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ABSTRACT

The specific features of the proposed force-based formulation derived in the companion paper, which is
applied for the first time to higher-order beam theories, are herein thoroughly validated. Introductory
numerical examples illustrate the influence of mesh refinement, boundary conditions, and slenderness
ratios for isotropic linear elastic response. Specific higher-order effects—unique to the developed ele-
ment—are then suitably interpreted, as well as the formulation appropriateness to consider distributed
loads and to model three-dimensional behaviour, which is verified with solid finite element analyses.
Extensive comparisons against existing proposals, namely other refined higher-order beam theories,
emphasize the performance of the proposed approach. Finally, the nonlinear response of the element
with a multiaxial J2 linear plasticity material model is analysed, highlighting its advantages in relation
to a classical force-based Euler-Bernoulli beam using a one-dimensional plastic material model with

Warping kinematic hardening.
Timoshenko

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The transfer of the advantages of force-based formulations to
higher-order beam theories (HOBTs), which to the authors’ knowl-
edge was proposed for the first time in the companion paper [1], is
herein investigated from the application viewpoint. The theoretical
background previously introduced indicated that the novel ele-
ment satisfies an advanced form of equilibrium, in-between that
of the classical Timoshenko beam theory and the complete three-
dimensional equilibrium, which is herein confirmed with numeri-
cal examples.

Although the last example of this manuscript showcases an
application of the present formulation to a structural member
behaving nonlinearly, there are specificities accruing from the fact
that a HOBT is considered in association with a flexibility formula-
tion that justify an exhaustive inspection of the model perfor-
mance with isotropic linear elastic material behaviour. Typically,
the advantages of force-based approaches, mentioned in the com-
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panion paper, imply that very coarse meshes of beam elements
based on Euler-Bernoulli theory can be used to model structural
members. Frequently, one finite element per member can be used
even in the presence of material nonlinear behaviour and span
loads. Such features are not necessarily applicable in a straightfor-
ward way in the present setting, in view of the special higher-order
effects that arise due to specification of distinct sets of boundary
conditions (BCs), which differ from any previous results obtained
with displacement-based formulations; therefore, they should be
thoroughly assessed, as well as the influence of mesh refinement,
usually known as h-refinement. An insightful interpretation of
these and other salient features of the model, as well as a compar-
ison against classical and state-of-the-art proposals, restrict the
numerical applications herein presented to the case of solid rectan-
gular cross-sections. However, as pointed out in the companion
paper, the proposed theory can be extended to members with
more general cross-sectional geometries, which will be addressed
in forthcoming publications.

The first group of numerical examples in Section 2 analyse the
response of the element under nodal in-plane loading, comparing
its response against the results of Euler-Bernoulli beam theory
(EBBT) and other HOBTs, namely the one from Heyliger and Reddy
[2]. This serves as a motivation to analyse in detail the specific
higher-order effects of the proposed flexibility approach, which is
carried out in Section 3. The subsequent examples of Sections 4
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and 5 evaluate respectively the suitability of the formulation to
simulate the effects of span loads and three-dimensional behav-
iour, which is validated with solid finite element models. A com-
parison with other refined HOBTs, particularly the one from
Carrera et al. [3,4], follows in Section 6. Finally, the performance
of the element under nonlinear material behaviour, which will
hopefully open the door to many future applications, is examined
in Section 7.

The numerical examples were run in the structural analysis
code SAGRES (Software for Analysis of GRadient Effects on Structures),
which was developed by the authors using the MATLAB platform
[5]. Further details on its numerical implementation can be found
in Section 7.1. Base or derived units of the International System of
Units (SI) are used.

From the 38 cross-sectional displacement modes considered in
the formulation, a chosen illustrative set of 15 modes are repre-
sented in Fig. 1. Modes 1 through 8 are the first-order ones, being
composed of the six modes corresponding to classical Timoshenko
beam theory, followed by two related to warping and distortion.
Out of the remaining 30 higher-order displacement modes, defined
in the companion paper based on normalised Legendre polynomi-
als [1], seven are also depicted: modes 9 and 11 are the first
describing a nonlinear displacement variation throughout the
cross-section, parabolic along the in-plane axes; modes 14 and
15 are exemplificative of the way in which significant physical
phenomena associated with cross-sectional in-plane deformation
(e.g., Poisson’s effect or confinement in reinforced concrete beams)
may be accounted for in the present formulation; modes 21 and 31
complement modes 1, 5 and 11 as cross-sectional representations
of the initial five Legendre polynomials; finally, mode 36 is a sam-
ple of those modes featuring a product of polynomials of different
degree along the two orthogonal cross-sectional coordinate axes.

The description above should render clear that the relatively
large number of degrees of freedom (dof) of the present formula-
tion allows to explicitly consider an extended range of displace-
ment modes that other proposals, directed to different
applications, prefer to neglect or condense out. For example, recent
theories that have been developed within the relatively similar

Mode 1 Mode 2

Mode 3

framework of the Hellinger-Reissner variational principle
(Wackerfuss and Gruttmann [6]) opt to focus on the out-of-plane
warping effects. The latter can be described by one extra parameter
(Kumar et al. [7]), which adds to the six dof at each node, or by
internal degrees of freedom approximating the cross-sectional
warping that are eliminated at the element level by static conden-
sation (Wackerfuss and Gruttmann [8]).

2. Cantilever with in-plane tip load

In the past, other researchers (e.g., Eisenberger [9]) have used as
a benchmark test the case of a rectangular cantilevered beam sub-
jected to an end load p=100 [N], and the following properties:
width b = 1 [m], Young’s modulus E = 29,000 [N/m?], Poisson’s ratio
v = 0.3. This problem, originally analysed by Heyliger and Reddy [2]
and herein considered again, was solved for different values of
length L[={12,40,80,160} [m] and cross-sectional height
h={1,12} [m].

The finite element introduced by Heyliger and Reddy [2] is
based on the planar third-order beam theory proposed by Levinson
[10], which has the following displacement field:

Uxo

U(XZ):[HX:|= Uy + 20, + 22 :{1 0 z 23] Uz
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¢

In order to guarantee vanishing shear strains on the top and
bottom free surfaces of the beam, a value of the cross-sectional
warping intensity ¢ = —4/3h2 (0, + ) is derived, yielding the fol-
lowing modified expression:

Uxo
3(_4\o 3(_ 4
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As discussed in the introduction of the companion paper, the

previous displacement field has been used in a number of works
up to the present day, either related to beam theory (Reddy [11])

Mode 4 Mode 5

Mode 14 Mode 15

Mode 21

Mode 31

Fig. 1. Illustrative orthogonal displacement modes for a square cross-section.
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or plate theory (Reddy [12,13]). The formulation by Heyliger and
Reddy [2] is a displacement-based approach—using Lagrange and
Hermite interpolation functions—which stands out as perhaps
the most fundamental difference in relation to the proposed the-
ory. Other advantageous features of the latter, such as the defini-
tion of the generalised forces and relevant orthogonality
properties, can be found in the companion paper [1]. The following
comparisons with the present beam theory are obviously restricted
to the scope of applicability of the above equation, which is planar
loading; the full three-dimensional capabilities of the proposed
force-based HOBT will be illustrated in Section 5 of this document.

2.1. Mesh refinement and bounding of the solution

Members wherein flexural deformation is expected to be pre-
dominant, that is, with cross-sectional height h =1 [m)], are studied
first. Fig. 2 depicts the comparison between the tip displacements
given by the proposed HOBT and that of Heyliger and Reddy [2].
The results are normalised with respect to those provided by the
EBBT, which for the assumed geometric and loading conditions
(prismatic element, linear elastic behaviour and nodal loads),
always provide the same solution; this holds independently of
the number of elements (N) and type of formulation (displace-
ment-based or force-based) [14].

A number of remarks should now be made about these intro-
ductory results. To start with, the apparent underperformance of
HOBTs with respect to EBBT, even if slight, deserves further
explanations. As a matter of fact, the asymptotic response in the
figure below shows that both HOBTs are affected by specific
effects—which will later be analysed in detail—that vanish with
mesh refinement, indicating that they correspond to undesired
features of higher-order formulations rather than to physical
phenomena, such as shear deformation. Actually, the latter is
barely discernible for the slenderness ratios L/h herein considered,
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Fig. 2. Comparison of the proposed theory and that of Heyliger and Reddy [2],
relative to the results provided by the Euler-Bernoulli theory, for a cross-sectional
height of h=1 [m] and concentrated tip load.

as evidenced by the close-to-unity results of the several 16-ele-
ment meshes. The only exception is the performance of the case
with L/h =12 in the formulation of Heyliger and Reddy [2], which
is however limited to a deviation of less than 0.5% in relation to
the EBBT.

Another important observation is related to the bounding
of the solution. As mentioned earlier, the most common type of
beam-column modelling approach is the so-called stiffness or
displacement-based formulation (sometimes also known as pure
compatibility model in the literature), which makes use of
compatible displacement interpolation functions and the principle
of virtual work, also known as principle of virtual displacements.
On the other hand, the flexibility or force-based formulations
(which also go by the name of pure equilibrium models) are built
on the derivation of self-equilibrated stress interpolation functions
and the principle of complementary virtual work or principle of
virtual forces.

Equivalently, the former class of models can be obtained
through the application of the theorem of potential energy, while
the latter can be retrieved with the theorem of complementary
energy (Washizu [15]). They can also be derived by other equiva-
lent variational approaches or by the more general methodology
presented by Teixeira de Freitas et al. [16], which builds on the first
principles of mechanics to obtain the corresponding duality princi-
ples. The seminal work by de Veubeke [17] was the first to demon-
strate that the standard potential energy formulation provides a
lower-bound to the energy of the system, while the complemen-
tary energy formulation provides an upper-bound. As far as the
authors are aware of, Fig. 2 is the first in the literature to provide
evidence of the previous principle regarding HOBTs. Nevertheless,
this bounding property can only be fully exploited if both HOBTs
use the same higher-order modes of deformation, which is not
the case of Fig. 2. In that sense, Section 6 will provide fairer
comparisons.

The previous note relates to the explanation for the apparently
distinct asymptotic values of each HOBT, as the mesh refines, in the
case of L/h =12/1. Such behaviour is even clearer in Fig. 3, which
depicts the results for a cross-section of height h=12 [m]. The
underlying reason is primarily the fact that the level of equilibrium
verified by the proposed theory is much more advanced than the
degree of compatibility respected by the theory of Heyliger and
Reddy [2]. This is directly attributable to the larger number and
enriched shapes of the cross-sectional displacement modes consid-
ered in the proposed theory, which yields governing differential
equations describing more evolved structural element behaviour.

It should be noted that the strain energy of a finite element
developed through a hybrid method may be an upper- or lower-
bound, however it is always bounded by that of a compatible
model using the same type of inter-element boundary displace-
ments and that of an equilibrium model using the same type of
interior stresses [18].

2.2. Accuracy

It is visible, namely for 2, 4 and 8-element meshes, that the
results obtained with the proposed HOBT are more accurate than
those of Heyliger and Reddy [2] with an identical number of ele-
ments. One could be tempted to attribute such differences, once
again, to the larger number of higher-order modes considered in
the proposed theory; however, as mentioned in the introduction,
such improvement can in fact be mainly ascribed to the specific
advantages of the devised formulation (force-based versus dis-
placement-based) when coarse meshes are employed.

Fig. 4 provides further evidence of the previous observation, as
well as a depiction of the proposed model accuracy. The plot shows
the relative error of the tip displacement given by both theories,
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Fig. 3. Comparison of the proposed theory and that of Heyliger and Reddy [2],
relative to the results provided by the Euler-Bernoulli theory, for a cross-sectional
height of h =12 [m] and concentrated tip load.
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Fig. 4. Relative error of the tip displacement, for the case of two-element meshes
(N =2), assuming as exact the response given by a solid finite element mesh.

using a coarse mesh of two elements (N =2). The ‘exact’ response
was estimated via 3D models with refined meshes of solid finite
elements [19,20]. At the clamped extremity the nodes were fully

restrained, whilst on the opposite end transversal forces corre-
sponding to a constant shear stress distribution were imposed in
all boundary nodes. The excellent element performance illustrated
in Fig. 4 is backed up again in Section 6, which deals with the com-
parison with other refined HOBTs employing a displacement-based
approach.

Fig. 3 also shows that, when L/h =160/12, the displacement
response ratio is roughly and unsurprisingly similar to the case
of Fig. 2 with an approximately similar slenderness ratio of
L/h =12/1. As the ratio between the beam length and the cross-sec-
tional height progressively decreases, the relevance of shear defor-
mation and other physically meaningful three-dimensional effects
increase. That is evident from the results with the several 16-ele-
ment meshes, which provide tip displacements significantly higher
than those of the classical elementary beam theory. In particular,
such deviation increases pronouncedly from approximately 6.5%
to 73.5% as the slenderness ratio reduces from L/h =40/12 =3.33
to L/h=12/12 = 1. The following section shows in more detail the
physical phenomena reproduced by the present model, relating
them with the boundary conditions and higher-order effects spe-
cific to the proposed formulation.

3. Higher-order effects and boundary conditions

As observed by other researchers (Bickford [21]; Prathap et al.
[22]), HOBTs are subjected to specific effects that require careful
interpretation and a study of their influence on the accuracy of
the results. They are intrinsically related to the boundary condi-
tions (BCs) assumed, which for this model consist of a combination
of imposed generalised nodal displacements and/or forces, in a
total of 76 (38 at each extremity) as derived by Correia et al. [1].
The special nature of such effects—when applied together with a
flexibility formulation—naturally asks for a careful analysis in
order to expose this yet undisclosed behaviour.

3.1. ‘Totally fixed - free’

The results shown in the previous paragraph were obtained, for
the proposed theory, with the following set of BCs: on the clamped
extremity, all the 38 generalised displacements were restrained,
and on the free end—where the tip force is applied—the 38 gener-
alised forces were controlled. Out of the latter, 37 were kept equal
to zero, while on the degree of freedom corresponding to the shear
force a value of 100 was imposed. For future reference, this set of
BCs is denoted by the acronym TFF, which stands for ‘totally fixed
- free’. The question that arises is how the set of conditions TFF
relate to the actual physical behaviour of the member, and if there
are more suitable BCs to describe it. A critical inspection of the per-
formance of the proposed beam theory is required to answer such
query, which differs from all other HOBTs proposed to date. The
latter goal can be effectively achieved by analysing the response
of the slender beam with L =160 [m] and h =1 [m], wherein flex-
ural deformations are expected to be absolutely predominant.

For the current loading case the behaviour of the element is
governed by the differential equilibrium equations shown in sys-
tem (3) of Appendix A of Correia et al. [1]. Hence the generalised
stress-resultants therein included are expected to play a role in
the response. The evolution of V, and M, match exactly the dia-
grams that one would obtain from the application of classical
Euler-Bernoulli or Timoshenko beam theories, i.e., respectively
constant (equal to 100 [N]) and linear (from O at the tip to
—16,000 [N - m] at the fixed end). This feature is appealing since
it corresponds to the results expected from common engineering
reasoning. Additionally, the values of N*** and V,* are also
relevant, their evolution being traced in Fig. 5 for h-refinements
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Fig. 5. Distribution of N*%3, V,*%3 and V,*?! for ‘totally fixed - free’ boundary conditions (TFF BCs), with cross-sectional height h = 1 [m], length L = 160 [m] and h-refinements

ranging from N=1to N=16.

ranging from N=1 to N = 16. V,*° controls the parabolic distribu-
tion of shear stresses 7, in the cross-section along the loaded axis,
whilst N*%3 commands the corresponding cubic variation of nor-
mal stresses o,.

However, recalling that the imposed BCs restrict the lateral
expansion of the clamped cross-section of the beam, it can be antic-
ipated that—due to Poisson effect—other equilibrium differential
equations may be relevant in the element response as well. Namely,
the generalised stress-resultants involved in system (7) of Appen-
dix A of the companion paper [1] turn out to be non-negligible;
for its special importance, the diagrams of V,*?!'—which echo the

parabolic distribution of shear stresses along an axis perpendicular
to the bending plane—are also shown in Fig. 5. All the generalised
stress-resultants of the remaining systems of differential equations
are essentially zero.

Figs. 2 and 3 showed that, as the mesh refines, the element level
responses—nodal forces and displacements—converge to an
asymptotic value. Does that also happen at the cross-sectional level,
i.e., regarding the distribution of strains and stresses? The answer—
and the rationale of the model response—can be looked for in the
diagrams of Fig. 5. Their interpretation can be made easier by
recalling that the solution of the governing equilibrium differential
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equations is conditioned by the chosen order of specific force
approximating polynomials, see Appendix B of Correia et al. [1].

The results given by progressively finer meshes in Fig. 5 ask for
the following comments: (i) the refinement is accompanied by a
length reduction of the boundary zones where certain higher-order
effects associated to the boundary conditions concentrate; (ii)
these higher-order boundary effects do not necessarily fade out
with refinement—see Fig. 5(c)—and consequently there is no
asymptotic value of convergence; (iii) however, outside the afore-
mentioned boundary zones, such convergence does exist and the
distributions of the generalised stress-resultants get smoother;
for example, Fig. 5(a) and (b) provide clear evidence that N*03
has a clear trend of convergence towards zero, while V,*03 stabilis-
es progressively at about —20 [N], i.e., —V,/5 for N9 =0 [N]—see
equation (3) of Correia et al. [ 1], in Appendix A; a closer look would
also indicate that V,*?! tends to 3.6 [N]; (iv) as expected, the dia-
grams satisfy the zero-valued nodal forces imposed at the free end.

In a simplified way, it can be said that the self-equilibrated solu-
tions provided by the proposed model—inevitably constrained by
the imposed BCs and the order of the approximating polynomi-
als—attempt to average the exact equilibrium found away from
the boundaries; the latter can be closely reproduced with a refined
element mesh.

Fig. 6(a) through (d) show the distribution of normal and shear
stresses at the initial clamped cross-section (x = 0 [m]) and at mid-
span (x =80 [m]) for a 1-element mesh. The degree to which the
normal and shear stresses deviate respectively from the linear
and constant patterns (given by a Timoshenko beam theory) is
directly related to the absolute values of N*° and V,*%, as dis-
cussed above. In particular, note that the normal stress distribution
in Fig. 6(a) is ostensibly nonlinear due to an unrealistically large
value of N*% at the fixed end; this deviation from linearity reduces
drastically at midspan, wherein N is just a fraction of the previ-
ous value. Analogously, V%3 and V,*?! can be held accountable for
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the shear stress distribution of Fig. 6(c) and (d). The change in the
concavity direction about the bending axis (y), associated to the
opposite signs of V,*% at x =0 [m] and x = 80 [m], is noteworthy.
Eventually, it is observed that the stress distributions of Fig. 6(c),
and (d) at a minor degree, also exhibit a curvature perpendicular
to the bending axis. Such phenomenon is attributable to the non-
zero values of V,*2!,

The distribution of normal and shear stresses at x =0 [m] and
x =80 [m], for a 16-element mesh, can be found in Fig. 6(e) through
(h) for a 16-element mesh. It is immediately evident from Fig. 6(e)
and (f) that the distribution of normal stresses does not deviate
from linearity, which is a direct consequence of the approximately
zero-valued diagram of N*3, Additionally, the absolute values of
the normal stress at the top and bottom fibres of the cross-sections
match very closely the results obtained with a classical Euler-Ber-
noulli beam.

Regarding the shear response, EBBT assumes a null shear strain
profile (hence rigid shear behaviour), while the Timoshenko beam
theory is based on a constant shear strain pattern. None of the cor-
responding shear stress distributions are in equilibrium with the
evolution of normal stresses. The proposed beam element, on the
other hand, produces the shear stress distributions of Fig. 6(g)
and (h). The former—instinctively odd in view of the loading direc-
tion—can be ascribed to the unrealistically high value of V,*?!
occurring at the clamped base. As discussed above, this is due to
a local higher-order effect triggered by the particular BCs defined.

Nevertheless, it should be pointed out that the significant, and
somewhat unexpected, contribution of V,*?! to the shear stress
distributions is physically justifiable. In fact, considering both a
horizontal and a vertical layer of the beam, due to the changing
magnitude of the cross-sectional normal stresses o, along both
the beam length and its height, there is a longitudinal variation
of the transversal extensions due to Poisson’s effect. This leads
to distortions related to both shear stresses 7, and 1y, as well as
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Fig. 6. Distribution of normal and shear stresses at x =0 [m]/x = 80 [m] with h-refinements N = 1/N = 16, assuming a cross-sectional height h =1 [m], length L = 160 [m] and

BCs TFF.
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Fig. 7. Distribution of N*%3, V,*%3 and V,*?! for ‘partially fixed - free’ boundary conditions (PFF BCs), with cross-sectional height h=1 [m], length L= 160 [m] and h-

refinements ranging from N=1 to N=16.

to variations of the former along the axis perpendicular to the
bending plane, thus originating non-zero values of the generalised
stress-resultant V,*21. Such effect is exacerbated near the clamped
end, but exists independently of the BCs, as shown later.
Coulomb, in his paper of 1773, observed that the effect of shear-
ing forces on the strength of the beam can be neglected if its depth
is small in comparison with its length. Later, the rigorous solution
of the problem of shearing stresses in beams with simple cross-
section geometries was given by Saint-Venant in his famous paper
[23]. For more complex cases, the solution put forward by Jouraw-

ski (Timoshenko [24]) can be used; it overcomes the limitations of
the Euler-Bernoulli and Timoshenko beam theories and allows for
the computation of the shear stresses in the cross-section. For a
rectangular cross-section as the one in study, their distribution is
quadratic, with null values at the top and bottom fibres and a max-
imum of tM* = (3/2)V,/A = 150 [N/m?] attained at mid-height.
The results of Fig. 6(h) reliably reproduce it, with a very small
allowance for a minor curvature along an axis perpendicular to
the bending one, caused by the aforementioned effect represented
by Vz*'21-
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BCs PFF.

3.2. ‘Partially fixed - free’

It is noted that the above theoretical solutions do not account
for Saint-Venant end effects. Nevertheless, the following questions
still arise: is it possible to reproduce exactly Jourawski’s stress dis-
tributions with the proposed element? If so, which BCs should be
adopted? Finally, how does that relates to the minimisation of
the local higher-order boundary effects?

As a natural alternative to the previous set of BCs, one could
think of the case where, at the clamped extremity, only the six
rigid-body displacements corresponding to the Timoshenko beam
theory are restrained (uy = Uy = U, = 0x =0, =0,=0), leaving the
remaining 32 dof as force-controlled and equal to zero. At the free
end, the BCs are as in case TFF. For future reference, this new set of
BCs is denoted by the acronym PFF (standing for ‘partially fixed -
free’).

Considering such BCs, as expected, both V, and M, show the
same evolution of the previous case. The diagrams of N3, V,*03
and V,*?! are now included in Fig. 7, while some relevant stress
distributions are shown in Fig. 8. The first noticeable difference is
the symmetric and antisymmetric behaviour of the generalised
stress-resultants along the length, as depicted in Fig. 7, which is
an expected feature bearing in mind the imposed BCs. Most impor-
tantly, it is noted that as the mesh refines, the results converge to
the same asymptotic values of the previous case—naturally, away
from the extremity cross-sections wherein the effects of the dis-
tinct BCs are noticeable. That is immediately apparent not only
for N*0% and V,*%3, but also for V,*?!—compare Figs. 5(c) and 7(c).
Such feature explains the similarity between the plots of Fig. 6(f)
and (h) and of Fig. 8(f) and (h). Another major distinction is that
the higher-order effects at the fixed end are now limited by the
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Fig. 9. Influence of the boundary conditions in the accuracy of the tip displacement
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heights h.
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Fig. 10. Distribution of shear stresses at x = 0 [m]/x = 160 [m] for TFF2 and x € [0,160] [m] for PFF2, considering N = 1, cross-sectional height h = 1 [m] and length L = 160 [m].

imposed BCs, which explains the constant shear stress distribution
at x = 0 [m], as well as the totally linear normal stress profiles at the
same location. Figs. 6 and 8 show that the theoretical Jourawski
distribution of shear stresses is not exactly reproduced in any
cross-section. On the other hand, the two previous cases indicate
that N*%% converges to zero, V,*** to about —20 [N] (i.e., —V,/5
for N“93 =0 [N]), and V,*?! to 3.6 [N].

3.3. Other boundary conditions and summary

It is recalled that the generalised stress-resultant V,*?! controls
the parabolic distribution of shear stresses along the axis perpen-
dicular to the bending plane. Consequently, it must be zero in
the Jourawski distribution. Based on the previous rationale, two
new sets of BCs are considered: (i) TFF2: it differs from the TFF case
in that on the free end a value of V,*%* = —20 [N] is imposed along-
side with V, =100 [N]; (ii) PFF2: it differs from PFF in that V,*% =
—20 [N] is imposed on both ends alongside with V,=100 [N].
Due to space restrictions, the results obtained with these two
new sets of BCs are not herein discussed in the same degree of
detail as the previous ones but instead in a summarised way.

Fig. 9 shows the influence of all the boundary conditions previ-
ously mentioned in the computation of the tip displacement with a
1-element mesh. The ratios plotted therein take the value provided
by the 16-element mesh with the original BCs (TFF) as the denom-
inator. Note that Fig. 9 also includes the results for h=12 [m],
which will be discussed in further detail below. Although the vari-
ations between the tip displacements provided by the different BCs
may seem relatively minor, they conceal remarkably different ele-
ment behaviours at the local level. It also stands out that the
results provided by the two new sets of BCs, TFF2 and PFF2, clearly
provide better results at the global element level than their previ-
ous counterparts TFF and PFF.

Fig. 9 also shows that for h=1 [m], TFF2 and PFF2 provide an
almost identical match at the element level. However, at the
cross-sectional level the response is slightly distinct: the distribu-
tions of V, and M, are the same as before, as expected; PFF2 recov-
ers exactly—and TFF2 almost exactly—a constant distribution of
V%9 = 20 [N] and N*% = 0 [N]; however, while V,*?! =0 [N] for
PFF2, TFF2 outputs a linear distribution for V,*?! (—5.4 [N] at the
fixed end, O [N] at the loaded tip).

Fig. 10 shows the shear stress distribution in several cross-sec-
tions, confirming that the Jourawski solution is accurately
retrieved when the PFF2 BCs are employed. Such conclusion, how-
ever, is only valid for the 1-element mesh. It is noted that, based on
the self-equilibrated stress-resultants interpolation functions
defined in the companion paper, V,*?! is assumed to be linear
along a given element length, thus being inevitably zero when

the BCs PFF or PFF2 are considered. In fact, as also shown in
Fig. 7(c) for the BCs PFF, although V,*?! is null for the 1-element
mesh, it is different than zero throughout the span when a refined
mesh is used, which is a consequence of the real physical behav-
iour described previously. It results that, for a 16-element mesh,
the shear stress distribution at midspan is similar in all cases, cor-
responding to the one presented in Figs. 6(h) or 8(h).

An exhaustive interpretation of the results for a cross-sectional
height h =12 [m] is not possible due to length limitations. How-
ever, and mainly for comparative purposes with Figs. 5 and 6, the
equivalent plots for the case of L =12 [m] and h =12 [m]—where
shear deformations are most pertinent—are plotted in Figs. 11
and 12. The diagram of V,*?! is not included for it does not rele-
vantly deviate from zero, since the much reduced normal stresses
for this geometry lead to an insignificant influence of the afore-
mentioned Poisson’s effects. On the other hand, the distributions
of N2 and N**! are not negligible for N > 4. Figs. 3 and 4 proved
the high accuracy of the proposed model at the element level and
that the results with a one-element mesh fall very close to the
asymptotic value. However, at the cross-sectional level, further
inspection is required. One first obvious difference between
Figs. 11 and 5 is that, due to the much reduced shear span of
the member, the boundary effects stretch their influence along
the entire beam length. Fig. 12 depicts the increased shear
stress—normal stress interaction, noticeable from the nonlinear
pattern of o, along the bending axis (for x=0 [m], due to N*3)
and along the perpendicular axis (for N=16, due to N*?! and
N*41). On the other hand, the distribution of shear stress
with N=1 are a very good approximation to the ones obtained
with N =16.

4. Simply supported beam with distributed loads

Another major advantage of force-based formulations is that
span loads can be directly accounted for, as explicitly derived in
the companion paper [1]. The rectangular beam analysed in the
two previous sections was also studied by Heyliger and Reddy [2]
for simply supported conditions and a uniform load q = 10 [N/m?],
and is herein used again for comparative purposes. The same values
of length L and cross-sectional height h were adopted. Regarding
the BCs, on one extremity the three translational displacements,
as well as the rotation about the beam longitudinal axis, were
restrained; on the other, only the two transversal displacements
were blocked. At all the remaining dof the generalised forces were
kept equal to zero.

To start with, consider, once again, the cases with cross-sec-
tional height h=1 [m]. Fig. 13 shows the comparison between
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the mid-span transversal displacements provided by the present
formulation and by that of Heyliger and Reddy [2]. As before, the
ordinate axis is normalised with respect to the results given by
the EBBT—obtained either analytically or through a force-based
model (since a displacement-based one would not provide the
exact response). The majority of the comments made in Section 2
regarding Figs. 2 and 3 are again applicable. However, it stands
clear that the previously reported accuracy advantage of the
proposed model—which was evident for lower number of

elements—does not seem so apparent any longer. The same can
be said of the not-so-distinct asymptotic values of the two formu-
lations. However, any such comparative comments now fail a basic
validity check, since the distributed loading is, in the displace-
ment-based approach, replaced internally by equivalent concen-
trated loads at both extremities of each element.

In other words, span loads are considered artificially at the
nodal level and therefore their effects are not reflected in the dis-
tribution of the generalised stress-resultants along the element
length. Contrarily, the use of the proposed model allows retrieving
exactly the expected distribution of bending moments along the
length (parabolic with a maximum of gL?/8=32,000 [N-m] at
mid-span) and shear force (linear and symmetric with an absolute
value of qL/2 = 800 [N] at the extremities). They are not herein rep-
resented since the differences among the different meshes are vir-
tually undetectable with the unaided eye. It is noted that a
displacement-based formulation, such as that of Heyliger and Red-
dy [2], would output incorrect linear and constant distributions of
moment and shear force, respectively, within each element. The
aforementioned limitations of the displacement-based approach
would become more visible if additional types of span loads or dif-
ferent BCs were considered.

It is interesting to observe the influence of the span loads in the
evolution of the generalised stress-resultants along the length. The
two that most affect the distributions of normal and shear stresses
in the several element integration cross-sections, N*%* and V,*%3,
are depicted in Fig. 14. As expected from the physical standpoint,
N*03 tends to zero as the mesh refines, which signals the decreas-
ing deviation of the normal stresses from a cross-sectional linear
distribution. Associated with this value, and apart from the known
higher-order boundary effects, V,“%* converges to a linear evolu-
tion defined by —V,/5; that is, corresponding to the Jourawski par-
abolic shear stress distribution.

Finally, Fig. 15 shows the counterpart of Fig. 13 for a cross-sec-
tional height h = 12 [m]. The results can be interpreted at the light
of what has been discussed immediately above and also in Section
3. It is noted that the shear deformation is now proportionally lar-
ger than in the previous cases of concentrated tip load.

5. Three-dimensional loading and comparison with solid finite
elements

While the previous sections analysed in detail the model perfor-
mance for a cantilever under in-plane loading, the current one
aims at illustrating its three-dimensional behavioural capabilities
for a simple imposed unitary torsional rotation at its extremity.
For what concerns the cross-sectional geometry, a beam with uni-
tary area is now considered, of height h =2 [m] and b = 0.5 [m]. The
mechanical properties of interest are the Young’s modulus
E =71.7 x 10° [N/m?] and the Poisson’s ratio v = 0.3. A squat mem-
ber of length L =4 [m] is herein examined, although similar verifi-
cation tests were also carried out with more slender elements. The
BCs involve controlling the 76 generalised nodal displacements,
which are all restrained but the one corresponding to the torsional
degree of freedom, wherein a unitary value [rad.] is imposed.

Two alternative meshes are used, with one and eight elements.
The former outputs a torsional moment of T =3.472 x 108 [N - m],
while the latter produces T=3.661 x 108 [N - m]. The distributions
of shear stresses 1y, and 1, at the extremity and midspan cross-
sections are shown in Fig. 16(a) through (d). It is observed that
Ty, and T, are different than zero at extremities z=#1 and
y =20.25, respectively, which does not correspond to the exact
solution. However, as noted before, the model verifies a
higher-order form of equilibrium exactly, i.e., the generalised
stress-resultants involved in the complex system of coupled
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BCs TFF.

differential equations (4) depicted in the Appendix A of Correia
et al. [1] are strictly equilibrated. Moreover, if additional cross-sec-
tional deformation modes were to be considered, that condition
would be progressively satisfied (and not just in the average sense
throughout the section).

Due to the fact that warping is variable since it is restrained at
the extremities and different from zero throughout the span, it is
expected that normal stresses ¢, are also non-null and signifi-
cant—see Fig. 16(e) and (f), corresponding to the case of non-uni-
form torsion. This figure also shows the influence of different
mesh refinements on the absolute value of the obtained normal
stresses. Note that, similarly to the flexural-shear interaction
examples, these stresses at the extremities are highly influenced
by the localised forces which appear due to the boundary
conditions.

Consider now the three-dimensional solid finite element model
with the coarse and fine meshes depicted in Fig. 16(g) and (h), with
5,535 and 28,413 degrees of freedom respectively, which compare
with 76 and 342 for the one and eight-element meshes used in the
proposed HOBT. A unitary rotation [rad.] is again imposed and
the torsional moment resulting from the lateral joint reactions is
computed, yielding values of T=3.667 x 108 [N-m] and
T=3.613 x 108 [N - m], respectively. The previous results compare
very well with the outcome of the present beam model, the

differences becoming virtually negligible for more slender
elements (not reported herein). It is recalled that the vast majority
of proposed beam theories is unable to straightforwardly predict
the response of an element under non-uniform torsion.

6. Comparison with other refined higher-order beam theories

An assessment of the accuracy of the proposed model can be
better ascertained through comparison with other HOBTs. The
choice falls on the so-called “Carrera’s Unified Formulation”, or
CUF, briefly discussed in the introductory section of the companion
paper [1], due to its systematic approach and completeness
(Carrera and Giunta [3]; Carrera et al. [4,25]).

6.1. Theoretical considerations

Similarly to the present theory, the displacement field of the
CUF is also decomposed into an expansion of components along
the axis of the beam and in the cross-section, see Eq. (14) of the
companion paper [1]. More specifically, it can be expressed as:

uxy.2) = 33y izdi () = Uy, 2)d()

i=0 j=0
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Fig. 13. Comparison of the proposed theory and that of Heyliger and Reddy [2],
relative to the results provided by the Euler-Bernoulli theory, for a cross-sectional
height of h =1 [m] and uniform span loads.

where U(y,z) is the matrix of the displacement interpolation func-
tions and d(x) are the generalised displacements. It is clear from
the previous equation that, just as the interpolation functions of
the proposed theory are based on normalised Legendre polynomi-
als, those of the CUF rest on MacLaurin’s polynomials.

An illustrative comparison between both models is shown in
Table 1 regarding the total number of generalised displacements
for n=1 to 4 (given by 3(n+1)(n+2)/2 for the CUF and by
(n+1)(3n+1) for the proposed HOBT), as well as their corre-
sponding partitioning in components of the displacement field.
Within parentheses one can also find the number of terms selected
to carry out the derivations in the companion paper and the cur-
rent numerical examples; in order to proceed with an approxi-
mately fair comparison between both theories, the case of n=4
was chosen for the CUF.

One interesting feature of the CUF is that the finite element for-
mulation is developed and presented in terms of a systematic ‘fun-
damental nucleo’ (Carrera et al. [4]) that it is applicable to any
arbitrarily large value of n, i.e., it does not require assumptions
on the approximation order. Hence, it is possible to immediately
obtain any higher-order beam theory.

Nevertheless, since the derivation is based on the principle of
virtual displacements, the CUF thus shares the same drawbacks
of the theories belonging to the family of displacement-based
approaches. In particular, shear-locking shows up—which is
therein corrected through selective integration (Bathe [26])—and
span loads cannot be included in a straightforward way. Shear
locking is avoided with force-based formulations, which
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additionally allow for an explicit inclusion of distributed loads as
discussed in the companion paper [1] and illustrated in the previ-
ous section.

However, the essential distinctive feature of the flexibility
formulations—herein used for the first time in association with
HOBTs—is that beam equilibrium is strictly verified along the
element length; this characteristic leads to a fundamentally different
structural behaviour that is reflected on a much-improved
accuracy of the response at the element level. Section 6.2 provides
numerical evidence of such performance.
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Another significant aspect differentiates both approaches: the
cross-sectional displacement interpolation functions are now set
as orthogonal (see Fig. 1), contrary to what occurs in the CUF, thus
enabling the definition of non-ambiguous generalised stress-resul-
tants, reducing the coupling of equilibrium equations, and leading
to more coherent BCs. Finally, it is noted that the present beam ele-
ment includes only the two extremity nodes, while Carrera et al.
[25] developed elements with two, three and four nodes, respec-
tively addressed as B2, B3 and B4.

6.2. Numerical applications

Tabulated data with the results of a cantilevered beam
subjected to a lateral force p =50 [N] at the free end can be found
in the work by Carrera et al. [25]. The beam cross-sectional
dimensions are b=h=02 [m], the Young's modulus is
E =75 x 10° [N/m?] and the Poisson’s ratio is v = 0.3. Further, two
slenderness ratios are studied, L/h =10 and L/h = 100. Regarding
the BCs, the set TFF, previously described in Section 3, is used.

A comparison between both models (the CUF uses n=4) is
depicted in Fig. 17, wherein the tip displacements of meshes with
variable number of elements are presented. The comments made
in Section 2 regarding Figs. 2 and 3 can now be re-examined. First
off, it is noted that the slenderness ratio L/h =10 is not small
enough—in relation to that of L/h = 100—so0 as to generate a contri-
bution of the shear deformation that is sufficiently significant to
change the overall behavioural pattern between Fig. 17(a) and
(b). In fact, the displacement provided by the EBBT coincides with

the asymptotic values in both cases (1.333 x 107> [m] for L/h =10
and 1.333 x 102 [m] for L/h = 100).

Secondly, and once again, the upper and lower-bounding of the
solution—respectively for force-based and displacement-based for-
mulations—stands out. The third remark is that the asymptotic val-
ues for both formulations are now seemingly the same, which can
be attributed to the fact that a similar contribution of higher order
terms takes place, i.e., the corresponding governing equations
describe an approximately equivalent structural response. Finally,
the perhaps most obvious and simultaneously more important
observation: the results given by the proposed HOBT with a very
coarse mesh (even with only one single element) are very close
to the asymptotic response, while the CUF requires a considerably
more refined mesh to attain a comparable degree of accuracy. Note
that, for the single element case, the proposed beam has a total of
76 dof while CUF elements B2, B3 and B4 require 90, 135 and 180
dof respectively.

Although the fair comparison should be held with the two-node
CUF element B2, it is clear that the dominance extends to the
three-node and four-node elements B3 and B4 as well. Bearing in
mind that both beam theories share a similar number of higher-
order terms, the superiority of the force-based formulation is thus
established. This assertion leads back and adds to the aforemen-
tioned advantages from the theoretical viewpoint, described in
the previous section.

7. Material nonlinear response
7.1. Description of nonlinear solution algorithm and material models

The flowchart of the solution algorithm for nonlinear analyses
implemented in the structural analysis code SAGRES is depicted
in Fig. 18. The definition of the variables can be found in the com-
panion paper [1]; further, x,,, corresponds to the position of each
integration section along the element length and wy,(x,;;) to the
associated integration weight, while s;, ;.. represents the resisting
normalised stress-resultants. The classical Newton-Raphson pro-
cedure was used as the nonlinear solution method at the structural
level. The superscript k refers to the load step, while i relates to the
Newton-Raphson iteration. Convergence is achieved when the
Euclidean norm of the vector with the out-of-balance force compo-
nents is smaller than a specified threshold (criterion of absolute
tolerance) [26]. The developed software also features an automatic
sub-stepping technique for those load steps where convergence is
not attained.

At the element-section level, the nested state determination of
Spacone et al. [27] is used, in which residual deformations €},
(computed from the sectional unbalanced forces s, anced) are
transferred from the section to the element level. The correspond-
ing iterations are represented by the superscript j. Convergence is
attained by the simultaneous verification of two criteria of relative
tolerance: (i) ratio between the Euclidean norm of the residual of
basic displacements v, , at each nested iteration and the norm
of the increment of basic displacements; (ii) ratio between the
current work increment and the initial work increment (energy
criterion).

The numerical applications in the following section explore the
classical EBBT and the current HOBT in nonlinear analyses, which
make use respectively of one-dimensional and multiaxial material
models. In order to validate the comparison between those beam
theories, it should be possible to relate the distinct material models
under specific states of stress and strain. On the other hand, to ease
the interpretation of the results, the latter should be as simple as
possible. Therefore, the following models have been implemented:
(i) a one-dimensional plastic model with kinematic hardening,
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Fig. 16. (a)-(f): Distribution of shear and normal stresses at different cross-sections; (g)-(h) Coarse and fine meshes used in the 3D solid FE model.

Table 1

Comparison between the number of terms considered in the CUF formulation and the proposed one.

n Carrera unified formulation Present formulation, Eq. (13)
Total Uy uy u, Total Uy uy u,
1 9 3 3 3 8 4 2 2
2 18 6 6 6 21 9 6 6
3 30 10 10 10 40 16 12 12
4 45 15 15 15 65 (38%) 25 (167) 20 (119) 20 (119)

4 Terms adopted in the theoretical derivations and numerical applications.

whose behaviour is defined by the Young’s modulus E, the uniaxial
yield stress oy"®, and the strain hardening ratio b=E,/E (E,
stands for the plastic modulus); (ii) the multiaxial J2 linear plastic-
ity model described by Auricchio and Taylor [28], which is based
on linear evolutionary rules for both the plastic strain and the
hardening mechanisms. It is noted that, although this three-
dimensional model allows for both isotropic and kinematic hard-
ening (defined respectively by the parameters H;, and Hy,), the
former will not play a role in the subsequent analyses inasmuch
as a monotonic loading will be considered; in any case, H;s, will
be assigned as zero. The remaining parameters that complete
the definition of this model are the initial yield stress in the

three-dimensional context a0, which relates to a;"’“"f“’ through
Oy0 = /2/30m, the shear modulus G, and the bulk modulus
K. The last two parameters will herein be alternatively obtained
from the Young’s modulus E and the Poisson’s ratio v.

7.2. Numerical applications

The use of the simple material models described above will help
to better illustrate the response of the proposed formulation under
nonlinear material behaviour. Similarly, the consideration of sim-
ple geometrical and loading conditions will facilitate the interpre-
tation of the structural response and the validation of the
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Fig. 17. Cantilever tip displacement given by the proposed theory and that of Carrera et al. [25] for elements with two, three and four nodes—respectively B2, B3 and B4: (a)

L/h=10; (b) Lh = 100.

developed element. Therefore, the use of the by-now familiar can-
tilever with in-plane tip load analysed in Sections 2 and 3 appeared
as an appropriate choice. In order to put in evidence the particular
features of the present approach, a comparison between a force-
based EBBT, whose formulation can be found in Almeida et al.
[29], and the current force-based HOBT, is performed. So as to illus-
trate the simulation of the flexure-shear interaction, the geometri-
cal configuration should be such that expected shear deformation
is observable, but on the other hand it should also be relatively
small to allow for a meaningful comparison between the two beam
theories. In view of such constraints and the results of Fig. 3, a
length L =40 [m] was selected, along with cross-sectional dimen-
sions h x b=12 x 1 [m]. The extremity load p=100 [N] was
applied through a suite of 20 load steps—corresponding thus to
monotonic increments of Ap =5 [N]—in order to accurately trace
the nonlinear response (as explained in Fig. 18). Following the
thorough discussion on the effects of boundary conditions
and number of elements, the results of a 1-element mesh with
the four BCs described in Section 3.3 (designated as TFF, PFF,
TFF2, and PFF2) are analysed. As expected, the fixed end for the
Euler-Bernoulli beam was simulated by blocking the three
translational displacements and the three rotations. The element
numerical integration was carried out with a Gauss-Lobatto
scheme with eight integration sections (index m of the element
sum in Fig. 18). Geometrical nonlinear effects are neglected. The
cross-sectional area integration was performed with a grid of
14 x 4 (height x width) quadrilaterals, each one featuring a total
of 4 x 4 Gauss-Lobatto integration points.

The following material parameters are considered for the uni-
dimensional material used in the force-based EBBT element:
guniexial — 75 [N/m?], E = 29,000 [N/m?], and b = 0.03. On the other
hand, the currently developed force-based HOBT element employs
the parameters for the multiaxial J2 linear plasticity model that fol-
low, which produce the same response under uniaxial states of
stress and strain: 6,0 = +/2/3 x 75 [N/m?], E=29,000 [N/m?],
and Hyi,=0.59 x 10%; further, the Poisson’s ratio is taken as
v =0.3 and, as stated in the previous section, H;s, = 0.

Fig. 19 shows the tip force-displacement results obtained with
the EBBT and the proposed HOBT with the four different BCs
abovementioned. A first immediate observation is that at this glo-
bal level the results obtained with the HOBT are very similar to
those given by the EBBT. The ratio of the corresponding displace-
ments throughout the inelastic response, for the same value of
load, is roughly similar to the one obtained previously in Section 2

under elastic response (i.e., approximately 6.5%, see Fig. 3). How-
ever, one could eventually expect to observe a progressive increase
in flexibility due to a reduction of shear stiffness with inelasticity.
The reasons for such behaviour will be addressed shortly, when the
stress distributions in the cross-section are examined. A second
comment is that, at this global-level, the distinct BCs do not seem
to play a role in the response of the HOBT element. However, as
shown below, this apparent agreement masks a different behav-
iour at the local level. Finally, it should be stated that the response
of multiple-element meshes (with two elements, four, eight, etc.)
were also analysed and the corresponding force-displacement
results are very similar to the 1-element mesh, which explains
why they are not depicted in Fig. 19.

The first beneficial feature of the currently proposed HOBT,
enabled by the employed force-based formulation, can be observed
in the strict verification of equilibrium throughout the member (for
example, regarding the distribution of V, and M,, which are respec-
tively constant and linear). This holds independently of the degree
of inelasticity demand, which would not be reproduced by classical
displacement-based formulations.

Fig. 20 shows the distribution of axial strain and axial stress
throughout the cross-section at the fixed end. The comparison is
carried out between the HOBT (with BCs TFF2) and the EBBT, for
p =100 [N]. While the axial strain profiles for both beam theories,
as depicted in Fig. 20(a) and (c), are rather similar, the axial stres-
ses, see Fig. 20(b) and (d), depict non-negligible differences. Two
phenomena contribute to explain them.

The first one is a physical effect that is compellingly simulated
by the proposed force-based HOBT. Namely, the smoothed varia-
tion of the axial stress profile at the mid-height of the section (in
comparison with the sharp bilinear profile of axial stresses pre-
dicted by the EBBT) can be associated to the redistribution of shear
stresses along the section with the evolution of plasticity. Fig. 21(a)
shows the shear stress distribution while the response is still linear
elastic, reproducing closely the Jourawski solution (qualitatively
and quantitatively). When the initial effects of plasticity show
up, shear is progressively taken by the central part of the section
subjected to less plastic demand, in terms of axial stress, as appar-
ent from Fig. 21(b) and (c). At peak force p =100 [N], Fig. 21(d)
indicates that shear stresses concentrate in a relatively small
cross-sectional stripe.

The second one, however, relates to the undesired higher-order
effects thoroughly discussed in Section 3, which collaborate to pro-
duce the particular nonlinear profile of axial stresses simulated by
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Fig. 18. Flowchart of the implemented solution algorithm for nonlinear analyses.

the HOBT. They are reflected in the appearance of the in-plane the same machine, the higher-order element took approximately
stresses shown in Fig. 22. Although roughly one order of 15-20 times (depending on the BCs) more computing time than
magnitude inferior to that of the axial stresses in Fig. 20, they are the classical force-based Euler-Bernoulli element. Bearing in mind

non-negligible and explain why the maximum axial stress in that a refined solid finite element mesh with nonlinear material
Fig. 20(b) is approximately 20% higher than the maximum axial behaviour would take several hundred times more (depending on
stress predicted by the EBBT in Fig. 20(d), when one could expect the software, mesh, material model, solution algorithm, etc.) to
that they would instead be smaller. Fig. 22(a) and (b) show that run an analogous nonlinear model, it can be said that the present
the imposed BCs can affect significantly the importance of these approach occupies a place in the modelling spectrum that is a bal-
effects. Their minimization deserves further future research. ance between the pre-existing approaches in terms of output sim-

This example can also be used to provide an indication regard- ulation features, as well as considered physical effects, and

ing the computational demand of the proposed formulation. Using computing time.
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The simple case-study of this section was meant to show the 8. Conclusions
potential of the present element in the inelastic range. A much

more thorough study should be performed to fully explore the pos- The theoretical framework of a beam element that models the

sibilities of the theory and the most efficient ways to deal with the flexural-shear-torsional interaction in 3D frames was presented

unsought higher-order effects associated to the different BCs, in a companion paper. Its innovative nature resides in the fact that,

which will be addressed in forthcoming publications. to the authors’ knowledge, a higher-order theory is associated for
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Fig. 20. Distribution of axial strains and stresses at fixed end for p =100 [N]: (a and b) Force-based HOBT with BCs TFF2; (c and d) Force-based EBBT.
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Fig. 21. Distribution of shear stresses at fixed end for proposed HOBT with BCs TFF2 and: (a) p=5 [N]; (b) p=60 [N]; (c) p=65 [N]; (d) p=100 [N].
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the first time with a flexibility formulation. The current paper com-
plements the latter, carrying out the corresponding model verifica-
tion and highlighting its distinguishing features both under linear
elastic and nonlinear material response.

Departing from the simple example of a cantilever with in-
plane tip load, a number of initial comparisons were made. In par-
ticular, a distinctive bounding behaviour of the solution was found,
which is a feature of formulations based on complementary energy
principles. Additionally, the force-based character of the approach
also explains the much increased accuracy of the response for
coarse meshes. An encouraging match with the output of solid
finite element models was obtained.

In classical theories (Euler-Bernoulli or Timoshenko), stress-
resultants and boundary conditions are of straightforward under-
standing and definition. However, in a higher-order model, the
large number of generalised stress-resultants and displace-
ments—well beyond the six classical ones—are much less intuitive
from the engineering standpoint; they relate with the also large
number of element nodal displacements and forces that are con-
trolled by appropriate boundary conditions.

The latter reflect the significant adaptability of the model, and
consequently physical phenomena that would pass unnoticed with
traditional beam theories can thus be retrieved. In particular, the
shear deformation, as well as the normal-shear stress interaction,
is directly accounted for, which became apparent in the analysis
of short span elements. In this context, an appropriate interpreta-
tion of the physical meaning of the generalised stress-resultants
becomes of paramount importance; this is further emphasised by
the uncommon effects that the higher-order boundary conditions
can cause on the stress-strain distributions, particularly near the
member extremities. These so-called higher-order boundary
effects—which also show up in displacement-based formulations,
although with distinct traits—play a relevant role in the response.
The aforementioned issues were addressed in this paper.

The intrinsic advantages of the proposed model over displace-
ment-based approaches in modelling span loads were also illus-
trated, and comparisons with other refined higher-order beam
theories of similar order demonstrated the outstanding appropri-
ateness of the flexibility formulation. The element was also able
to simulate a non-uniform torsional response, reproducing intrin-
sic three-dimensional features. Comparison with the results from
detailed solid models proved encouraging, especially taking into
account that the proposed model requires just a fraction of the
computing time.

Finally, the performance of the model with a linear plasticity
material model is thoroughly analysed and compared with the
results from a classical force-based Euler-Bernoulli beam using a
one-dimensional plastic material model with kinematic hardening.
The element managed to reproduce physical features of member
nonlinear behaviour, namely flexure-shear interaction through a
progressive redistribution of shear stresses to the part of the
cross-section subjected to less plastic demand. Such encouraging
results ask for further studies to explore the full potential of the
formulation and to simultaneously address the undesired influence
of higher-order effects.
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