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The hippocampus and rapid place learning

•“Place cells”in the hippocampal CA3 and CA1 regions fire when a rat visits a specific
location in the environment, giving rise to the“cognitive map”theory of hippocampus
(Keefe & Nadel, 1978).

•Animals navigating in a well–known environment can rapidly learn and revisit ob-
served reward locations, often after a single trial.

•Rapid path planning critically depends on the intermediate hippocampus and on
plasticity in the recurrently–connected CA3 region (Bast et al. , 2009; Nakazawa
et al. , 2003).

How can a map–based model of the CA3 region support rapid, arbitrary goal
encoding and path planning?

Preplay activity reflects goals and future paths

(Pfeiffer & Foster, 2013)

(Wikenheiser & Redish, 2015)

Encoding goals in feedforward activation
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Large place fields allow for long–range sequences

•Here we consider large place fields, like those found in intermediate and ventral
hippocampus (Kjelstrup et al. , 2008), with broad recurrent weight profiles.

•With this spatial map, stimulating the neurons active at a goal causes the bump
to follow a continuous path to that location from the current position.

•A top–down bias from neurons with large place fields can induce sequential firing
in neurons with smaller place fields, directed towards the goal.
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Maze–like environments in attractor networks

•Place fields in realistic environments, with walls and obstacles, appear to respect
shortest–path distances around walls (Gustafson & Daw, 2011).

•We consider here a bump attractor network with large, geodesic place fields by using
the pseudo–inverse method to determine appropriate recurrent weights (Conklin &
Eliasmith, 2005; Eliasmith & Anderson, 2004).

Results

•The activity profile moves around obstacles towards the stimulated location, from
an arbitrary start point.
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•The same small attractor network can be used for pathfinding in multiple maze–like
environments, i.e. a “multichart” attractor (Samsonovich & McNaughton, 1997).
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Conclusions

•Bump attractor networks incorporating neurons with large place fields can support
long–distance goal–directed sequential activity, as seen in experimental data.

•Attractor networks can represent maze–like environments with walls and obstacles,
where sequential activity may contribute to non–trivial path planning.

•Prediction: Removal of the intermediate and ventral hippocampal regions will
interrupt not only pathfinding ability (Bast et al. , 2009), but also long–distance
sequential activity in the dorsal hippocampus.
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