithms.

The rest of the paper is organized as follows. We provide
in Section 2 some background related to search data struc-
tures. We present ASCYLIB in Section 3. In Section 4, we
provide our evaluation of CSDS algorithms. In Section 5 we
identify and illustrate the benefits of ASCY. We describe in
Section 6 the use of ASCY in the design of CLHT and BST-
TK. We present related work in Section 7. We discuss the
limitations of ASCY, and conclude the paper in Section 8.

2. Search Data Structures
Basic interface. A search data structure consists of a set
of elements and three main operations: search, insert, and
remove. An element consists of a key and a value. The key
uniquely identifies the element in the set. The value is often
a pointer to a structure that contains the actual data.

The three main operations have the following semantics:
• search(key) looks for an element with the given key; if it is

found, returns the value of the element, otherwise returns
NULL.

• insert(key, val) attempts to insert a new element in the
data structure; the insertion is successful iff there is no
other element with the same key.

• remove(key) attempts to remove the element with the
given key; it is successful iff such an element exists.
A common attribute of search data structures is that the

updates (insertions and removals) comprise two distinct
phases. First, they parse the structure until the update point
is reached. Then the actual modification is attempted.
Concurrent search data structures. We study the most
basic and commonly-used CSDSs: linked lists, hash tables,
skip lists, and binary search trees (BSTs). We are interested
in linearizable [31] implementations of the aforementioned
data structures.

It is common to classify linearizable implementations
based on whether and how they make use of locks [29].
One can distinguish fully lock-based, hybrid lock-based, and
lock-free [20] algorithms. Fully lock-based algorithms use
locks to protect all three operations and are blocking [29],
in the sense that a thread might have to wait for a lock
to be released. Hybrid lock-based (henceforth called “lock-
based”) algorithms use locks to protect the actual updates to
the structure. They are otherwise lock-free. For instance, a
removal might parse the list (in a lock-free manner) until the
target node is found, get the lock, and then do the actual dele-
tion. Hybrid algorithms are also blocking. Finally, lock-free
algorithms do not use locks and are non-blocking [20, 27].
They typically use the underlying atomic operations, such as
compare-and-swap (CAS), provided by the hardware.

3. The ASCYLIB Library
ASCYLIB contains 32 fully/hybrid lock-based and lock-free
CSDSs, as well as 5 sequential implementations.1 These in-
clude existing state-of-the art designs, and optimized ver-
sions, which we adapt in order to enable one, or more, ASCY
patterns. In addition, ASCYLIB contains two novel CSDS
algorithms built from scratch based on ASCY. Some im-
plementations in ASCYLIB were initially based on the Syn-
chrobench benchmark suite [22].
Algorithms. Table 1 contains a short description of the ex-
isting algorithms we implement.2 ASCYLIB further contains
10 re-engineered (using ASCY) state-of-the-art CSDS de-
signs. In particular, we apply ASCY1−2 on harris linked list
and fraser skip list. We also apply ASCY3 on pugh, lazy, and
copy linked lists/hash tables, on java hash table, on pugh and
herlihy skip lists, and on drachsler BST. Finally, we create a
urcu hash-table variant that uses SSMEM (see below) instead
of RCU for memory management and is closer to ASCY4. In
all our experiments, these optimizations result in better per-
formance (see §4 and §5). We then use ASCY as the base to
design two new CSDS algorithms, a lock-based and a lock-
free variants of a hash table and a BST (see §6).
Memory management. We develop SSMEM, a memory
allocator with epoch-based garbage collection (GC) [20].
SSMEM uses ideas similar to the RCU [41] mechanism: freed
memory can only be reused once it is certain that no other
thread holds a reference to this location. When some mem-
ory is freed, it does not become available until a GC pass
decides that it is safe to be reused. The amount of garbage
SSMEM allows before performing GC is configurable. Fur-
thermore, SSMEM is non-blocking: it is based on per-thread
counters that are incremented to indicate activity.

4. Evaluating the State of the Art CSDSs
In this section, we present a cross-platform evaluation of the
state-of-the-art CSDS implementations and compare them
with their asynchronized counterparts. We observe that re-
gardless of the platform, the asynchronized executions per-
form the best. We further note that the algorithms with mem-
ory accesses to shared state that best resemble the asynchro-
nized implementations are also the closest to these asynchro-
nized upper bounds. Our evaluation also enables us to quan-
tify the impact that various hardware features have on CSDS
algorithms.

We start by describing the platforms and experimen-
tal settings used throughout this paper. We consider four
multi-processors (with multiple sockets) and a chip multi-
processor (with one socket). We also briefly experiment
with an Intel Haswell desktop processor with hardware
transactional-memory support.

1 We use these as incorrect asynchronized CSDSs.
2 The urcu and the tbb hash tables belong to the corresponding libraries and
are not our own implementations.

Name Type Short description

lin
ke

d
lis

t

async seq A sequential linked list. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
coupling [29] flb All operations use hand-over-hand locking (grab next lock and release the previous) while parsing the list.
pugh [49] lb Operations search/parse the list optimistically. Updates lock and then validate the target node. Removals employ pointer reversal

so that a search/parse always finds a correct path.
lazy [25] lb Nodes are deleted in two steps: marking and physical deletion. Searching/Parsing the list simply ignores marked nodes. Updates

parse the list, grab the locks, validate the locked nodes, and perform the update.
copy [48] lb Similar to Java’s CopyOnWriteArrayList. Updates create new copies of the list and are protected by a global lock.
harris [23] lf Nodes are deleted in two steps: mark with CAS and delete with a second CAS. Operations remove the logically deleted nodes while

searching/parsing the list. If cleaning-up fails, searching/parsing is restarted.
michael [44] lf A refactored implementation of harris for easier memory management.

ha
sh

ta
bl

e

async seq A sequential hash table. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
coupling [29] flb Uses one coupling list per bucket, with a single per-bucket lock.
pugh [49] lb Uses one pugh list per bucket, with a single per-bucket lock.
lazy [25] lb Uses one lazy list per bucket, with a single per-bucket lock.
copy [48] lb Uses one copy list per bucket, with a single per-bucket lock.
urcu [13] lb Part of the URCU (User-space RCU) (version 0.8) library. After each successful removal, it waits for all ongoing operations to

complete before freeing the memory. Supports resizing.
java [37] lb Similar to Java’s ConcurrentHashMap. Protects the hash table with a fixed number of locks (we use 512 locks). Supports resizing.
tbb [36] flb Part of Intel’s Thread Building Blocks (version 4.2) library. Uses reader-writer locks. Supports resizing.
harris [23] lf Uses one harris-opt list per bucket.

sk
ip

lis
t

async seq A sequential skip list. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
pugh [49] lb Maintains several levels of pugh lists. Parses towards the target node without locking.
herlihy [26] lb Update operations optimistically find the node to update and then acquire the locks at all levels, validate the nodes, and perform the

update. Searches simply traverse the multiple levels of lists.
fraser [20] lf Optimistically searches/parses the list and then does CAS at each level (for updates). A search/parse restarts if a marked element is

met when switching levels. The same applies if a CAS fails.

bs
t

async-int seq A sequential internal BST. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
async-ext seq A sequential external BST. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
bronson [7] lb Partially external. A search/parse can block waiting for a concurrent update to complete.
drachsler [15] lb Internal tree. Uses logical ordering to allow sequential read operations. Acquires ≥ 3 locks for removals.
ellen [17] lf External tree. Updates help outstanding operations on the nodes that they intend to modify.
howley [32] lf Internal tree. All three operations perform helping and might need to restart.
natarajan [46] lf External tree. Minimizes the number of atomic operations and optimistically searches/parses the tree.

Table 1: A short description of the existing CSDS algorithms we consider. “seq” stands for sequential, “flb” for fully lock-based,
“lb” for (hybrid) lock-based, and “lf” for lock-free.

Opteron. The 48-core AMD Opteron contains four Opteron
6172 [10] multi-chip modules (MCMs). Each MCM has
two 6-core dies. It operates at 2.1 GHz and has 64 KB,
512 KB, and 5 MB (per die) L1, L2, and LLC data caches
respectively.
Xeon20. The 20-core Intel Xeon consists of two sockets of
Xeon E5-2680 v2 Ivy-Bridge 10-core (20 hyper-threads). It
runs at 2.8 GHz and includes 32 KB, 256 KB, and 25 MB
(per die) L1, L2, and LLC, respectively.
Xeon40. The 40-core Intel Xeon consists of four sockets of
Xeon E7-8867L Westmere-EX 10-core (20 hyper-threads).
It clocks at 2.13 GHz and offers 32 KB L1, 256 KB L2, and
30 MB (per die) LLC, respectively.
Tilera. The Tilera TILE-Gx36 [51] is a 36-core chip multi-
processor. It clocks at 1.2 GHz and has 32 KB, 256 KB, and
9 MB3 L1, L2, and L3 data caches, respectively.
T4-4. The Oracle SPARC T4-4 is a four-socket multi-
processor with 8 cores per socket and a total of 256 hardware
threads (chip multi-threading). It operates at 2.85/3 GHz and
has 16 KB, 256 KB, and 4 MB (per die) L1, L2, and LLC
data caches, respectively.
Experimental settings. Each of our measurements repre-
sents the median value of 11 repetitions of 5 seconds each.

3 The 36 L2 caches are utilized as a distributed LLC.

We manually pin threads on cores in order to take advan-
tage of the locality within sockets. Each operation is either a
search, or an update, based on the update percentage we se-
lect. In general, we initialize the structure with a number of
elements (N). The operations choose a key at random in the
[1 . . . 2N] range. This provides the guarantee that on aver-
age, half of the operations are successful and that the struc-
ture size remains close to N (the update percentage is split to
half insertions and half removals). On all architectures, ex-
cept Tilera, we set SSMEM to trigger GC when 512 memory
locations have been freed. On Tilera, we set this value to 128
in order to optimize for the smaller TLBs of 32 entries. On
the asynchronized implementations, we disable GC to avoid
data corruption. Finally, we use 64-bit long keys and values.
It is straightforward to replace both with larger structures.
Cross-Platform evaluation. We now look at the behavior
of a large sample of the state-of-the-art CSDS algorithms, as
presented in Table 1. Figure 2 shows cross-platform results
on various workloads, spanning low, average, and high de-
grees of contention. The histograms plot the throughput and
the scalability ratio compared to the single-threaded execu-
tion (on top of each bar) on 20 threads.

On average and low-contention levels, algorithms ex-
hibit good scalability in terms of throughput: in the exper-
iments with 20 threads, the average scalability of the best

 0

 1

 2

 3

 0 6 12 18 24 30 36 42 48T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

Threads

Opteron

 0

 1

 2

 0 10 20 30 40
Threads

Xeon20

 0

 1

 2

 3

 4

 5

 0 20 40 60 80
Threads

Xeon40

 0

 0.2

 0.4

 0 6 12 18 24 30
Threads

Tilera

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 64 128 192 256
Threads

T4-4

async lazy pugh copy coupling harris michael

4.
3

1.
1

4.
5

0.
7

7.
6 5.
35.

8 5.
5

1.
2

5.
3

0.
9

7.
0 6.
47.
6

5.
9

1.
0

5.
8

0.
4

8.
8 6.
9

11
.8

10
.2

15
.2

10
.6

0.
8 15

.1
13

.516
.3

16
.4

4.
2

15
.8

0.
9

14
.2

11
.9

15
.9

0

5

10

15

20

25

Opteron Xeon20 Xeon40 Tilera T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) High contention

14
.8

1.
7

13
.1

1.
7

16
.6

16
.114

.5

17
.8

2.
9

17
.9

2.
3 17

.3
17

.9

17
.9

17
.3

2.
7

17
.7

1.
6

18
.3

17
.3

17
.7

19
.7

12
.0

16
.8

2.
3 17

.3
19

.4

16
.8 13

.6

5.
5

17
.5

0.
7

16
.3

18
.8

17
.5

0.00

0.05

0.10

0.15

0.20

0.25

Opteron Xeon20 Xeon40 Tilera T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) Low contention

structure
async
lazy
pugh
copy
coupling
harris
michael

(a) Linked list

 0

 40

 80

 120

 160

 200

 0 6 12 18 24 30 36 42 48T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

Threads

Opteron

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40
Threads

Xeon20

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80
Threads

Xeon40

 0

 50

 100

 150

 200

 250

 300

 0 6 12 18 24 30
Threads

Tilera

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 64 128 192 256
Threads

T4-4

async coupling lazy pugh copy urcu java tbb harris

2.
22.

0

1.
92.
4

1.
4 2.

6

2.
3

1.
5

2.
8

0.
7

5.
8

3.
4

6.
7

2.
0

6.
7 7.
2

2.
2

5.
3

0.
8

4.
2

1.
52.

4
0.

7 2.
3 2.
8

0.
0

2.
3

9.
9

8.
49.
7

0.
8

9.
7

10
.8

11
.0

0.
0

0.
0

0

100

200

300

400

Opteron Xeon20 Xeon40 T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) High contention

3.
73.

3

5.
28.
4

4.
8 8.

5

8.
7

3.
5

9.
3

1.
6

9.
613

.3

15
.0

9.
4

14
.8

13
.5

5.
2

16
.7

3.
1

7.
7

11
.3

13
.8

9.
3 13

.4

12
.3

0.
0

15
.4

11
.0

13
.3

10
.2

2.
6

10
.7

11
.411

.1

0.
0

0.
0

0

200

400

600

Opteron Xeon20 Xeon40 T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) Low contention structure

async
coupling
lazy
pugh
copy
urcu
java
tbb
harris

(b) Hash table

 0

 10

 20

 30

 40

 50

 60

 0 6 12 18 24 30 36 42 48T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

Threads

Opteron

 0
 20
 40
 60
 80

 100
 120
 140

 0 10 20 30 40
Threads

Xeon20

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80
Threads

Xeon40

 0

 10

 20

 30

 40

 50

 60

 0 6 12 18 24 30
Threads

Tilera

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360

 0 64 128 192 256
Threads

T4-4

async pugh herlihy fraser

3.
3

3.
1

3.
83.
6

7.
3

6.
7

7.
6

10
.6

5.
9

5.
3

6.
1

8.
3

13
.0

13
.0

13
.913

.2 11
.7

11
.4

11
.9

12
.1

0

25

50

75

100

125

Opteron Xeon20 Xeon40 Tilera T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) High contention

13
.0

11
.8

10
.214

.7

16
.5

16
.3

16
.4

18
.1

15
.3

15
.1

15
.016

.9

16
.0

16
.6

16
.418
.8

14
.3

14
.3

14
.014

.9

0

20

40

60

80

Opteron Xeon20 Xeon40 Tilera T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) Low contention

structure
async
pugh
herlihy
fraser

(c) Skip list

 0

 30

 60

 90

 120

 0 6 12 18 24 30 36 42 48T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

Threads

Opteron

 0

 50

 100

 150

 200

 0 10 20 30 40
Threads

Xeon20

 0

 50

 100

 150

 200

 250

 0 20 40 60 80
Threads

Xeon40

 0
 10
 20
 30
 40
 50
 60
 70

 0 6 12 18 24 30
Threads

Tilera

 0
 90

 180
 270
 360
 450
 540
 630

 0 64 128 192 256
Threads

T4-4

async int async ext bronson drachsler ellen howley natarajan

7.
3

0.
4

3.
8

3.
0

4.
1

4.
6

4.
7 10

.1
5.

0

8.
8

7.
0

7.
7

12
.3

11
.1

7.
7

2.
6

7.
8

8.
6

6.
5

5.
7

9.
7

17
.111

.3

15
.2

14
.3

16
.411

.2
13

.7

10
.810

.5

11
.4

11
.3

12
.4

13
.2

12
.4

0

50

100

150

200

Opteron Xeon20 Xeon40 Tilera T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) High contention

14
.58.
2 12

.0
12

.1

9.
814

.7
11

.9

17
.3

14
.8

17
.4

15
.9

15
.5

17
.7 16

.0

15
.415

.2

15
.8

15
.2

14
.2

16
.6 15

.0

17
.614

.7

17
.2

16
.3

18
.0

15
.8

13
.2

12
.516

.0

14
.7

14
.8

14
.3

16
.0 15

.6

0

30

60

90

120

Opteron Xeon20 Xeon40 Tilera T4−4

T
hr

ou
gh

pu
t (

M
op

s/
s) Low contention

structure
async−ext
async−int
bronson
drachsler
ellen
howley
natarajan

(d) Binary search tree

Figure 2: Cross-platform results of the data structures in ASCYLIB on average (top graphs – 4096 elements, 10% updates), high
(20 threads, 512 elements, 25% updates), and low contention (20 threads, 16384 elements, 10% updates).

performing CSDS algorithm (per data structure) is 16.2 in
the low contention case, whereas for the average and high-
contention levels, this value is 14.1 and 9.8, respectively.
While trends are generally valid across platforms, we do
notice a certain variability: for each workload, the standard
deviation of the average scalability values of different plat-
forms is ∼2. In some cases, scalability trends differ signif-
icantly between platforms. For instance, on the Opteron the
hash tables do not scale beyond 32 threads (including async),
due to bandwidth limitations. In short, the main hash table
structure is initialized from a single memory node, thus all
requests are directed to that node. This problem does not
emerge on java, because of the fine-grained resizing (per one
of the 512 regions) that spreads the hash table on multiple
nodes.

In addition, we observe that there are various algorithms
per data structure that are the “best”. On linked lists (Fig-
ure 2a), pugh is consistently competitive across workloads
and platforms, but lazy is close in throughput. On hash tables
(Figure 2b), several algorithms perform close to each other
(e.g., pugh, lazy, copy, harris). On skip lists (Figure 2c),
herlihy and pugh perform similarly. Finally, on BSTs (Fig-
ure 2d), natarajan is generally the best. Overall, we see that,
per data structure, both lock-based and lock-free algorithms
are close in terms of performance. Lock-freedom is more
important when we employ more threads than hardware con-
texts (not shown in the graphs). In these deployments, lock-
freedom provides better scalability than lock-based designs.

It is worth noting that the workloads we evaluate are uni-
form: the frequency and the distribution of updates are con-
stant. We briefly experiment with non-uniform workloads
(not shown in the graphs), such as those with update spikes
and continuously increasing structure size. We notice that
our observations are valid in these scenarios as well.
Dissecting asynchronized executions. In Figure 2, we also
depict the behavior of the asynchronized implementations
for each data structure. We notice that except for some corner
cases, the asynchronized implementations outperform alter-
natives on all the platforms. The reason for the rare corner
cases in which some concurrent implementations can per-
form better than async is that asynchronized structures can
become malformed in concurrent scenarios. For instance, an
update operation on a skip list could update several pointer
fields. We observe that these pointers are sometimes not
properly set due to concurrency, leading to longer average
path lengths.

For each data structure and regardless of the platform and
workload, there is at least one concurrent algorithm that per-
forms and scales close to the asynchronized implementation
(async) of the data structure. On average, the best concur-
rent implementations are 10% slower than their asynchro-
nized counterparts and exhibit similar scalability trends. The
next section explores methods in which the portable scala-
bility of these algorithms can be improved even further. Our

0.
9

85
.0

16
84

.0

3.
1

1.
7

3.
9

1.
9

0

1

2

3

4

5

as
yn

c
co

py
co

up
lin

g
ha

rr
is

la
zy

m
ic

ha
el

pu
gh

C
ac

he
 m

is
se

s/
op

.

17
.8

1.
6

1.
5

11
.1

12
.9

9.
2

13
.2

0

5

10

15

20

as
yn

c
co

py
co

up
lin

g
ha

rr
is

la
zy

m
ic

ha
el

pu
gh

S
ca

la
bi

lit
y

Figure 3: Cache misses per operation and scalability for
various linked-list algorithms.

empirical results thus confirm our intuition: asynchronized
executions represent good approximations for the ideal be-
havior of CSDSs.

Intuitively, the asynchronized implementations perform
and scale better than the concurrent alternatives because they
trigger cache coherence less (i.e., fewer cache-line trans-
fers): they modify only the data that is semantically neces-
sary, as they do not employ synchronization, thus leading
to a smaller number of memory stores. Cache coherence is
the source of the most significant scalability bottleneck for
concurrent algorithms on multi-cores, because the number
of cache-line transfers tends to increase with the number of
threads. Hence, it is essential for a CSDS algorithm to limit
the amount of cache traffic it performs during each oper-
ation, which is directly linked to the number of stores on
shared data. Stores cause cache-line invalidations, which in
turn generate cache misses of future accesses.

We confirm this line of reasoning by showing a practi-
cal correspondence between the number of cache misses and
the performance of an algorithm. In doing so, we use linked-
list algorithms as an example. Figure 3 shows the number of
cache misses per operation generated by various linked-list
algorithms, as well as their scalability compared to single-
thread throughput. We use a workload where the list has
4096 elements on average, 10% of the operations are up-
dates, and 20 threads concurrently access the data structure.
Clearly, the asynchronized execution has the fewest number
of cache misses. It is also interesting to note that the num-
ber of cache misses per operation is directly correlated to
the scalability and performance of the algorithms: the fewer
cache misses an algorithm generates, the better it scales. This
correlation pertains to the other data structures as well.

We also take a closer look at how the “best” concurrent al-
gorithms access memory. We look at the memory access pat-
tern of a CSDS algorithm by studying the number of loads
and stores (often performed through read-modify-write in-
structions), as well as the branches in each operation and
phase of the algorithm. We notice that the CSDS algorithms
that tend to scale and perform the best also tend to have an
average number of loads, stores, and branches closer to the
asynchronized implementations than the alternatives. This is
generally valid for all the operations and phases. Thus, we
make the observation that the more an algorithm’s memory
access pattern resembles that of the asynchronized execu-

 0
 2
 4
 6
 8

 10
 12
 14

 1 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

Total Throughput

(a)

 0.9
 0.93
 0.96
 0.99
 1.02
 1.05
 1.08
 1.11

 1 5 10 15 20 25 30 35 40

R
a

ti
o

 t
o

 a
s
y
n

c
Threads

Relative Power Consumption

(b)

 0
 1
 2
 3
 4
 5
 6
 7

 1 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

µ
s
)

Threads

Search Latency

(c)

 0
 2
 4
 6
 8

 10
 12
 14

async

lazy
pugh

copy
harris

m
ichael

har-opt

L
a

te
n

c
y
 (

µ
s
)

Search Latency Distribution
 (1/25/50/75/99 percentile)

(d)

 0
 2
 4
 6
 8

 10
 12
 14

async

lazy
pugh

copy
harris

m
ichael

har-opt

L
a

te
n

c
y
 (

µ
s
)

Search Latency Distribution
 (1/25/50/75/99 percentile)

(d)

async lazy pugh copy harris michael har-optasync lazy pugh copy harris michael har-opt 1 thr 10 thr 20 thr

Figure 4: Linked list with 1024 elements and 5% updates (2.5% successful).

tion, the better it scales regardless of the platform and work-
load. In the next section, we look at ways in which this sim-
ilarity can be achieved and validate this observation.
Hardware considerations. Our evaluation has revealed a
number of other hardware-related observations.

We fine-tune several algorithms in ASCYLIB using Intel’s
TSX [34] hardware transactional memory (HTM), in order
to assess whether HTM can be used to optimize CSDSs. Ba-
sically, in 60% of the scenarios, HTM improves throughput
with up to 5%. In the remaining 40%, the results are either
unaffected, or the throughput decreases (up to 5% as well).
We use a 4-core desktop processor (8 hyper-threads) with
the first iteration of Intel’s TSX. As larger machines become
available and the technology matures,4 HTM might become
even more helpful.

We also encounter a number of hardware-related bottle-
necks, not specific to CSDSs. For example, the small TLBs
on the Tilera (32 entries) require feeding SSMEM with small
chunks of memory and keeping the amount of garbage low.
Otherwise, if the threads use largely fragmented memory,
the TLB misses become a bottleneck. Similarly, on Xeon40,
large chunks of memory with a lot of garbage can lead to
an excessive number of hardware prefetches that decrease
performance up to an order of magnitude. On the Opteron,
the interconnect bandwidth becomes a bottleneck when the
structure is allocated on a single memory node. If a structure
fits on one memory page, there is no straightforward solution
to this problem, other than restructuring the data structure.
System designers should be aware of the aforementioned is-
sues as they can emerge in all types of software.

5. The ASCY Patterns
Having observed that CSDSs that resemble sequential algo-
rithms scale and perform best, we now look at how this sim-
ilarity can be achieved. We identify four patterns which are
applicable to a broad class of CSDS algorithms and we show
that when they are applied, the performance and scalability
of CSDSs is systematically improved. These patterns collec-
tively represent asynchronized concurrency (ASCY).

For brevity, we select Xeon20 as the platform in our
experiments. This is the most modern processor within our

4 A recent announcement by Intel [35] suggests that this might take a while.

platform set. Also for brevity, we break down the results
for each pattern using one of the four data structures. Note
that we get similar results on any platform and data-structure
combination: the patterns are globally beneficial.
ASCY1. We first examine the search operation of CSDSs
and use linked lists as a case study. Figure 4 depicts the
behavior of the various linked lists of ASCYLIB on a search-
dominated workload (only 2.5% successful updates).

Out of the existing algorithms, the async, lazy and pugh
lists deliver the highest total throughput. Both lazy and pugh
linked lists have a search that is identical to the sequential
algorithm. Essentially, no stores, waiting, or restarting is
involved. These algorithms perform within 10% of async. In
comparison, the lock-free lists (harris and michael) diverge
from the sequential code as they try to physically remove
logically-deleted nodes using CAS. If a physical removal
fails, the operation is restarted. Additionally, they also need
to unmark5 every pointer while traversing the list.

Overall, the results can be largely explained by the aver-
age search latencies (Figure 4(c)): the closer to the sequential
an implementation is, the lower the latency is. On more than
20 threads, the search latencies decrease due to the effects of
hyper-threading; the two hyper-threads of a core help each
other by keeping the list nodes warm in the shared L1 cache.

We thus identify ASCY1 as a generic pattern: The search
operation should not involve any stores, waiting, or retries.

We apply this pattern to the search operation of existing
algorithms: in the case of linked lists, we apply it to the
harris lock-free list by removing the physical removal of
logically deleted elements from the search operation. We
refer to the resulting algorithm as harris-opt.

If we now look at the three lock-free algorithms, namely
harris, michael, and harris-opt, the effects of applying
ASCY1 become evident. In both harris and michael, the
search tries to unlink logically deleted nodes and restarts if
it fails, hence violating ASCY1. In contrast, harris-opt ig-
nores the deleted nodes while searching. The latency im-
provements due to ASCY1 are approximately 10-30% as we
can observe on the latency graphs (Figure 4(c) & (d)). Ad-
ditionally, harris-opt has a tighter latency distribution (Fig-
ure 4(d)) than the other two. harris-opt provides more stable

5 Clear the least significant bit that indicates a logically deleted element.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

Total Throughput

(a)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1 5 10 15 20 25 30 35 40

R
a

ti
o

 t
o

 a
s
y
n

c
Threads

Relative Power Consumption

(b)

 100

 200

 300

 400

 500

 600

 1 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

n
s
)

Threads

Update Latency

(c)

 0

 200

 400

 600

 800

async

pugh
herlihy

fraser

fr-opt

L
a

te
n

c
y
 (

n
s
)

Parse Latency Distribution
 (1/25/50/75/99 percentile)

(d)

 0

 200

 400

 600

 800

async

pugh
herlihy

fraser

fr-opt

L
a

te
n

c
y
 (

n
s
)

Parse Latency Distribution
 (1/25/50/75/99 percentile)

(d)

async pugh herlihy fraser fr-optasync pugh herlihy fraser fr-opt 10 thr insert
10 thr remove

20 thr insert
20 thr remove

Figure 5: Skip list with 1024 elements and 20% updates (10% successful).

executions because it never restarts or invokes work that is
unnecessary to the search. Furthermore, Figure 4(b) plots the
power consumption relative to async. We observe that har-
ris and michael, which do not follow ASCY1, deliver lower
performance while consuming more power than the rest.

Additionally, the behavior of the copy list is worth ana-
lyzing. It is apparent from the latency graphs that structuring
the data as an array can bring tremendous benefits on se-
rial data accesses. However, copy has two major limitations:
(i) high memory overhead, as every update creates a new list
copy, and (ii) synchronization of updates with a global lock,
which easily becomes a bottleneck. In §6.1, we use the idea
of array-based structures in the design of a hash table.

Finally, we apply ASCY1 to the fraser skip list (not
shown in the graphs) and observe performance improve-
ments. In most cases, applying ASCY1 means deferring
cleaning-up and helping to the update methods. ASCY1 also
requires that updates always leave the data structure in a state
that allows any existing node to be found. In addition, when
removing nodes, their memory should not be freed while
there is the possibility of an ongoing search accessing it.
Memory reclaimation is handled by SSMEM in ASCYLIB.
ASCY2. We now focus on the parse phase of the update
operations. In a sequential algorithm, this phase is basically
identical to the search operation. In CSDSs however, parsing
might involve helping, cleaning-up the data structure, or re-
starting the operation (e.g., due to a failed clean-up attempt).
We study this phase more closely using skip-list algorithms.

Figure 5 depicts the behavior of the five skip lists in
ASCYLIB on a workload with 10% successful updates. The
best performing pre-existing algorithms are pugh and her-
lihy, which are within 22% of the asynchronized version.
Looking closer at their parse phase, we note that the only
stores that are performed are for cleaning-up purposes and
that the parse is never restarted. In contrast, a parse in fraser
might have to restart due to a failed clean-up attempt, or ac-
cessing a logically deleted node when changing levels.

Taking these results into account, we establish ASCY2:
The parse phase of an update operation should not perform
any stores other than for cleaning-up purposes and should
not involve waiting, or retries.

We apply this pattern in conjunction with ASCY1 (based
on [30]) to the fraser skip list and refer to the resulting
algorithm as fraser-opt. fraser-opt delivers up to 8% better
throughput than fraser and has a 5% lower average update
latency (Figure 5(c)). Furthermore, Figure 5(d) plots the
latency distribution of the parsing phase only. The behavior
of both fraser and fraser-opt is similar. However, the latter
eliminates the overhead of useless parses that have to be
restarted. fraser performs 0.38%, 1.07%, and 1.82% more
parses than updates on 10, 20, and 40 threads, respectively.
fraser-opt has lower overheads: 0.03%, 0.09%, and 0.17%,
respectively.

In terms of power consumption (Figure 5(b)), there are
two main observations. First, ASCY not only improves the
throughput of fraser, but also leads to an algorithm that
consumes slightly less power than the initial design. Second,
in the case of skip lists, the lock-based algorithms seem to
consume more power than their lock-free counterparts.

Finally, we also apply ASCY2 to the harris linked list.
In practice, applying ASCY2 means (i) not helping other
threads while parsing the data structure and (ii) avoiding
restarting if cleaning-up fails. Similar to ASCY1, for ASCY2

to work, concurrent updates should not render portions of the
data structure unreachable.
ASCY3. Another characteristic of sequential algorithms
is that if an update operation cannot be completed (i.e.,
the parse does not find the node in case of a remove, or
it finds the node in case of an insert), no additional stores
are performed and the update method simply returns “false”.
This is not always the case in existing CSDS algorithms.

We quantify the impact of this issue by looking at hash-
table algorithms. Figure 6 depicts the performance of various
hash tables with and without (suffixed with “-no”) the “read-
only fail” of the sequential algorithms. In terms of through-
put, algorithms doing no additional stores after unsuccessful
parses perform up to 12.5% better than their counterparts do-
ing stores. Additionally, they are within 19-30% of the async
version. Although this change alters the behavior of only
5% of all operations in this workload, we observe through-
put benefits up to 12.5% on java. This difference can be at-
tributed to (i) the increased number of cache misses caused
by unnecessary synchronization, and (ii) the increase of con-

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

Total Throughput

(a)

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1 5 10 15 20 25 30 35 40

R
a

ti
o

 t
o

 a
s
y
n

c
Threads

Relative Power Consumption

(b)

 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

n
s
)

Threads

Unsuccesful Update Latency

(c)

 0
 100
 200
 300
 400

async

lazy-no

lazy
pugh-no

pugh
copy-no

copy
java-no

java

L
a

te
n

c
y
 (

n
s
)

Update Latency Distribution (20 threads)
 (1/25/50/75/99 percentile)
(d)

 0
 100
 200
 300
 400

async

lazy-no

lazy
pugh-no

pugh
copy-no

copy
java-no

java

L
a

te
n

c
y
 (

n
s
)

Update Latency Distribution (20 threads)
 (1/25/50/75/99 percentile)
(d)

async lazy-no lazy pugh-no pugh copy-no copy java-no javaasync lazy-no lazy pugh-no pugh copy-no copy java-no java insert true
insert false

remove true
remove false

Figure 6: Hash table with 8192 elements, 8192 (initial) buckets, and 10% updates (5% successful).

tention on locks. Basically, (i) manifests as a 2.8% increase
in the cache-miss ratio on 40 threads, and (ii) as a 14% in-
creased chance to find a lock occupied.

Given the apparent benefits, we model the behavior of the
sequential algorithms through ASCY3: An update operation
whose parse phase is unsuccessful should not perform any
stores, besides those used for cleaning-up in the parse phase.

Figure 6(c) details the benefits of ASCY3 on the average
latency of unsuccessful updates. It is clear that turning a
failed update into a read-only operation yields a significant
(1.5-4x) decrease in latencies. Nevertheless, depending on
the algorithm, applying ASCY3 can incur some overhead
on successful updates, as we notice on the graph (d). For
instance, enabling ASCY3 on java requires an additional
search to either decide that the update cannot succeed, or
proceed to the actual update. In general ASCY3 also reduces
the power consumption of the CSDSs. This is achieved by
decreasing the number of cache-line transfers.

Finally, we apply this pattern to multiple other existing
algorithms: the pugh, lazy, and copy linked lists, the pugh
and herlihy skip lists, and the drachsler BST. In many cases,
applying ASCY3 simply means checking the outcome of the
parse and returning “false” without locking. The algorithms
to which we apply ASCY3 trivially maintain correctness, as
unsuccessful updates can be seen as search operations.
ASCY4. We now focus on the modification phase of the up-
date operation. We use BSTs as an example for this scenario.
Figure 7 includes the corresponding results.

Aside from the asynchronized algorithms, the best per-
forming concurrent implementation is natarajan. We argue

that the other four concurrent trees synchronize more than
the minimum. Indeed, we measure the ratio of atomic opera-
tions to the number of successful updates on the same work-
load as Figure 7. natarajan uses two atomic operations per
update on average, which is close to the asynchronized ver-
sions, whereas the other concurrent trees require more than
three. In fact, natarajan is also the closest to async in terms
of the number of stores and the number of affected cache
lines. This major difference, together with the differences in
the first three ASCY patterns, is reflected in the results, in
terms of throughput, latency, and power consumption.

More precisely, howley employs helping even while
searching or parsing the tree. ellen uses helping only on el-
ements that the current operation wants to update. Helping
is generally expensive, as it requires additional synchroniza-
tion in order to be implemented. bronson is a complex al-
gorithm that can block waiting for an update to complete.
Finally, drachsler acquires a large number of locks (3.15 on
average) for each successful update.

Figure 7(d) depicts the latency distribution of successful-
only operations, isolating the effects of the modification
phases. Clearly, the natarajan tree has lower latencies and
a tighter distribution than the rest. Interestingly, natarajan
consumes less power than two of the other four concur-
rent trees, similar power to drachsler, and more power than
howley. natarajan simply performs at speeds different than
the rest: on 40 threads, it issues 797M memory accesses
per second with 13.4% cache-miss ratio, compared to the
578M/23.8% of drachsler and the 395M/18.7% of howley.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

Total Throughput

(a)

 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

 1 5 10 15 20 25 30 35 40

R
a

ti
o

 t
o

 a
s
y
n

c

Threads

Relative Power Consumption

(b)

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1 5 10 15 20 25 30 35 40

L
a

te
n

c
y
 (

n
s
)

Threads

Update Latency

(c)

 0
 0.5

 1
 1.5

 2
 2.5

asn-int

asn-ext

bronson

drachsl

ellen
how

ley

natar

L
a

te
n

c
y
 (

µ
s
)

Successful Latency Distribution
 (20 threads) (1/25/50/75/99 percentile)

(d)

 0
 0.5

 1
 1.5

 2
 2.5

asn-int

asn-ext

bronson

drachsl

ellen
how

ley

natar

L
a

te
n

c
y
 (

µ
s
)

Successful Latency Distribution
 (20 threads) (1/25/50/75/99 percentile)

(d)

async-int async-ext bronson drachsl ellen howley natarasync-int async-ext bronson drachsl ellen howley natar search insert remove

Figure 7: BST with 2048 elements and 20% updates (10% successful).

Still, drachsler and howley consume 41% and 49% more en-
ergy per operation than natarajan, respectively.

We can thus identify ASCY4: The number and region
of memory stores in a successful update should be close to
those of a standard sequential implementation.

Essentially, ASCY4 means that updates should not block
each other or write to the same memory addresses unless
they operate on semantically related elements, such as adja-
cent nodes in the data structure.
Discussion. It is worth noting that while each pattern can
be identified in some of the existing algorithms, we have
shown that CSDS algorithms can be improved even further
when the ASCY patterns are applied collectively. Moreover,
as seen in §4, for each data structure and platform combina-
tion, there is an algorithm that is reasonably close in perfor-
mance to the asynchronized executions, in general a CSDS
that resembles the sequential algorithm. In this section, by
applying ASCY and bringing these algorithms even closer
to their sequential counterparts, we have further improved
their performance and scalability. We can therefore conclude
that ASCY can help reach implementations that are portably
scalable.

6. Designing with ASCY from Scratch
We illustrate the use of ASCY on the design of two new
search data structure algorithms: (i) a hash table (CLHT), and
(ii) a binary search tree (BST-TK). Due to the limited space,
we only present the high-level ideas of the algorithms and
refer the reader to [11] for further details.

6.1 Cache-Line Hash Table (CLHT)
CLHT captures the basic idea behind ASCY: avoid cache-line
transfers. To this end, CLHT uses cache-line-sized buckets
and, of course, follows the four ASCY patterns. As a cache-
line block is the granularity of the cache-coherence proto-
cols, CLHT ensures that most operations are completed with
at most one cache-line transfer.

CLHT uses the 8 words of a cache line as:
concurrency k1 k2 k3 v1 v2 v3 next

The first word is used for concurrency-control; the next
six are the key/value pairs; the last is a pointer that can
be used to link buckets. Updates synchronize based on the
concurrency word and do in-place modifications of the
key/value pairs of the bucket. To support in-place updates,
the basic idea behind CLHT is that a search/parse does not
simply traverse the keys, but obtains an atomic snapshot of
each key/value pair6:
val_t val = bucket ->val[i];
if (bucket ->key[i] == key && bucket ->val[i] == val)

/* atomic snapshot of key/value */

6 For an atomic snapshot to be possible, the memory allocator of the values
must guarantee that the same address cannot appear twice during the lifes-
pan of an operation. Additionally, the implementation has to handle possible
compiler and CPU re-orderings (not shown in the pseudo-code)

We design and implement two variants of CLHT, lock-based
(CLHT-LB) and lock-free (CLHT-LF).
CLHT-LB. The lock-based variant of CLHT uses the
concurrency word as a lock. Search operations traverse the
key/value pairs and return the value if a match is found. Up-
dates first perform a search to check whether the operation is
at all feasible (recall ASCY3) and if so, they grab the lock,
apply the update, and release the lock. If there is not enough
space for an insertion, the operation either links a new bucket
by using the next pointer, or resizes the hash table.
CLHT-LF. The lock-free variant of CLHT is more elaborate
than the lock-based. This is due to the fact that the key/value-
pair insertions have to appear atomic. With locks, we imple-
ment atomicity by allowing for a single concurrent writer per
bucket. However, without locks, several updates can concur-
rently alter the same key or value. Even worse, if concurrent
insertions on the same bucket do not synchronize, there is no
way to avoid duplicate keys on different slots.

In order to solve these complications, we devise the
snapshot t object. snapshot t handles a word (8 bytes)
as an array of bytes (map) with a version number:
struct snapshot_t {

uint32_t version; /* a 4-bytes integer */
uint8_t map [4]; /* an array of 4 bytes */

};

Naturally, snapshot t occupies the concurrency word of
a bucket. snapshot t provides an interface to atomically
get or set the value of an index in the map. The version

number is used to enable sets/gets to do atomic changes with
respect to the other spots in the map. In short, atomicity is
implemented by reading the value of the snapshot t object
before the atomic section and by using the version number
to get/set the target index in the map using a CAS on the
whole object. For instance, if a another concurrent insertion
has already been completed, the current operation will fail
the CAS, because the version number will be different. We
then use the fields of the map as flags that indicate whether
a given key/value pair is valid, invalid, or is being inserted.
Evaluation. We compare CLHT to pugh, one of the best
performing hash tables in §4. In contrast to the linked-based
hash tables, CLHT performs in-place updates, thus avoid-
ing memory allocation and garbage collection of hash-table
nodes. Nevertheless, we use the SSMEM allocator for values.

Figure 8 includes the results. Noticeably, clht-lb and clht-
lf outperform pugh by 23% and 13% on average, respec-
tively. CLHT’s design significantly reduces the number of
cache-line transfers. For example, on the Opteron for 20%
updates, clht-lb requires 4.06 cycles per instruction, clht-
lf 4.24, and pugh operates with 6.57. Interestingly, clht-lb
is consistently better than clht-lf on 20 threads. On more
threads (e.g., 40), however, clht-lf often outperforms clht-lb.
Discussion. CLHT supports operations with keys up to 64-
bits. To support longer keys, the 64-bit keys in CLHT can be
used as a first filter. The operation has to compare the full
key, that is stored separately, only if there is a match with

20
.0

20
.0

19
.8

12
.5 13

.7
13

.8
3.

9 5.
0

4.
8

2.
5

3.
9

4.
2

0
250
500
750

1000
1250

0 1 20 100T
hr

ou
gh

pu
t (

M
op

s/
s)

Opteron

20
.0

19
.8

20
.0

17
.7

18
.9

18
.9

11
.5

10
.5

11
.5

7.
0

7.
3

8.
4

0

500

1000

1500

0 1 20 100

Xeon20

18
.1

17
.9

18
.1

15
.8

17
.6

17
.2

9.
7 8.
0

10
.0

5.
4 5.
5

6.
1

0

300

600

900

1200

0 1 20 100
Update rate (%)

Xeon40

20
.4 17

.9
18

.5
17

.8 16
.4

17
.4

14
.9 14

.8
15

.7
12

.7
15

.2
15

.6

0

100

200

300

0 1 20 100

Tilera

12
.3

11
.4

11
.3

12
.2 12

.9
11

.4
11

.9 11
.4

11
.8

10
.1

10
.2

11
.0

0

200

400

600

0 1 20 100

T4−4

algorithm
pugh
clht−lb
clht−lf

Figure 8: CLHT with 4096 elements on 20 threads for various update rates.

the 64-bit filter. This technique has already been shown to
work well in practice [19].

6.2 BST Ticket (BST-TK)
BST-TK reduces the number of cache-line transfers by ac-
quiring less locks than existing BSTs. Intuitively, on any
lock-based BST an update operation parses to the node to
modify and, if possible, acquires a number of locks and per-
forms the update. This is precisely how BST-TK proceeds.

More specifically, BST-TK is an external tree, where ev-
ery internal, router node is protected by a lock and contains a
version number. The version numbers are used in order to be
able to optimistically parse the tree and later detect concur-
rency. Update operations proceed as described in Figure 10.
We are able to simplify the design of BST-TK by making the
simple observation that a ticket lock already contains a ver-
sion field. Accordingly, we consolidate steps 3 and 6, with
steps 4 and 7 respectively. We do this by modifying the in-
terface of the ticket lock in order to try to acquire a specific
version of the lock (i.e., the one that the parsing phase has
observed). If the lock acquisition fails, the version of the lock
has been incremented by a concurrent update, hence the op-
eration has to be restarted. We further optimize the tree by
assigning two smaller (32-bits) ticket locks to each node, so
that the left and the right pointers of the tree can be locked
separately. Overall, BST-TK acquires one lock for successful
insertions and two locks for successful removals.
Evaluation. We compare BST-TK to natarajan, the best per-
forming BST in §4. Figure 9 depicts the results. In general,
bst-tk behaves very similarly to natarajan (within 1% on av-
erage). It might have been expected that bst-tk would outper-
form the latter, because it uses less atomic operations per up-
date. Although this is true, bst-tk has slightly increased pars-
ing overhead compared to natarajan (0.045% vs. 0.032%
with 20% updates on the Opteron). For simplicity, we did not
implement certain optimizations that could prove beneficial

update ()
1. parse() /* keeps track of the versions numbers */
2. if (! can_update ()) { return false; } /* ASCY3 */
3. lock() /* 1 node for insert , 2 nodes for remove */
4. if (! validate_version ()) { goto 1; }
5. apply_update ()
6. increase_version ()
7. unlock ()

Figure 10: Update operations in BST-TK.

under high contention. For instance, an insertion does not
have to be restarted if the router node is locked by another
insertion. Instead, it can be blocked and wait for the ongoing
insertion to finish and then proceed almost normally.

7. Related Work
CSDS design. A large body of work has been dedicated
to the design of efficient CSDSs [7, 15, 17, 20, 25, 29,
32, 41, 43, 44, 46, 49, 50, 52, 53]. These efforts usually
aim at optimizing a specific CSDS (e.g., BST) in terms of
throughput, for a specific set of workloads and platforms.
In contrast, ASCY is a paradigm that targets the scalability
of various CSDSs across different platforms, for various
workloads, and according to several performance metrics.

Memory reclamation is of key importance in CSDSs [6,
14, 16, 28, 45]. Various techniques have been proposed, such
as quiescent state [13, 23, 24], epochs [20], reference coun-
ters [14, 21, 53], pointers [6, 28, 45], and, recently, hardware
transactional memory [1, 16]. ASCYLIB uses an epoch-based
allocator that reduces the performance overheads.

Read-copy update (RCU) [41] is a concurrent program-
ming technique that is heavily used in the Linux Kernel [3].
In short, RCU guarantees that readers always find a con-
sistent view of the data structure. Writers perform atomic
updates, after which, in the case of removals, they wait for
all concurrent readers to finish in order to perform memory
reclamation. Relativistic programming [52] is a technique

19
.8 19

.9
14

.3
13

.8
7.

8
7.

8
6.

0
6.

4
3.

5
4.

3

0

50

100

150

200

0 1 10 20 100T
hr

ou
gh

pu
t (

M
op

s/
s)

Opteron

20
.1

20
.2

17
.8

16
.9

15
.3

15
.0

13
.3

13
.0

8.
8

8.
4

0

50

100

150

200

0 1 10 20 100

Xeon20

18
.1

18
.2

16
.8

16
.7

13
.9

13
.0

12
.0

10
.7

1.
7

1.
3

0

50

100

0 1 10 20 100
Update rate (%)

Xeon40

20
.1

19
.9

18
.3

18
.6

16
.2

16
.3

15
.3

15
.9

13
.0

15
.1

0

20

40

60

80

0 1 10 20 100

Tilera

14
.8 15

.8
15

.1 16
.2

14
.4 15

.9
13

.7
15

.0
12

.1
12

.9

0

30

60

90

120

0 1 10 20 100

T4−4

algorithm
natar
bst−tk

Figure 9: BST-TK with 4096 elements on 20 threads for various update rates.

that is related to RCU and maintains efficient reads even with
large updates to the data structure (e.g., a resize). Arbel and
Attiya [2] present an RCU-like search tree which allows con-
current updates. While out-performing classic RCU-based
structures, the design is still shown to lag behind other state-
of-the-art CSDSs that are closer to ASCY, in particular in
write-intensive scenarios. In general, RCU-like approaches
purposefully optimize the performance of search operations
at the possible expense of updates. Our ASCY1 pattern is
similar in the sense that it dictates that readers must be un-
aware of concurrency. However, our three remaining patterns
achieve the benefits of sequential reads without sacrificing
the performance of updates.

Hunt et al. [33] study the energy efficiency of lock-free
and lock-based concurrent data structures (queues and linked
lists). They find that lock-free algorithms tend to be more en-
ergy efficient than their lock-based counterparts. We observe
that in the context of CSDSs, as long as the algorithms apply
ASCY, there is no inherent difference between lock-free and
lock-based algorithms. Essentially, this is because the ASCY
patterns help reduce the number and the granularity of locks.
Scalability. Recent work [12] has argued that scalability
of synchronization is mainly a property of the hardware. In
particular, synchronization primitives are shown to be inher-
ently non-scalable on NUMA architectures due to expensive
cache-line transfers. To bypass these problems, ASCY re-
duces the amount of synchronization on CSDSs, leading to
designs that scale even in the presence of non-uniformity.

Clements et al. [9] link commutative interfaces to the
existence of scalable implementations. In essence, they ar-
gue that commutative operations can lead to cache conflict-
free implementations, that are inherently scalable from the
memory-system point of view. Although basic CSDS inter-
faces commute, as defined by Clements et al., certain struc-
tures such as lists and trees do not allow for conflict-free im-
plementations. We show, however, that even in these cases,
scalable algorithms can be devised following ASCY.
Data structures in systems. Boyd-Wickizer et al. [5] per-
formed a scalability study of the Linux kernel. They iden-
tify several bottlenecks, among which, one in the direc-
tory entry lookup operation (even though it is optimized
using RCU). In general, numerous key-value stores, such
as Memcached [42], SILT [38] or Masstree [39] are based
on a CSDS. In some cases, these structures have been
shown to be scalability bottlenecks, as for example in Mem-
cached [5, 19, 47]. Fan et al. [19] achieve a 3-fold perfor-
mance increase over the traditional Memcached, mainly by
optimizing its hash table. ASCY can be used to recognize
possible optimizations in systems such as Memcached and
develop scalable CSDS implementations.

Baumann et al. [4] argue that in principle, non-portable,
hardware-specific optimizations in the OS kernel should be
removed. They attribute the existence of such optimizations
to “the basic structure of a shared-memory kernel with data

structures protected by locks” and propose to rethink the
OS structure. We show that, by applying ASCY, we reach
portably-scalable implementations. We believe that ASCY
can help alleviate the difficult problem of CSDSs in OSes.

8. Concluding Remarks
This paper introduced asynchronized concurrency (ASCY):
a paradigm consisting of four complementary programming
patterns to govern the design of portably scalable con-
current search data structures (CSDSs). We showed that
ASCY can be used both to optimize existing algorithms
and to assist in the design of new ones. In particular, us-
ing ASCY, we have optimized 10 state-of-the-art algorithms
and designed 2 new algorithms from scratch, a hash table
(CLHT) and a binary search tree (BST-TK). These are part
of ASCYLIB, a new CSDS library that contains 34 highly-
optimized cross-platform implementations of linked lists,
hash tables, skip lists, and BSTs. ASCYLIB is available at
http://lpd.epfl.ch/site/ascylib.

It is important to note that it is not always straightforward
to apply some of the ASCY patterns. For instance, internal
BSTs require either helping (e.g., ellen) or additional struc-
tures (e.g., drachsler) to implement ASCY1−2. Similarly, in
order to apply ASCY3 on some lock-based hash tables, such
as java and CLHT, we have to add a complete search opera-
tion before starting with the code of the update. As conveyed
by our results, doing so is beneficial overall, because it re-
duces the coherence traffic. Enabling ASCY in these cases,
however, results in overhead in successful updates.

Clearly, we expect ASCY to be applicable to other search
data structures, such as prefix-trees, or B-trees. However,
given that the ASCY patterns are based on the breakdown
of operations to search and to parse-then-modify updates,
some of the patterns might be meaningless for other abstrac-
tions such as queues and stacks. Still, we argue that the basic
principle of ASCY (i.e., bring the concurrent-software de-
sign close to the asynchronized one) is generally beneficial.

Finally, it is important to note that we have focused this
work on the basic CSDS interface, which is the common de-
nominator for all search data structures. We did not consider
data-structure-specific operations, such as iterations, move,
or max. It is not clear whether it is easy, or possible, to im-
plement these on top of ASCY-compliant CSDSs.

Acknowledgments
We wish to thank the anonymous reviewers for their helpful
comments. We also like to thank Anne-Marie Kermarrec for
her comments in the early stages of this work, as well as,
Eric Ruppert for the fruitful discussions while designing the
CLHT hash table. Finally, we wish to thank Oracle Labs, the
EPFL DIAS lab, and EcoCloud for providing us with some
of the platforms employed in this work. Part of this work was
funded from the SNSF projects 200021-143915 (Reusable
Concurrent Data Types) and 200021-147067 (Scalable and
Secure Computing in Social Networks).

http://lpd.epfl.ch/site/ascylib

References
[1] Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander

Matveev, and Nir Shavit. StackTrack: An Automated Trans-
actional Approach to Concurrent Memory Reclamation. Eu-
roSys 2014.

[2] Maya Arbel and Hagit Attiya. Concurrent Updates with RCU:
Search Tree As an Example. PODC 2014.

[3] Andrea Arcangeli, Mingming Cao, Paul E McKenney, and
Dipankar Sarma. Using Read-Copy-Update Techniques for
System V IPC in the Linux 2.5 Kernel. USENIX ATC 2003.

[4] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian
Schüpbach, and Akhilesh Singhania. The multikernel: a new
OS architecture for scalable multicore systems. SOSP 2009.

[5] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao,
Aleksey Pesterev, M Frans Kaashoek, Robert Morris, and
Nickolai Zeldovich. An Analysis of Linux Scalability to Many
Cores. OSDI 2010.

[6] Anastasia Braginsky, Alex Kogan, and Erez Petrank. Drop the
anchor: lightweight memory management for non-blocking
data structures. SPAA 2013.

[7] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle
Olukotun. A Practical Concurrent Binary Search Tree. PPoPP
2010.

[8] Austin T Clements, M Frans Kaashoek, and Nickolai Zel-
dovich. Scalable address spaces using RCU balanced trees.
In ACM SIGARCH Computer Architecture News, volume 40,
pages 199–210. ACM, 2012.

[9] Austin T Clements, M Frans Kaashoek, Nickolai Zeldovich,
Robert T Morris, and Eddie Kohler. The Scalable Commu-
tativity Rule: Designing Scalable Software for Multicore Pro-
cessors. SOSP 2013.

[10] Pat Conway, Nathan Kalyanasundharam, Gregg Donley,
Kevin Lepak, and Bill Hughes. Cache Hierarchy and Mem-
ory Subsystem of the AMD Opteron Processor. IEEE Micro,
30(2):16–29, March 2010.

[11] Tudor David, Rachid Guerraoui, Tong Che, and Vasileios
Trigonakis. Designing ASCY-compliant Concurrent Search
Data Structures. Technical report, EPFL, Lausanne, 2014.

[12] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis.
Everything You Always Wanted to Know About Synchroniza-
tion but Were Afraid to Ask. SOSP 2013.

[13] Mathieu Desnoyers, Paul E McKenney, Alan S Stern,
Michel R Dagenais, and Jonathan Walpole. User-level im-
plementations of read-copy update. Parallel and Distributed
Systems, IEEE Transactions on, 23(2):375–382, 2012.

[14] David L Detlefs, Paul A Martin, Mark Moir, and Guy L
Steele Jr. Lock-free reference counting. Distributed Com-
puting, 15(4):255–271, 2002.

[15] Dana Drachsler, Martin Vechev, and Eran Yahav. Practical
Concurrent Binary Search Trees via Logical Ordering. PPoPP
2014.

[16] Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and
Mark Moir. On the power of hardware transactional memory
to simplify memory management. PODC 2011.

[17] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van
Breugel. Non-blocking Binary Search Trees. PODC 2010.

[18] Facebook. RocksDB. http://rocksdb.org.

[19] Bin Fan, David G Andersen, and Michael Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber Caching
and Smarter Hashing. NSDI 2013.

[20] Keir Fraser. Practical Lock-Freedom. PhD thesis, University
of Cambridge, 2004.

[21] Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell,
and Philippas Tsigas. Efficient and reliable lock-free memory
reclamation based on reference counting. Parallel and Dis-
tributed Systems, IEEE Transactions on, 20(8):1173–1187,
2009.

[22] Vincent Gramoli. More than You Ever Wanted to Know about
Synchronization. PPoPP 2015.

[23] Timothy L Harris. A Pragmatic Implementation of Non-
blocking Linked Lists. DISC 2001.

[24] Thomas E Hart, Paul E McKenney, Angela Demke Brown,
and Jonathan Walpole. Performance of memory reclamation
for lockless synchronization. Journal of Parallel and Dis-
tributed Computing, 67(12):1270–1285, 2007.

[25] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir,
III Scherer, William N, and Nir Shavit. A Lazy Concurrent
List-Based Set Algorithm. In Principles of Distributed Sys-
tems, volume 3974. 2006.

[26] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir
Shavit. A simple optimistic skiplist algorithm. SIROCCO
2007.

[27] Maurice Herlihy, Victor Luchangco, and Mark Moir.
Obstruction-free synchronization: Double-ended queues as an
example. ICDCS 2003.

[28] Maurice Herlihy, Victor Luchangco, and Mark Moir. The re-
peat offender problem: a mechanism for supporting dynamic-
sized lock-free data structures. Technical report, 2002.

[29] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming, Revised First Edition. 2012.

[30] Maurice P Herlihy, Yosef Lev, and Nir N Shavit. Concur-
rent lock-free skiplist with wait-free contains operator, May 3
2011. US Patent 7,937,378.

[31] Maurice P Herlihy and Jeannette M Wing. Linearizability:
A correctness condition for concurrent objects. ACM Trans-
actions on Programming Languages and Systems, 12(3):463–
492, 1990.

[32] Shane V Howley and Jeremy Jones. A non-blocking internal
binary search tree. SPAA 2012.

[33] Nicholas Hunt, Paramjit Singh Sandhu, and Luis Ceze. Char-
acterizing the performance and energy efficiency of lock-free
data structures. INTERACT 2011.

[34] Intel. Intel Transactional Synchronization Extensions
Overview. 2013.

[35] Intel. Intel xeon processor e3-1200 v3 prod-
uct family - specification update. http://

www.intel.com/content/dam/www/public/

us/en/documents/specification-updates/

xeon-e3-1200v3-spec-update.pdf, 2014.

http://rocksdb.org
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf

[36] Intel Thread Building Blocks. https://www.

threadingbuildingblocks.org.

[37] Doug Lea. Overview of package util.concurrent Release
1.3.4. http://gee.cs.oswego.edu/dl/classes/EDU/

oswego/cs/dl/util/concurrent/intro.html, 2003.

[38] Hyeontaek Lim, Bin Fan, David G Andersen, and Michael
Kaminsky. SILT: A Memory-efficient, High-performance
Key-value Store. SOSP 2011.

[39] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. EuroSys
2012.

[40] Paul E McKenney, Dipankar Sarma, and Maneesh Soni. Scal-
ing Dcache with RCU. Linux Journal, 2004(117), January
2004.

[41] Paul E McKenney and John D Slingwine. Read-copy update:
Using execution history to solve concurrency problems. In
Parallel and Distributed Computing and Systems, pages 509–
518, 1998.

[42] Memcached. http://www.memcached.org.

[43] Zviad Metreveli, Nickolai Zeldovich, and M Frans Kaashoek.
CPHASH: A Cache-partitioned Hash Table. PPoPP 2012.

[44] Maged M Michael. High performance dynamic lock-free hash
tables and list-based sets. SPAA 2002.

[45] Maged M Michael. Hazard pointers: Safe memory reclama-
tion for lock-free objects. Parallel and Distributed Systems,
IEEE Transactions on, 15(6):491–504, 2004.

[46] Aravind Natarajan and Neeraj Mittal. Fast Concurrent Lock-
free Binary Search Trees. PPoPP 2014.

[47] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling
Memcache at Facebook. NSDI 2013.

[48] Oracle. CopyOnWriteArrayList in Java docs.
http://docs.oracle.com/javase/7/docs/api/java/

util/concurrent/CopyOnWriteArrayList.html.

[49] William Pugh. Concurrent Maintenance of Skip Lists. Tech-
nical report, 1990.

[50] Håkan Sundell and Philippas Tsigas. Fast and lock-free con-
current priority queues for multi-thread systems. IPDPS 2003.

[51] Tilera. Tilera TILE-Gx. http://www.tilera.com/

products/processors/TILE-Gx_Family.

[52] Josh Triplett, Paul E McKenney, and Jonathan Walpole. Re-
sizable, scalable, concurrent hash tables via relativistic pro-
gramming. USENIX ATC 2011.

[53] John D Valois. Lock-free linked lists using compare-and-
swap. PODC 1995.

https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://www.memcached.org
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://www.tilera.com/products/processors/TILE-Gx_Family
http://www.tilera.com/products/processors/TILE-Gx_Family

	Introduction
	Search Data Structures
	The ascylib Library
	Evaluating the State of the Art CSDSs
	The ASCY Patterns
	Designing with ASCY from Scratch
	Cache-Line Hash Table (clht)
	BST Ticket (bst-tk)

	Related Work
	Concluding Remarks

