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Bidirectional chain of bistable assemblies

Popular models of activity propagation (syn�re chain [1] and propa-
gation of �ring rates [2]) su�er from problems:
  Feed-forward structures (unidirectional fashion): have    
              not been found experimentaly so far.
  High propagation speed of the activity: unable to model
              slow behavioral functions like the control of arm movements.

Inside assembly: 100 excitatory neurons, dense con-
nectivity, strong synapses, short-term depression [3] 

Inter-assembly synaptic weights control the 
propagation speed
Activation time of assembly: minimum time after which all neurons have �red at least once.

Grid of bistable assemblies
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Reproducing activity propagation in the barrel cortex after a brief whisker stimulus [6]:  

Synaptic e�cacy tunes speed of activity propagation
 through chains of bistable neural assemblies
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We propose a bidirectional chain of bistable neuronal assemblies:
  No need for feed-forward structure
  Propagates activity forwards, backwards, or in both directions
  Regulation of propagation speed through synaptic weights
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Assembly 1 Assembly 2 Assembly 10. . .

Based on the place of initial stimulation (transient external Poisson noise), the chain propagates the 
activity forwards, backwards, or in both directions simultaneously. 

Weakening inter-assembly 
synapses è reduction of speed

Analysis of bistable assembly dynamics 
A common mean-�eld method is used for 
analyzing the dynamics. 

Two relations between �ring rate and synaptic 
current form an iterative map:
 1. Noisy gain function [5]:

 2. Synaptic input (mean �eld):

Driving the assembly with small but su�cient 
input brings it to the “high-point”.

During the high-point state, synapses depress è 
assembly switches to depressed mode and con-
verges to the “low-point”. 
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1-dimensional chain of assemblies can be extended 
to a 2-dimensional topology (grid).

inter assembly connections: Weak synapses, low 
connection probabiliy

intra-assembly connections: Strong synapses, high 
connection probability, short-term depression

weight=1 mV, connection probability=50%

weight=0.15mV, connection probability=15%

weight=1mV, connection probability=50%

weight=0.2mV, connection probability=25%

Can be used for modeling columnar organization 
of cortex (e.g. barrel cortex): Sparse and weak 
inter-column synaptic connections versus relativey 
strong intra-column synapses.

Di�erent patterns of activity propagation in the grid
Dynamics of intra-assembly synapses are described by a depression 
variable x [3]. A high (low) value of x denotes recovered  (depressed) 
synapses.  Using di�erent initial values of x for di�erent assemblies, 
we can evoke di�erent patterns of activity propagation on the grid. 

Each cortical column contains ~10K neurons, while each assembly contains 100 neurons!
The model is still valid: A few hub neurons (neurons that receive stronger and more synapses) inside 
each column may govern its dynamics. Each assembly of the grid can be considered as a population of 
hub neurons in the column. 

Voltage sensitive dye recording in the cortex

Simulation: temporally smoothed spike trains of neurons, arranged in a square per assembly st
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Reproducing activity circulation in the 
anaesthetised barrel cortex [7] by setting 
the  initial values of x: 

The activity can circulate forever or stop 
after several rounds based on inter-
assembly synaptic weights.
Relatively strong synapses guarantee 
enough excitation for the next assem-
blies in the trajectory, while very weak 
synapses cause activity to vanish. 
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Between assemblies: sparse connectivity, weak syn-
apses

Clustered connectivity is supported by experimental 
data observed in the cortex [4].
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