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Abstract— We consider an unconstrained distributed opti-
mization problem and assume that the bit rate of the com-
munication in the network is limited. We propose a distributed
optimization algorithm with an iteratively refining quantization
design, which bounds the quantization errors and ensures con-
vergence to the global optimum. We present conditions on the
bit rate and the initial quantization intervals for convergence,
and show that as the bit rate increases, the corresponding
minimum initial quantization intervals decrease. We prove that
after imposing the quantization scheme, the algorithm still
provides a linear convergence rate, and furthermore derive
an upper bound on the number of iterations to achieve a
given accuracy. Finally, we demonstrate the performance of
the proposed algorithm and the theoretical findings for solving
a randomly generated example of a distributed least squares
problem.

I. INTRODUCTION

Distributed optimization methods for networked systems
that have many coupled sub-systems and must act based on
local information, are critical in many engineering problems,
e.g. resource allocation, distributed estimation and distributed
control problems. The algorithms are required to solve a
global optimization problem in a distributed fashion subject
to communication constraints.

Inexact distributed optimization methods are attracting in-
creasing attention since, in practice, these techniques have to
deal with both the inexact solution of local problems as well
as noise caused by unreliable or limited communication, e.g.,
transmission failures and quantization errors. The question
is then how these errors affect the algorithm and under
which conditions convergence can still be guaranteed. Inex-
act optimization algorithms aim at answering these questions.
Recent works include [4] and [8]. In [4], the authors propose
an inexact decomposition algorithm for solving distributed
optimization problems by employing smoothing techniques
and an excessive gap condition. In [8], an inexact splitting
method, named the inexact fast alternating minimization
algorithm, is proposed and applied to distributed optimal
control problems. Some other related references for inexact
optimization algorithms include [3], [6] and [9]. In [9], an
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inexact proximal-gradient method, as well as its acceler-
ated version, are introduced. The proximal gradient method,
also known as the iterative shrinkage-thresholding algorithm
(ISTA) [1], has two main steps: the first step is to compute
the gradient of the smooth objective and the second step
is to solve the proximal minimization. The conceptual idea
of the inexact proximal-gradient method is to allow errors in
these two steps, i.e. an error in the calculation of the gradient
and an error in the proximal minimization. The results in
[9] show convergence properties of the inexact proximal-
gradient method and provide conditions on the errors, under
which convergence of the algorithm can be guaranteed. In
this paper, we focus on communication errors and build on
the results of [9].

We consider an unconstrained distributed optimization
problem, where each sub-system has a local cost function,
that involves both local and neighbouring variables. The
problem is solved in a distributed manner with only lo-
cal communication. In many problems, the communication
bandwidth is limited requiring quantization of the informa-
tion exchanged among the neighbouring sub-systems. The
quantization process results in inexact iterations through-
out the distributed optimization algorithm, which affect its
convergence. Related work includes [2], [5], [10] and [7],
which study the effects of quantization on the performance
of averaging or distributed optimization algorithms.

We propose a distributed optimization algorithm with pro-
gressive quantization design building on the work in [9] and
[10]. The main idea behind the proposed method is to apply
the inexact gradient method to the distributed optimization
problem and to employ the error conditions, which guarantee
convergence to the global optimum, to design a progressive
quantizer. Motivated by the linear convergence upper-bound
of the optimization algorithm, the range of the quantizer
is set to reduce linearly at a rate smaller than one and
larger than the rate of the algorithm, in order to refine the
information exchanged in the network with each iteration
and achieve overall converge to the global optimum. The
proposed quantization method is computationally cheap and
consistent throughout the iterations as every node implements
the same quantization procedure. The detailed contributions
of this work are the following:

• We propose an unconstrained distributed optimization
algorithm with iteratively refining quantization design.
This method computes an optimal solution of a dis-
tributed optimization problem with locally coupled cost
function under limited communication, i.e. each sub-
system can only communicate with its neighbours, and
at each iteration, only a fixed number of bits can be



transmitted.
• We present conditions on the parameters of the quantiz-

ers, i.e. the number of bits and the initial quantization
intervals, which guarantee convergence of the algorithm.

• We prove that the algorithm with the quantization design
preserves the linear convergence rate, and furthermore
derive an upper bound on the number of iterations to
achieve a given accuracy.

• We demonstrate the performance of the proposed
method and the theoretical results for solving a ran-
domly generated example of a least squares problem
with 20 subsystems.

II. PRELIMINARIES

A. Notation

Let v ∈ R
nv be a vector. ‖v‖ and ‖v‖∞ denote the l2 and

infinity norms of v, respectively. Note that ‖v‖∞ ≤ ‖v‖2 ≤√
nv‖v‖∞. Let f : Θ → Ω be a strongly convex function; σf

denotes the convexity modulus 〈p− q, x− y〉 ≥ σf‖x−y‖2,
where p ∈ ∂f(x), q ∈ ∂f(y) and ∂f(·) denotes the set of
sub-gradients of the function f at a given point. L(f) denotes
a Lipschitz constant of the function f , i.e. ‖f(x1)−f(x2)‖ ≤
L(f)‖x1 − x2‖, ∀x1, x2 ∈ Θ.

B. Inexact gradient method

In this section, an inexact gradient method, which is a spe-
cial case of the inexact proximal-gradient method proposed
in [9], will be introduced. The convergence theorem based
on the theoretical results in [9] will be presented. Inexact
gradient method addresses optimization problems of the form
in Problem II.1 and requires Assumption II.2. The inexact
gradient method is given in Algorithm 1.

Problem II.1.

min
w∈Rnw

φ(w) .

Assumption II.2. φ is a strongly convex function with a

convexity modulus σφ and Lipschitz continuous gradient with

constant L(∇φ).

Algorithm 1 Inexact Gradient Method

Require: Initialize w0 = wstart ∈ R
nw and τ < 1

L(∇φ)
for k = 1, 2, · · · do

wk+1 = wk − τ(∇φ(wk) + ek)
end for

The inexact proximal-gradient method proposed in [9] con-
siders two kinds of errors: an error in the gradient cal-
culation and an error in the computation of the proximal
minimization. In Algorithm 1, we only focus on the first
kind of error and denote it by ek at each iteration k. The
following proposition states the convergence property of
inexact gradient method, which can be easily derived from
Proposition 4 in [9], by considering the second objective and
the error in the computation of the proximal minimization to
be zero.

Proposition II.3 (From Proposition 4 in [9]). Let {wk}
be generated by inexact gradient method defined in

Algorithm 1. If Assumption II.2 holds, then for any k ≥ 1
we have

‖wk − w⋆‖ ≤ (1− γ)k(‖w0 − w⋆‖+ Γk) , (1)

where γ =
σφ

L(∇φ) and w0 and w⋆ denote the starting

sequence of Algorithm 1 and the optimal solution of Prob-

lem II.1, respectively, and

Γk =

k
∑

p=1

(1− γ)−p · ‖ep‖
L(∇φ)

.

As discussed in [9], the upper-bound in Proposition II.3 al-
lows one to derive sufficient conditions on the error sequence
{ek} for the convergence of the algorithm to the optimal
solution w∗:

• If the series {‖ek‖} decreases linearly at a rate of κ <

(1 − γ), then ‖wk − w⋆‖ converges linearly with the
rate 1− γ.

• If the series {‖ek‖} decreases linearly at a rate of (1−
γ) < κ < 1, then ‖wk − w⋆‖ converges linearly with
the rate κ.

• If the series {‖ek‖} decreases linearly at a rate of κ =
(1− γ), then ‖wk −w⋆‖ converges linearly at a rate of
O(k(1− γ)k).

C. Uniform quantizer

Let x be a real number. A uniform quantizer with a quan-
tization step-size ∆ and the mid-value x̄ can be expressed
as

Q(x) = x̄+ sgn(x− x̄) ·∆ ·
⌊‖x− x̄‖

∆
+

1

2

⌋

, (2)

where sgn(·) is the sign function. The parameter ∆ is equal
to ∆ = l

2n , where l represents the size of the quantization
interval and n is the number of bits sent by the quantizer. In
this paper, we assume that n is a fixed number, which means
that the quantization interval is set to be [x̄− l

2 , x̄+
l
2 ]. The

quantization error is upper-bounded by

x−Q(x) ≤ ∆

2
=

l

2n+1
. (3)

For the case that the input of the quantizer and the mid-
value are not real numbers, but vectors of dimension nx, the
quantizer Q is composed of nx independent scalar quantizers
in (2) with the same quantization interval l and corresponding
mid-value. In this paper, we design a uniform quantizer
denoted as Qk(·) with changing quantization interval lk

and mid-value x̄k at every iteration k of the optimization
algorithm.

III. DISTRIBUTED OPTIMIZATION WITH LIMITED

COMMUNICATION

In this section, we will apply the inexact gradient method
to an an unconstrained distributed optimization problem,
where the error results from limited local communication.
We assume that at each iteration, only a fixed number



of bits can be transmitted and the exchanged information
must be quantized. We design a uniform quantizer using
a varying quantization interval and mid-value to refine the
exchanged information at each iteration. Motivated by the
linear complexity bound of the inexact gradient method
in Theorem II.3, the quantization interval is updated by a
linearly decreasing function, and as a result the induced
quantization noise decreases at the same rate. We show
conditions on the number of bits, the initial quantization
intervals and the linear decrease rate, under which the inexact
distributed algorithm converges to the global optimum and
the linear convergence rate is preserved.

We consider a network of M agents. The agents interact
and communicate according to a fixed undirected graph G =
(V, E). The vertex set V = {1, 2, · · · ,M} represents the
agents and the edge set E ⊆ V × V specifies pairs of agents
that can communicate. If (i, j) ∈ E , we say that agents i

and j are neighbours, and we denote by Ni = {j|(i, j) ∈ E}
the set of the neighbours of agent i. Note that Ni includes
i. We denote d as the degree of G. The state of agent i and
the global state are denoted by xi and x = [xT

1 , · · · , xT
M ]T ,

respectively. The dimension of the local state xi is denoted
by mi and the maximum dimension of the local states is
denoted by m̄, i.e. m̄ := max1≤i≤M mi. The concatenation
of the state of agent i and the states of its neighbours is
denoted by xNi

. With the selecting matrices Ei and Fi, they
can be represented as xNi

= Eix and xi = FixNi
. Note

that ‖Ei‖ = ‖Fi‖ = 1. We solve a distributed optimization
problem of the form in Problem III.1:

Problem III.1.

min
x∈Rnx

f(x) =

M
∑

i=1

fi(xNi
) .

Assumption III.2. We assume that the global cost function

f(·) is strongly convex with a convexity modulus σf

(∇f(x1)−∇f(x2))
T (x1 − x2) ≥ σf‖x1 − x2‖2

and Lipschitz continuous gradient with constant L

‖∇f(x1)−∇f(x2)‖ ≤ L‖x1 − x2‖ .

Assumption III.3. We assume that every local cost function

has Lipschitz continuous gradient with constant Li, and

denote Lmax as the maximum Lipschitz constant of the local

functions, i.e. Lmax := max1≤i≤M Li.

We apply the gradient method to Problem III.1. The param-
eter γ is equal to

γ =
σf

L
. (4)

Algorithm 2 presents the proposed distributed algorithm with
progressive quantization design, in which each agent updates
its state, computes the gradient of its cost function locally
and sends the updated value to its neighbours. At each
iteration, each agent sends information to its neighbours
twice: the updated state xk

i , and the gradient ∇fk
i . Since

at each iteration only a fixed number of bits can be sent,
we design two uniform quantizers Qk

α,i and Qk
β,i for every

agent i using the formulation introduced in Section II-C with
a fixed number of bits n, changing quantization intervals
lkα,i and lkβ,i and changing mid-values x̄k

α,i and ∇̄fk
β,i for

transmitting xk
i , and ∇fk

i at every iteration k. The quantized
values are denoted by x̂k

i and ∇̂fk
i , and the quantization

errors are denoted by αk
i = x̂k

i − xk
i and βk

i = ∇̂fk
i −

∇fk
i . In the following, we present three lemmas to link

Algorithm 2 Inexact distributed algorithm with quantization
refinement

Require: Initialize x̂−1
i = x0

i = 0, (1 − γ) < κ < 1 and
τ < 1

L
.

for k = 1, 2, · · · do

For each i = 1, 2, · · · ,M.

1: Agent i updates the parameters of quantizer Qk
α,i:

lkα,i = Cακ
k and x̄k

α,i = x̂k−1
i .

2: Agent i quantizes its state: x̂k
i = Qk

α,i(x
k
i ) = xk

i +αk
i .

3: Send x̂k
i to all the neighbours of agent i.

4: Compute ∇fk
i = ∇fi(x̂

k
Ni

).
5: Agent i updates the parameters of quantizer Qk

β,i:
lkβ,i = Cβκ

k and ∇̄fk
β,i = ∇̂fk−1

i .
6: Agent i quantizes: ∇̂fk

i = Qk
β,i(∇fk

i ) = ∇fk
i + βk

i .
7: Send ∇̂fk

i to all the neighbours of agent i.
8: Agent i updates its state:
xk+1
i = xk

i − τ
∑

j∈Ni
Fi∇̂fk

j .
end for

Algorithm 2 to the inexact gradient method and to prove
that Algorithm 2 converges linearly to the global optimum
despite the quantization errors. Lemma III.4 shows that the
inexactness resulting from quantization in Algorithm 2 is
equivalent to the error of the computation of the gradient
in Algorithm 1. Lemma III.5 states that if at each iteration
the values xk

i and ∇fk
i fall inside the quantization intervals,

then the errors caused by quantization decrease linearly and
the algorithm converges to the global optimum at the same
rate. Lemma III.9 gives conditions on the number of bits and
the initial quantization intervals, which guarantee that xk

i and
∇fk

i fall inside the quantization intervals for each iteration.
Once we prove the three lemmas, we are ready to present
the main theorem.

Lemma III.4. Algorithm 2 is equivalent to applying the

inexact gradient method in Algorithm 1 to Problem III.1 with

φ = f and

ek =
M
∑

i=1

ET
i ∇fi(x̂

k−1
Ni

)+
M
∑

i=1

ET
i β

k
i −

M
∑

i=1

ET
i ∇fi(x

k−1
Ni

) .

Furthermore, ‖ek‖ is upper-bounded by

‖ek‖ ≤
M
∑

i=1

Li ·
∑

j∈Ni

‖αk
j ‖+

M
∑

i=1

‖βk
i ‖ . (5)



Proof: The gradient computation error ek in Algo-
rithm 1 is equal to

ek = ∇̂f(x̂k−1)−∇f(xk−1)

=

M
∑

i=1

ET
i ∇̂fi(x̂

k−1
Ni

)−
M
∑

i=1

ET
i ∇fi(x

k−1
Ni

)

=

M
∑

i=1

ET
i ∇fi(x̂

k−1
Ni

) +

M
∑

i=1

ET
i β

k
i −

M
∑

i=1

ET
i ∇fi(x

k−1
Ni

).

Then,

‖ek‖ ≤
M
∑

i=1

‖ET
i ‖ · Li · ‖x̂k−1

Ni
− xk−1

Ni
‖+

M
∑

i=1

‖βk
i ‖

≤
M
∑

i=1

Li ·
∑

j∈Ni

‖αk
j ‖+

M
∑

i=1

‖βk
i ‖ .

From the discussion in Section II-B, we know that if ‖ek‖
decreases linearly at a rate larger than (1−γ), then ‖wk−w⋆‖
converges linearly at the same rate as ‖ek‖. Lemma III.5
brings Algorithm 2 close to this goal. It shows that if the
values of xk

i and ∇fk
i always fall inside the quantization

interval, then the computational error of the gradient ek as
well as ‖wk − w⋆‖ decrease linearly with the constant κ.

Lemma III.5. Given k, if for all 1 ≤ p ≤ k the values of x
p
i

and ∇f
p
i fall inside of the quantization intervals of Q

p
α,i and

Q
p
β,i, i.e. ‖xk

i − x̄k
α,i‖∞ ≤ lkα,i

2 and ‖∇fk
i −∇̄fk

β,i‖∞ ≤ lkβ,i

2 ,

then the sequence ‖ep‖ decreases linearly at the rate of κ

‖ep‖ ≤ Cκp . (6)

where C =
Mdm(LmaxCα+Cβ)

2n+1 , and ‖xp+1 − x⋆‖ converges

linearly at the rate κ and satisfies

‖xp+1 − x⋆‖ ≤ κp+1

[

‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)

]

. (7)

Proof: From the property of the uniform quantizer,
we know that if x

p
i and ∇f

p
i fall inside of the quantization

intervals of Q
p
α,i and Q

p
β,i, then the quantization errors α

p
i

and β
p
i are upper-bounded by

‖αp
i ‖ ≤ mi ·

l
p
α,i

2n+1
≤ m̄ ·

l
p
α,i

2n+1
,

‖βp
i ‖ ≤

∑

j∈Ni

mj ·
l
p
β,i

2n+1
≤ d · m̄ ·

l
p
β,i

2n+1
.

From Lemma III.4, we have

‖ep‖ ≤
M
∑

i=1

Li ·
∑

j∈Ni

m̄l
p
α,j

2n+1
+

M
∑

i=1

dm̄l
p
β,i

2n+1
.

Since the quantization intervals are set to l
p
α,j = Cακ

p and
l
p
β,j = Cβκ

p, it implies that

‖ep‖ ≤ MLmaxdm̄Cακ
p

2n+1
+

Mdm̄Cβκ
p

2n+1
= Cκp ,

with C =
Mdm̄(LmaxCα+Cβ)

2n+1 . Proposition II.3 and (1−γ) <
κ imply that for 1 ≤ p ≤ k

‖xp+1 − x⋆‖ ≤ (1− γ)p+1‖x0 − x⋆‖

+
C

L

p+1
∑

q=1

κq(1− γ)p+1−q

≤ κp+1

[

‖x0 − x⋆‖+ C

L

p+1
∑

q=1

(1− γ)p+1−q

κp+1−q

]

.

Since 0 < (1 − γ) < κ < 1, by using the property of
geometric series, we get that the expression above is equal
to

= κp+1

[

‖x0 − x⋆‖+ C

L
· 1− ( 1−γ

κ
)p+1

1−γ
κ

]

≤ κp+1

[

‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)

]

.

Hence, inequality 7 is proved.
From Lemma III.5, we know that the last missing piece is
to show that the values xk

i and ∇fk
i fall inside the quantiza-

tion interval at every iteration k. The following assumption
presents conditions on the number of bits n and the initial
quantization intervals Cα and Cβ , which guarantee that for
each iteration, xk

i and ∇fk
i in Algorithm 2 fall inside the

changing quantization intervals and the quantization errors
decrease linearly with the constant κ, which further implies
that Algorithm 2 converges to the global optimum linearly
with the same rate κ.

Assumption III.6. We assume that the number of bits n and

the initial quantization intervals Cα and Cβ satisfy

a1 + a2
Cα

2n+1
+ a3

Cβ

2n+1
≤ Cα

2
(8)

b1 + b2
Cα

2n+1
+ b3

Cβ

2n+1
≤ Cβ

2
, (9)

with

a1 =
(κ+ 1)‖x0 − x⋆‖

κ
, a3 =

Mdm̄(κ+ 1)

L(κ+ γ − 1)

a2 =
Mdm̄Lmaxκ(κ+ 1) +Mm̄L(κ+ γ − 1)

Lκ(κ+ γ − 1)
,

b1 =
Lmax(κ+ 1)‖x0 − x⋆‖

κ
,

b2 =
Lmaxdm̄(κ+ 1)(LmaxMκ+ Lκ+ Lγ − L)

Lκ(κ+ γ − 1)
,

b3 =
LmaxMdm̄κ(κ+ 1) + Ldm̄(κ+ γ − 1)

Lκ(κ+ γ − 1)
.

Remark III.7. Assumption III.6 can always be satisfied by

increasing n, Cα and Cβ .

Remark III.8. For a fixed n, inequalities (8) and (9) repre-

sent two polyhedral constraints on Cα and Cβ . Therefore, the

minimal Cα and Cβ can be computed by solving a simple

LP problem, i.e. minimizing Cα + Cβ subject to Cα ≥ 0,

Cβ ≥ 0, and inequalities (8) and (9). Since the minimal n is



the smallest value for which the LP problem has a feasible

solution, the minimal n can be found by testing feasibility of

the LP problem.

Lemma III.9. If Assumption III.6 is satisfied, then for any

k ≥ 0 the values of xk
i and ∇fk

i in Algorithm 2 fall inside

of the quantization intervals of Qk
α,i and Qk

β,i, i.e. ‖xk
i −

x̄k
α,i‖∞ ≤ lkα,i

2 and ‖∇fk
i − ∇̄fk

β,i‖∞ ≤ lkβ,i

2 .

Proof: We will prove Lemma III.9 by induction.
• Base case: At k = 0, since Cα and Cβ are positive

numbers and x̂−1
i and x0

i are initialized to zero, it holds

that ‖x0
i − x̄0

α,i‖∞ = ‖x0
i − x̂−1

i ‖∞ ≤ l0α,i

2 = Cα

2

and ‖∇f0
i −∇̄f0

β,i‖∞ = ‖∇fi(x
0
Ni

)−∇̂fi(x̂−1
Ni

)‖∞ ≤
l0β,i

2 =
Cβ

2 .
• Induction step: Let g ≥ 0 be given and suppose that

‖xk
i − x̄k

α,i‖∞ ≤ lkα,i

2 and ‖∇fk
i − ∇̄fk

β,i‖∞ ≤ lkβ,i

2 for
k ≤ g. We will prove that

‖xg+1
i − x̄

g+1
α,i ‖∞ ≤

l
g+1
α,i

2
(10)

and

‖∇f
g+1
i − ∇̄f

g+1
β,i ‖∞ ≤

l
g+1
β,i

2
(11)

for i = 1, · · · ,M . 1. We first show (10). From Algo-
rithm 2, we know

‖xg+1
i − x̄

g+1
α,i ‖∞ = ‖xg+1

i − x̂
g
i ‖∞ ≤ ‖xg+1 − x̂g‖∞

= ‖xg+1 − xg −
M
∑

i=1

ET
i α

g
i ‖∞

≤ ‖xg+1 − xg‖∞ + ‖
M
∑

i=1

ET
i α

g
i ‖∞

≤ ‖xg+1 − x⋆‖∞ + ‖xg − x⋆‖∞ + ‖
M
∑

i=1

ET
i α

g
i ‖∞

≤ ‖xg+1 − x⋆‖2 + ‖xg − x⋆‖2 +
M
∑

i=1

‖αg
i ‖2 .

From Lemma III.5 and the assumption of the induction,
it follows that the above expression is upper-bounded by

≤ κg+1

[

‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)

]

+ κg

[

‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)

]

+
Mm̄Cακ

g

2n+1
.

We substitute C =
Mdm̄(LmaxCα+Cβ)

2n+1 and simplify it
as

= κg+1

[

a1 + a2 ·
Cα

2n+1
+ a3 ·

Cβ

2n+1

]

,

with the parameters defined as in Assumption III.6.
Since inequality (8) holds, the term above is bounded by
Cα

2 κg+1. Thus, inequality (10) holds. In the following,
we prove that inequality (11) is true.

‖∇f
g+1
i − ∇̄f

g+1
β,i ‖∞ = ‖∇f

g+1
i − ∇̂f

g
i ‖∞

= ‖∇fi(x̂
g+1
Ni

)−∇f
g
i (x̂

g
Ni

) + β
g
i ‖∞

≤ ‖∇fi(x̂
g+1
Ni

)−∇fi(x̂
g
Ni

)‖∞ + ‖βg
i ‖∞

≤ ‖∇fi(x̂
g+1
Ni

)−∇fi(x̂
g
Ni

)‖2 + ‖βg
i ‖2

≤ Li‖x̂g+1
Ni

− x̂
g
Ni

‖+ ‖βg
i ‖

≤ Li‖xg+1
Ni

− x
g
Ni

‖
+ Li

∑

j∈Ni

(‖αg+1
j ‖+ ‖αg

j‖) + ‖βg
i ‖

≤ Li‖xg+1 − xg‖+ Li

∑

j∈Ni

(‖αg+1
j ‖+ ‖αg

j‖) + ‖βg
i ‖

≤ Lmax(‖xg+1 − x⋆‖+ ‖xg − x⋆‖)
+ Lmax

∑

j∈Ni

(‖αg+1
j ‖+ ‖αg

j‖) + ‖βg
i ‖ .

Again using Lemma III.5 and the assumption of the
induction, it follows that the above is upper-bounded
by

≤ Lmaxκ
g+1(‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)
)

+ Lmaxκ
g(‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)
)

+
Lmaxm̄

∑

j∈Ni
(lg+1
α,j + l

g
α,j)

2n+1
+

dm̄l
g
β,i

2n+1

≤ Lmaxκ
g+1(‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)
)

+ Lmaxκ
g(‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)
)

+
Lmaxdm̄Cα(κ

g+1 + κg)

2n+1
+

dm̄Cβκ
g

2n+1
.

By substituting C =
Mdm̄(LmaxCα+Cβ)

2n+1 , we simplify
the expression above as

= κg+1 ·
[

b1 + b2 ·
Cα

2n+1
+ b3 ·

Cβ

2n+1

]

,

with the parameters defined as in Assumption III.6.
Since inequality (8) holds, the term above is bounded

by Cβ

2 κg+1 =
l
g+1

β,i

2 . Thus, inequality (11) holds.

We conclude that by the principle of induction, the values of
xk
i and ∇fk

i in Algorithm 2 fall inside of the quantization

intervals of Qk
α,i and Qk

β,i, i.e. ‖xk
i − x̄k

α,i‖∞ ≤ lkα,i

2 and

‖∇fk
i − ∇̄fk

β,i‖∞ ≤ lkβ,i

2 for all k ≥ 0.
After showing Lemma III.4, Lemma III.5 and Lemma III.9,
we are ready to present the main theorem.

Theorem III.10. If Assumptions III.2, III.3 and III.6 hold,

then for k ≥ 0 the sequence {xk} generated by Algorithm 2

converges to the optimum linearly with the constant κ and

satisfies

‖xp+1−x⋆‖ ≤ κp+1

[

‖x0 − x⋆‖+ Cκ

L(κ+ γ − 1)

]

. (12)

with C =
Mdm̄(LmaxCα+Cβ)

2n+1 .



Proof: Since Assumption III.2, III.3 and III.6 hold,
Lemma III.9 shows that for each iteration the values xk

i and
∇fk

i always fall inside of the quantization intervals of Qk
α,i

and Qk
β,i. From Lemma III.5, we know that the computation

error of the gradient ‖ek‖ decreases linearly with the constant
κ and xk satisfies inequality (12).
The complexity bound in Proposition II.3 states that if the
error is equal to zero, the algorithm converges linearly with
the constant 1− γ. After imposing quantization on the algo-
rithm, it still converges to the global optimum linearly but
with a larger constant κ > 1− γ. We conclude that with the
proposed quantization design, the linear convergence of the
algorithm is preserved, but the constant of the convergence
rate is enlarged in order to compensate for the deficiencies
from limited communication.

IV. NUMERICAL EXAMPLE

This section illustrates the theoretical findings of the paper
and demonstrates the performance of Algorithm 2 by solving
a distributed least squares problem

min
x∈Rnx

f(x) =

M
∑

i=1

fi(xNi
) =

M
∑

i=1

xT
Ni

HixNi
+ hixNi

.

We randomly generate a connected network with M = 20
agents, and degree d = 8. Each sub-system has two variables,
i.e. mi = 2. Each agent has a local cost function fi(xNi

) =
xT
Ni

HixNi
+ hixNi

, where Hi = I . The parameter γ is
equal to γ =

σf

L
= 2

8 = 0.25 and κ is set to be κ = 0.9 ≥
1 − γ. The parameters in Assumption III.6 are a1 = 10.5,
a2 = 551.1, a3 = 506.6, b1 = 10.5, b2 = 524.4 and
b3 = 524.4, respectively . The minimum number of bits is
equal to nmin = 11. In the simulation of Fig. 1, n is set to
11, 13 and 15, and the initial quantization intervals Cα and
Cβ are set to corresponding minimum values satisfying As-
sumption III.6. Fig. 1 shows the performance of Algorithm 2.
We can observe that the proposed distributed algorithm with
quantization converges to the global optimum linearly and
the performance is improved when the number of bits n

is increased. The algorithm is implemented in Matlab, and
the optimum x⋆ is computed by Matlab as well. Due to
truncation and rounding errors, the accuracy of the exact
solution, i.e. with zero error, is limited to a value around
10−15. Fig. 2 shows the relationship between the number
of bits n and the corresponding minimal initial quantization
intervals Cα and Cβ satisfying Assumption III.6. As n

increases, the required minimal Cα and Cβ decrease.
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