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Abstract
We consider from practical perspective the (generally un-
decidable) problem of checking equivalence of context-free
grammars. We present both techniques for proving equiv-
alence, as well as techniques for finding counter-examples
that establish non-equivalence. Among the key building
blocks of our approach is a novel algorithm for efficiently
enumerating and sampling words and parse trees from arbi-
trary context-free grammars; the algorithm supports polyno-
mial time random access to words belonging to the grammar.
Furthermore, we propose an algorithm for proving equiv-
alence of context-free grammars that is complete for LL
grammars, yet can be invoked on any context-free grammar,
including ambiguous grammars.

Our techniques successfully find discrepancies between
different syntax specifications of several real-world lan-
guages, and is capable of detecting fine-grained incremen-
tal modifications performed on grammars. Our evaluation
shows that our tool improves significantly on the existing
available state of the art tools. In addition, we used these al-
gorithms to develop an online tutoring system for grammars
that we then used in an undergraduate course on computer
language processing. On questions involving grammar con-
structions, our system was able to automatically evaluate the
correctness of 95% equivalence questions: it disproved 74%
of cases and proved 21% of them. This opens up the pos-
sibility of using our tool in massive open online courses to
introduce grammars to large populations of students.

1. Introduction
Context-free grammars are pervasively used in verification
and compilation, both for building input parsers and as foun-
dation of algorithms for model checking, program analysis,
and testing. They also play an important pedagogical role
in introducing fundamentals of formal language theory, and
are an integral part of undergraduate computer science ed-

S → S + S | S ∗ S | ID S → ID E
E → +S | ∗ S | ε

Figure 1. Grammars recognizing simple arithmetic expres-
sions. An example proven equivalent by our tool.

S → A⇒ S | Int
A→ Int ,A | Int

S → Int G
G→⇒ Int G | , Int A | ε
A→, Int A | ⇒ Int G

Figure 2. Grammars defining well-formed functions signa-
tures over Int . An example proven equivalent by our tool.

ucation. Despite their importance, and despite decades of
theoretical advances, practical tools that can check semantic
properties of grammars are still scarce, expect for specific
tasks such as parsing.

In this paper, we develop practical techniques for check-
ing equivalence of context-free grammars. Our techniques
can find counter-examples that disprove equivalence, and
can prove that two context-free grammars are equivalent,
much like a software model checker. Our approaches are
motivated by two applications: (a) comparing real-world
grammars, such as those used in production compilers, (b)
automating tutoring and evaluation of context-free gram-
mars. These applications are interesting and challenging for
a number of reasons.

Much of the front-ends of modern compilers and in-
terpreters are automatically or manually derived from
grammar-based descriptions of programming languages,
more so with integrated language support for domain spe-
cific languages. When two compilers or other language tools
are built according to two different reference grammars,
knowing how they differ in the programs they support is
essential. Our experiments show that two grammars for the
same language almost always differ, even if they aim to im-
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(a)
S → A⇒ Int | Int
A→ S, Int | Int (b)

S → A⇒ S | Int
A→ S, S | Int

Figure 3. Grammars subtly different from the grammars
shown in Fig. 2. The grammar on the left does not accept
“Int ⇒ Int ⇒ Int”.

plement the same standard. For instance, we found using our
tool that two high quality standard Java grammars (namely,
the Java grammar 1 used by Antlr v4 parser generator [1],
and the Java language specification [2]) disagree on more
than 50% of words that are randomly sampled from them.

It is worrying to know this, since we tend to expect seam-
less portability across compilers. While many differences
could be filtered out by type checkers and other back-end
phases of compliers, some may still percolate to the user
level. In fact, we find numerous differences in the grammars
for dynamic languages such as Javascript as well (see sec-
tion 5 for more details).

Besides detecting incompatibility, comparing real-world
grammars can help identify portions of the grammars that
are overly permissive. For instance, the string “enum ID

implements char { ID }” is generated by Antlr Java
grammar but is rightly rejected by the Oracle’s Java lan-
guage specification. The counter-examples help in identify-
ing places where the grammars, and hence their parsers can
be optimized.

Furthermore, often grammars are rewritten extensively to
make them acceptable by parser generators, which is labo-
rious and error prone. Parser generators have become in-
creasingly permissibly over the years to mitigate this prob-
lem. However, there still remains considerable overhead in
this process, and there is a general need for tools that pin-
point subtle changes in the modified versions (documented
in works such as [33]). It is almost always impossible to
spot differences between large real-world grammars through
manual scanning, because the grammars typically appear
similar, and even use the same name for many non-terminals.
A challenge this paper addresses is developing techniques
that scales to real-world grammars, which have hundreds of
non-terminals and productions.

An equally compelling application of grammar com-
parison arises from the importance of context-free gram-
mar in computer science education. Assignments involving
context-free grammars are harder to grade and provide feed-
back, arguably even more than programming assignments,
because of their succinctness; which makes them difficult
to comprehend, and also allows for a greater variation in
the possible solutions. The complexity is further aggravated
when the solutions are required to belong to subclasses like
LL(1). For example, Figures 1 and 2 show two pairs of
grammars that are equivalent. The grammars shown on the
right are LL(1) grammars, and are reference solutions. The

1 github.com/antlr/grammars-v4/blob/master/java/Java.g4

grammars shown on the left are intuitive solutions that a stu-
dent comes up with initially. Proving equivalence of these
pairs of grammars is challenging because they do not have
any similarity in their structure, but recognize the same lan-
guage. On the other hand, Figure 3 shows two grammars
(written by students) that subtly differ from the grammars of
Fig. 2. The smallest counter-example for the grammar shown
in Fig. 3(a) is the string “Int ⇒ Int ⇒ Int”. We invite the
readers to identify a counter-example that differentiates the
grammar of Fig. 3(b) from those of Fig. 2.

In our experience, a practical system that can prove that a
student’s solution is correct and provide a counter-example
if it is not can greatly aid tutoring of context-free grammars.
The state of the art for giving feedback on programming as-
signments is to use test cases (though there has been recent
work on generating repair based feedback [29]). We bring
the same fundamentals to context-free grammar education.
Furthermore, we exploit the large, yet under-utilized, theo-
retical research on decision procedures for equivalence of
context-free grammars to develop a practical algorithm that
can prove the correctness of solutions provided by the stu-
dents.

Overview and Contributions. At the core of our system is
a fast approach for enumerating words and parse trees of an
arbitrary context-free grammar, which supports exhaustive
enumeration as well as random sampling of parse trees and
words. These features are supported by an efficient polyno-
mial time random access operation that constructs a unique
parse tree for any given natural number index. We construct
a scalable counter-example detection algorithm by integrat-
ing our enumerators with a state of the art parsing technique
[25].

We develop and implement an algorithm for proving
equivalence by extending decision procedures for subclasses
of deterministic context-free grammars to arbitrary (possibly
ambiguous) context-free grammars, while preserving sound-
ness. We make the algorithm practical by performing numer-
ous optimizations, and use concrete examples to guide the
proof exploration. We are not aware of any existing system
that supports both proving as well as disproving of equiva-
lence of context-free grammars. The following are our main
contributions:

• We present an enumerator for generating parse trees of
arbitrary context-free grammars that supports the follow-
ing operations: 1) a polynomial time random access oper-
ation lookup(i, l) that given an index i returns the unique
parse tree generating a word of length l, corresponding to
the index, and 2) sample(n, l) that generates n uniformly
random samples from the parse trees of the grammar gen-
erating words of length l (Section 2).

• We propose an algorithm for discovering counter-
examples for equivalence of context-free grammars using
the proposed enumerators.
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• We integrate and extend the algorithms of [15], [24], and
[12], for proving equivalence of LL context-free gram-
mars to arbitrary context-free grammars. Our extensions
are sound but incomplete. We show using experiments
that the algorithm is effective on many grammars that are
outside the classes with known decision procedures.

• We implement and evaluate an online tutoring system for
context-free grammars . Our system is able to decide the
veracity of 95% of the submissions, detecting counter-
examples in 74% of the submissions, and proving cor-
rectness of 21% of the submissions.

• We evaluate the counter-example detection algorithm on
10 real-world grammars describing the syntax of 5 main-
stream programming languages. The algorithm discovers
deep, fine-grained errors, by finding counter-examples
with an average length of 35, detecting almost 3 times
more errors than a state of the art approach.

2. Enumeration of Parse Trees and Words
A key ingredient of our approach for finding counter-
examples is enumeration of words and parse trees belonging
to a context-free grammar. Enumeration is also used in opti-
mizing and improving the scope of our grammar equivalence
proof engine. We model our enumerators as functions from
natural numbers to objects that are enumerated (which are
parse trees or words), as opposed to viewing them as itera-
tors for a sequence of objects as is typical in programming
language theory. The enumerators we propose are bijective
functions from natural numbers to parse trees in which the
image and pre-image of any given value is efficiently com-
putable in polynomial time (formalized in Theorem 1). The
functions are partial if the set that is enumerated is finite.
Using bijective functions to construct enumerators has many
advantages, for example, it immediately provides a way of
sampling elements from the given set. It also ensures that
there is no duplication during enumeration. Additionally, the
algorithm we present here can be configured to enumerate
parse trees that generate words having a desired length.

Notations. A context-free grammar is a quadruple
(N ,Σ, P, S), where N is a set of non-terminals, Σ is a set
of terminals, P ⊆ N × (N ∪ Σ)∗ is a finite set of produc-
tions and S ∈ N is the start symbol. Let T denote the set of
parse trees belonging to a grammar. We refer to sequences of
terminals and non-terminals belonging to (N ∪ Σ)∗ as sen-
tential forms of the grammar. If a sentential form has only
terminals, we refer to it as a word, and also sometimes as
a string. We adopt the usual convention of using greek al-
phabets α, β to represent sentential forms and upper-case
latin characters to represent non-terminals. We use lower-
case latin characters a, b, c etc. to represent terminals and
w, x, y etc. to denote words. We introduce more notations as
they are needed.

2.1 Constructing Random Access Enumerators
We use Enum[α] : N → T ∗ to denote an enumerator for
a sentential form α of the input grammar. The enumerators
are partial functions from natural numbers to tuples of parse
trees of the grammar, one rooted at every symbol in the
sentential form. For brevity, we refer to the tuple as parse
trees of sentential forms. We define Enum[α] recursively
following the structure of the grammar as explained in the
sequel.

For a terminal a belonging to a grammar, Enum[a] is
defined as {0 → leaf (a)}. That is, the enumerator for a
terminal a maps the first index to a parse tree with a single
leaf node containing a and is undefined for every other
index. We now describe an enumerator for a non-terminal.
Consider for a moment the non-terminal S of the grammar
shown in Fig. 4. The parse trees rooted at S is constructed
out of the parse trees that belong to the non-terminal A and
the sentential form BA. Assume that we have enumerators
defined for A and BA, namely Enum[A] and Enum[BA] that
are functions from natural numbers to parse trees (a pair
of them in the case of BA). Our algorithm constructs an
enumerator for S compositionally using the enumerators for
A and BA.

Recall that we consider enumerators as bijective func-
tions from natural numbers. So, given an index i we need to
define a unique parse tree of S corresponding to i (provided
i is within the number of parse trees rooted at S). To asso-
ciate a parse tree of S to an index i, we first need to identify
a right-hand-side α of S and select a parse tree t of the right-
hand-side. To determine a parse tree t of the right-hand-side
α, it suffices to determine the index of t in the enumerator
for α. Hence, we define a function Choose[N ] : N→ ((N ∪
Σ)∗ × N) for every non-terminal N , that takes an index and
returns a right-hand-side of N , and an index for accessing
an element of the right-hand-side. We define the enumerator
for a non-terminal as: Enum[N ](i) = node(N ,Enum[α](j)),
where (α, j) = Choose[N ](i). That is, as a node labelled N
and having the tuple Enum[α](j) as children.

In the simplest case, if N has n right-hand-sides
α0, α2, · · · , αn−1, the choose function Choose[N ](i) could
be defined as (αi%n, bi/nc). This definition, besides being
simple, also ensures a fair usage of the right-hand-sides of
N by mapping successive indices to different right-hand-
sides, which ensures that any sequence of enumeration of the
words belonging to a non-terminal alternates over the right-
hand-sides of the non-terminal. However, this definition is
well defined only when every right-hand-side of N has un-
bounded number of parse trees. For instance, consider the
non-terminal A shown in Fig. 4. It has two right-hand-sides
a and aS of which a has only a single parse tree. Defin-
ing Choose[A] as (αi%2, bi/2c) is incorrect as, for exam-
ple, Enum[A](2) maps to Enum[a](1), which is not defined.
Therefore, we extend the above function so that it takes into
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S → A | BA
A → a | aS
B → b

∀t ∈ {a, b}. Enum[t](i) = leaf (t) if i = 0
∀N ∈ {S,A,B}. Enum[N ](i) = node(S,Enum[α](j)), where (α, j) = Choose[S](i)
Enum[BA](i) = (Enum[B](j),Enum[A](k)) where (j, k) = π(i,∞,∞)
Enum[aS](i) = (Enum[a](j),Enum[S](k)) where (j, k) = π(i, 1,∞)

Figure 4. An example grammar and illustrations of the Enum functions for the symbols of the grammar. Choose and π are
defined in Fig. 6 and Appendix A, respectively.

#t(α) =

n−1∏
i=0

#t(Mi), where α = M0 · · ·Mn−1, n > 1

#t(N ) =

n−1∑
i=0

#t(αi), where N → α0 | · · · | αn−1

#t(a) = 1, where a ∈ Σ

Figure 5. Equations for computing the number of parse
trees of sentential forms. #t is initialized to ∞ for every
non-terminal M .

Choose[N ](i) = (αj , bk + b(i− ik)/(n− k)c),
where N → α0 | · · · | αn−1 s.t.

∀1 ≤ m < n. #t(αm−1) ≤ #t(αm),

j = k + (i− ik)%(n− k),

k is such that ik ≤ i < ik+1,

b0 = 0, and ∀1 ≤ m < n. bm = #t(αm−1),

∀0 ≤ m < n. im = bm(n−m+ 1) +

m−1∑
i=0

bi

Figure 6. Choose function for a non-terminal N .

account the number of the parse trees belonging to the right-
hand-sides, which is denoted using #t(α).

It is fairly straightforward to compute the number of parse
trees of non-terminals and right-hand-sides in a grammar.
For completeness, we show a formal definition in Fig. 5. We
define #t as the greatest fix-point of the equations shown
in Fig. 5, which can be computed iteratively starting with an
initial value of ∞ for #t . As shown in the equations, the
number of (tuples of) parse trees of a sentential form is the
product of the number of parse trees of the symbols in the
sentential form. The number of parse trees of a non-terminal
is the sum of the number of parse trees of its right-hand-
sides, and the number of the parse trees of a terminal is one.
Note that if the grammar has cycles, #t could be infinite in
some cases.

Fig.6 defines a Choose function, explained below, that
can handle right-hand-sides with a finite number of parse

trees. The definition guarantees that whenever Choose re-
turns a pair (α, i), i is less than #t(α), which ensures that
Enum[α] is defined for i. In Fig.6, the right-hand-sides of
the non-terminal N , α0, · · · , αn−1, are sorted in ascending
order of the number of parse trees belonging to them. The in-
dex im is the smallest index (of Enum[N ]) at which the mth

right-hand-side αm becomes undefined, which is determined
using the number of parse trees of each right-hand-side as
shown. Given an index i, Choose[N ](i) first determines the
right-hand-sides that need to be skipped i.e, whose enumer-
ators are not defined for the index i, by finding a k such that
ik ≤ i < ik+1. It then chooses a right-hand-side (namely
αj) from the remaining n − k right-hand-sides whose enu-
merators are defined for the index i, and computes the index
to enumerate from the chosen right-hand-side.

Note that the Choose function degenerates to the simple
definition (αi%n, bi/nc) presented earlier when #t is un-
bounded for every right-hand-side of N . The function also
preserves fairness by mapping successive indices to differ-
ent right-hand-sides of the non-terminals. For instance, in
the case of the non-terminal A shown in Fig. 4, the Choose

function maps index 0 to (a, 0), index 1 to (aS, 0), but in-
dex 2 is mapped to (aS, 1) as a has only one parse tree, i.e,
#t(a) = 1.

We now describe the enumerator for a sentential form α
with more than one symbol. Let α = M1M2 · · ·Mm. The
tuples of parse trees belonging to the sentential form is the
cartesian product of the parse trees of M1, · · · ,Mm. How-
ever, eagerly computing the cartesian product is impossible
for most realistic grammars because it is either unbounded
or untractably large. Nevertheless, we are interested only in
accessing a tuple at a given index i. Hence, it suffices to de-
termine for every symbol Mj , the parse tree tj that is used
to construct the tuple at index i. The tree tj can be deter-
mined if we know its index in Enum[Mj ]. Therefore, it suf-
fices to define a bijective function π : N → Nm that maps
a natural number (the index of Enum[α]) to a point in an m-
dimensional space of natural numbers. The jth component
of π(i) is the index of Enum[Mj ] that corresponds to the jth

parse tree of the tuple. In other words, Enum[M1 · · ·Mm](i)
could be defined as (Enum[M1](i1), · · · ,Enum[Mm](im)),
where ij is the jth component of π(i).

When m is two, the function π reduces to an inverse
pairing function that is a bijection from natural numbers to
pairs of natural numbers. Our algorithm uses only an in-
verse pairing function as we normalize the right-hand-sides
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Prgm → import QName ; ClassDef

QName → ID | ID . QName

ClassDef → class { Body }

Figure 7. A grammar snippet illustrating the need to bound
the length of the generated words during enumeration.

of the productions in the grammar to have at most two
symbols. We use the well known Cantor’s inverse pairing
function [26]. But, this function assumes that the two di-
mension space is unbounded in both directions, and hence
cannot be employed directly when the number of parse
trees generated by the symbols in the sentential form are
bounded. We extend the inverse paring functions to two di-
mensional spaces that are bounded in one or both the di-
rections. The extended functions take three arguments, the
index that is to be mapped, and the sizes of the x and y
dimensions (or infinity if they are unbounded). We present
a formal definition of the functions in Appendix A. Us-
ing the extended Cantor’s pairing function π we define
the enumerator for a sentential form with two symbols as:
Enum[M1M2](i) = (Enum[M1](i1),Enum[M2](i2)), where
(i1, i2) = π(i,#t(M1),#t(M2)).

Termination of Random Access. We later in section 2.3
we present a bound on the running time of the algorithm,
but now we briefly discuss termination. If N is a recursive
non-terminal e.g, if it has a production of the form N →
αNβ, the enumerator for N may recursively invoke itself,
either directly or through other enumerators. However, for
every index other than 0 and 1, the recursive invocations
will always be passed a strictly smaller index. This follows
from the definition of the Choose and the inverse pairing
functions used by our algorithm. (In the case of the inverse
pairing function, if π(i) = (j, k), j and k are strictly smaller
than i for all i > 1). For indices 0 and 1 the recursive
invocations may happen with the same index. However, this
will not result in non-termination if the following properties
are ensured: (a) for every non-terminal, the right-hand-side
chosen for index 0 is the first production in the shortest
derivation starting from the non-terminal and ending at a
word. (b) There are no unproductive non-terminals (which
are non-terminals that do not generate any word) in the input
grammar.

From Parse Trees to Words. We obtain enumerators for
words using the enumerators for parse trees by mapping
the enumerated parse trees to words. However, when the
input grammar is ambiguous, the resulting enumerators are
no longer bijective mappings from indices to words. The
number of indices that map to a word is equal to the number
of parse trees of the word.

2.2 Enumerating Fixed Length Words
The enumeration algorithm we have described so far is ag-
nostic to the lengths of the enumerated words. As a conse-

S → a | BS
B → b

(a)
(b)

S3 → B1S2 | B2S1

S2 → B1S1

S1 → a
B1 → b

Figure 8. (a) An example grammar. (b) the result of restrict-
ing the grammar shown in (a) to words of size 3.

quence, the algorithm may generate undesirably long words,
and in fact may also favour the enumeration of long words
over shorter ones. Fig. 7 shows a snippet from the Java gram-
mar that results in this behavior.

In the Fig. 7, the productions of the non-terminal Body are
not shown for brevity. It generates all syntactically correct
bodies allowed for a class in a Java program. Consider the
enumeration of the words (or parse trees) belonging to the
non-terminal Prgm starting from index 1. A fair enumeration
strategy, such as ours, will try to generate almost equal num-
ber of words from the non-terminals QName and ClassDef.
However, the lengths of the words generated for the same
index differ significantly between the non-terminals. For in-
stance, the word generated from the non-terminal QName at
an index i has length i + 1. On the other hand, the lengths
of the words generated from the non-terminal ClassDef grow
slowly relative to their indices, since it has many right-hand-
sides, and each right-hand-side is in turn composed of non-
terminals having many alternatives. In essence, the words
generated for the non-terminal Prgm will have long import
declarations followed by very short class definitions.

Moreover, this also results in reduced coverage of rules
since the enumeration heavily reuses productions of QName,
but fails to explore many alternatives reachable through
ClassDef. We address this issue by extending the enumeration
algorithm so that it generates only parse trees of words hav-
ing a specified length, We accomplish this by transforming
the input grammar in such way that it produces only strings
that are of the required length, and use the transformed gram-
mar in enumeration. The idea behind the transformation is
quite standard e.g, works such as [14] and [19] that develop
theoretical algorithms for random sampling of unambiguous
grammars also resort to a similar approach. However, what
is unique to our algorithm is using the transformation to con-
struct bijective enumerators while guaranteeing random ac-
cess property for all words of the specified length.

Fig. 8 illustrates this transformation on an example,
which is explained in detail below. For explanatory purposes,
assume that the input grammar is in Chomsky’s Normal Form
(CNF) [16] which ensures that every right-hand-side of the
grammar is either a terminal or has two non-terminals.

Fig. 9 formally defines the transformation. For every non-
terminal N of the input grammar, the transformation creates
a non-terminal Nl that generates only those words of N
that have a length l. The productions of Nl are obtained by
transforming the productions of N . For every production of
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[[N ]]l = [[N → α1]]l ∪ · · · ∪ [[N → αn]]l,

where N → α1, | · · · | αn

[[N → a]]l =

{
{Nl → a} if l = 1

∅ otherwise

[[N → AB]]l =

l−1⋃
i=1

({Nl → AiBl−i} ∪ [[A]]i ∪ [[B]]l−i)

Figure 9. Transforming non-terminals and productions of a
grammar to a new set of non-terminals and productions that
generate only words of length l.

the form N → a, where a is a terminal, the transformation
creates a production Nl → a if l = 1. For every production
of the form N → AB that has two non-terminals on the
right-hand-side, the transformation considers every possible
way in which a word of size l can be split between the
two non-terminals, and creates a production of the form
Nl → AiBl−i for each possible split (i, l− i). Additionally,
the transformation recursively produces rules for the non-
terminals Ai and Bl−i. The transformed grammar may have
unproductive non-terminals and rules that do not generate
any word (like the non-terminal B2 and rule S3 → B2S1

of Fig. 9(b)), and hence may have to be simplified. Observe
that the transformer grammar is acyclic and generates only a
finite number of parse trees.

The grammar produced by this transformation has size
O(n · l2), where n is the size of the input grammar. For ef-
ficiency reasons, we constructs the productions of the trans-
formed grammar on demand, when it is required during the
enumeration of a parse tree.

Sampling Parse Trees and Words. Having constructed
enumerators with the above characteristics, it is straightfor-
ward to sample parse trees and words of a non-terminal
N having a given length l. We uniformly randomly sam-
ple numbers in the interval [0,#t(N) − 1], and lookup the
parse tree or word at the sampled index using the enumer-
ators. Since we have a bijection from numbers in the range
[0,#t(N)−1] to parse trees of N , this approach guarantees
a uniform random sampling of parse trees. However, sam-
pling of words is guaranteed to be uniform only if the gram-
mar is unambiguous. In general, the probability of choosing
a word w of length l in a sample of size s is equal to t×s

#t(N) ,
where t is the number of parse trees of the word w.

2.3 Running Time of Random Access
We now derive an upper bound on the time taken to access
a parse tree at an index i, when the lengths of the words
generated are restricted to l. Assume that the number of
parse trees (#t) generated by every non-terminal and right-
hand-side is precomputed. (We will discuss the complexity

of this shortly). Since the Enum function is recursive, we
compute an upper bound for the function by deriving a
bound on the number of recursive invocations of Enum, and
the time spent between two successive invocations of Enum
on the non-terminals in the grammar.

Recall that for a non-terminal N , Enum[N ](i) first uses
the Choose function to select a right-hand-side of N and
then uses the inverse paring functions π to recurse into the
non-terminals in the chosen right-hand-side. Let r be the
largest number of right-hand-sides of a non-terminal in the
input grammar. The number of right-hand-sides of a non-
terminal in the grammar specialized to length l (using the
transformation described earlier) is bounded by r · l. The
running time of the function Choose[N ], defined in Fig. 6,
is bounded by O(r · l · |i|2), where |i| is the size of the
index in terms of number of bits. The running time of the
π function, defined in Appendix A, is bounded by O(|i|2)
as it only performs a sequence of elementary arithmetic and
integer square root operations on the index. Hence, the time
spent between two recursive invocations of Enum on the non-
terminals in the grammar is O(r · l · |i|2).

Observe that the time taken by Choose and inverse pairing
functions are independent of the number of parse trees (#t),
even though some values of #t are used by the functions.
This is because, the functions use only those values of #t
that are smaller than the index i in the arithmetic operations,
and only need to know for any α whether #t(α) is greater
than i, which can be computed in time O(i) given that #t
has been precomputed.

To bound the number of recursive invocations of Enum,
we require that the input grammar is expressed in Chomsky’s
Normal Form (CNF). For a grammar in CNF, the number of
edges in any parse tree of a word of length l is 2l − 1 [16],
which is also equal to the number of recursive invocations
of Enum on the non-terminals in the grammar. Therefore, we
have the following theorem.

Theorem 1. Let G be a grammar in Chomsky’s Normal
Form. Let r denote the largest number of right-hand-sides
of a non-terminal. The time taken to access a parse tree
generating a word of length l at an index i of a non-terminal
belonging to the grammar is upper bounded byO(r ·|i|2 ·l2),
provided the number of the parse trees generated by each
non-terminal and right-hand-side is precomputed.

Notice that the time taken for random access is polyno-
mial in the size of the input grammar, the number of bits in
the index (|i|), and the size of the generated word l. The com-
plexity can be further reduced toO(|i|2 · l · log l · log r) using
efficient data structures. We now briefly discuss the com-
plexity of computing the number of parse trees (#t). For a
grammar in CNF, the number of parse trees that generate a
word of length l is O(r2l

) in the worst case. (For unambigu-
ous grammars, it is O(cl), where c is the number of termi-
nals.) Thus, computing the number of parse trees could, in
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principle, be expensive. However, in practice, the number of
parse trees, in spite of being large, is efficiently computable.

Prior theoretical works on uniform random sampling
(such as [19]) for context-free grammars assume that the in-
put grammar is a constant, and that the arithmetic operations
take constant time. (Our approach matches the best known
running time O(l log l) under these assumptions). But, this
assumption is quite restrictive in the real-world. For exam-
ple, the Java 7 grammar has 430 non-terminals and 2447
rules when normalized to CNF, and the number of parse trees
increases rapidly with the length of the generated word. In
fact, for length 50, it is a 84 digit number (in base 10). Using
numbers as big as these in computation introduces signifi-
cant overhead which cannot be discounted. Our enumerators
offer quite some flexibility in sampling by supporting ran-
dom access. For example, we can sample only from a re-
stricted range instead of using the entire space of parse trees.
Since we ensure a fair usage of rules while mapping rules to
indices, restricting the sizes of indices still provides a good
coverage of rules. In fact, our implementation exposes a pa-
rameter for limiting the range of the sample space, which we
found useful in practice.

3. Counter-Example Detection
We apply the enumerators described in previous sections
to find counter-examples for equivalence of two context-
free grammars. We sample words (of length within a pre-
defined range) from one grammar and check if they are ac-
cepted by the other and vice versa. Bounding the length of
words greatly aids in reducing the parsing overhead espe-
cially while using generic parsers.

In section 5, we present detailed results about the effi-
ciency and accuracy of counter-example detection. The re-
sults show that the implementation is able to enumerate and
parse millions of words within a few minutes on large real-
world grammars. In the sequel, we present an overview of
the parsers used by the tool.

Parsing. We use a suite of parsers consisting of CYK parser
[16], Antlr v4 parser [1] (in compiler and interpreter modes),
and LL(1) [3] parser, and employ them selectively depend-
ing on the context. For instance, for testing large program-
ming language grammars for equivalence, we compile the
grammars to parsers (at runtime) using Antlr v4, which uses
adaptive LL(*) parsing algorithm [25], and use the parsers
to check if the generated words are accepted by the gram-
mar. The CYK parsing algorithm we implement in our tool,
is a top-down, non-recursive algorithm that memoizes the
parsing information computed for the substrings of the word
being parsed (using a trie data structure), and reuses the in-
formation on encountering the same substring again, dur-
ing a parse of the same or another word. Though the top-
down evaluation introduces some overheads compared to the
conventional dynamic programming approach, it improves
the performance of the CYK parser by orders of magnitude

(a)
S → aT
T → aTb | b (b)

P → aR
R → abb | aRb | b

Figure 10. GNF grammars for the language anbn.

when used in batch mode to parse a collection of words us-
ing the same grammar.

We mostly rely on the optimized CYK parser for check-
ing the correctness of students’ solutions. We find that quite
often the solutions provided by students are convoluted,
and are tricky to parse using specialized parsers. For in-
stance, for a grammar with productions S → a | B and
B → aaBb | aB | ε, the performance of the Antlr v4 parser
degenerates severely with the length of word that is parsed.

4. Proving Equivalence
Our approach for proving equivalence is based on the algo-
rithms proposed in [15] and extended by the works of [24]
and [12]. This family of algorithms is attractive because it
works directly on context-free grammars without requiring
conversions to other representation like push-down automa-
tons. Moreover, they come with strong completeness guar-
antees. [15] introduces a decision procedure for checking
equivalence of simple deterministic grammars, which are
LL(1) grammars in Griebach Normal Form (GNF). [24] ex-
tends the algorithm of [15] to LL(k) grammars in GNF, and
[12] extends [15] in another direction, which is to decide
equivalence of deterministic GNF grammars when one of
them is LL(1).

Our approach extends the work of [24] by incorporating
several aspects of [12]. The resulting algorithm is applicable
to arbitrary context-free grammars, but at the same time is
complete for LL grammars (our implementation is complete
only for LL(2) grammars since we limit the lookahead for
efficiency reasons). Furthermore, we perform several exten-
sion to the algorithm that improves its precision and also per-
formance in practice. In particular, we extend the approach
to handle inclusion relations, which provides a alternative
way of establishing equivalence when the equivalence query
is not directly provable. We also introduce transformations
that use concrete examples to dynamically refine the queries
during the course of the algorithm. Our experiments show
that the algorithm succeeds in 82% of the cases that passed
all test cases, proving queries involving ambiguous gram-
mars (see section 5).

The algorithm. We use the grammars shown in Fig. 10 for
the language anbn as a running example. Observe that the
grammar shown on the right is ambiguous – it has two parse
trees for aabb. We formalize the verification algorithm as a
proof system that uses the inference rules shown in Fig. 11.
We later discuss an extension to the algorithm that augments
the rules with a fixed lookahead distance k. Fig. 12 illus-
trates the algorithm on our running example. In the sequel,
we make the following assumptions: (a) the input grammars
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do not have any epsilon productions, (b) the grammars have
the same set of terminals, and (c) the non-terminals belong-
ing to grammars are unique.

Derivatives. We express our algorithm using the notion of
a derivative of a sentential form which is defined as follows.
A derivative d : Σ∗ × (N ∪ Σ)∗ → 2(N∪Σ)∗ is a function
that given a word w and a sentential form α, computes the
sentential forms β that remain immediately after deriving w
from α. For a sentential form α, w will be derivable from
α (if it is derivable) in exactly |w| steps if the grammar is
in GNF, since every production of the grammar starts with
an alphabet. For keeping the definition simple, we consider
going over a terminal symbol in the sentential form as a step
in the derivation. That is, if A → a and B → b, we say
AaB derives aab in 3 steps and denote it as AaB ⇒3 aab.
We define the derivative as d(w,α) = {β | α⇒n wβ},
where n is the length of the word w. This notion can be
extended to grammars that are not in GNF as well. We
lift the derivative operation to a set of sentential forms as:
d̂(w,α) =

⋃
α∈α d(w,α).

Inference Rules. We consider two types of relations be-
tween sets of sentential forms: equivalence (≡) and inclu-
sion (⊆). A relation α ≡ β (or α ⊆ β) holds if the set of
words generated by the sentential forms in α i.e,

⋃
α∈α L(α)

is equal to (or included in) the set of word generated by the
sentential forms in β i.e,

⋃
β∈β L(β). Though we are only

interested in proving equivalence of sentential forms, our al-
gorithm sometimes uses inclusion relations in the intermedi-
ate steps to establish equivalence. As a consequence, the ap-
proach can also be used to prove inclusion of grammars. But,
the rules do not guarantee completeness. The rules shown
Fig. 11 use judgements of the form C ` α ⊆ β, where C is a
set of relations which can be assumed to hold when deciding
the truth of α ⊆ β. Every inference rule shown Fig. 11 pro-
vides a set of judgements, given by the antecedents, which
when established guarantees that the consequent holds. In
other words, the antecedents provide a sufficient condition
for the consequent. (Sometimes they are also necessary con-
ditions.)

Consider the illustration shown in Fig. 12. Our goal is
to establish that the start symbols of the two grammars are
equivalent under an empty context, i.e, ∅ ` [S ≡ P]. We
prove this by finding a derivation for the judgement using
the inference rules. In Fig. 12, the relations that are added to
the context are marked with †. At any step in the derivation,
we can assume that every relation that is marked in the
preceding steps leading to the current step hold.

BRANCH Rule. Initially, we apply the BRANCH rule to
[S ≡ P]. The rule asserts that a relation α op β holds in a
context C if for every alphabet a, the derivatives of α and β
with respect to a are related under the same operation. The
correctness of this part is obvious: if two sentential forms
are equivalent, the sentential forms that remain after deriv-
ing the first character ought to be equivalent. Additionally,

the BRANCH rule allows the relation α op β to be considered
as valid when proving the antecedents. This is because, the
BRANCH rule also incorporates inductive reasoning. To prove
α op β, the rule hypothesises that the relation holds for all
words with length smaller than k, and attempts to establish
that the relation holds for words of length k. It suffices for
the antecedents to hold for all words of length less than k
since we peel off the first character from the words gener-
ated by α and β by computing the derivative. Therefore,
during the proof of the antecedents if the relation α op β is
encountered again then we know that it needs to hold only
for words of length less than k, which holds by hypothesis.

An equivalent contra-positive argument is that, if the re-
lation α op β has a counter-example then the antecedents
will have a strictly smaller counter-example. However, when
α op β is encountered during the proof of the antecedents
it need not be explored any further because it would not lead
to the smallest counter-example. [12] refers to this property,
wherein the counter-examples of the newly created relations
(antecedents) are strictly smaller than the counter-examples
of the input relation (consequent) when they exist, as mono-
tonicity. In our system, the only other rule that is monotonic
is the SPLIT rule.

Applying the BRANCH rule to [S ≡ P] produces the rela-
tion [T ≡ R] for the alphabet a since T and R are derivatives
of S and P w.r.t a, and produces the empty relation [∅ ≡ ∅]
for alphabet b. The empty relation trivially holds, as asserted
by rule Empty, and hence is not shown.

Equivalence to Inclusion. The INCLUSION rule reduces
equivalence relations to pairs of inclusion relations, (e.g. see
relation 3 in Fig. 12). The DIST rule simplifies the inclusion
relations by distributing the inclusion operation over the
left-hand-sides, as illustrated on the relation 7. These rules
ensure that every relation generated during the algorithm is
normalized to the form {α} ≡ {β}, or {α} ⊆ β.

The TESTCASES rule applies to a relation of the form
{α} ⊆ β. It samples a predefined set of words from α and
searches for a strict subset of β that accepts all the samples.
On finding such a subset S, it construct a stronger relation
{α} ⊆ S that implies the input relation. For instance, the
rule reduces the relation 6: [Tb ⊆ Rb ∪ bb] to [Tb ⊆ Rb]
using a set of examples. This rule uses an enumerator to
sample words from sentential forms and a parser to check if
the sample words are accepted by the sentential forms. In our
implementation, we use a CYK parser extended for parsing
sentential forms to check if the sample words are accepted
by the sentential forms.

INDUCT Rule. The INDUCT rule asserts that all relations
implied by the context hold. The implication check only uses
syntactic equality of the sentential forms. In particular, for
equality relations α ≡ β, we check if the context contains
the same relation or β ≡ α. For inclusion relations of the
form α ⊆ β, we check if the context contains an equivalence
relation between α and β or an inclusion relation of the form
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BRANCH

∀a ∈ Σ. C ∪ {α op β} ` d̂(a,α) op d̂(a,β)

C ` α op β

INCLUSION
C ` α ⊆ β C ` β ⊆ α

C ` α ≡ β

DIST
∀1 ≤ i ≤ m. C ` {αi} ⊆ β

C `
m⋃
i=1

αi ⊆ β

INDUCT
rel ∈ C rel⇒ α op β

C ` α op β

SPLIT

||A|| = x |γ| > 1 Ψ =

m⋃
i=1

ψiβi d̂(x,Ψ) =

m⋃
i=1

ρiβi ∀0 ≤ i ≤ m. |βi| > 0

C′ = C ∪ {{Aγ} op Ψ} C′ ` {γ} op d̂(x,Ψ) ∀0 ≤ i ≤ m. C′ ` Aρi op {ψi}
C ` {Aγ} op Ψ

TESTCASES

S ⊂ β sample(n, α) ⊆
⋃
β∈S

L(β) C ` {α} ⊆ S

C ` {α} ⊆ β

EMPTY1

` ∅ ≡ ∅
EMPTY2

` ∅ ⊆ β

EPSILON
C ` α op β

C ` (α ∪ {ε}) op (β ∪ {ε})

Figure 11. Basic inference rules of the verification algorithm. In the figure, op ∈ {≡,⊆}, ||A|| is the shortest word derivable
from A, and rel1 ⇒ rel2 is a syntactic implication check that holds if rel1 is stronger than rel2.

1[S ≡ P]
† BRANCH−−−−−→ 2[T ≡ R]

† BRANCH−−−−−→ 3[Tb ≡ Rb ∪ bb] ∧ 4[b ≡ b]
4[b ≡ b]

BRANCH−−−−−→ 5[ε ≡ ε] EPSILON−−−−−→ [∅ ≡ ∅] EMPTY−−−−→ proved
3[Tb ≡ Rb ∪ bb]

INCLUSION−−−−−−→ 6[Tb ⊆ Rb ∪ bb] ∧ 7[Rb ∪ bb ⊆ Tb]
6[Tb ⊆ Rb ∪ bb]

TESTCASES−−−−−−→ 8[Tb ⊆ Rb]
† SPLIT−−−→ 9[b ⊆ b] ∧ 10[T ⊆ R]

INDUCT−−−−→ 11[b ⊆ b]
∗−→ proved

7[Rb ∪ bb ⊆ Tb]
DIST−−−→ 12[Rb ⊆ Tb] ∧ 13[bb ⊆ Tb]

13[bb ⊆ Tb]
† BRANCH−−−−−→ 14[b ⊆ b] ∧ 15[∅ ⊆ Tbb]

∗−→ proved
12[Rb ⊆ Tb]

† SPLIT−−−→ 16[b ⊆ b] ∧ 17[R ⊆ T]
INDUCT−−−−→ 18[b ⊆ b]

∗−→ proved

Figure 12. Illustration of application of the rules on the running example. A star (∗) denotes application of one or more rules.
Curly braces around singleton sets are omitted.

α ⊆ S, where S has fewer sentential forms than β. For
instance, in the derivation shown in Fig. 12, the relations 10
and 17 are implied by the relation 2: [T ≡ R], added to the
context in step 2 during the application of BRANCH rule, and
hence are considered valid.

SPLIT Rule. The main purpose of the SPLIT Rule is to pre-
vent the sentential forms in the relations from becoming
excessively long. The key idea behind the rule is to split
the sentential forms that are compared (say [Aγ] ≡ [βδ])
into smaller chunks that are piece-wise equivalent e.g. as
[Aρ ≡ β], and [γ ≡ ρδ] (where ρ is a sentential form derived
from β), while preserving completeness under some restric-
tions. It identifies the point to split by deriving the shortest
word of A from the other side of the relation.

We apply this rule only to a relation whose left-hand-
side is a singleton (since all relations will be reduced to this
form). Let r1 be the relation {Aγ} op Ψ (with non-empty
γ). Let x be the shortest word that can be derived from A,
denoted ||A||. The SPLIT rule requires that every sentential
form in Ψ can be split into ψiβi such that ψi can derive
x, and βi is non-empty. (However, this requirement can be

relaxed as described shortly). This implies that the derivative
of Ψ w.r.t the word x will preserve the suffix βi. That is,
d̂(x,Ψ) will be of the form

⋃
i ρiβi (where ρi is a set of

sentential forms).
Under the above conditions, the rule asserts that if

γ op d̂(x,Ψ), and, for all i, Aρi op ψi holds, then so does
r1. Furthermore, the rule allows assuming r1 while proving
the antecedents. The requirement that all βis are non-empty
ensures the monotonicity of the rule. If this requirement does
not hold, the rule is still applicable but we cannot add r1 to
the context.

The soundness of this assertion is easy to establish. For all
i,Aρi op {ψi} impliesAρiβi op {ψiβi} (since we are con-
catenating the left- and the right-hand-sides with the same
sentential form). This entails that

⋃
iAρiβi op

⋃
i ψiβi. We

are also given that γ and
⋃
i ρiβi (which is d̂(x,Ψ)) are re-

lated by op, where op ∈ {≡,⊆}. Substituting
⋃
i ρiβi with

γ yields Aγ op
⋃
i ψiβi, which is the relation r1. Hence,

the antecedents imply the consequent. However, the con-
verse does not necessarily hold. It holds (at least for equiv-
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alence) only when the grammars satisfy the suffix property:
αβ ≡ γβ ⇒ α ≡ γ, and are strict deterministic [12].

In the illustration shown in Fig. 12, the split rule is applied
on relations 8 and 12. Consider the relation 8: [Tb ⊆ Rb].
The shortest word derivable from T is b (see Fig. 14). Since,
d(b, Rb) = b, we can deduce that ψ1 isR, β1 is b, and ρ1 = ε
(which is the sentential form that remains after deriving b
from R). The new relations created by the SPLIT rule are
γ op d(b, Rb), andAρ1 op ψ1, which correspond to [b ⊆ b]
and [T ⊆ R]. Note that without the application of the SPLIT

rule, the relation [Tb ⊆ Rb] will gradually grow with the
application of BRANCH rule and lead to non-termination.

Application Strategy and Termination Checks. In order
to preserve termination and completeness of the algorithm
for LL grammars, we adopt a specific strategy for applying
the rules. We use the INCLUSION rule to convert an equiva-
lence relation to inclusion relations only when at least one
of the operands of the relation has size greater than one.
Such cases will not arise if both the grammars are LL(1)
(or LL(k) when the rules are augmented with a lookahead
distance of k). We prevent the sentential forms from grow-
ing beyond a threshold by applying SPLIT rule whenever the
threshold is reached. We prioritize the application of rules
EMPTY, INDUCT, and TESTCASES that simplify the relations
over the BRANCH rule.

We use a set of filters to identify relations that are false
and to terminate the algorithm. An important filter is the
Length filter, which checks for every equivalence query
{α} op {β}, whether the length of the left sentential form
α is larger than the length of the shortest word that can be
generated by β, and vice versa. If this check fails, one of
the sentential forms cannot generate the shortest word of the
other and the relation does not hold. (Recall that the input
grammar do not have epsilon productions.) We also use other
filters especially for inclusion relations to quickly abort the
search and report a failure. We elide details for brevity.

The algorithm described above reduces to the algorithm
of [15] for LL(1) grammars that are in GNF. Hence, our al-
gorithm is a decision procedure for LL(1) grammars in GNF.
However, our algorithm may not terminate for grammars
outside this class, since the sentential forms in an inclusion
relation can grow arbitrarily long. In our implementation,
we abort the algorithm and return failure if the algorithm
exhausts the memory resources or exceeds a parametrizable
time limit (fixed as 10s in our experiments).

4.1 Incorporating Lookahead
The rules shown in Fig. 11 do not use of any lookahead,
which, loosely speaking, means that the inferences made
from a relation depend on at most one alphabet, analogous
to a parser which looks at only the current input character
to make a parsing decision. We now briefly explain the
extensions for incorporating a finite amount of lookahead.
Our extensions are based on the approach of [24].

We perform two major extensions to the relations and
sentential forms: (a) We qualify every relation with a (pos-
sibly empty) word x, which restricts the relations to only
words having x as a prefix. For instance, α ≡x β holds iff
α and β generate the same set of words having the prefix x.
(b) We introduce two special types of sentential forms: prefix
restricted sentential forms (PRS), and grouped variables. A
PRS is of the form [[x, α]] where x is a word and α is a sen-
tential form. It allows only those derivations of α that will
lead to a word having x as the prefix. A grouped variable
is a disjoint union of two or more PRS that have different
prefixes. A grouped variable allows all derivations that are
possible through its individual members, akin to a union of
sentential forms. PRS and grouped variables are formally de-
fined in [24] They can be treated as any other sentential form
e.g. can be concatenated with other sentential forms, used in
derivative computation and so on.

We extend the definition of a derivative d(w,α) so that
it additionally accepts a string x and refines the result of
d(w,α) to include only those sentential forms that can de-
rive the string x. That is, d(w, x, α) = {β | α ⇒n wβ ⇒∗
wxγ}, where n is the length of the word w. We refer to this
parameter x as a lookahead as it not consumed by the deriva-
tive but is used to select the sentential forms. We denote us-
ing d̂ the operation d lifted to a set of sentential forms.

We adapt the BRANCH and SPLIT rules shown in Fig. 11
to extended domain of relations and sentential forms. (Other
rules in Fig. 11 do not require any extensions.) We now
discuss the extended branch rule. For brevity, we present the
extended SPLIT rule in Appendix B.

BRANCHEXT.
x = aw

∀b ∈ Σ. C ∪ {α op β} ` d̂(a,wb,α) opwb d̂(a,wb,β)

C ` α opx β

Similar to BRANCH rule, the BRANCHEXT rule removes
the first character a (of the words considered by the relation)
from the sentential forms in α and β. However, unlike the
BRANCH rule that compares all the sentential forms left be-
hind after deriving the first character, the BRANCHEXT rule
looks ahead at the string wb that follows the character a to
choose the sentential forms that have to compared. Note that
the derivative operation only returns the sentential forms that
can derive the lookahead string wb.

Given a lookahead distance k, and two grammars with
start symbols S1 and S2, we begin the algorithm with the
initial set of relations S1 ≡wk−1

S2, where wk−1 is a word
of length ≤ k − 1. The grammars are equivalent if every
relation is proven using the inference rules. Our algorithm
reduces to the algorithm of [24] when the input grammars
are LL(k) GNF grammars. In our implementation, we fix
the lookahead distance as 2. Hence, our implementation is
complete for LL(2) grammars in GNF.
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Query # Ctr. Exs. # Samples RA time
c1 ≡ c2 82 227 1ms
p1 ≡ p2 417 1053 0.2ms
js1 ≡ js2 75 150 0.8ms
j1 ≡ j2 133 240 1.5ms
v1 ≡ v2 41 52 2.7ms

Figure 14. Counter-examples found in 1min when compar-
ing grammars of the same programming language. The col-
umn RA time denotes the average time taken for one random
access.

5. Experimental Results
We developed a grammar analysis system based on the algo-
rithms presented in this paper, using the Scala programming
language, that runs on a Java Virtual Machine. All the exper-
iments discussed in this section were performed on a server
with two 3.5 GHz Intel Xeon processors, having 128GB
memory, and running Ubuntu Linux operating system.

5.1 Evaluations with Programming Language
Grammars

Fig. 13 present details about the benchmarks used in the
evaluation. The column Lang. shows the list of programming
languages chosen for evaluation. For each language we con-
sidered at least two grammars which are denoted using the
names shown in column B. We hand-picked grammars that
cover almost all features of the language. For example, in the
case of Javascript and VHDL, the grammars we choose im-
plemented the same standard, namely ECMA standard and
VHDL-93. In some cases, the grammars even use identical
names for many non-terminals. The column Size shows the
number of non-terminals and productions in each grammar
when expressed in standard BNF form. The column Source
shows the source of the grammars.

Comparing Real-world Grammars. As an initial exper-
iment, we compared the grammars belonging to the same
programming language for equivalence. We ran the counter-
example detector for 1 minute on each pair of grammars, fix-
ing the maximum length of the word that is enumerated as
50. Fig. 14 show the results of this experiment. The column
Ctr.Exs shows the number of counter-examples that were
found in 1min, and the column Samples shows the number
of samples generated during counter-example detection.

Interestingly, as shown by the results, the grammars have
large number of differences even when they implement the
same standard. In many cases, more than 40% of the sam-
pled words are counter-examples. Manually inspecting a few
counter-examples revealed that this is mostly due to rules
that are more permissible than they ought to be. For instance,
the string “enum ID implements char { ID }” is gen-
erated j2 (Antlr v4 Java Grammar), but is not accepted by
j1 [2]. Surprisingly, even for Javascript that has a very per-
missible syntax, the grammars had significant differences.

This suggests that identifying such counter-examples may
help make the grammars, and also their parsers, more opti-
mal. The column RA time shows the average time taken for
accessing one word (of length between 1 and 50) uniformly
at random. The results show that the operation is quite effi-
cient taking only a few milliseconds across all benchmarks.

Discovering Injected Errors. In this experiment, we evalu-
ate the effectiveness of our tool on grammars that have com-
paratively fewer, and subtle counter-examples. Since gram-
mars obtained from independent sources are likely to have
many differences, in order to obtain pairs of grammars that
almost recognize the same language, we resort to automatic,
controlled tweaking of our benchmarks. We introduce 3
types of errors as explained below. (LetGm denote the mod-
ified grammar and G the original grammar).

• Type 1 Errors. We construct Gm by removing one pro-
duction of G chosen at random. In this case, L(Gm) ⊆
L(G). The inclusion is proper only if the production that
is removed is not redundant.

• Type 2 Errors. We create Gm by choosing (at random)
one production of G having at least two non-terminals,
and removing (at random) one non-terminal from the
right-hand-side. In this case, neither L(Gm) nor L(G)
has to necessarily include the other.

• Type 3 Errors. We construct Gm as follows. We ran-
domly choose one production of the grammar, say P ,
having at least two non-terminals, and also choose one
non-terminal of the right-hand-side, say N . We then cre-
ate a copy (say N ′) of the non-terminal N that has every
production of N except one (determined at random). We
replace N by N ′ in the production P .

Furthermore, we avoid injecting errors that can be dis-
covered through small counter-examples using the following
heuristic. We repeat the random error injection process until
the modified grammar agrees with the original grammar on
the number of parse trees (the function #t defined in Fig. 5)
generating words of length≤ 15. This ensures that the mini-
mum counter-example, if it exists, is at least 15 tokens long.
We relax this bound to 10 and 7 for C and JavaScript gram-
mars, respectively, since the approach failed to produce er-
rors that satisfy larger bounds within reasonable time limits.
We also ensured the same error is not introduced more than
once. It is to be noted that the counter-example detection al-
gorithm is not aware of the similarities between the input
grammars, neither does it attempt to discover such similari-
ties.

For each benchmark b and error type t, we create 10 de-
fective versions of b each containing one error of type t. In
total, we create 300 defective grammars. In each case, we
query the tool for the equivalence of the erroneous and the
original versions, with a time out of 15 minutes. Fig. 15
shows the results of this experiment. We categorize the re-
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Language B Size Source

C 2011
c1 (228, 444) Antlr v4
c2 (75, 269) www.quut.com/c/ANSI-C-grammar-y.html

Pascal
p1 (177, 79) ftp://ftp.iecc.com/pub/file/pascal-grammar

p2 (148, 244) Antlr v3

JavaScript
js1 (128, 336) www-archive.mozilla.org/js/language/grammar14.html

js2 (124, 278) Antlr v4

Java 7
j1 (256, 530) docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

j2 (229, 490) Antlr v4

VHDL
v1 (286, 587) tams-www.informatik.uni-hamburg.de/vhdl/vhdl.html

v2 (475, 945) Antlr v4

Figure 13. Benchmarks, their sizes as pairs of number of non-terminals and productions, and their sources. Antlr v4 and Antlr
v3 denote the repositories: github.com/antlr/grammars-v4/ and www.antlr3.org/grammar/.

sults based on the type of the error that was injected. For
now consider only the sub-columns labelled ours.

The column Disproved shows the number of queries dis-
proved, i.e, the cases where the defective grammar was
identified to be not equivalent to the original version. (The
maximum possible value for this columns is 10.) The col-
umn Avg.Time/query shows the average time taken by the
tool on queries where it found a counter-example. The col-
umn Avg.Ctr.Size shows the average length of the counter-
example discovered by the tool. The last row of the ta-
ble summaries the results by showing the total number of
queries disproved, average time taken to disprove a query,
and the average length of a counter-example.

The results show that the tool was successful in disprov-
ing all queries except 3 for Type 1 Errors, and 92 out of 100
queries for Type 2 Errors, within a few seconds. For Type 3
Errors, which are quite subtle, the tool succeeded in finding
counter-examples for 73 out of 100 queries taking at most
200s. It timed out after 15 min in the remaining cases. We
found that the tool generated millions of words before tim-
ing out on a query, across all benchmarks,.

To put these results in perspective, we now present a
comparison with a state of the art approach proposed in [4],
and used by more recent works such as [7].

Comparisons with cfgAnalyzer. The approach proposed
in [4] finds counter-examples for equivalence by construct-
ing a propositional formula that is unsatisfiable iff the input
grammars are equivalent upto a bound l, i.e, they accept (or
reject) the same set of words of length ≤ l. The approach
uses a SAT solver to obtain a satisfying assignment of the
formula, which corresponds to a counter-example for equiv-
alence. We ran their tool cfgAnalyzer on the same set of
equivalence queries constructed by automatically injecting
errors in our benchmarks as described earlier, with the same
time out of 15 minutes. We present the results obtained us-
ing their tool in Fig. 15 adjacent to our results, under the
sub-column cfga. The cfgAnalyzer tool was run in its de-
fault mode, wherein the bound l on the length of the words
is incremented in unit steps starting from 1 until a counter-

example is found. (Other modes of the tool also results in a
similar behaviour.)

The results show that our tool out performs cfgAnalyzer
by a huge margin on these benchmarks. When aggregated
over all benchmarks, our tool disproves 3 times more queries
than cfgAnalyzer. Observe that on Java, VHDL and the first
Javascript (js1) benchmarks, cfgAnalyzer timed out on al-
most all queries. In general, we found that the performance
of cfgAnalyzer degrades with the length of the counter-
examples, and with the sizes of the grammars. On the other
hand, as highlighted by the results in Fig. 15, our tool dis-
covers large counter-examples within seconds.

5.2 A Tutoring System For Context-Free Grammars
We implemented an online grammar tutoring system avail-
able at grammar.epfl.ch using our tool. The tutoring sys-
tem offers three types of exercises: (a) constructing (LL(1)
as well as arbitrary) context-free grammars from English de-
scriptions, (b) converting a given context-free grammar to
normal forms like CNF and GNF, and (c) writing left most
derivations for automatically generated strings belonging to
a grammar. The system also supports checking LL(1) prop-
erty and ambiguity at any point in time when the students
are writing their solutions. Moreover, it also has experimen-
tal support for generating hints (a feature outside the scope
of this paper). Each class of exercise has about 20 problems
each (a total of 60 problems) with varying levels of diffi-
culty. It allows a very intuitive syntax for writing grammars,
and also supports EBNF form that permits using regular ex-
pressions in right-hand-sides of productions.

5.3 Evaluations of the algorithms in the context of a
Tutoring System

We used our tutoring system in a 3rd year undergraduate
course on computer language processing. We summarize the
results of this study in Fig. 16. The column Queries shows
the total number of distinct equivalence queries that the tool
was run on. The system refuted 1042 queries by finding
counter-examples. (It was configured to enumerate at most
1000 words of length 1 to 11). Among the 353 submissions
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Type 1 Errors
B Disproved Avg.Time/query Avg.Ctr.Size

our cfga our cfga our cfga
c1 10 7 12.7s 396.7s 29.1 10.0
c2 10 4 13.8s 325.0s 30.3 10.3
p1 10 7 6.8s 127.8s 39.3 15.0
p2 10 5 6.8s 329.2s 43.2 16.2
js1 10 0 10.9s - 32.2 -
js2 10 9 9.6s 190.9s 31.2 8.1
j1 8 0 14.5s - 41.1 -
j2 9 0 14.3s - 32.1 -
v1 10 1 16.9s 810.4s 39.3 15.0
v2 10 0 23.4s - 39.0 -

Type 2 Errors
c1 9 3 13.3s 319.1s 33.8 10.0
c2 10 6 9.1s 300.7s 35.6 10.3
p1 10 5 6.2s 358.5s 41.3 16.0
p2 10 5 7.9s 229.8s 40.0 15.8
js1 10 0 12.3s - 33.8 -
js2 7 8 15.3s 52.8s 31.4 7.4
j1 7 0 16.3s - 33.9 -
j2 9 0 15.1s - 38.1 -
v1 10 2 16.4s 729.2s 43.7 15.0
v2 10 0 58.0s - 35.8 -

Type 3 Errors
c1 5 4 37.2s 413.6s 17.8 10.3
c2 6 5 131.3s 361.2s 30.3 10.0
p1 10 3 11.0s 272.5s 34.8 15.0
p2 10 5 7.5s 526.8s 34.8 15.8
js1 5 0 198.6s - 28.2 -
js2 5 2 34.0s 79.3s 33.2 7.5
j1 8 0 25.7s - 35.4 -
j2 6 0 24.8s - 36.3 -
v1 9 0 17.7s - 38.6 -
v2 9 0 54.6s - 37.3 -

262 81 28.1s 342.6s 35.0 12.2

Figure 15. Identification of automatically injected errors,
using our tool (our) and the implementation of [4] (cfga).

Queries Refuted Proved Unprvd. time/query
1395 1042 289 64 107ms

(100%) (74.6%) (20.7%) (4.6%)

Figure 16. Summary of evaluating students’ solutions.

for which no counter-example was found, the tool proved the
correctness of 289 submissions. For 64 submissions, the tool
was neither able to find a counter-example nor was able to
prove correctness. In essence, the tool was to able to decide
the veracity of 95% of the submissions, and was incomplete
on the remaining 5% (in which cases we report that the stu-
dent’s solution is possibly correct). The grammars submit-
ted by students on average had around 3 non-terminals and 6
productions (the maximum was 9 non-terminals and 43 pro-
ductions). Moreover, at least 370 of the submission were am-

Quer. Proved Time LL1 LL2 Amb
353 289 410ms 7 56 101

100% 81.9% 2% 15.9% 28.6%
w/o TESTCASES rule

353 280 630ms 7 56 94

Figure 17. Evaluation of the verification algorithm on stu-
dents’ solutions.

biguous. We now present detailed results on the effectiveness
of the verification algorithm, which is, to our knowledge, a
unique feature of our grammar tutoring system.

Evaluation of the Verification Algorithm. Our tutoring
system uses the verification algorithm described in section 4
to establish the correctness of the submissions for which no
counter-examples are found within the given time limit and
sample size. In our evaluation, there are 353 such submis-
sions. The first row of Fig. 17 shows the results of using the
algorithm, with all of its features enabled, on the 353 sub-
missions. We used a time out of 10s per query. The system
proved almost 82% of the queries taking on average less than
half a second per query (as shown by column Time). The re-
maining columns further classify the queries that were veri-
fied based on nature of the grammars that are compared.

The column LL1 shows the number of queries in which
the grammars that are compared are LL(1) when normal-
ized to GNF. The algorithm of [15] is applicable only to
these cases. The results show that only a meager 2% of the
queries belong this category. This is expected since even
LL(1) grammars may become non-LL(1) when epsilon pro-
ductions are eliminated [28] (which is required by the veri-
fication algorithm).

The column LL2 shows the number of queries in which
the grammars compared are LL(2) but not LL(1), after con-
version to GNF. About 16% of the queries belong this cate-
gory. This class is interesting because the algorithm of [24]
is complete for these cases. (Although the algorithm of [12]
is also applicable, it seldom succeeds for these queries since
it uses no lookhead). A vast majority (72%) of the queries
that are proven involved at least one grammar that is not
LL(2). In fact, about 28% of the queries involved ambigu-
ous grammars. (Neither [24] nor [15] is directly applicable
to this class of grammars, and [12] is likely to be ineffec-
tive.) This indicates that without our extensions a vast ma-
jority of the queries may remain unproven. We are not aware
of any existing algorithm that can prove equivalence queries
involving ambiguous grammars.

We also measure the impact of the TESTCASES inference
rule, which uses concrete examples to refine inclusion rela-
tions (see section 4). The second row of Fig. 17 show the re-
sults of running the verification algorithm without this rule.
Overall, the number of queries proven decreases by 9 when
this rule is disabled. The impact is mostly on queries involv-
ing ambiguous grammars. Moreover, the verifier is slower in
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this case as shown by the increase in the average time per
query. It also timed out on 25 queries after 10s. This is due
to the increase in the number and sizes of relations created
during the verification algorithm. We measured a two fold
increase in the average number of sentential forms contained
in a relation.

6. Related work
Grammar Analysis Systems. [4] presents a constraint
based approach for checking bounded properties of context-
free grammars including equivalence and ambiguity. In sec-
tion 5 we presented a comparison of our counter-example
detection algorithm with this work, which shows that our
approach does better especially when the counter-examples
and grammars are large. [7] presents RACSO an online judge
for context-free grammars. [7] integrates many strategies for
counter-example detection including the approach of [4]. We
differ from this work in many aspects. For instance, our
enumerators support random access and uniform sampling,
scale to large programming language grammars generating
millions of strings within seconds. Our system can addition-
ally prove equivalence of grammars. (An empirical compar-
ison with this work was not possible since their interface re-
stricts the sizes of grammars that can be used while creating
problems, by requiring that non-terminals have to be upper
case characters.)
Decision Procedures for Equivalence. Decision proce-
dures for restricted classes of context-free grammars have
been extensively researched: [15], [24], [12], [28], [32], [23],
[5], [31]. [15], [5] present decision procedures for simple
grammars. [24] and [28] show that LL(k) grammars are de-
cidable, and [23] presents a similar result for LL-regular
grammars (which properly contain LL(k) grammars). [12]
and [32] study equivalence of proper subclasses of determin-
istic grammars, and [31] shows that the equivalence of arbi-
trary deterministic grammars is decidable. We are not aware
of any practical applications of these algorithms. We extend
[24], [12] to a sound but incomplete approach for proving
equivalence of arbitrary grammars, and use it to power a
grammar tutoring system.
Uniform Sampling of Words. [14] and [19] present al-
gorithms for sampling words from unambiguous grammars
uniformly at random (u.a.r). [10] proposes a subexponential
time algorithm for sampling words from (possibly ambigu-
ous) grammars, where the probability of generating a word
varies from uniform by a factor 1+ε, ε ∈ (0, 1). [6] presents
an algorithm for sampling from a finitely ambiguous gram-
mar in polynomial time.

Our approach has a comparable running time for sam-
pling a word u.a.r under the assumptions of [14] and [19],
and is not restricted to uniform random sampling. We are
not aware of any implementations of these related works.
Enumeration in the Context of Testing. Grammar-based
software testing approaches, such as [27], [22], [30], [21],

[13], [18], [20], [9], [11] generate strings belonging to gram-
mars describing the structure of the input, and use them
to test softwares like refactoring engines and compilers. In
contrast to our objective, there the focus is on generating
strings from grammars satisfying complex semantic proper-
ties, such as data-structure invariants, type correctness etc.,
that will expose bugs in the software under test. [27], [21]
present a specialized algorithm for generating small number
of test cases that result in semantically correct strings useful
for detecting bugs. [22], [30], and [11] perform stochastic
enumeration of strings from probabilistic grammars (where
productions are weighted by probabilities). The probabilities
are either manually provided or dynamically adjusted during
enumeration. A difference compared to our approach is that
they do not sample words by restricting their length (which
is hard in the presence of semantic properties), but control
the frequency with which the productions are used.

[13], [18] explore various criteria for covering the pro-
ductions of the grammar that can be beneficial in discover-
ing bugs in softwares. [20] and [9] propose approaches for
selectively generating strings that will exercise a path in the
program under test, using symbolic execution.

[8] and [17] present generic approaches for constructing
enumerators for arbitrary structures, by way of enumerator
combinators. They allow combining simple enumerators us-
ing a set of combinators (such as union and product) to pro-
duce more complex enumerators. These approaches ([17]
in particular) were an inspiration for our enumeration algo-
rithm, which is specialized for grammars, and provides more
functionalities like polynomial time random access, and uni-
form random sampling.
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A. Cantor’s Inverse Pairing Functions for
Bounded and Unbounded Domains

The basic inverse pairing function π that maps a natural
number in one dimensional space to a number in two dimen-
sional space that is unbounded along both directions [26].
π(z) = (x, y), where x and y are defined as follows:

x = w − y
y = z − t

(t, w) = simple(z)

where, simple(z) = (t, w) is a function defined as follows:

t =
w(w + 1)

2

w =

⌊⌊√
8z + 1

⌋
− 1

2

⌋

We extend the Cantor’s inverse pairing function to two
dimensional spaces bounded along one or both directions. π
takes three arguments: the number z that has to be mapped,
and the bounds of the x and y dimensions xb and yb (which
could be ∞). xb is the (inclusive) bound on the x-axis i.e,
∀x.x ≤ xb, and yb is the (exclusive) bound on the y-axis i.e,
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SPLITEXT

||A|| = x Ψ =

m⋃
i=1

αiδiβi ∀w ∈ Θk−1(γ). d(x,w, αiδiβi) = ρwi δiβi ∀0 ≤ i ≤ m. |δi| > 0, |βi| > 0

C′ = C ∪ {{Aγ} opz Ψ}

∀w ∈ Θk−1(γ). C′ ` {γ} opw d̂(x,w,Ψ) ∀0 ≤ i ≤ m. C′ `

 ⋃
w∈Θk−1(γ)

A[[w,ρwi δi]]

 opz {αiδi}

C ` {Aγ} opz Ψ

Figure 18. Extended Split Rule.

∀y.y < yb. π(z, xb, yb) = (x, y), where

x = w − y
y = z − t

(t, w) =


bskip(z) if z ≥ zb
xskip(z) if zx ≤ z < zb

yskip(z) if zy ≤ z < zb

simple(z) Otherwise

where, zx, zy and zb are indices at which the bounds
along the x or y or both directions are crossed, respectively.
The values are defined as follows:

zy =
yb(yb + 1)

2

zx =
(xb + 1)(xb + 2)

2

zb =


yb(xb − yb + 1) + zy if xb > yb − 1

(xb + 1)(yb − xb − 1) + zx if yb − 1 > xb

zy Otherwise

Definition of xskip(z). Let xskip(z) = (t, w), where t and
w are defined as follows:

t =
2wxb − x2

b + xb
2

w =

⌊
2z + x2

b + xb
2(xb + 1)

⌋

Definition of yskip(z). Let yskip(z) = (t, w), where t
and w are defined as follows:

t =
2wyb − y2

b + yb
2

w =

⌊
2z + y2

b − yb
2yb

⌋

Definition of bskip(z). Let bskip(z) = (t, w), where t and
w are defined as follows:

t =
(2wb − 1)w − w2 − sb + wb

2

w =

r −
⌈√

r2 − 8z − 4sb + 4yb − 4xb

⌉
2


r = 2wb + 1

wb = xb + yb

sb = x2
b + y2

b

Note that all the operations make use of only integer di-
vision and integer square root i.e, they compute floor of di-
vision, floor or ceil of square roots, which can be efficiently
implemented. Moreover, many multipliers and divisors are
powers of 2, and hence can be computed by bit shift opera-
tions.

B. Extended Split Rule
Fig. 18 shows the extended split rule. We require that the
lookahead distance k is greater than or equal to 2. Define
Θk−1(γ) as the set of all words of length ≤ k − 1 derivable
from a sentential form γ. That is, Θk−1(γ) = {w | w ∈
k−1⋃
j=1

Σj , γ ⇒∗ w}. If the grammar is LL(k) then we use the

split rule defined in [24].
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