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ABSTRACT
Energy efficiency of wireless sensor networks (WSNs) can
be improved by moving base stations (BSs), as this scheme
evenly distributes the communication load in the network.
However, physically moving the BSs is complicated and costly.
In this paper, we propose a new scheme: virtually moving the
BSs. We deploy an excessive number of BSs and adaptively
re-select a subset of active BSs so as to emulate the physi-
cal movement. Beyond achieving high energy-efficiency, this
scheme obviates the difficulties associated with physically
moving the BSs.

The challenges are (i) that the energy efficiency of BSs
should be considered as well, in addition to that of the sensor
nodes and (ii) that the number of candidate subset of active
BSs is exponential with the number of BSs. We show that
scheduling the virtual movement of BSs is NP-hard. Then,
we propose a polynomial-time algorithm that is guaranteed
under mild conditions to achieve a lifetime longer than 62%
of the optimal one. In practice, as verified through extensive
numerical simulations, the lifetime achieved by the proposed
algorithm is always very close to the optimum.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication, Distributed networks; C.2.2 [Network Proto-
cols]: Routing protocols

General Terms
Theory

Keywords
Wireless sensor networks, moving base stations, energy effi-
ciency, load balancing

1. INTRODUCTION
Energy efficiency is a key issue in wireless sensor networks

(WSNs), because the batteries of sensor nodes have limited
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capacity. Specifically-designed routing protocols [21, 7, 1]
can, to some extent, improve the energy efficiency of the
WSN. Yet, they can do little for the energy-hole problem:
sensor nodes close to the base stations (BSs)1 forward much
more data and drain their batteries much faster than other
sensor nodes. The uneven distribution of the energy con-
sumption is a culprit for the poor energy efficiency.

Moving BSs [13, 18, 9, 3, 14] addresses the energy-hole
problem, as it increases the degree of freedom for evenly
distributing the energy consumption in the WSN. Properly
scheduled movements of BSs can greatly improve the energy
efficiency of the WSN. However, all existing approaches ex-
ploiting BS mobility have a major drawback: they make
BSs physically move, which requires BSs to have additional
implements for mobility. As a result, practical implementa-
tions of these approaches are complicated and costly.

Can we reap the benefits of moving BSs, while avoiding
the hassles of the physical movement? We give an affirma-
tive answer by proposing a new scheme: virtually moving
the BSs. To emulate the physical movement, we deploy an
excessive number of BSs in the sensing field and continue
re-selecting a subset of active BSs. Active BSs turn on long-
range communication and forward data to the remote server;
and passive BSs turn off the long-range communication and
perform like sensor nodes. Simply by switching on and
off the long-range communication, we balance the energy-
consumption load of all sensor nodes and all BSs. In this
scheme, BSs are also deployed in the sensing field and are
supplied with limited available energy. Therefore, keeping
all deployed BSs always active is not energy efficient and we
have to optimize both the energy efficiency of BSs and that
of sensor nodes. We term this joint optimization problem a
virtually-moving BSs problem. This problem is much more
complicated than the traditional maximum lifetime routing
problem (e.g., [7]), because active BSs consume a large and
fixed amount of energy for using long-range communications.
Based on our measurement through a digital oscilloscope, a
typical GSM/GPRS module on BSs has to be activated for
around 35 seconds just to start and close each long-range
communication connection. In the meantime, depending on
the sensor sampling rate of the WSN, it only takes a few sec-
onds for actually transmitting the sensing samples. There-
fore, BSs can consume energy an order of magnitude more
on the fixed energy-consumption than on actually transmit-
ting the sensing samples. This fixed energy-consumption

1BSs are the devices that forward data from all sensor nodes
across the WSN to a remote server through long-range com-
munication, e.g., GSM/GPRS, EDGE, 3GPP or LTE.
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of BSs makes the virtually-moving problem NP-hard, as we
will present a reduction from the 3-SAT [6].

The virtually-moving BSs problem cannot be solved us-
ing the traditional Garg-Konemann typed algorithms [10],
as these algorithms only deal with linear packing problems.
We propose a novel scheme that transform the problem into
a sequence of uncapacitated facility-location (UFL) prob-
lems [12] by using the constrained gradient method [8]. Un-
der very mild conditions, the obtained UFL problems have
approximate solutions with an approximation ratio of 1.61 [12].
By adaptively solving the sequence of UFL problems, our
proposed algorithm yields a lifetime at least 62% of the op-
timum. The proposed algorithm is adaptive, has low compu-
tational complexity and requires easily available information
as input. It is therefore a perfect fit for the WSN paradigm.

Through extensive simulations, we show that virtually
moving multiple BSs is more energy efficient compared to
other existing schemes for organizing WSNs. We also show
that the achieved lifetime of the proposed scheduling algo-
rithm is always close to the optimum.

The main contributions of this paper are as follows:

1. We propose a new scheme for organizing WSNs which
virtually moves the BSs. This scheme not only achieves
high energy-efficiency, but it also circumvents the chal-
lenges of physically moving BSs. The idea of load bal-
ancing by virtually moving devices can be used in other
networked systems, including super-node selection in
peer-to-peer networks and cooperative beamforming in
cellular networks.

2. We show that the scheduling problem of virtually mov-
ing BSs is NP-hard, and we propose an adaptive algo-
rithm to solve it. The proposed algorithm is compu-
tationally light, only requires easily available informa-
tion as input and guarantees, under mild conditions, to
yield a lifetime that is at least 62% of the optimal one.
Due to the general formulation, the proposed schedul-
ing algorithm has merits beyond the WSNs.

The outline of this paper is as follows. First, we review the
related works in Section 2. Then, we show the system model
in Section 3 and formally formulate the scheduling problem
of virtually moving BSs in Section 4. Next, we analyze the
complexity of the scheduling problem in Section 5 and pro-
pose the adaptive algorithm in Section 6. Finally, we show
simulation results in Section 7 and conclude in Section 8.

2. RELATED WORK
Energy efficiency is a key issue in the design of WSNs.

Since the emergence of WSNs, researchers have proposed
many schemes to enhance the energy efficiency of WSNs.

A traditional WSN has a single BS and a number of sen-
sor nodes deployed around the BS. At the very beginning,
researchers have proposed to optimize the multi-hop rout-
ing of the short-range communication of sensor nodes [21,
7, 1]. These schemes, to some extent, improve the energy
efficiency of the WSN. Yet, they can do little for the energy-
hole problem: sensor nodes near the single BS deplete their
batteries much faster than other sensor nodes. The uneven
distribution of the energy consumption greatly undermines
the energy efficiency of the network.

To mitigate the energy-hole problem, researchers propose
to deploy multiple BSs [5, 11, 17]: Instead of using one single

BS, they set up multiple BSs and let sensor nodes around
all BSs share the high communication load. By optimizing
the positions of the multiple BSs, the energy-consumption
load is more evenly balanced, resulting in a higher energy
efficiency.

To completely solve the energy-hole problem, researchers
propose to physically move BSs [13, 4, 15, 9, 16, 2, 14].
These schemes have high energy-efficiency because they in-
crease the degree of freedom for evenly distributing the com-
munication load. However, optimizing the continuous mov-
ing trace of BSs is hard. Even in WSNs with one BS, the
optimal trace of the BS can only be found when the sens-
ing field has specific geometric shapes, such as, circles [13].
Then, researchers propose to discretize the continuous mov-
ing traces of BSs by restricting the positions of BSs to a
set of candidate positions. Shi et al. [15] show that such
a discretization incurs an arbitrarily small loss of precision
by constructively selecting the candidate positions. Then,
Wang et al. [2] discusses the scheduling problem for moving
a single BS on a finite set of candidate positions. The recent
work of Luo et al. [14] discuss the problem of moving a given
number of BSs on a finite set of candidate positions. They
show that this problem is NP-hard and present an approxi-
mation algorithm for scheduling the movements.

Because physically moving the BSs is complicated and
costly, we propose a new scheme that virtualizes this move-
ment. It offers two additional differences with physical mo-
tion of the BSs (e.g., [2, 14]): (i) In the virtual-movement
scheme, the number of active BSs selected at different times
can be changed, contrary to the physical-movement scheme,
and (ii) in the virtual-movement scheme, BSs are considered
to have a finite energy supply like sensor nodes because BSs
are also installed in the sensing field; whereas in the physical-
movement scheme, BSs are, to the best of our knowledge,
always assumed to have an infinite energy supply. In our re-
cent work [19], we discussed virtually moving one active BS
and implemented this scheme in a real WSN. In this paper,
we consider the more general scheme where multiple BSs are
virtually moving.

3. SYSTEM MODEL
We model the WSN as a directed graph whose vertices are

a set of BSs Vb, a set of sensor nodes Vr and a remote server
S. The edges in the directed graph consist of (i) short-range
communication links among all BSs and sensor nodes Vb∪Vr,
and (ii) long-range communication links from BSs Vb to the
remote server S. We now introduce the definitions for data
communication and energy consumption in the considered
WSN. The notations are summarized in Table 1.

3.1 Data Communication
Each sensor node i ∈ Vr generates data with a constant

rate r ∈ R+, whereas BSs do not generate data. All data
has to be transmitted to active BSs by short-range multi-
hop communications. Active BSs forward the collected data
to the remote server S via long-range communication. Al-
though active BSs are adaptively changed, sensor nodes are
always actively sensing and uploading data to the remote
server via active BSs. Let xij ∈ R+

0 be the data rate sent
on the short-range communication link from i to j (i, j ∈
Vb ∪ Vr). Let yi ∈ R+

0 be the data rate sent on the long-
range communication link from BS i ∈ Vb to the remote
server S. Because the rate of data inflow and outflow should



Table 1: Notations

r data generating rate of each sensor node

xij data rate on short-range communication
link from i to j

x (x(n)) data rates on all short-range communica-
tion links (at time slot n)

yi data rate on long-range communication link
of BS j

y (y(n)) data rates on long-range communication
link of all BSs (at time slot n)

zi indicator activity state of BS i

z (z(n)) vector of indicators showing the active
states of all BSs (at time slot n)

ci energy consumption rate of node i

c (c(n)) energy consumption rates of all sensor
nodes and BSs (at time slot n)

cc, cst, csr,
clc, clt

constant parameters for modelling the en-
ergy consumption rates

ei initially availaible energy of node i

e (e(n)) initially availaible energy of all sensor nodes
or BSs (at time slot n)

L the set of all candidate configurations

L[k] the set of candidate configurations given
that z = z[k], 1 ≤ k ≤ 2|Vb| − 1

θi average energy decrease rate of node i

θ (θ(n)) average energy decrease rate of all sensor
nodes or BSs (at time slot n)

T ∗ the optimal lifetime of the virtually-moving
BSs problem (5)

τ length of a time slot

N∗ number of time slots that the WSN can sus-
tain when using Algorithm 1

be balanced both on sensor nodes and on BSs, we have

∑
j∈Vb∪Vr

xij =
∑

j∈Vb∪Vr

xji + r, ∀i ∈ Vr,

∑
j∈Vb∪Vr

xij + yi =
∑

j∈Vb∪Vr

xji, ∀i ∈ Vb,

xij ≥ 0, i, j ∈ Vb ∪ Vr,
yi ≥ 0, i ∈ Vb.

(1)

Let zi (i ∈ Vb) be a binary variable indicating the state of
BS i : if BS i is active, zi = 1, and otherwise zi = 0. When
BS i is passive, its data rate of long-range communication
yi should be 0. Therefore,

yi ≤ |Vr|rzi, (2)

where |Vr|r is the total data rate transmitted in the whole
WSN. If BS i is active, (2) imposes no constraint on yi.

3.2 Energy Consumption
We denote the energy consumption rate of either a sensor

node or a BS i ∈ Vb ∪ Vr by ci (ci ∈ R+). (i) On the one

hand, for a sensor node,

ci = cc + cst
∑

j∈Vb∪Vr

xij + csr
∑

j∈Vb∪Vr

xji,∀i ∈ Vr, (3)

where cc denotes the constant energy consumption rate for
sensing and initiating the short-range communication, and
cst, csr denote the energy consumption rates for transmitting
and receiving unit data via short-range communication, re-
spectively. (ii) On the other hand, for a BS,

ci = cc + cst
∑

j∈Vb∪Vr

xij + csr
∑

j∈Vb∪Vr

xji

+ clczi + cltyi, ∀i ∈ Vb, (4)

where clc denotes the fixed energy-consumption rate for initi-
ating and closing long-range communication and clt denotes
the energy consumption rate for actually transmitting unit
data via long-range communication.

Let the initially availaible energy of each sensor node or
BS i (i ∈ Vb ∪ Vr) be denoted by ei.

For simplicity of discussion, we group {xij}i,j∈Vb∪Vr into
a vector x, group {yi}i∈Vb into a vector y, group {zi}i∈Vb
into a vector z, group {ci}i∈Vb∪Vr into a vector c and group
{ei}i∈Vb∪Vr into a vector e.

Notice that the state of a WSN is characterized by the
data rates of short-range communication x, the data rates
of long-range communication y, the selection of active BSs z
and the energy consumption rates c. We call the four-tuple
(x,y,z, c) a configuration of the network.

4. PROBLEM FORMULATIONS
Scheduling the virtual movement of BSs is equivalent to

finding a set of configurations and finding the time dura-
tions. In this section, we first describe the optimization
space for selecting the configurations. Then, we will formally
formulate the scheduling problem, namely, the virtually-
moving BSs problem. At the end of this section, we will
show why our proposed scheme is more energy efficient than
the previously proposed schemes [5, 11, 17, 2, 19].

4.1 The Optimization Space
We denote the set of all candidate configurations by

L = {(x,y,z, c)|(1), (2), (3) and (4) hold}.

Because z is a binary vector taking 2|Vb| − 1 possible values
(there should be at least one active BS, therefore we cannot

have z = 0), we can separate L into 2|Vb| − 1 subsets based
on different values of z. We denote the possible values of z

by z[1], z[2], · · · , z[2|Vb|−1] with a non-decreasing order of the
number of active BSs. In particular, the first |Vb| elements,

z[1],z[2], · · ·z[|Vb|] denote the BSs selections where only one
BS is active. For any 1 ≤ k ≤ 2|Vb| − 1, we denote by L[k]

the subset of L satisfying z = z[k]:

L[k] = {(x,y,z[k], c)|(1), (2), (3), (4) hold},

which is a simplex because constraints (1), (2), (3), (4) are

linear after fixing z = z[k]. Decomposing L =
⋃2|Vb|−1
k=1 L[k]

enables us to simplify the optimization problem, as will be
explained in the following.



4.2 The Virtually-moving BSs Problem
Because L[k] is a simplex for all 1 ≤ k ≤ 2|Vb| − 1, the

convex combination of any two configurations in L[k] is still
in L[k]. Let (x[1], y[1], z[k], c[1]) ∈ L[k] and (x[2], y[2], z[k],

c[2]) ∈ L[k] be used for time durations t[1] and t[2]. Using
these two configurations is equivalent to using their convex
combination(
t[1]x[1] + t[2]x[2]

t[1] + t[2]
,
t[1]y[1] + t[2]y[2]

t[1] + t[2]
,z[k],

t[1]c[1] + t[2]c[2]

t[1] + t[2]

)
,

which is still in L[k], for a time duration t[1] + t[2]. This fur-
ther implies that any number of configurations in the same
set L[k] can be substituted by only one configuration—their
convex combination.

Therefore, in the virtually-moving BSs problem, we seek
at most 2|Vb| − 1 configurations: for each 1 ≤ k ≤ 2|Vb| − 1,
we select a configuration (x[k], y[k], z[k], c[k]) ∈ L[k] and a

time duration t[k], such that the total lifetime2
∑2|Vb|−1
k=1 t[k]

is maximized given the initially availaible energy e:

max
{x[k],y[k],z[k],c[k],t[k]}2

|Vb|−1
k=1

2|Vb|−1∑
k=1

t[k]

s.t.

2|Vb|−1∑
k=1

t[k]c[k] ≤ e, (5)(
x[k],y[k],z[k], c[k]

)
∈ L[k], ∀1 ≤ k ≤ 2|Vb| − 1,

t[k] ≥ 0, ∀1 ≤ k ≤ 2|Vb| − 1.

We denote the optimal lifetime of (5) by T ∗. To differ-
entiate with other schemes that will be mentioned below,
we call this scheme MultiMove, which schedules the virtual
movement of multiple BSs by solving problem (5).

4.3 Comparisons to Other Schemes
In the following, we compare MultiMove with some other

existing schemes.
MultiFixed [5, 11, 17]: This scheme selects a subset of BSs

to be always active and the routes of short-range communi-
cations. This boils down to selecting only one configuration
(x,y,z, c) ∈ L, such that the lifetime of the WSN is maxi-
mized:

max
x,y,z,c,t

t

s.t. (x,y,z, c) ∈ L,
tc ≤ e,

(6)

where t denotes the lifetime of the network, and tc denotes
the total energy consumption that should be no larger than
the initially availaible energy e.

OneMove [2, 19]: In this scheme, we schedule the virtual
movement of one BS on a finite set of candidate locations
for maximizing lifetime. This is equivalent to selecting at
most |Vb| configurations: for each 1 ≤ k ≤ |Vb| (in contrast

to 1 ≤ k ≤ 2|Vb| − 1 as in the MultiMove scheme), we select

one configuration (x[k], y[k], z[k], c[k]) ∈ L[k] in each set

L[k] with the time duration t[k], such that the total lifetime

2There are many possible ways of defining the lifetime.
Throughout this paper, we use the time that the first node
drains out of energy as the lifetime of the WSN.

Figure 1: Optimization spaces of different schemes when the
WSN has three BSs. The whole space for candidate configu-
rations L is the union of simplexes L[1], L[2], · · · , L[7] which
are denoted by the grey polygons. The optimization spaces
of MultiFixed is L. The optimization space of OneMove is
illustrated by the space Φ1 = conv(

⋃3
k=1 L

[k]), whose edges
are denoted by the dotted lines. The optimization space of
MultiMove is illustrated by the space Φ2 = conv(L), whose
edges are denoted by the dashed lines. The common edges
of Φ1 and Φ2 are denoted by dash-dot lines. We see that
MultiMove has an optimization space larger than both Mul-
tiFixed and OneMove.

∑|Vb|
k=1 t

[k] is maximized:

max
{x[k],y[k],z[k],c[k],t[k]}|Vb|

k=1

|Vb|∑
k=1

t[k]

s.t.

|Vb|∑
k=1

t[k]c[k] ≤ e, (7)(
x[k],y[k],z[k], c[k]

)
∈ L[k], ∀1 ≤ k ≤ |Vb|,

t[k] ≥ 0, ∀1 ≤ k ≤ |Vb|.

MultiMove is more energy efficient than the other schemes
mentioned above. In the MultiFixed scheme, we select one
configuration in the optimization space L. In the MultiMove
scheme, we select one configuration (x[k],y[k],z[k], c[k]) ∈
L[k] and a time duration t[k] for any 1 ≤ k ≤ 2|Vb| − 1. This
virtually creates a new configuration whose average energy

consumption rates are
∑2|Vb|−1
k=1 c[k]t[k]/

∑2|Vb|−1
k=1 t[k], a con-

vex combination of c[1], c[2], · · · , c[2
|Vb|−1]. Therefore, the

optimization space of MultiMove for selecting configurations
is virtually expanded from L to its convex hull conv(L).
Similarly, in the OneMove scheme, the optimization space

is virtually expanded from
⋃|Vb|
k=1 L

[k] (the subset of config-

urations where only one BS is active) to conv(
⋃|Vb|

k=1 L
[k]).

We illustrate the optimization spaces of different schemes in
Figure 1 with an example of a WSN with three BSs.

5. COMPLEXITY ANALYSIS
In this section, we will analyze the complexity of the

virtually-moving BSs problem.
The problem is unsurprisingly “very hard” because (i)

there is an exponential number of candidate subsets of active
BSs, and (ii) active BSs have the fixed energy-consumption
rate clc for using long-range communication, which makes
the problem non-convex. To formally evaluate the hard-
ness of the problem, we define the decision version of



the virtually-moving BSs problem as follows: Given
the topology of the WSN, the constant parameters cc, cst,
csr, clc, clt, the data generating rate r, the initially availaible

energy e, the sets of possible configurations {L[k]}2
|Vb|−1
k=1 de-

fined by (1), (2), (3) and (4), and a number T , does there ex-

ist a configuration in each simplex (x[k],y[k],z[k], c[k]) ∈ L[k]

and a time duration t[k] for each 1 ≤ k ≤ 2|Vb|−1, such that

the lifetime of the network
∑2|Vb|−1
k=1 t[k] ≥ T under the en-

ergy constraint
∑2|Vb|−1
k=1 t[k]c[k] ≤ e?

Theorem 1. The virtually-moving BSs problem is NP-
complete.

Proof. First of all, the decision version of the problem
is NP because we can verify a valid instance in polynomial
time. Now we show that the problem is NP-hard. We reduce
the 3-SAT problem [6] to the virtually-moving BSs problem.
Consider a 3-SAT instance with l variables a1, a2, · · · , al
and m clauses b1, b2, . . . , bm (Notice that each clause is a
3-element subset of {ai, āi}1≤i≤l). We define an 2l + 1-th
variable w other than {ai, āi}1≤i≤l and define a few sets:

• Pi = {ai, āi} ∪ {bj |bj contains ai}, ∀1 ≤ i ≤ l,

• Qi = {ai, āi} ∪ {bj |bj contains āi}, ∀1 ≤ i ≤ l,

• W1 = {w} ∪ {a1, a2, · · · al} ∪ {b1, b2, · · · bm},

• W2 = {w} ∪ {ā1, ā2, · · · āl}.

We construct an instance of the virtually-moving BSs prob-
lem as follows. Let P1, P2, · · · , Pl, Q1, Q2, · · · , Ql, W1,
W2 be associated with a BS each, and let a1, a2, · · · , al,
b1, b2, . . . , bm, w be associated with a sensor node each.
Let each BS have a long-range communication link to the
remote server S. Excluding the remote server S, the graph
of the WSN is bipartite where every edge connects a BS to
a sensor node, and this edge only exists when the set associ-
ated with the BS contains the variable associated with the
sensor node. Let the initially availaible energy of each BS
be 1 and let that of each sensor node be 2. Let the constants
for energy consumption be cc = 0, cst = 1, csr = 0, clc = 1,
clt = 0, and let the data generating rate r = 1. Then, we
set the tentative lifetime T = 2.

Because the data generating rate r = 1, cst = 1 and be-
cause of (3), the energy consumption rate of any sensor node
is at least 1. Remember that the initially availaible energy of
any sensor node is 2, the lifetime of the considered virtually-
moving BSs problem is at most T = 2. In the following, we
will show that if the constructed virtually-moving BSs prob-
lem achieves the lifetime T = 2, the original 3-SAT problem
is satisfiable. We start with four deductions, given that the
lifetime T = 2 is achievable:

(i) To be active, BSs W1 and W2 alternate, and each for
a time duration 1. First, because of (4) and because clt = 1,
the energy consumption rate of any BS is at least 1, therefore
any BS has an active time duration at most 1 given the
initially availaible energy 1. Then, because BSs W1 and W2

are the only neighbours of sensor node w and because they
have to serve w for a whole lifetime 2, both BSs W1 and W2

have to be active for a time duration 1 and they cannot be
simultaneously active.

(ii) The energy consumption rate of every sensor node is
1 at any time. On the one hand, it is at least 1, as shown

above. On the other hand, it cannot exceed 1, because ev-
ery sensor node has to sustain a lifetime 2 with an initially
availaible energy 2.

(iii) Passive BSs do not forward data for other sensor
nodes at any time, otherwise, at least one sensor node would
receive data from passive BSs. Using (3), we see that this
would result in an energy consumption rate exceeding 1,
which would contradict (ii).

(iv) In the configuration where BS W2 is active (BS W1

is passive because of (i)), one and only one BS between BS
Pi and BS Qi is active for any 1 ≤ i ≤ l. First, at least
one of them has to be active in order to forward data from
sensor node ai because they are the only neighbours of ai.
Then, they cannot be simultaneously active, because they
have to forward data for sensor node ai for a lifetime 2 with
the total available energy 2 and because clt = 1.

Because of deduction (i), we have a configuration in which
BS W2 is active and BS W1 is passive. We will use this
configuration to construct a valid assignment for the original
3-SAT problem. Because of deduction (iv), one and only one
BS between BSs Pi and Qi is active for any 1 ≤ i ≤ l in that
configuration. This enables us to construct an assignment
for the 3-SAT problem by setting the variable ai = 1 if BS
Pi is active and setting ai = 0 if BS Qi is active. Then,
because of deduction (iii), each sensor node in b1, b2, · · · bm
connects to at least one active BS because passive BSs do
not forward data from sensor nodes. Therefore, every clause
bj (1 ≤ j ≤ m) in the 3-SAT problem is satisfied: If sensor
node bj connects to the active BS Pi, clause bj is satisfied
because it contains variable ai and ai = 1; if sensor node
bj connects to the active BS Qi, clause bj is also satisfied
because it contains variable āi and ai = 0. In summary, if
we can solve the constructed virtually-moving BSs problem,
we can also solve the original 3-SAT problem. Therefore,
the virtually-moving BSs problem is NP-hard as 3-SAT is
known to be NP-hard.

6. SCHEDULING ALGORITHM
In this section, we will propose a scheme for adaptively

scheduling the virtual movement of multiple BSs. The pro-
posed algorithm is computationally light, only requires eas-
ily available information as input, and guarantees, under
mild conditions, a network lifetime at least 62% of the opti-
mal one.

The adaptive scheduling scheme works as follows. Time
is discretized into slots of length τ , during which we use
only one configuration. Before the start of each time slot,
the remote server collects the information about the cur-
rent available energy of all BSs and all sensor nodes. Using
only this information as input, the remote server selects the
configuration to be used in the next time slot and notifies
all BSs. As τ is usually much larger than the sampling in-
terval of sensor nodes, this scheme has negligible overhead
for collecting the required information and distributing the
configuration determined by the server.

We denote the available energy of all sensor nodes and
BSs at time n (n ∈ N) by e(n). In particular, the initially

availaible energy e(0) = e. Denote the configuration selected
for time slot n by (x(n),y(n),z(n), c(n)) ∈ L. The available
energy evolves according to

e(n) = e(n−1) − τc(n). (8)



If we sum up the iterative equation (8) from time 0 to time

n and use e(0) = e, we have

e(n) = e− τ
n∑
t=1

c(t). (9)

Denote by N∗ the maximum number of time slots before
the first sensor node depletes its energy,

N∗ = max{n|e(n) ≥ 0}, (10)

and the lifetime of the WSN is τN∗.
In the following, to find the optimal configurations, we

first propose to use the constrained gradient method [8]
and to transform the virtually-moving BSs problem into
adaptively solving a sequence of subproblem called the min-
weight configuration problems. Then, we will discuss how to
solve the min-weight configuration problems.

6.1 The Constrained Gradient Method
First of all, we define auxiliary variables

p[k] = t[k]
/ 2|Vb|−1∑

k=1

t[k], (11)

θ =

2|Vb|−1∑
k=1

p[k]c[k]. (12)

Here p[k] denotes the fraction of time for using configuration
(x[k],y[k],z[k], c[k]) for all 1 ≤ k ≤ 2|Vb| − 1 and θ denotes
the average energy decrease rates for all sensor nodes and
BSs. Next, we recast problem (5) as the auxiliary problem

min
{x[k],y[k],z[k],c[k],p[k]}2

|Vb|−1
k=1

,θ

F (θ) = max
i∈Vb∪Vr

θi/ei

s.t. θ =

2|Vb|−1∑
k=1

p[k]c[k], (13)(
x[k],y[k],z[k], c[k]

)
∈ L[k],∀1 ≤ k ≤ 2|Vb| − 1,

2|Vb|−1∑
k=1

p[k] = 1,

p[k] ≥ 0,∀1 ≤ k ≤ 2|Vb| − 1,

where θi is the i-th element of θ. Note that the objective
value of (13) is the inverse of the objective value in (5).

We relax the objective function F (θ) in problem (13) into
a differentiable function

f(θ) =
1

α
log

 ∑
i∈Vb∪Vr

exp

(
αθi
ei

) (14)

by introducing a real parameter α > 0. We can check that

f(θ)− 1

α
log |Vb ∪ Vr| ≤ F (θ) ≤ f(θ). (15)

Therefore, using f(θ) as an approximation of F (θ) incurs
an arbitrarily small loss of precision when α is large.

We define θ(n) as the average energy decrease rates during
the first n time slots

θ(n) =
1

n

n∑
t=1

c(t) =
e− e(n)

nτ
, (16)

Algorithm 1: The constrained gradient method for se-
lecting configurations

Input: The parameters cc, cst, csr, clc, clt, r, the initially
availaible energy e, and a β-approximate
algorithm for solving the min-weight
configuration problem (18).

Output: N∗, {(x(n),y(n),z(n), c(n))}1≤n≤N∗ .
1 Initialize θ(0) ←− 0, e(0) ←− e, n←− 1.

2 while e(n−1) ≥ 0 do

3 Calculate θ(n−1) from e(n−1) and (16).

4 Calculate the gradient ∇>f(θ(n−1)) using (17).

5 Select configuration (x(n),y(n),z(n), c(n)) by using a
β-approximate algorithm to solve the min-weight
configuration problem (18) where λ = ∇>f(θ(n−1)).

6 Update e(n) ←− e(n−1) − c(n).
7 Update n←− n+ 1.

8 Set N∗ = n− 1.

where the second equality follows from (9). The purpose is
to adaptively select the configurations of the WSN such that
the sequence {θ(n)}n∈N+ gradually approaches the desired

θ in (13). Note that θ(n−1) is known at time slot n because

e(n−1) is already known and because of (16).
As shown in Algorithm 1, we iteratively do the following

in each time slot n ∈ N+ as long as e(n−1) ≥ 0:
(i) First, we calculate the energy decrease rates in the

first n−1 time slots θ(n−1) using e(n−1) and using (16), and
we calculate the gradient of the relaxed objective function
∇>f(θ(n−1)) whose i-th element (i ∈ Vb ∪ Vr) is

∇>i f
(
θ(n−1)

)
=

exp
(
αθ

(n−1)
i /ei

)
ei
∑
i∈Vb∪Vr

exp
(
αθ

(n−1)
i /ei

) . (17)

Here, ei in (17) is the initially availaible energy of node i.

(ii) Then, we define a weight vector λ = ∇>f(θ(n−1))

and select a configuration (x(n),y(n),z(n), c(n)) by solving

min
x,y,z,c

λ>c

s.t. (x,y,z, c) ∈ L,
(18)

which is termed as the min-weight configuration problem.
When the algorithm terminates, the lifetime of the net-

work is τN∗, as defined in (10). Because N∗ is dependent
on τ and α, we will use N∗(τ, α) for N∗ to show explicitly
the dependencies in the following.

The min-weight configuration problem is still combinato-
rial because there could be an exponential number of candi-
date configurations in L. Nontheless, we will show in The-
orem 2 that if the min-weight configuration problem has a
β-approximate algorithm (β can be either a constant or a
big-O function of |Vb ∪ Vr|), the virtually-moving BSs prob-
lem also has a β-approximate algorithm.

Theorem 2. Using Algorithm 1 for selecting the configu-
rations {(x(n),y(n),z(n), c(n))}n∈N+ with a β-approximation
algorithm for solving the min-weight configuration problem
(18), the achieved lifetime τN∗(τ, α) satisfies

τN∗(τ, α) + τ

T ∗
>

1

β + γ1(α) + γ2(τ, α)
,



Table 2: Mapping from the min-weight configuration prob-
lem into an UFL problem

Facility set F BSs Vb

Open facility set Fo Active BSs {u ∈ Vb|zu = 1}
Customer set C Sensor nodes Vr

Facility cost hu (u ∈ F) λuclc, u ∈ Vb
Service cost guv (u ∈
F , v ∈ C)

Luv+λvcc, where Luv is the
length of the shortest-path
from sensor node v ∈ Vr to
S via BS u ∈ Vb with the
distance assignment (22).

where

γ1(α) =
βT ∗ ln |Vb ∪ Vr|

α
,

γ2(τ, α) =
ατ |Vb ∪ Vr|2c3maxT

∗(ln emin
τcmax

+ 1)

2e3min

,

with emin denoting the minimum element of e and cmax de-
noting an upper-bound on the energy consumption rate of
any BS or any sensor node

cmax = cc + clc + (cst + csr + clt)|Vb ∪ Vr|r.

If we set τ → 0 and then set α→∞, we have

lim
α→∞

lim
τ→0

τN∗(τ, α)

T ∗
≥ 1

β
.

Details of the proof can be found in the technical report [20].

6.2 The Min-weight Configuration Problem
We propose an algorithm for solving the min-weight prob-

lem with a guaranteed approximation ratio β = 1.61 by
using previous results in the uncapacitated facility-location
(UFL) problems [12].

The UFL problem can be stated as follows. Let F be a set
of facilities and let C be a set of customers. Let hu > 0 be
the fixed cost for opening the facility u ∈ F and let guv > 0
be the service cost for each u ∈ F and v ∈ C. We seek a
subset of open facilities Fo ⊆ F , such that all customers are
served and the sum of facility costs and service costs∑

u∈Fo

hu +
∑
v∈C

min
u∈Fo

guv (19)

is minimized. A special type of UFL problems is called met-
ric uncapacitated facility-location (metric-UFL) problems where
the service costs are metric, that is,

guv + gu′v + gu′v′ ≥ guv′ ,∀u, u′ ∈ F , and v, v′ ∈ C. (20)

In [12], Metric-UFL problems are solved by using an approx-
imation algorithm with an approximation ratio 1.61.

We will convert the min-weight configuration problem (18)
into an UFL problem with the mappings shown in Table 2:

(i) We set F = Vb and C = Vr. The open facility set we
are looking for is the set of active BSs

Fo = {u : zu = 1, u ∈ Vb}. (21)

(ii) We assign a length dij for each edge of the WSN,

dij =


λicstr + λjcsrr, i, j ∈ Vb ∪ Vr,
λicltr, i ∈ Vb, j = R,

∞, othewise,

(22)

where λi is the i-th element of the weight vector λ.
(iii) For each sensor node v ∈ Vr and each BS u ∈ Vb,

we calculate the shortest path from sensor node v to the
remote server S via BS u, which we denote by Luv. We let
the service cost guv for BS u forward the data packets from
sensor node v ∈ Vr be

guv = Luv + λvcc, (23)

and we let the facility cost hu for activating BS u ∈ Vb be

hu = λuclc. (24)

The UFL problem constructed from the mappings in Ta-
ble 2 is not metric in general, because the length of a path
under the distance assignment (22) is not symmetric: the
length of the shortest path from sensor node v to BS u is
not equal to the reverse path from BS u to sensor node v. In
the following theorem, we show the conditions that ensure
the UFL to be metric.

Theorem 3. Given the parameters cc, cst, csr, clc, clt,
r, and a weight vector λ, we construct an instance of the
UFL problem from the min-configuration problem (18) by
using the mappings shown in Table 2. The constructed UFL
problem

• has the same optimal objective value as that of the min-
weight configuration problem (18), and

• is metric (20) under the condition that csr ≤ cst ≤
2clt + csr.

Details of the proof can be found in the technical report [20].
We then use the 1.61-approximation algorithm proposed

in [12] to solve the constructed UFL problem. For simplicity
of discussion, we define the set of unconnected customers as
Cu. Let the two-tuple (i, C) denote a star that is composed
of a facility i ∈ F and a set of customers D ⊆ C connected
to facility i. The cost of the star (i,D) is defined as the total
cost divided by the number of unconnected customers in D:

cost(i,D) =


hi +

∑
j∈D qij

|Cu ∩ D|
, i /∈ Fo,∑

j∈D qij

|Cu ∩ D|
, i ∈ Fo,

(25)

where

qij =

{
gij , j ∈ Cu,
min(0, gij − min

k∈Fo
gkj), j /∈ Cu.

The procedure of the algorithm is as follows:
(i) At the beginning, we set Fo = ∅ and Cu = C.
(ii) As long as the set of unconnected customers Cu 6= ∅,

find the most cost-efficient star (i,D) for all i ∈ F and D ⊆
C. Connect all customers in D to i and set Cu = Cu\D. If
BS i /∈ Fo, activate BS i and Fo = Fo ∪ {i}.

We note that in step (ii), although the number of stars is
exponential with the number of customers, it is easy to find



Algorithm 2: Approximation algorithm for solving the
min-weight configuration problem

Input: The parameters cc, cst, csr, clc, clt, r, and a
weight vector λ.

Output: A configuration (x,y,z, c) ∈ L.
1 Assign the lengths of edges in the WSN as shown in

(22).
2 Set F ←− Vb and set C ←− Vr.
3 Calculate the shortest path Luv from each sensor node
v ∈ C to the remote server S via each BS u ∈ F .

4 Assign the service costs guv (u ∈ F , v ∈ C) and the
facility costs hu (u ∈ F) as shown in (23) and (24),
respectively.

5 Set Fo ←− ∅ and set Cu ←− C.
6 while Cu 6= ∅ do
7 Find the most cost-effective star (i,D) where i ∈ F

and D ⊆ C with the cost of the stars defined in (25).
8 Connect all sensor nodes in D to BS i along the

shortest paths with edge lengths defined in (22). Set
Cu ←− Cu\D.

9 Enable BS i to be active and set Fo ←− Fo ∪ {i}.

the most cost-effective one star. It is sufficient to consider
stars (i,Dik) for i ∈ F and k ∈ {1, · · · , |Cu|}, where Dik
denotes the set containing all connected customers j ∈ C\Cu
whose qij < 0 and containing k unconnected customers j ∈
Cu with the smallest positive qij . Clearly, other stars cannot
be more cost-effective (More details can be found in [12]).

We summarize the whole procedure for finding the ap-
proximate min-weight configuration as in Algorithm 2.

Theorem 4. Algorithm 2 guarantees to find a configura-
tion (x,y,z, c) ∈ L, such that the weight λ>c is at most
β = 1.61 times the optimal objective value of the min-weight
configuration problem (18) under the condition that csr ≤
cst ≤ 2clt + csr.

In summary, the results in both Theorems 2 and 4 yield
that our proposed algorithm achieves, under mild condi-
tions, a lifetime at least 62% of the optimal one.

7. SIMULATIONS
In this section, we will show how we evaluate the proposed

scheme by running extensive simulations.
We consider a 150 m × 150 m sensing field where we ran-

domly generate a connected WSN with |Vr| = 40 and |Vb| =
5 (The default network size is small so that problem (5) can
be solved exactly). All sensor nodes generate data with a
rate of r = 1 and BSs do not generate data. Data generated
by sensor nodes are transmitted to active BSs using short-
range communication whose per-hop transmitting range is
40 m. Time is partitioned into slots with the length of a time
slot τ = 1. Let the constants of energy consumption rates
be csc = 1, cst = 1, csr = 1, clc = 10 and clt = 1 (We select
these parameters to reflect the real energy consumptions of
BSs and sensor nodes. More details can be found in our
recent paper [19]). Let the initially availaible energy of all
BSs be ei = 5000,∀i ∈ Vb and let that of all sensor nodes be
ei = 3000,∀i ∈ Vr. Let the relaxation parameter α = 10000
in (14).

Here, we simulate five schemes: (i)OneFixed, the tradi-
tional scheme that uses one always-active BS and the maxi-
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Figure 2: The ratio between the lifetime of MultiMove-A
and that of MultiMove τN∗(τ, α)/T ∗ versus the length of
time slot τ . We see that the ratio decreases as τ increases.
If τ is set small (τ < 10), MultiMove-A yields a lifetime very
close to the optimum achieved by MultiMove.
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Figure 3: The ratio between the lifetime of MultiMove-
A and that of MultiMove τN∗(τ, α)/T ∗ versus the relax-
ation parameter α. We see that when α is sufficiently large
(α > 1000) , MultiMove yields a lifetime very close to the
optimum.

mum lifetime routing [7], (ii) MultiFixed that uses multiple
always-active BSs, where the locations of active BSs and
the routings are optimized through (6), (iii) OneMove that
schedules the virtual movement of one BS through (7), (iv)
MultiMove that schedules the virtual movement of multiple
BSs by solving (5) without approximation (considered as
the optimum in the following), and (v) MultiMove-A that
schedules the virtual movement of multiple BSs by using
our proposed Algorithm 1 and Algorithm 2 to approximately
solve (5). The details of MultiFixed, OneMove, MultiMove
are discussed in Section 4.3. Without the fixed energy-
consumption of long-range communication, both MultiFixed
and MultiMove are optimal, they will always activate all BSs
and use the maximum lifetime routing [7]. Because problem
(5) is computationally hard, MultiMove is only applicable
when the network is small.

7.1 Parameter Selection
As shown in Theorem 2, the performance of MultiMove-A

depends on the parameters including the length of a time
slot τ and the relaxation parameter α. We show how these
parameters influence the ratio between the lifetime achieved
by MultiMove-A and that by MultiMove τN∗(τ, α)/T ∗.

In Figure 2, we show the ratio τN∗(τ, α)/T ∗ versus the
length of a time slot τ . When τ is small, MultiMove-A yields
a lifetime very close to the optimum achieved by MultiMove,
as the algorithm exploits the fine granularity of the time slot.

In Figure 3, we show the ratio τN∗(τ, α)/T ∗ versus the
relaxation parameter α in (14). When α is large, the relax-
ation of the objective function is precise, and MultiMove-A
yields a lifetime very close to the optimum.
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Figure 4: The network lifetime τN∗(τ, α) versus the initially
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Figure 5: The network lifetime τN∗(τ, α) versus the number
of BSs |Vb| when running different schemes..

7.2 Performance Comparison
To simulate different scenarios, we vary five parameters

of the network: (i) the initially availaible energy of BSs, (ii)
the number of BSs |Vb|, (iii) the number of sensor nodes |Vr|,
(iv) the fixed energy-consumption rate of using long-range
communication clc, and (v) the data rate of sensor nodes r.

We summarize the simulation results as follows: (i) In
some scenarios, BSs are bottlenecks of the network lifetime,
e.g., when the initially availaible energy of BSs is low, when
|Vb| is small, when |Vr| is large, when clc is large and when
r is small. In these scenarios, OneMove outperforms Mul-
tiFixed, because OneMove improves the energy efficiency of
BSs by rotating one active BS among multiple BSs. (ii) In
other scenarios, sensor nodes are bottlenecks of the network
lifetime, for example, when the initially availaible energy of
BSs is high, when |Vb| is large, when |Vr| is small, when
clc is small and when r is large. In these scenarios, Mul-
tiFixed outperforms OneMove, because MultiFixed reduces
the energy consumption of sensor nodes by reducing the hop-
distance from sensor nodes to BSs. (iii) In all scenarios, the
lifetime achieved by MultiMove-A is always very close to the
optimum achieved by MultiMove and is always longer than
those achieved by both OneMove and MultiFixed.

Lifetime versus the initially availaible energy of
BSs: In Figure 4, we show the lifetime of the WSN τN∗(τ, α)
versus the initially availaible energy of BSs. We fix the ini-
tially availaible energy of sensor nodes ei = 3000, ∀i ∈ Vr,
and we vary the initially availaible energy of BSs (all BSs
have the same amount though). When the initially availaible
energy of BSs is small, OneMove is very close to the opti-
mum achieved by MultiMove and MultiMove-A. Therefore,
in this scenario, virtually moving multiple BSs degrades into
the scheme of virtually moving one BS as in [19]. When
the initially availaible energy of BSs increases, the increase
of lifetime of OneMove diminishes and Multi-Fixed outper-
forms OneMove, because the bottleneck of the network life-
time is shifted from BSs to sensor nodes.
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Figure 6: The network lifetime τN∗(τ, α) versus the number
of sensor nodes |Vr| when running different schemes.
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Figure 7: The network lifetime τN∗(τ, α) versus the fixed
energy-consumption of long-range communication clc when
running different schemes.

Lifetime versus the number of BSs: In Figure 5, we
show the lifetime of the WSN τN∗(τ, α) versus the num-
ber of BSs |Vb|. We see similar results as that in Figure 4.
When |Vb| is small, OneMove outperforms MultiFixed and
performs close to the optimum as MultiMove-A does. This
is because when BSs are bottlenecks of the network lifetime,
rotating one active BS is the optimal solution. When |Vb| is
large, sensor nodes become bottlenecks of the lifetime of the
WSN, and MultiFixed outperforms OneMove.

Lifetime versus number of sensor nodes: In Fig-
ure 6, we show the lifetime of the WSN τN∗(τ, α) versus
the number of sensor nodes |Vr|. There is a clear trend that
when |Vr| increases, the lifetime of the network decreases.
When |Vr| is small, sensor nodes limit the lifetime of the
WSN, and therefore OneMove performs poorly. When |Vr|
is large, BSs cause bottlenecks of the network lifetime, and
OneMove performs close to the optimum achieved by Mul-
tiMove and MultiMove-A.

Lifetime versus the fixed energy-consumption of
long-range communication: In Figure 7, we show the
lifetime of the WSN τN∗(τ, α) versus the fixed energy con-
sumption rate of long-range communication clc. There is a
trend that when clc increases, the lifetime of the network
decreases. Still, MultiMove-A and MultiMove only decrease
mildly because they can evenly distribute the high energy-
consumption load among the whole WSN. Meanwhile, we
see that the lifetime curve of OneMove is flat when clc is
small, because the bottleneck of lifetime is due to the sensor
nodes rather than BSs in these scenarios.

Lifetime versus the data rate of sensor nodes: In
Figure 8, we show the achieved lifetime τN∗(τ, α) versus the
data rate r using different schemes. For better illustration,
we set ei = 5000,∀i ∈ Vb and ei = 1000,∀i ∈ Vr. We
see similar results as that in Figure 7. When r is low, BSs
are bottlenecks in the lifetime, and OneMove outperforms
MultiFixed. When r becomes high, sensor nodes cause the
bottleneck of the network lifetime, and the lifetime achieved
by MultiFixed is very close to the optimum.
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Figure 8: The network lifetime τN∗(τ, α) versus the data
rate of sensor nodes r when running different schemes.

8. CONCLUSION
In this paper, we have presented and evaluated the scheme

of virtually moving the BSs in WSNs, in which an excessive
number of BSs are deployed and an active subset of BSs is
adaptively re-selected. This scheme not only achieves a high
energy-efficiency but also avoids the difficulty of physically
moving the BSs. We have shown that the problem of virtu-
ally moving BSs is in fact NP-hard. We have proposed an
adaptive algorithm for scheduling the virtual movement by
using the constrained gradient method and using previous
results in uncapacitated facility-location problems. Under
mild conditions, this algorithm guarantees to yield a lifetime
at least 62% of the optimum. The idea of load balancing by
virtually moving devices can be used in other networked
systems, including super-node selection in peer-to-peer net-
works and cooperative beamforming in cellular networks. As
a consequence, the proposed scheduling algorithm has mer-
its beyond the WSNs.
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APPENDIX
A. PROOF OF THEOREM 2

Consider problem (13) with its objective function f(·) re-

laxed as in (14). Let {(x∗[k], y∗[k], z∗[k], c∗[k])}2
|Vb|−1
k=1 be the

optimal selection of configurations and let {p∗[k]}2
|Vb|−1
k=1 be

the optimal fractions of time for using these configurations.
Let θ∗ be the optimal energy decrease rates

θ∗ =

2|Vb|−1∑
k=1

p∗[k]c∗[k]. (26)

Let {(x(n),y(n),z(n), c(n))}N
∗

n=1 be the selected sequence of
configurations by using Algorithm 1 with a β-approximation
algorithm for solving the min-weight configuration problem.

In the following, we will first derive an upper-bound of the
objective value f(θ(n)) for any n ∈ N+. Then, we will use
that to derive a lower-bound of the lifetime.

A.1 The upper-bound of the objective value
First of all, we derive an upper-bound on the incremental

change of the objective value f(θ(n))− f(θ(n−1)). We take

its Taylor expansion around θ(n−1) up to the second order,

f
(
θ(n)

)
− f

(
θ(n−1)

)
≤∇>f

(
θ(n−1)

)
·
(
θ(n) − θ(n−1)

)
+

1

2
|Vb ∪ Vr|2 ·

∥∥∥∆f
(
θ(n−1)

)∥∥∥
∞
·
∥∥∥θ(n) − θ(n−1)

∥∥∥2
∞
,

(27)

where ∆f(θ(n−1)) is the Hessian matrix of f(·) at the point

θ(n−1).
The second term on the right-hand side of (27) can be

easily upper-bounded. A little calculations give us an upper-
bound of the infinite norm of ∆f(θ(n−1)),∥∥∥∆f

(
θ(n−1)

)∥∥∥
∞
≤ α

e2min

. (28)

From (16), we have

θ(n) − θ(n−1) =
1

n

(
c(n) − θ(n−1)

)
. (29)

And we have

‖c(n) − θ(n−1)‖∞ ≤ cmax (30)

because: (i) 0 ≤ ‖c(n)‖∞ < cmax as cmax is the maximum
energy consumption rate of any BS or any sensor node; (ii)

‖θ(n−1)‖∞ < cmax since θ(n−1) =
∑n−1
t=1 c

(t)/(n − 1) and

0 ≤ ‖c(n)‖∞ < cmax. Combining (28), (29) and (30),

1

2
|Vb ∪ Vr|2 ·

∥∥∥∆f
(
θ(n−1)

)∥∥∥
∞
·
∥∥∥θ(n) − θ(n−1)

∥∥∥2
∞

≤ α|Vb ∪ Vr|2c2max

2n2e2min

. (31)

It only remains to derive an upper-bound for the first term
of the right-hand side of (27). Using (29),

∇>f
(
θ(n−1)

)
·
(
θ(n) − θ(n−1)

)
=

1

n
∇>f

(
θ(n−1)

)
· c(n) − 1

n
∇>f

(
θ(n−1)

)
· θ(n−1),

(32)

where ∇>f(θ(n−1)) · θ(n−1) is independent of the selection
of configuration at time n. It suffices to give an upper-
bound for the term ∇>f(θ(n−1)) · c(n). Remember that
for any 1 ≤ n ≤ N∗, we use a β-approximation algorithm
for solving the min-weight configuration problem (18) with

λ = ∇>f(θ(n−1)), we guarantee

∇>f
(
θ(n−1)

)
· c(n) ≤ βf∗(n)s , (33)

where f
∗(n)
s denotes the optimal objective value of (18).

Then, because for any 1 ≤ k ≤ 2|Vb| − 1, (x∗[k], y∗[k], z∗[k],

c∗[k]) ∈ L[k] is a feasible solution of the min-weight configu-
ration problem (18),

f∗(n)s ≤∇>f
(
θ(n−1)

)
· c∗[k], ∀1 ≤ k ≤ 2|Vb| − 1. (34)

Combining (33) and (34), we have ∀1 ≤ k ≤ 2|Vb| − 1,

∇>f
(
θ(n−1)

)
· c(n) ≤ β∇>f

(
θ(n−1)

)
· c∗[k]. (35)

Multiplying (35) by p∗[k] and summing it together for all

1 ≤ k ≤ 2|Vb| − 1, we have

∇>f
(
θ(n−1)

)
· c(n) ≤ β∇>f

(
θ(n−1)

)
· θ∗, (36)

where we use
∑2|Vb|−1
k=1 p∗[k] = 1 and (26).

Plugging (31), (32) and (36) into (27),

f
(
θ(n)

)
− f

(
θ(n−1)

)
≤ 1

n
∇>f

(
θ(n−1)

)
·
(
βθ∗ − θ(n−1)

)
+
α|Vb ∪ Vr|2c2max

2n2e2min

≤ 1

n

(
βf(θ∗)− f

(
θ(n−1)

))
+
α|Vb ∪ Vr|2c2max

2n2e2min

, (37)

where the second inequality is because of the convexity of
the objective function f(·).

Then, by multiplying n on both sides of (37) and by re-
sorting,

n
(
f
(
θ(n)

)
− βf(θ∗)

)
≤ (n− 1)

(
f
(
θ(n−1)

)
− βf(θ∗)

)
+
α|Vb ∪ Vr|2c2max

2ne2min

.

(38)

Summing it up from n = 1 to N (N ∈ N+), dividing it by

N and using
∑N
n=1 1/n < lnN+1, we have an upper-bound

for f(θ(N)),

f
(
θ(N)

)
− βf(θ∗) <

α|Vb ∪ Vr|2c2max(lnN + 1)

2e2minN
. (39)

A.2 The lower-bound of the lifetime
In the following, we will use (39) to derive a lower-bound

of the lifetime τN∗. Let F ∗ denote the optimal objective
value of problem (13) without approximations.

Using (15), one can easily check that f(θ(N)) ≥ F (θ(N))
and that f(θ∗) ≤ F ∗ + 1

α
ln |Vb ∪ Vr|. Plugging them into

(39), we see that

F
(
θ(N)

)
−βF ∗ < α|Vb ∪ Vr|2c2max(lnN + 1)

2e2minN
+
β

α
ln |Vb∪Vr|.

(40)



Remember from (10) that N = N∗ is the maximum num-

ber of time slots that satisfies e(N) ≥ 0. Therefore, e(N
∗+1) ≥

0 does not hold true, which implies from (16) that θ(N
∗+1) ≤

e/(τ(N∗+1)) does not hold true. Moreover, because F (θ) =
maxi∈Vb θi/ei, this is equivalent to

τ(N∗ + 1)F
(
θ(N

∗+1)
)
> 1. (41)

We will then use (40) and (41) to derive a lower-bound for
τN∗.

Because e(N
∗) ≥ 0, because 0 ≤ ‖c(n)‖∞ < cmax for any

1 ≤ n ≤ N∗ and because of (9), we have N∗ ≥ emin/(τcmax),
which in turn implies that N∗ + 1 > emin/(τcmax). Then,
because the term (lnN + 1)/N decreases,

ln(N∗ + 1) + 1

N∗ + 1
<
τcmax

emin

(
ln

emin

τcmax
+ 1

)
. (42)

Setting N = N∗ + 1 in (40) and plugging in (42),

F
(
θ(N

∗+1)
)
< βF ∗ +

β

α
ln |Vb ∪ Vr|

+
ατ |Vb ∪ Vr|2c3max

2e3min

(
ln

emin

τcmax
+ 1

)
. (43)

Using (41) and (43) together,

N∗+1 >
1

βτF ∗ + βτ ln |Vb∪Vr|
α

+
ατ2|Vb∪Vr|2c3max

2e3min
ln( emin

τcmax
+ 1)

.

Multiplying τ/T ∗ on both sides,

τN∗ + τ

T ∗
>

1

β + βT∗ ln |Vb∪Vr|
α

+
ατ |Vb∪Vr|2c3maxT

∗(ln
emin
τcmax

+1)

2e3min

,

(44)
where we use T ∗F ∗ = 1.

Taking τ → 0 and then taking α→∞ in (44), we have

lim
α→∞

lim
τ→0

τN∗(τ, α)

T ∗
≥ 1

β
.

B. PROOF OF THEOREM 3
First, we will show that by using the mappings in Table 2,

the constructed UFL has the same optimal objective value
as that of the min-weight configuration problem (18).

We derive the equality from the side of the min-weight
configuration problem (18). By plugging in (3) and (4), we
transform the objective value of (18) into

λ>c =
∑

i∈Vb∪Vr

λi

cc +
∑

(i,j)∈Es

cstxij +
∑

(j,i)∈Es

csrxji


+
∑
i∈Vb

λi (cltyi + clczi)

=
∑

i∈Vb∪Vr

λicc +
∑

(i,j)∈Es

xij(λicst + λjcsr)

+
∑
i∈Vb

λicltyi +
∑
i∈Vb

λiclczi, (45)

where the equality is due to the switch of terms.
We analyze the right hand side of the second equality of

(45). The first term
∑
i∈Vr∪Vb

λicc is fixed and the last

term
∑
i∈Vb

λiclczi maps into the facility cost for selecting
the active BSs ∑

i∈Vb

λiclczi =
∑
u∈Fo

hu (46)

due to (21) and (24). Once the selection of active BSs z
is fixed, problem (18) degrades into minimizing the second
and third terms of (45) under constraints (1) and (2),

min
∑

(i,j)∈Es

xij(λicst + λjcsr) +
∑
i∈Vb

λicltyi

s.t. (1), (2). (47)

This problem boils down to routing a flow of rate r from ev-
ery sensor node v ∈ Vr to the remote server S via the active
BSs Fo = {u : zu = 1, u ∈ Vb}, such that the total length of
routing paths is minimized given the distance assignments
(22). Notice that Luv denotes the length of the shortest
path from v ∈ Vr to S via active BS u ∈ Vb, and notice
that active BSs are restricted by Fo = {u : zu = 1, u ∈ Vb}.
Therefore, for any v ∈ Vr, its shortest path to S has a length
minu∈Fo Luv. Hence, the optimal objective value of prob-
lem (47) is equal to

∑
v∈Vr minu∈Fo Luv. Using (23), (45)

and (46), we see that the optimal objective value of (18) is
equivalent to that of the constructed UFL problem.

Then, we will show that the service cost is metric. We de-
note the set of edges and the set of nodes along the shortest
path from v ∈ Vr to u ∈ Vb by P (u, v) and N(u, v) (u, v are
excluded from N(u, v)), respectively. We have

Luv =
∑

(i,j)∈P (u,v)

(λicst + λjcsr)r + λucltr (48)

=
∑

i∈N(u,v)

(cst + csr)λir + (clt + csr)λur + λvcstr,

where we only change the costs on the path into the costs
on nodes along that path.

Plugging (48) into the term Luv + Lu′v + Lu′v′ , we have

Luv + Lu′v + Lu′v′

=
∑

i∈N(u,v)

(cst + csr)λir + (clt + csr)λur + λvcstr

+
∑

i∈N(u′,v)

(cst + csr)λir + (clt + csr)λu′r + λvcstr

+
∑

i∈N(u′,v′)

(cst + csr)λir + (clt + csr)λu′r + λv′cstr

=
∑

i∈N(u,v)

∪N(u′,v)
∪N(u′,v′)

(cst + csr)λir + 2λvcstr + 2(clt + csr)λu′r

+ (clt + csr)λur + λv′cstr

≥
∑

i∈N(u,v)

∪N(u′,v)
∪N(u′,v′)

(cst + csr)λir + (cst + csr)λvr + (cst + csr)λu′r

+ (clt + csr)λur + λv′cstr

=
∑

i∈N(u,v)

∪{v}∪N(u′,v)
∪{u′}∪N(u′,v′)

(cst + csr)λir + (clt + csr)λur + λv′cstr,

(49)



where the inequality is because csr ≤ cst ≤ 2clt + csr.
Moreover, from (48), we have

Luv′ =
∑

i∈N(u,v′)

(cst + csr)λir + (clt + csr)λur + λv′cstr.

Remembering that Luv′ is the length of the shortest path
from v′ to u, it is not longer than the path through v′ →
N(u′, v′) → u′ → N(u′, v) → v → N(u, v) → u. Therefore
Luv + Lu′v + Lu′v′ ≥ Luv′ .

Using (23), we have

guv + gu′v + gu′v′ − guv′
= Luv + Lu′v + Lu′v′ − Luv′

+ λvcc + λvcc + λv′cc − λv′cc
= (Luv + Lu′v + Lu′v′ − Luv′) + 2λvcc

≥ 0.


