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Abstract :

Numerical methods for partial differential equations with multiple scales that combine numerical ho-
mogenization methods with reduced order modeling techniques are discussed. These numerical methods
can be applied to a variety of problems including multiscale nonlinear elliptic and parabolic problems
or Stokes flow in heterogenenous media.
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1 Introduction

In this paper we discuss the combination of a model reduction algorithm, the reduced basis (RB)
method, with a numerical homogenization method such as the heterogenenous multiscale method
(HMM). For many applications modeled by partial differential equations (PDEs), numerical homoge-
nization methods or methods based on representative volume elements (RVEs) have proved successful.
Yet for problems in high dimensions, nonlinear problems and/or time-dependent problems, the bot-
tleneck of these methods is the large numbers of micro problems or RVE to be solved. Indeed, fully
discrete a priori error estimates [1] reveal that the microscopic degrees of freedom must increase
proportionally to the macroscopic degrees of freedom (DOF) to guarantee optimal convergence with
minimal computational cost. Thus, we face the issue of solving a large number of micro problems
with an increasing number of DOF during a macroscopic mesh refinement process. To overcome
these difficulties we introduce a reduced order modeling method for the numerical homogenization
procedure. The new algorithm called reduced basis finite element heterogeneous multiscale method
(RB-FE-HMM) has been introduced in [2, 3] for linear problems, in [4, 5] for nonlinear problems and
in [6, 7] for Stokes problems in porous media.

2 Reduced basis numerical homogenization

Let Ω be an open bounded polygonal domain in Rd, V be a Hilbert space and consider the following
(multiscale) problem: find uε ∈ V such that

Lε(uε, aε) = f in Ω, (1)

with appropriate boundary conditions. Here Lε denotes a differential operator, aε highly oscillatory
data and f a given right-hand side. We assume that uε converges (weakly, up to a subsequence) in V to
u as ε→ 0, where the function u (a homogenized solution) solves a homogenized problem of the form
L(u, a) = f in Ω. The FE-HMM relies on (at least) two solvers and on a data recovery process. A
macroscopic solver LHMM for the effective problem L is defined on a macroscopic finite element space
VH(Ω) based on piecewise polynomials on each elementK of the macroscopic triangulation TH of Ω with
a priori unknown effective data {ah(xKj

}Jj=1, xKj
∈ K for each K ∈ TH . A microscopic solver involving

the operator Lε constrained by the macroscopic state is defined on a microscopic finite element space
Vh(Kδj ) (with meshsize h resolving the fine scales) on domains Kδj = xKj

+ δ(−1/2, 1/2)d, j =

1, . . . , N, of size δ ' ε centered at quadrature points xKj
∈ K. The effective data ah(xKj

) are
recovered at these quadrature points by a suitable average of microscopic solutions on Kδj .
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Figure 1: Sketch of offline/online stage of the reduced basis method

Reduced basis for micro solvers. To avoid the computation of the effective data ah(xKj
) at each

quadrature point xKj
for each macro element K and to avoid recomputing these data when refining the

macro mesh, we adopt an offline online strategy described here for the simple case of linear problems.

• Offline stage: we search for the most representative locations of sampling domains and build in

a nested way the space of reduced basis micro solutions Sn = span{ψξkτk (·), k = 1, .., n}, where

ψξkτk (·) is an accurate solution of a micro problem in Kτk = τk + δ(−1/2, 1/2)d, j = 1, . . . , N
with force field biven by ξk. For a succesfull application of the RB method, the dimension n
of the space Sn must be small. The optimal location τk ∈ ΣΩ (ΣΩ is a uniformly distributed
sampling set of Ω) and force field ξk ∈ {e1, . . . , ed} is selected at each step by a Greedy algorithm
controlled by a posteriori error estimators (this is illutrated by the pink sampling domains in
the first picture in Figure 2).

• Online stage: we compute a solution of the macro solver by computing the data an(xKj
) at the

correct quadrature points of the macro mesh but in the reduced basis space Sn, which amount
in solving only linear systems of small size n (this is illustrated by the second and third pictures
in Figure 2).

Similar procedures with possibly more parameters in the offline stage can be used for nonlinear mul-
tiscale problems and multiscale Stokes problems.
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