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Abstract—In this paper, we present an application of Variable
Pulse Width Finite Rate of Innovation (VPW-FRI) in dealing with
multichannel Electrocardiogram (ECG) data using a common
annihilator. By extending the conventional FRI model to include
additional parameters such as pulse width and asymmetry, VPW-
FRI has been able to deal with a more general class of pulses.
The common annihilator, which is introduced in the annihilating
filter step, shows a common support in multichannel ECG data,
which provides interesting possibilities in compression. A model
based de-noising method will be presented which is fast and non-
iterative. Also, an application to detect QRS complexes in ECG
signals will be demonstrated. The results will show the robustness
of the common annihilator and the QRS detection even in the
presence of noise.

I. INTRODUCTION

The concept of sampling and reconstructing signals at the

rate of innovation was first presented by Vetterli et al. [1].

They showed that non band-limited classes of signals such

as streams of Diracs had a finite number of degrees of

freedom and could be completely defined by their location and

amplitude parameters. These classes of signals were termed

Finite Rate of Innovation (FRI) signals. These FRI signals

could be sampled minimally at the rate of innovation and

perfectly reconstructed.

Variable Pulse Width FRI (VPW-FRI) was developed by

Quick et al. [2] as an extension of the traditional FRI method in

that it added two additional parameters, namely the pulse width

and asymmetry, to the model. This allows it some flexibility

in dealing with pulses of various forms and widens the scope

of its application. It does this by considering roots which fall

inside the unit circle as compared to traditional FRI where the

roots lie on the unit circle.

The generalisation of Diracs in VPW-FRI allowed it to be

used successfully in compression of Electrocardiogram (ECG)

signals [2], [3] where the P, QRS and T waveforms could

be represented by pulses of varying amplitude, width and

asymmetry. This allowed for a compression scheme which

only requires 7 pulses per beat, with 4 parameters per pulse,

which is far below the Nyquist rate of around 200− 250Hz at

which most devices record ECG signals.

Other methods have also been used for compression such

as compressed sensing [7], wavelet methods [8] and finite rate

of innovation [4]. The FRI method in [4] divides the ECG

signal into two parts. The QRS is modelled as a non-uniform

linear spline while the remainder of the signal is considered a

residual signal which is sampled at a low rate of 15Hz. The

difference here is that VPW-FRI considers each waveform, P,

QRS and T, as a pulse and parameterizes them accordingly.

Using VPW-FRI allows for a much lower number of samples

and higher compression ratio.

In this paper, we demonstrate a multichannel approach to

calculating the location parameter. To achieve this, a common

annihilator is used in the reconstruction step to derive the

locations. This aids in the compression of the multichannel

signal and has potential applications such as QRS detection

which we will also present.

Also, VPW-FRI has de-noising capabilities. This is achieved

through a model based de-noising method [5] which is fast

and non-iterative. This is its main advantage especially when

compared to Cadzow [2], [6] denoising which is iterative

and requires oversampling. Most importantly, de-noising is

done without affecting the morphology of the pulses which

is especially important when clinicians examine an ECG

recording.

This paper is organised as follows. Section II will present

some background on FRI theory followed by an explanation

of VPW-FRI. Section III will demonstrate the multichannel

VPW-FRI approach. This will be followed by Section IV

where an application of VPW FRI in ECG wave detection will

be shown. The 12 lead ECG data used and the results will be

presented in Section V. Finally, conclusions will be drawn and

some thoughts on future work will constitute Section VI.

II. VARIABLE PULSE WIDTH FINITE RATE OF INNOVATION

Since VPW-FRI is an extension of the original FRI theory,

we will present a short description of FRI theory followed by

the changes in the VPW-FRI algorithm.

A. FRI

A stream of K Diracs with period τ is defined by

x(t) =
K−1∑
k=0

bkδ(t− tk) (1)

=
∑
m∈Z

1

τ

K−1∑
k=0

bk e
−i(2πmtk)/τ︸ ︷︷ ︸

um
k︸ ︷︷ ︸

X[m]

ei(2πmt)/τ (2)

where Eq. (2) is the Poisson Summation Formula derivation

of Eq. (1). The signal is then sampled uniformly. The samples,

yn are defined by
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yn = 〈hb(t− nT ), x(t)〉, n = 0, ..., N − 1 (3)

=

M∑
m=−M

X[m]ei(2πmnT/τ), (4)

where T represents the sampling period, N is the number of

samples, B ≥ 2K
τ , M = �Bτ/2� and the sampling kernel

hb(t) = Bsinc(Bt).
In the reconstruction step, the annihilating filter [1] in

Eq. (5) is used to retrieve the uk values⎡
⎢⎢⎢⎣

X[−1] . . . X[−K]
X[0] . . . X[−K + 1]

...
. . .

...

X[K − 2] . . . X[−1]

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

A[1]
A[2]

...

A[K]

⎤
⎥⎥⎥⎦ = 0, (5)

where A[k] represents the annihilating filter coefficients.

A common way of solving for A would be to find the

minimal right singular vector of the Toeplitz matrix in Eq. (5).

Since the filter coefficients are of the form

A(z) =
K∑

k=0

A[k]z−k =
K−1∏
k=0

(1− ukz
−1), (6)

the roots of the filter coefficients would correspond to uk,

defined in Eq. (2), and the locations, tk can be calculated

directly from uk.

The amplitudes, bk, can be resolved using a Vandermonde

system of equations [1].

B. Sampling and Reconstruction of VPW-FRI signals

The Dirac model can be generalised with the addition of

width and asymmetry parameters. This can be used to expand

FRI theory by interpreting the uk and X[m] coefficients

differently. The uk values are defined as

uk = e−2π(ak+itk)/τ , ak ≥ 0 (7)

where ak is the width parameter. The X[m] coefficients are

defined as

X[m] = X(1)[m] +X(2)[m], (8)

where

X(1)[m] =
K−1∑
k=0

cke
−2π(ak|m|+itkm)/τ (9)

and

X(2)[m] = −
K−1∑
k=0

dksgn(m)e−2π(ak|m|+itkm)/τ . (10)

The X(2)[m] coefficients are the Hibert transform of X(1)[m]
and the spectra of X(1)[m] and X(2)[m] are symmetric.

The same annihilating filter in Eq. (5) can be used. For

stability, the annihilating filter roots which lie within the unit

circle are admitted and those which lie outside are rejected.

The tk and ak parameters can be retrieved from the roots of

the annihilating filter coefficients.
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Fig. 1. Symmetric and asymmetric components of a VPW-FRI pulse

The {ck}K−1
k=0 and {dk}K−1

k=0 coefficients, which are the real

and imaginary part of bk respectively, can be solved using

the Vandermonde system [1] over the complex numbers as

compared to the original FRI theory where it is solved over

the real numbers.

The continuous-time signal, x(t) can be recovered by ap-

plying the inverse Fourier Transform,

x(t) =
K=1∑
k=0

xk(t) (11)

=
K−1∑
k=0

∑
n∈Z

ck
ak

π(a2k + (t− tk − nτ)2)

+
K−1∑
k=0

∑
n∈Z

dk
t− tk − nπ

π(a2k + (t− tk − nτ)2)
·

An alternate formula for xk(t) that avoids the infinite sum is

given by:

xk(t) =
ck
τ

1− |zt|2
(1− zt)(1− z∗t )

+
dk
τ

2�{zt}
(1− zt)(1− z∗t )

(12)

where zt = e2π(−ak+i(t−tk))/τ . As can be seen in Equa-

tion (11) and in Fig. 1, the VPW pulse consists of a symmetric

and asymmetric pulse. The symmetric pulse is a Cauchy-

Lorentz function and the asymmetric pulse is the Hilbert

Transform of the symmetric pulse.

III. VPW-FRI ON MULTICHANNEL DATA

When dealing with multichannel data where the pulses

occur at the same locations across all the channels, multi

lead ECG for example, it would make sense to compute the

locations for all the channels simultaneously rather than for

each channel individually. This is achieved using a common

annihilator which is the main mechanism that allows VPW-

FRI to handle multichannel data.

In FRI theory, the annihilating filter would be where the

uk values are determined. However, it only deals with single

channel information. Therefore by modifying the input to the

annihilating filter, we can create a common annihilator for all

the input channels. This can be achieved [11] by stacking the

Toeplitz matrices of each channel vertically and applying the

annihilating filter,
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⎡
⎢⎢⎢⎣

X1

X2

...

XM

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

A[1]
A[2]

...

A[K]

⎤
⎥⎥⎥⎦ = 0. (13)

where {Xm}Mm=1 represents the Toeplitz matrices of the

M channels and {A[k]}Kk=1 represents the annihilating filter

coefficients similar to Eq. (6). The roots of the annihilating

filter would yield the common locations of the pulses across

all the channels.

A model based de-noising technique was implemented in

this paper which is based on the subspace based approach

presented in [5]. From Eq. (13), V is used to estimate the

noiseless signal. Therefore,

V = V · ΦH , (14)

where (·) and (·) denote the operation of omitting the first and

last row of (·), respectively. The conjugates of the eigenvalues

of ΦH will yield the roots of the annihilating filter and not

the filter coefficients as seen in Eq. (5). For a detailed proof,

please refer to [5].

The uk values retrieved from the roots of the annihilating

filter can be used to calculate the locations, tk, for the pulses

in all the channels.

This offers an interesting perspective especially when con-

sidering the physiology and the way the heart’s electrical

signals are recorded. The denominator of the filter describes

the common activities such as time of arrival of the electrical

vectors at the electrodes while the numerator captures the

morphological information of the pulse. This could be studied

further especially when developing automated diagnostic or

wave detection tools.

IV. QRS DETECTION

One application of VPW-FRI, besides sampling and re-

construction, is QRS detection in ECG signals. Paired with

the common annihilator method presented in Section III, this

method of QRS detection is workable even in noisy signals.

The QRS complexes present the sharpest transition out

of all the ECG waveforms. Hence, in Eq. (13), the highest

values of diag(S) would correspond to the QRS complexes

due to the fact that it has the highest energy out of all the

pulses. This can also be seen in the roots of the annihilating

filter, as the roots closest to the unit circle would represent

the QRS complexes though the distinction is not as clear. If

we represent An = {S1,1, S2,2, . . . , SN−1,N−1} and Bn =
{S2,2, S3,3, . . . , SN,N},

En = An/Bn, n = 1, . . . , N − 1. (15)

Then the number of QRS complexes can be found by

thresholding En. Empirically, this threshold was found to be

1.2.

By only keeping the subspace associated with these QRS

complexes, the QRS pulses can be accurately identified.
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Fig. 2. Reconstructed signal for ECG leads V2-V4

V. RESULTS

In this section, the ECG data that was used to generate

results will be introduced. This will be followed by results

from the VPW-FRI, common annihilator and QRS detection.

A. Data

The data used was 12 lead Stress ECG data recordings from

Tan Tock Seng Hospital, Singapore. The subjects were patients

who were undergoing treadmill ECG tests as recommended by

their physician. All subjects voluntarily signed an agreement

to have their anonymised data used for research purposes.

The test conducted were under the conditions of the BRUCE

protocol [9] which is a stress ECG protocol where the incline

and speed of the treadmill are increased at intervals of 3mins.

The data was collected using the GE Marquette CASE

Stress System with the T2100 treadmill. This data, collected

from 6 patients, varied in length from 12 mins to 20 mins long

depending on the patient’s fitness level , cardiac health and the

discretion of the physician. The leads recorded are I, II, III,

aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6. A simple and

concise write up about the leads and their significance can be

found in [10]. The data is sampled at 200Hz.

B. Results

The reconstruction error of VPW-FRI used in this paper is

the Signal to Residue Ratio (SRR) which is defined as

SRR = 10log

( ∑N−1
n=0 x[n]2∑N−1

n=0 (x[n]− x̂[n])2

)
. (16)

A hundred segments of data, each 2s long, were used to

evaluate the performance of the reconstruction. Section V-A.

One segment can be viewed in Fig. 2.

For the VPW-FRI with the common annihilator, the al-

gorithm tested with a mean SRR of μ = 19.41dB with

a standard deviation of σ = 2.28dB as can be seen in

Table I. The low standard deviation shows consistency in

reconstructing all the channels using the common annihilator.

The high SRR coupled with the low standard deviation also
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TABLE I
SRR VALUES ACROSS ALL 12 ECG LEADS

Mean SRR 19.41
Standard Deviation 2.28

Minimum SRR 14.81
Maximum SRR 22.25

proves the theoretical prediction that the common annihilator

would provide information on the common parameters of all

the channels in ECG.

The segments run in this test were good quality signals as

they were relatively free of noise. The purpose of this was to

demonstrate the sampling and reconstruction ability of VPW-

FRI. Seven pulses were used per QRS complex.

The de-noising capability of the algorithm is significant as

can be seen in Fig. 3. Noise in the form of Additive Gaussian

White Noise (AWGN) was added at an SNR of 10dB to

simulate Electromyogram (EMG) or muscle noise. It should

be noted that the Cadzow de-noising [2] performs similarly

but is iterative and therefore more computationally intensive.
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Fig. 3. Denoising on an ECG signal with AWGN at SNR 10dB

The QRS detection also tested well. Again, AWGN at

SNR 0dB was added to test the robustness of the detection

algorithm. The AWGN was added to all 12 channels. The

QRS detector was then applied with only the pulse associated

with the QRS being reconstructed. This was tested on the same

100 sets of signal used earlier in this section. A one second

segment from lead II can be seen in Fig. 4. It was able to detect

the number of QRS complexes and the locations perfectly on

97 of those segments. On the other 3 segments, it missed one

QRS. However, when the SNR is raised to 5dB, it was able

to detect all the QRS complexes in all the segments perfectly.

VI. CONCLUSION

The results demonstrate the robustness of the VPW-FRI

method in compressing signals, in de-noising and also in

wave detection. They also demonstrate that for the case of

multichannel data, the ECG signals share a common support

which translates to having a common denominator in the

VPW-FRI model. This leads to additional opportunities for

compression in the case of multichannel data. Future work
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Fig. 4. QRS detection on ECG signal with AWGN at SNR 0dB

can be in the direction of application of VPW-FRI for feature

detection in ECG as well as testing for compatibility with other

biomedical signals.
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