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ABSTRACT
This paper reviews and extends our previous work to enable fast ax-
onal diameter mapping from diffusion MRI data in the presence of
multiple fibre populations within a voxel. Most of the existing mi-
crostructure imaging techniques use non-linear algorithms to fit their
data models and consequently, they are computationally expensive
and usually slow. Moreover, most of them assume a single axon ori-
entation while numerous regions of the brain actually present more
complex configurations, e.g. fiber crossing. We present a flexible
framework, based on convex optimisation, that enables fast and ac-
curate reconstructions of the microstructure organisation, not lim-
ited to areas where the white matter is coherently oriented. We show
through numerical simulations the ability of our method to correctly
estimate the microstructure features (mean axon diameter and intra-
cellular volume fraction) in crossing regions.

Index Terms— diffusion MRI, microstructure imaging, convex
optimisation.

1. INTRODUCTION

The challenge in diffusion Magnetic Resonance Imaging (dMRI) is
to infer features of the local tissue anatomy, composition and mi-
crostructure from water displacement measurements. Water diffu-
sion in living tissues is highly affected by its cellular organisation
[1]. In particular, water does not diffuse equally in all directions in a
highly ordered organ such as the brain and this property can be ex-
ploited to study the structural neural connectivity in a non-invasive
way. Diffusion Tensor Imaging (DTI) [2], Diffusion Spectrum Imag-
ing (DSI) [3], Diffusion Orientation Transform (DOT) [4] and spher-
ical deconvolution methods [5, 6, 7] are among a great variety of
techniques developed to recover the fibre configuration from dMRI
data. All the aforementioned techniques are able to estimate the fi-
bre orientations (number and direction of the fibre populations) in a
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voxel. However, they do not provide any information on their mi-
crostructural properties like axon diameter and density, which are
related to conduction velocity [8] and play an important role in the
performance of the white matter (WM) tracts. Also, the microstruc-
ture organisation of specific areas of the brain change in subjects
affected by certain pathologies, such as multiple sclerosis [9]. There-
fore, the study of the microstructure in vivo represents a major goal
in neuroscience but also from the clinical point of view.

Most microstucture imaging techniques recover the microstruc-
ture properties by modelling the signal decay in different tissue com-
partments, e.g. axons, glial cells and extra-axonal space. These
methods can infer not only the orientation of the main fibre popu-
lations in a voxel, but also their microstructural properties, such as
the average diameter and density of the axons. For an exhaustive sur-
vey of the existing techniques in the field the reader can refer to [10].
Recently, Alexander et al. developed ActiveAx [11], which allows
the estimation of orientationally-invariant indices of axon diameter
and density in scan time tolerable by live human subjects. ActiveAx
uses a Minimal Model of White Matter Diffusion (MMWMD) with
four compartments to describe the measured dMRI signal [11, 12]:
besides the restricted and hindered compartments previously con-
sidered by [13], the MMWMD accounts also for stationary water
trapped within small structures such as glial cells as well as free wa-
ter characterised by isotropic diffusion. ActiveAx was recently ex-
tended to allow axon diameter mapping also in regions with crossing
fibres [14] and thus, overcome the main limitation of the majority of
microstructure imaging methods which are restricted to regions with
one single fibre orientation. All the techniques mentioned so far have
demonstrated the practical possibility to estimate microstructural in-
formation from dMRI data and the estimated microstructural indices
have been shown to agree very well with known anatomical patterns
observed with histology [11, 15, 12]. However, the non-linear rou-
tines usually employed to fit these models are computationally very
intensive and cause practical problems for their application in clini-
cal studies.

Recently, Daducci et al. presented a flexible framework for Ac-
celerated Microstructure Imaging via Convex Optimisation (AM-
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ICO) [16] to reformulate these microstructure imaging techniques
as linear systems that can be solved using convex optimisation meth-
ods. The convex optimisation framework allows to include prior in-
formation about the signal, such as positivity, as long as it is for-
mulated as a convex constraint. Besides this flexibility, convex op-
timisation methods are fast and many efficient numerical algorithms
exist to solve them [17]. However, despite the drastic improvement
in speed, the current model for AMICO is only valid in regions with
one fibre population, making it inadequate for many widespread re-
gions of the brain with multiple fibre bundles.

In this work, we extend the AMICO framework to be able to
recover microstructure parameters also in regions with multiple fibre
populations using fast algorithms. Numerical simulations evidence
the ability of our new algorithm to recover microstructure parameters
in regions with crossings, where the original AMICO formulation
[16] is shown to be inadequate.

2. DATA MODEL AND METHODS

The reconstruction problem for microstructure features from diffu-
sion data accounting for multiple fibres is presented here as an ex-
tension of AMICO [16]. Throughout this paper, we keep the same
problem formulation as in in the original paper. To make the present
article self-contained, we recall it in this section and point out the
reader to [16] for further details.

The microstructure mapping problem is expressed in terms of a
linear formulation, as follows:

y = Φx+ η, (1)

being y ∈ RNd
+ the vector of diffusion measurements, x ∈ RNk

+ the
coefficients to be estimated and Φ the linear operator or dictionary
that models the convolution operator. The AMICO framework can
be applied to different microstructure imaging models, as shown in
[16]. In this work we focus on extending the formulation for the
ActiveAx model [11] to allow axonal diameter mapping in case of
multiple fiber populations within a voxel.

The reconstruction problem is decoupled into two simpler sub-
problems. First, the number and orientation of the fibre populations
µi ∈ S2 in each voxel is estimated. This can be achieved using any
of several reconstruction methods, such as the standard Constrained
Spherical Deconvolution (CSD) method [7]. Secondly, the linear op-
erator Φ to express ActiveAx as a linear system is built from different
sub-matrices:

Φ = [Φr
1|Φh

1 | . . . |Φr
M |Φh

M ]. (2)

In equation (2), sub-matrices Φr
i ∈ RNd×Nr and Φh

i ∈ RNd×Nh

model, respectively, the intra-axonal and extra-axonal contributions
to the diffusion signal along the direction µi(i = 1, . . . ,M). M
stands for the total number of detected fibre populations in the voxel.
Each atom in sub-matrices Φr

i models the diffusion signal corre-
sponding to water molecules restricted within parallel cylinders of
a specific diameter. Alternatively, the atoms in sub-matrices Φh

i de-
scribe the hindered space between the axons. Nr and Nh represent,
respectively, the number of different axon radii and hindered envi-
ronments considered to build the dictionary. The signal response
matching both restricted and hindered water diffusion in a voxel is
estimated using the same models and parameter set as in [16]. For
further details, the reader can refer to the original manuscript and
find a specific description of these models in [10].

Equation (1) is then solved as a Tikhonov-regularised least-squares

problem as follows:

min
x≥0

1

2
||Φx− y||22 + λ

1

2
||x||22, (3)

where ‖·‖2 is the standard `2 norm and the parameter λ > 0 controls
the trade-off between data regularisation terms. The microstructure
indices of interest defined by Alexander et al. [11] can be estimated
for each individual fiber population from the recovered coefficients
x by partitioning them as [xr

1|xh
1 | . . . |xr

M |xh
M ], corresponding to

the contributions of hindered and restricted compartments from ev-
ery fibre bundle. In every voxel, the intra-axonal volume fraction
ν′ indicates the ratio between restricted and hindered compartments;
and for each of the fibre populations i (i = 1, . . . ,M ), the mean
axon diameter a′i is expressed as a weighted average of the coeffi-
cients corresponding to restricted water diffusion, xr

i :

ν′ =

∑M
i=1

∑Nr
j=1 x

r
ij∑M

i=1(
∑Nr

j=1 x
r
ij

+
∑Nh

j=1 x
h
ij

)
(4)

a′i =

∑Nr
j=1 2Rjx

r
ij∑Nr

j=1 x
r
ij

, (5)

where Rj , j ∈ {1, . . . , Nr} denote the radius of the cylinder corre-
sponding to the j-th atom in Φr

i .
Hereafter, to make results easier to interpret for the reader, we

refer to the original AMICO formulation [16] as AMICO1 and to
its extended version for multiple fibres as AMICOX . In the next
section, the performance of both formulations is compared through
numerical simulations.

3. NUMERICAL SIMULATIONS

To evaluate the effectiveness of AMICOX , we tested it on synthetic
data generated using the Monte-Carlo diffusion simulator system
available in Camino [18], with the imaging protocol corresponding
to a gradient strength Gmax = 140mT/m with 270 measurements
divided into 3 shells with b-values= {1930, 3090, 13190}s/mm2,
corresponding toG = {140, 131, 140}mT/m, δ = {10.2, 7.6, 17.7}
ms, ∆ = {16.7, 45.9, 35.8}ms and same TR/TE = 5000/60ms
for all images. In all experiments when building the linear opera-
tors, we considered Nr = 10 different axon radii in a range of 0.1 -
8.5 µm, and Nh = 7 different hindered environments corresponding
to intra-axonal volume fractions from 0.3 to 0.9. The regularisation
parameter λ was fixed to 0.25.

We first simulated raw voxels with two fibre populations cross-
ing at different angles (from 30◦ to 90◦). Each fibre population con-
sisted of a distribution of different axon diameter, as done in [11],
and several WM substrates were tested. For each configuration, dif-
ferent relative ratios of the two populations were evaluated. In each
case, the mean and standard deviation of the estimated microstruc-
tural parameters was computed over 1000 repetitions, contaminating
the signal with independent Rician noise realisations corresponding
to SNR= 30, and compared them to the ground-truth. The esti-
mation of the fibre orientations was performed using standard CSD
[7] and the CSD peak estimation using the toolbox MRTrix1 with
90 measurements corresponding to the outer shell. For compact-
ness, only results corresponding to relative volume fractions fr1 =
{0.5, 0.5} and fibre population with 2 different radii - gamma distri-
butions with parameters (3.27, 4.9 ·10−7) and (4.82, 2.6 ·10−7), re-
spectively - corresponding to average axon diameters about 5.6 and

1http://www.nitrc.org/projects/mrtrix/
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Fig. 1. Performance of AMICO1 on 2-fibre synthetic substrates as
a function of the crossing angle between the fibres. Plots show the
mean and standard deviation of the estimated mean axonal diameter
(left) and intra-axonal volume fraction (right). Dashed lines repre-
sent the ground-truth values for the two populations.

3.6 micrometers are reported here. Results on the other substrates
are consistent.

As a comparison, we fitted AMICO1 in the experimental set-
tings described above to assess the impact of using this single-fibre
model in regions with more than one fibre population. In these ex-
periments, the atoms of the dictionary were oriented in the direction
estimated with DTI, as in the original formulation [16]. The esti-
mated microstructure indices (mean axon diameter and intra-cellular
volume fraction) are compared with the ground-truth in figure 1.
AMICO1 assumes that the fibres inside the voxel follow only one
direction. Results show that making such an assumption in voxels
that actually contain more than one fibre leads to erroneous estima-
tion of microstructural properties. Mean axonal diameter appears
overestimated whereas the intra-axonal volume fraction is underes-
timated; and the absolute error increases with the crossing angle of
the ground-truth fibres. As expected, in the AMICO framework, the
importance of correctly estimating the number of fibre bundles in
order to choose a correct model appears to be crucial.

Figure 2 compares the microstructure parameters estimated from
AMICOX with the ground-truth as a function of the crossing angles
between the two fibre populations. The intra-cellular volume frac-
tion can be estimated very accurately for all crossing angles (slightly
over-estimated by about 4%). The mean axonal diameter of the
two fibre populations can be as well estimated pretty robustly (both
slightly under-estimated) for all crossing angles. However, when
the two orientations are too close (≈ 30◦), the errors as well as the
standard deviations of the estimates with respect to the ground-truth
increase. These results are in line with (and slightly improve) those
previously reported in [14]. The higher instability shown at 30◦ can
be well related to the performance of CSD in the peak-detection step.
While the average angular error committed over the 1000 repetitions
in crossings from 90◦ to 40◦ is less than 2◦, CSD often identifies
spurious peaks as true fibre directions for angles crossing at 30◦,
leading to a more unstable behaviour and higher average angular er-
ror.

Figure 3 illustrates the impact of the angular inaccuracy when
estimating the orientation of the fibre populations, µi. In a substrate
with two fibres crossing at a fixed angle of 60◦, one of the directions
used to build the dictionary was deviated from 1◦ to 10◦ from the
actual orientation of the fibre. The intra-cellular volume fraction can
be estimated accurately for all angular deviations, up to 10◦. The
estimation of the mean axonal diameter degrades progressively, yet
absolute errors are smaller than 1µm for angular deviations up to 7◦.
These results are in-line with the angular accuracy of AMICO1 [16].

Lastly, the proposed model was tested also in a voxel with 3
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Fig. 2. Performance of AMICOX on 2-fibre synthetic substrates as
a function of the crossing angle between the fibres. Plots show the
mean and standard deviation of the estimated mean axonal diameter
(left) and intra-axonal volume fraction (right) for the two different
fibre populations. Dashed lines represent the ground-truth values for
the two populations.
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Fig. 3. Robustness to inaccuracies in the estimation of µ2. Plots
show the estimated mean axonal diameter (left) and intra-axonal
volume fraction (right) as a function of the angular deviation of the
estimated direction µ2 with respect to the actual orientation of fibre
population 2. Dashed lines represent the ground-truth values for the
two populations.

non-coplanar fibre populations, as a proof of concept that evidences
its generalisation to multiple fibre crossings. In this experiment, the
crossing angle between two of the fibres was fixed to 90◦ and the
angle between the third one and the others varying between 30◦ and
90◦. Only results corresponding to a crossing of two populations
with an average axon diameters about 5.6 and one of about 3.6 mi-
crometers are reported. Again, results with different substrates are
consistent. Figure 4 compares the estimated microstructure features
with the ground truth as a function of the crossing angles between
the 3 estimated populations.

The non-optimised version of the code, implemented in MAT-
LAB and run on a standard 2.70GHz Intel Core i7-3740QM proces-
sor, is able to fit the model in approximately 3.7ms/voxel. There-
fore, AMICOX still enables a drastic reduction of the computation
time to solve the microstructure imaging problem as well in regions
with multiple fibre populations compared to other non-linear rou-
tines, such as ActiveAx, which take ≈ 20s/voxel to fit its model
[16].

4. CONCLUSIONS

In this paper, we have extented the original AMICO framework, that
enables fast axonal diameter mapping with ActiveAx [11], to include
crossing fibre populations within a voxel. Our results show through
numerical simulations that AMICOX is indeed able to robustly esti-
mate the microstructure parameters, provided the number and orien-
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Fig. 4. Performance of AMICOX on 3-fibre synthetic substrates as a
function of the crossing angle between the fibre population 1 and 2.
The crossing angle between populations 1 and 3 is fixed to 90◦. Plots
show the mean and standard deviation of the estimated mean axonal
diameter (left) and intra-axonal volume fraction (right) for the three
different fibre populations. Dashed lines represent the ground-truth
values for the three populations.

tation of the fibre populations in a voxel is correctly estimated (up to
≈ 7◦ of angular accuracy). We have as well shown how, thanks to
the fast convex optimisation methods, AMICOX enables a reduction
of the computation time by orders of magnitude with respect to other
microstructure imaging techniques also in voxels with complex fibre
configurations.

The extended data model of AMICOX can be fitted fast and ac-
curately in all voxels of the brain, as allowed by [14], thanks to
the generalisation of the original formulation to environments with
multiple fibres. Moreover, in this framework, the coherence of the
microstructural features among neighbouring voxels can be inves-
tigated and exploited using spatial regularisation terms that can be
easily added to a convex formulation. Future work will be devoted
to this study, including validation of the model on real data.
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