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An innovative higher-order beam theory, capable of accurately taking into account flexural–shear–tor-
sional interaction, is originally combined with a force-based formulation to derive the corresponding finite
element. The selected set of higher-order deformation modes leads to an explicit and direct interaction
between three-dimensional shear and normal stresses. Namely, cross-sectional displacement and strain
fields are composed of independent and orthogonal modes, which results in unambiguously defined gen-
eralised cross-sectional stress-resultants and in a minimisation of the coupling of equilibrium equations.
On the basis of work-equivalency to three-dimensional continuum theory, dual one-dimensional higher-
order equilibrium and compatibility equations are derived. The former, which govern an advanced form of
beam equilibrium, are strictly satisfied via stress fields arising from the solution of the corresponding sys-
tems of coupled differential equations. The formulation, which is numerically validated in a companion
paper for both linear and nonlinear material response, inherently avoids shear-locking and accurately
accounts for span loads. Finally, the superiority of force-based approaches over displacement-based ones,
well established for inelastic behaviour, is also demonstrated for the linear elastic case.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction view to the application to thick or deep beams, Rankine [1] and
1.1. Review of higher-order beam theories

The geometrical features of many structural engineering ele-
ments make it possible to construct a set of governing differential
equations which are considerably easier to solve than their com-
plex three-dimensional continuum counterparts. In particular,
beam theory is the simplest and simultaneously one of the most
widely employed structural mechanics theories. Classical beam
theory was initially based on the plane sections assumption, which
was stated by Hooke in the XVIIth century. Further developed in
the XVIIIth century by Bernoulli and Euler, such classical beam the-
ory is only applicable to slender beams since it neglects the effect
of shear deformation. It would not reach generalised engineering
application until the end of the XIXth century. Meanwhile, with a
Bresse [2] included the relaxation of the restriction on the angle
of shearing deformation, allowing the cross-section not to remain
perpendicular to the beam’s centroidal line, despite remaining a
plane section and rigid in its own plane. Following the work by
Timoshenko [3,4], this theory eventually was named after him.

It is well known that such classical beam theories, namely the
Euler–Bernoulli and Timoshenko ones, are often not sufficiently
accurate to predict the global member response and its internal
stress–strain state. For instance, in the Timoshenko beam theory
(TBT), the shear strain distribution is incorrectly assumed to be
constant throughout the beam height; considering a simple rectan-
gular cross-section, it does not respect the zero shear strain and
stress boundary conditions at its top and bottom. Therefore, a
shear correction factor is required to accurately determine the
strain energy of deformation. Mindlin and Deresiewicz [5]
computed such correction factor for a variety of beam cross-sec-
tions. Cowper [6], based on a pioneering integration of the three-
dimensional equilibrium equations to form beam governing
relations, obtained a new definition for the shear coefficient and
derived expressions for homogeneous, isotropic symmetric
cross-sections—see also Cowper [7]. An account of the early history
of the shear correction factor can be found in Kaneko [8]. Research

https://core.ac.uk/display/148011447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2014.10.024&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2014.10.024
mailto:aacorreia@lnec.pt
mailto:joao.almeida@epfl.ch
mailto:rui.pinho@unipv.it
http://dx.doi.org/10.1016/j.engstruct.2014.10.024
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


A.A. Correia et al. / Engineering Structures 89 (2015) 204–217 205
on this field has continued throughout the following decades (e.g.,
Hutchinson and Zillmer [9]; Renton [10]; Hutchinson [11]) and up
to the present day (Dong et al. [12]). Within the framework of this
paper, classical beam theories are considered to be of the first-
order, i.e., the cross-sectional displacement fields are linear func-
tions on each of the cross-sectional coordinates.

However, shear deformation effects are best accounted for
through higher-order beam theories (HOBTs), wherein the axial dis-
placement field is represented by a power series expansion in the
cross-sectional coordinates, thus relaxing the constraint in the
cross-sectional warping. Therefore, out-of-plane displacements of
the cross-sectional points are allowed by using shape functions
for the cross-sectional axial displacements which are at least
quadratic in one coordinate or bilinear in both. Planar beam theories
can be found in the literature (Stephen and Levinson [13]) which are
similar in form to the TBT but account also for ‘shear curvature’ and
‘transverse direct stresses’, using those authors’ nomenclature. The
early work by Soler [14], wherein Legendre polynomials were
used for thick rectangular elastic isotropic beams, as well as for
orthotropic beams (Tsai and Soler [15]), should be mentioned. This
family of polynomials was employed because their completeness,
convergence and orthogonality properties are well formulated. Fur-
thermore, the usual stress-resultants of classical beam theory
appear naturally. Even without previous knowledge of such
approach, similar reasons also guided the use of Legendre polyno-
mials in the theoretical developments of the present study.

Levinson [16] used a third-order beam theory satisfying zero
shear strain conditions at both the upper and lower edges of the
beam, obviating the need for the shear coefficient. The equations
of motion therein derived are not variationally consistent, which
was later corrected by other authors, either making use of
Hamilton’s principle (Bickford [17]) or the principle of virtual dis-
placements (Reddy [18]). The variational consistency of Bickford’s
theory does not necessarily seem to imply, however, superior accu-
racy (Rychter [19,20]). The Euler–Lagrange equations of motion in
Bickford’s theory are typically displayed in terms of displacements,
mechanical parameters (describing a linear elastic constitutive rela-
tion), and cross-sectional geometric properties (Petrolito [21]). Nev-
ertheless, it is naturally possible to express them in a format
wherein specific constitutive relations are not yet assumed (Reddy
[22]). Such arrangement has the advantage of showing immediately
the generalisation of stress-resultants that is required in higher-
order theories. For example, in Bickford’s theory the common defi-
nition of shear force gives place to a new definition of a higher-order
shear force, involving the cross-sectional integral of the shear stres-
ses; additionally, a higher-order moment of the normal stresses also
shows up. It should be pointed out, however, that it is possible to
construct HOBTs—such as the one herein proposed—wherein the
classical definitions of the stress-resultants are preserved.

Based on Bickford’s theory, a two-node beam finite element
with three degrees of freedom per node was later developed and
tested (Heyliger and Reddy [23]). Approximately at the same time,
Kant and Manjunatha [24]—and later Manjunatha and Kant
[25]—proposed beam theories with kinematic fields having
different orders of variation for both the longitudinal and trans-
verse displacements; the authors used Lagrangian four-noded
cubic elements with different number of degrees of freedom per
node (ranging from three to seven, according to the complexity
of the underlying theory).

The Lo–Christensen–Wu theory (Lo et al. [26,27]) is an elegant
theory that is widely used by researchers for the analyses of shear
deformable beams and plates; it expands the axial displacement
field as a cubic function in the thickness coordinate, while the
polynomial expansion for the transverse displacement is truncated
at one order lower. Vinayak et al. [28] and Prathap et al. [29] carry
out a systematic evaluation of the Lo–Christensen–Wu theory,
comparing the results of finite element analyses with available
closed-form classical and elasticity solutions.

The refined model by Kim and White [30], developed for both
thin- and thick-walled composite beams, is of interest since it
accounts for transverse shear effects of the cross-section and of the
beam walls, as well as primary and secondary warping. Rand [31]
devised a model to handle arbitrary solid cross-sections or general
thin-walled geometries; it considers five degrees of freedom, namely
three cross-sectional displacements, a twist angle and a 3D warping
function. The importance of the latter, which is made dependent on
the boundary conditions (unlike traditional beam theories), is dem-
onstrated in a subsequent study by the same author [32].

The number of proposals associated with composite beam mod-
elling is countless and can be found in the literature reviews of
Ghugal and Shimpi [33] and Volovoi et al. [34]. Nevertheless, more
recent works deserve to be mentioned. In particular, the variational
asymptotic beam sectional analysis (VABS) suggested by Yu et al.
[35] is of relevance; therein, instead of assuming a 3D warping dis-
placement, they compute it in terms of the 1D generalised strains.
Also, in the context of the use of trigonometric functions, a new
three-noded beam finite element was recently conceived by Vidal
and Polit [36] for the analysis of laminated beams.

A significant improvement over previous HOBTs was accom-
plished on the so-called ‘Carrera’s Unified Formulation’ (Carrera
and Giunta [37]), also known as CUF, by allowing the order of the
theory and, consequently, the number of cross-sectional displace-
ment modes it takes into account, to be a free parameter. In view
of the similarities to the current work and the additional fact that
it will be considered for comparison purposes, a short introductory
note on such formulation should be made. Originally applied to the
modelling of anisotropic plate and shell structures (Carrera [38]),
the method proposes a systematic manner of formulating axiomat-
ically refined beam models by choosing the desired order of the the-
ory. Using a concise notation for the kinematic field, the governing
differential equations and the corresponding boundary conditions
(BCs) are reduced to a ‘fundamental nucleo’ in terms of the dis-
placement components, which does not depend upon the approxi-
mation order. The finite element formulation of the CUF for beam
structures (Carrera et al. [39]) includes two, three and four-noded
elements—using respectively linear, quadratic and cubic approxi-
mations along the beam axis—with different higher-order models
for the cross-section displacement field. The displacement compo-
nents are expanded in terms of the cross-section coordinates using
Taylor-type expansions. The effectiveness of higher-order terms in
the context of the CUF is analysed in a subsequent work (Carrera
and Petrolo [40]), while its applicability to the free vibration of
rotating beams is carried out in a new study (Carrera et al. [41]).
A compilation of the beam formulations and results obtained with
the CUF was recently published (Carrera et al. [42]).

1.2. Finite element formulations and objective of the study

In the context of finite element formulations for solid mechan-
ics, it is well-known that low-order elements in classical displace-
ment approximations lead to unsatisfactory performance, which
can be due to either locking in the incompressible limit or to poor
accuracy (namely in bending-dominated behaviour). The use of
energy functionals representing multi-field variational principles
provide a natural setting for the formulation of mixed finite ele-
ment methods, and an approach to by-pass the aforementioned
problems. In a mixed method it is possible to independently
approximate all fields that exist in the functional, which opens
the door to interesting methods of analysis. In particular, the
three-field formulation proposed by de Veubeke [43,44] and com-
monly known as Hu–Washizu [45,46] allows to approximate the
displacement, stress and strain as independent variables (see also
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Chama and Reddy [47]). Another popular, two-field functional with
displacement and stress as variables is the so-called Hellinger–
Reissner formulation. Stolarski and Belytschko [48] have shown
that the latter can be recovered as a special case of the classical
Hu–Washizu formulation. The relationship between the several
mixed formulations and other enhanced formulations can be found
in the work by Djoko et al. [49].

The particular case of beam elements deserves special consider-
ations. Stiffness or displacement-based methods (DB, as they will be
henceforth called, see Bathe [50]), which make use of compatible
displacement interpolation functions along the element length
and the principle of virtual work (or virtual displacements), are still
the most commonly used. They are also known as pure compatibil-
ity models in the literature (Pian and Tong [51]), and are popular
since the inter-element continuity of the displacement field is triv-
ially satisfied. On the other hand, the latter is difficult to enforce in
flexibility or force-based formulations (FB, as they will be hence-
forth called), which are built on the derivation of self-equilibrated
stress interpolation functions and the principle of complementary
virtual work (or virtual forces). These approaches are also known
as pure equilibrium models, and within its framework it is possible
to find an exact solution of the beam equilibrium differential equa-
tions, except if geometric effects due to nonlinear terms in the
strain–displacement compatibility relations are taken into account
(Neuenhofer and Filippou [52]; Souza [53]). Hence, the main advan-
tage of FB beam-column formulations, over the more common DB
counterparts, is that equilibrium is always strictly verified. Such
property holds independently of possible material nonlinear behav-
iour, explaining why flexibility methods have been progressively
adopted by the structural engineering community for the inelastic
analysis of members. An explicit consideration of the full three-
dimensional response of beams and columns can frequently be of
relevance for the referred inelastic behaviour, in order to account
for the effects of bi-directional shear and torsion and to enable the
use of arbitrary three-dimensional material models. Another advan-
tage of FB formulations is that no shear-locking phenomena exist,
contrary to what occurs in DB approaches. Although frame finite ele-
ments that are based on force interpolation functions alone have
been in use for many decades (Menegotto and Pinto [54]; Ciampi
and Carlesimo [55]), the development of efficient and stable state
determination algorithms, wherein nodal compatibility is respected,
is more recent (Spacone et al. [56]; Neuenhofer and Filippou [57]).

Comparative studies between FB and DB formulations can be
found elsewhere (Neuenhofer and Filippou [57]; Alemdar and White
[58]). Of interest are considerations on the bounding of the solution
associated with these two different types of formulation, which are
made and exemplified in the companion paper [59]. Equally funda-
mental is to understand the relation between DB and FB approaches,
as they have been herein described, and energy principles. Such
comparison should be carried out not just at the theoretical level,
but also regarding numerical implementation and computational
performance. While the application of the Hu–Washizu three-field
functional seems to be a promising avenue (Frischkorn and Reese
[60]), trade-offs between classical DB methods and mixed methods
are far from being completely clarified (e.g., Hjelmstad and Taciroglu
[61]). The merit of FB beam models is however clearly undisputed
[62], and the developments of the present work rest on it.

To the authors’ knowledge, pure equilibrium (FB) approaches
have only been used, up to now, in association with classical ele-
mentary beam theory. In other words, the finite elements that
were developed within the context of the HOBTs summarised in
the previous section are, in their essence, displacement-based for-
mulations. Bearing in mind the previous observations, the objec-
tive of the current paper is to present and explore, for the first
time, a higher-order beam element developed within the frame-
work of a pure force-based formulation.
It will be seen that the selected set of higher-order deformation
modes leads to an explicit and direct interaction between three-
dimensional shear and normal stresses. In particular, cross-sec-
tional displacement and strain fields are composed of independent
and orthogonal modes, herein described for solid rectangular sec-
tions, without loss of generality, by using normalised Legendre
polynomials. Such orthogonality results in unambiguously defined
generalised cross-sectional stress-resultants and in a minimisation
of the coupling between equilibrium equations. On the basis of
work-equivalency to three-dimensional continuum theory, dual
one-dimensional higher-order equilibrium and compatibility
equations are derived. The former, which govern an advanced form
of beam equilibrium, are strictly satisfied via stress fields arising
from the solution of the corresponding systems of coupled differ-
ential equations. Additionally, by using a force-based formulation,
shear-locking problems are inherently avoided and span loads are
accurately considered.

The proposed formulation is developed independently of the
assumed constitutive behaviour. A companion paper [59] presents
application examples to both linear elastic and nonlinear members
with relevant shear and torsional deformations that validate the
present theory. Moreover, an original but unexpected result
obtained in this study is the verification of the superiority of FB
models, for the linear elastic case, with respect to DB ones when
HOBTs are adopted for both approaches. It is recalled that within
classical elementary beam theory (Euler–Bernoulli beam models)
the linear elastic results of FB and DB models were similar, unlike
what happens in the analyses presented in the companion paper.

2. Development of equilibrium and compatibility relations

The distinctive trace in all beam theories, and following the
basic idea from Vlassov [63], is the assumption of a displacement
field composed by cross-sectional displacement modes defined a
priori and multiplied by functions of the beam coordinate axis
only. It allows the conversion of the 3D governing equations into
the corresponding 1D beam theory, which is not always estab-
lished in a clear way and thus not always guarantees power-conju-
gacy. In the current paper, this issue is addressed in a consistent
manner, following the approach presented by Teixeira de Freitas
and co-workers [64,65]. An illustrative derivation of an extended
version of the classical TBT’s compatibility and equilibrium equa-
tions, including distortion and warping, serves as an introductory
example for the more complex higher-order formulation.

2.1. Classical continuum mechanics framework

The present paragraph introduces the adopted nomenclature
and setting for the standard 3D continuum mechanics framework.

The components of the stress and strain tensors are assembled
in the column vectors:

r¼ rx ry rz sxy sxz syz½ �T ; e¼ ex ey ez cxy cxz cyz

� �T

while the body forces, displacements and surface forces are repre-
sented respectively by:

b ¼ bx by bz
� �T

; u ¼ ux uy uz½ �T ; t ¼ tx ty tz½ �T

The classical local equilibrium equations can be expressed in
the form:bDrþ b ¼ 0 in V ð1Þ
where V is the domain of the body and the linear differential equi-
librium operator is:

bD ¼ @=@x 0 0 @=@y @=@z 0
0 @=@y 0 @=@x 0 @=@z

0 0 @=@z 0 @=@x @=@y

264
375



Fig. 1. Spatial beam element and deformed configuration of general cross-section.

A.A. Correia et al. / Engineering Structures 89 (2015) 204–217 207
On the other hand, the classical local compatibility equations, or
strain–displacement relations, take the form:

e ¼ bDadju in V ð2Þ

where bDadj is the linear differential compatibility operator, adjoint
to the differential equilibrium operator bD:

D̂adj
ij ¼

dk

dsk
¼ ð�1Þkþ1 bDji; s ¼ x; y; z

That is, bDadj
ij ¼ bDji if the derivative is of odd order or bDadj

ij ¼ �bDji if
it is of even order. In the present case bDadj ¼ bDT , since only first
derivatives are involved, which are the matrix equivalents of using
the adjoint differential operators div and grad respectively applied
to the stress and strain tensors. It should be noted that the expres-
sion just presented to compute the adjoint to a linear differential
operator is, for convenience, symmetric to the usual definition
(Wu [66]; Gao [67]; Estep [68]). The contragredient expressions
(1) and (2) illustrate the duality between static and kinematic vari-
ables. Such adjointness or duality is complete when the appropriate
BCs are considered.

It is noted that the differential operators bD and bDadj can be
recast as follows:bD ¼ bNx

@

@x
þ bNy

@

@y
þ bNz

@

@z

bDadj ¼ bNT
x
@

@x
þ bNT

y
@

@y
þ bNT

z
@

@z
¼ bDT

where

bNx ¼
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

264
375; bNy ¼

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

264
375;

bNz ¼
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

264
375

The equilibrium BCs are:bNr ¼ ty in Xt ð3Þ

where Xt is the part of the boundary where static or natural BCs are
prescribed, the symbol y stands for prescribed quantities and

bN ¼ nx 0 0 ny nz 0
0 ny 0 nx 0 nz

0 0 nz 0 nx ny

264
375 ¼ bNxnx þ bNyny þ bNznz

is the exterior unit normal matrix corresponding to the differential
equilibrium operator bD.

Finally, the compatibility BCs can be expressed as:

u ¼ uy in Xu ð4Þ
where Xu is the part of the boundary where kinematic or essential
BCs are prescribed, with X ¼ Xt [Xu and Xt \Xu ¼£.

The abovementioned dual properties of the static boundary
value problem, composed by Eqs. (1) and (3), and its adjoint prob-
lem, i.e., the kinematic boundary value problem consisting of Eqs.
(2) and (4), is expressed by the following identity:Z

V
eTrdv ¼

Z
V

uT bdv þ
Z

Xu

ðuyÞTðbNrÞdaþ
Z

Xt

uTðtyÞda ð5Þ

which can, in fact, replace one of Eqs. (1)–(4). Moreover, since no
specific requirements on the constitutive behaviour are imposed
and any pair of statically admissible stress field and kinematically
admissible displacement field can be used, the duality principle of
expression (5) is equivalent to any form of the Potential Energy The-
orems, of the Principle of Virtual Work, or of their complementary
counterparts (Wu [66]; Gao [67]; Estep [68]; Washizu [69]).
2.2. Consistent derivation of beam theory equations

Consider the spatial beam element, of length L, represented in
Fig. 1. The deformed configuration of a general cross-section is also
schematically depicted.

As mentioned above, due to the inherent 1D character of any
beam theory, its displacement field can be decomposed into a com-
ponent function of the axis x of the beam and another varying in
the cross-section (the coordinate axes of which are y and zÞ:

uðx; y; zÞ ¼ Uðy; zÞdðxÞ ð6Þ

where Uðy; zÞ is the matrix of the displacement interpolation func-
tions over the cross-section (the cross-sectional displacement
modes), and dðxÞ is the vector of weights associated with the inter-
polation functions, also called generalised displacements.

As an illustrative example of the derivation of the beam theory
equations, without any loss of generality, an extended Timoshenko
beam theory (ETBT) formulation is herein obtained. In addition to
the classical TBT’s cross-sectional displacement modes, this beam
theory also considers the first-order in-plane distortion and out-
of-plane warping, thus including all first-order terms for the
cross-sectional displacements. The displacement field can be writ-
ten in accordance with the format of Eq. (6):

u¼
ux

uy

uz

264
375¼ ux0þ zhy�yhzþyzg

uy0� zhxþ zc
uz0þyhxþyc

264
375¼ 1 0 0 0 z �y yz 0

0 1 0 �z 0 0 0 z

0 0 1 y 0 0 0 y

264
375

ux0

uy0

uz0

hx

hy

hz

g
c

266666666666664

377777777777775
¼Ud

where d includes the classical TBT’s generalised displacements in
terms of the axial and transverse displacements in the y and z
directions of the reference axis (origin of the cross-section)—respec-
tively ux0;uy0 and uz0, and the cross-sectional rotations along the x; y
and z axes—respectively hx; hy and hz. Furthermore, d also includes
the cross-sectional in-plane distortion—c being the distortion inten-
sity associated to a change of the cross-section’s shape in its own
plane, and the cross-sectional out-of-plane warping, the intensity
of which is represented by g. The classical hypotheses of a rigid
behaviour of the cross-section in its own plane and of the cross-sec-
tions remaining plane after deformation, are thus abandoned in this
ETBT. It is noted that, in such first-order theory, the warping shape
is taken as yz. Additionally, the classical TBT is readily obtained by
neglecting these two additional degrees of freedom (c and g). The
cross-sectional displacement modes introduced in the previous
expression are represented as modes 1–8 in Fig. 1 of the companion
paper.
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The previous expressions can be combined with Eq. (2) to derive
the strain field:

eðx; y; zÞ ¼ bDadju ¼ bNxU
@

@x
þ bNy

@U
@y
þ bNz

@U
@z

� �
d ¼ BDadjd ¼

¼ Bðy; zÞeðxÞ ð7Þ

where Dadj is the beam differential compatibility operator and
Bðy; zÞ is the cross-section’s strain interpolation matrix, i.e., a matrix
that relates the generalised cross-sectional strains eðxÞ with the
strains at each point of the cross-section. It thus contains the strain
interpolation functions over the cross-section, which may be iden-
tified as its deformation modes.

The application of these expressions to the extended Timo-
shenko model results in the following strain vector:

e ¼

ex

ey

ez

cxy

cxz

cyz

2666666664

3777777775
¼ bDadju ¼

e0 þ zvy � yvz þ yzvg

0
0

cy0 � zvx þ zvc

cz0 þ yvx þ yvc

2c

2666666664

3777777775
¼

¼

1 0 0 0 z �y yz 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 �z 0 0 0 z 0
0 0 1 y 0 0 0 y 0
0 0 0 0 0 0 0 0 1

2666666664

3777777775

e0

cy0

cz0

vx

vy

vz

vg

vc

2c

266666666666666664

377777777777777775
¼ Be

where e0 ¼ u0x0 is the average axial strain; cy0 ¼ u0y0 � hz and
cz0 ¼ u0z0 þ hy are the average shear strains; vx ¼ h0x is the torsional
curvature; vy ¼ h0y and vz ¼ h0z are the flexural curvatures; and
vg ¼ g0; vc ¼ c0 þ g and 2c are the generalised strains dual to the
bimoment, bi-shear and distortional shear. The identification of
the last group of kinematic variables will soon be clarified. It is
pointed out that, similarly to the classical TBT, this ETBT presents
no in-plane extensions ey and ez (although eyz is herein considered,
as previously mentioned). Hence, it can be concluded that a simple
behaviour like the Poisson’s ratio effect is not correctly captured in
first-order beam theories. Phenomena such as this, or other more
complex ones, are naturally taken into account using higher-order
approaches, as shown in the companion paper.

From expression (7) it becomes clear that the beam local com-
patibility equations in the domain, or generalised strain–displace-
ment relations, are:
e ¼ Dadjd in L ()

e0

cy0

cz0

vx

vy

vz

vg

vc

2c

266666666666666664

377777777777777775
¼

@=@x 0 0 0 0 0
0 @=@x 0 0 0 �1
0 0 @=@x 0 1 0
0 0 0 @=@x 0 0
0 0 0 0 @=@x 0
0 0 0 0 0 @=@x

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

266666666666666664
Since the displacement modes of the cross-section were defined
a priori, the corresponding beam local equilibrium equations may
now be determined. In order to obtain power-conjugated general-
ised stress-resultants, such equations are derived through a projec-
tion of the classical local equilibrium Eq. (1) on the functional
space of the cross-sectional displacement modes (Teixeira de Fre-
itas et al. [65]). Such operation may also be regarded as weighting
the residuals of the 3D local equilibrium Eq. (1), taking the cross-
sectional displacement modes as weighting functions. Using the
divergence theorem and integrating the terms @r=@y and @r=@z
by parts, it leads to the following beam local equilibrium
equations: Z

A
UT ðbDrþbÞda¼0 in L()

()
Z

A
UT bNx

@r
@x
þ bNy

@r
@y
þ bNz

@r
@z

� �
daþ

Z
A

UT bda|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pb

¼0()

()
Z

A
UT bNx

@

@x
�@UT

@y
bNy�

@UT

@z
bNz

 !
rdaþ

Z
C

UT ðbNynyþ bNznzÞrdsþpb¼0()

()D
Z

A
BTr daþ

Z
C

UT tydsþpb|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
p

¼0()

()Dsþp¼0 in L ð9Þ

where A and C are, respectively, the area and boundary of the cross-
section, D is the beam differential equilibrium operator (which is
adjoint to DadjÞ, p are the distributed loads and

s ¼
Z

A
BTrda ð10Þ

are the generalised stress-resultants. Note that these are dual to the
generalised strains since

R
A eTrda ¼ eT s.

For the extended Timoshenko beam model, the generalised
stress-resultants and the distributed loads take the following form:

s ¼
Z

A
BTrda ¼

Z
A

rx

sxy

sxz

�zsxy þ ysxz

zrx

�yrx

yzrx

zsxy þ ysxz

syz

266666666666666664

377777777777777775
da ¼

N

Vy

Vz

T

My

Mz

B

Q

Vyz

266666666666666664

377777777777777775
0 0
0 0
0 0
0 0
0 0
0 0

@=@x 0
1 @=@x

0 2

377777777777777775

ux0

uy0

uz0

hx

hy

hz

g
c

266666666666664

377777777777775
in L ð8Þ
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p¼
Z

A
UT bdaþ

Z
C

UT tyds¼
Z

A

bx

by

bz

�zbyþybz

zbx

�ybx

yzbx

zbyþybz

266666666666664

377777777777775
daþ

Z
C

tyx
tyy
tyz

�ztyyþytyz
ztyx
�ytyx
yztyx

ztyyþytyz

2666666666666664

3777777777777775
ds¼

qx

qy

qz

mx

my

mz

mb

mq

266666666666664

377777777777775

where N is the axial force, Vy and Vz are the shear forces, T is the
torsional moment, My and Mz are the flexural moments, B is the
bimoment, Q is the bi-shear and Vyz is the distortional shear. It
should be pointed out that the latter is related to the shear stresses
syz, which do not act in the cross-section of the beam. The elements
of p are the distributed loads associated with the generalised
displacements.

According to the definition of the generalised stress-resultants
associated with the generalised cross-sectional strains, as visible
in Eqs. (7) and (10), B corresponds to an axial stress distribution
similar to the out-of-plane warping cross-sectional mode and
defined by yz; Q is the resultant of the shear stresses associated
with the bimoment B (similarly to the relation between Vz and
MyÞ; finally, Vyz is the shear stress-resultant associated with the
cross-sectional in-plane distortion.

The local equilibrium conditions (9) follow:

Dsþ p ¼ 0 in L ()

N0 þ qx ¼ 0
V 0y þ qy ¼ 0

V 0z þ qz ¼ 0
T 0 þmx ¼ 0
M0

y � Vz þmy ¼ 0

M0
z þ Vy þmz ¼ 0

B0 � Q þmb ¼ 0
Q 0 � 2Vyz þmq ¼ 0

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

in L ð11Þ

Similarly to the local equilibrium equations, the three-
dimensional boundary equilibrium Eq. (3) can also be weighted
over the area of the cross-section, with U serving as the weighting
function:
Z
A

UT ðbNrÞ|fflffl{zfflffl}
ðbNxnxrÞ

da ¼
Z

A
UT tyda|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Ry

in x ¼ 0; L ()

nx 0 0 0 0 0 0 0 0
0 nx 0 0 0 0 0 0 0
0 0 nx 0 0 0 0 0 0
0 0 0 nx 0 0 0 0 0
0 0 0 0 nx 0 0 0 0
0 0 0 0 0 nx 0 0 0
0 0 0 0 0 0 nx 0 0
0 0 0 0 0 0 0 nx 0

266666666666664

377777777777775

N

Vy

Vz

T

My

Mz

B

Q

Vyz

266666666666666664

377777777777777775
¼

Ny

V yy
V yz
Ty

My
y

My
z

By

Q y

26666666666666664

37777777777777775
() Ns ¼ Ry in x ¼ 0; L ð12Þ
where N is the exterior unit normal matrix corresponding to the
beam differential equilibrium operator D (with Nij ¼ nx if
Dij ¼ @=@x and Nij ¼ 0 otherwise), while Ry is the vector of general-
ised nodal forces applied at the beam ends. The previous expres-
sion depicts the beam boundary equilibrium equations.

Finally, the beam boundary compatibility conditions are simply
given by:

d ¼ dy in x ¼ 0; L ð13Þ
where dy is the vector of generalised nodal displacements applied at
the beam ends. Its components are only defined at those degrees of
freedom with imposed kinematic conditions, whereas the remain-
ing degrees of freedom have static boundary conditions instead,
with the corresponding elements of the vector Ry.

The adjointness of the beam theory equations presented above
is expressed by the following identity:Z L

0
eT sdx ¼

Z L

0
dT pdxþ ½dT Ry�

L

0

for which similar comments to the ones relative to expression (5)
can be produced. It is noted that the boundary terms considered
refer to the case where only static BCs are imposed; otherwise the
elements of the product dT Ry corresponding to the kinematic BCs
should be replaced by the ones of the product ðdyÞ

T
Ns.

Existing FB beam approaches are derived by solving the classical
Timoshenko beam equilibrium equations, or equivalently the Euler–
Bernoulli ones, which correspond to the first six equations of expres-
sion (11). Such system of six first-order linear differential equations
with six unknowns, for a given set of known distributed loads,
requires six static BCs. On the other hand, the corresponding TBT
degrees of freedom sum up to 12 available BCs, as given by the first
six equations of expression (12). Consequently, only six nodal forces
at the beam ends are independent, while the others depend on the
latter through beam equilibrium. Such dependency is equivalent
to restraining the rigid-body motion of the beam. It is also noted that
different sets of independent forces can be considered, correspond-
ing to removing such rigid-body motion using different sets of stat-
ically determinate supports. Typically, a simply supported beam is
considered, with the axial displacement and torsional rotation
blocked at one end. Such conceptual statically determinate supports
are also adopted in this work.

The remaining two beam equilibrium equations of expression
(11), for given distributed loads, have three unknown generalised
stress-resultants and four static BCs at the beam ends, where it is
noted that Vyz plays no role in the equations of expression (12).
Such differential equations cannot be solved unless, for instance,
Vyz is defined a priori. Since these differential equations require
only two static BCs, the remaining two can be used for defining
an assumed variation for Vyz in a FB approach. Although the result-
ing FB formulation would strictly verify the equilibrium conditions,
it is not unique in the sense that Vyz can be assumed to have
different variations. In this work, the simplest possible polynomial
function was assumed in such cases, as will be further discussed
later, corresponding to a linear polynomial for Vyz.
3. Proposed beam element: governing equations

The current beam theory is derived, in this section, for elements
with solid rectangular cross-section of dimensions h (height) � b
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(width). Nevertheless, it can be extended to any other cross-sec-
tional geometry, as discussed below.

3.1. Displacement field and Legendre polynomials

Similarly to expression (6), the displacement field is decom-
posed into a component varying along the axis of the beam and
another varying in the cross-section:

uðx; y; zÞ ¼
Xn

i¼0

Xn

j¼0

Uijðy; zÞdijðxÞ ¼ Uðy; zÞdðxÞ ð14Þ

In the present formulation, the interpolation functions Uðy; zÞ
are based on Legendre polynomials. The latter, herein represented
by PnðsÞ for integers n ¼ 0;1;2; . . ., form a sequence of solutions to
Legendre’s differential equation with the normalisation Pnð1Þ ¼ 1,
which results in Pnð�1Þ ¼ ð�1Þn. The Legendre polynomials are
nth-degree polynomials that can be expressed using Rodrigues’
formula:

PnðsÞ ¼
1

2nn!

dn

dsn ½ðs2 � 1Þn�

In particular, it is noted that P0ðsÞ ¼ 1 and P1ðsÞ ¼ s. The remain-
ing polynomials can be obtained recursively according to:

PnðsÞ ¼
2n� 1

n
sPn�1ðsÞ �

n� 1
n

Pn�2ðsÞ; n P 2

In this paper, Legendre polynomials up to the fourth degree are
used:

P2ðsÞ ¼
3s2 � 1

2
P3ðsÞ ¼

5s3 � 3s
2

P4ðsÞ ¼
35s4 � 30s2 þ 3

8

The present study also makes use of the derivatives of PnðsÞ, for
which the following recursive expression can be developed:

dPnðsÞ
ds

¼ ð2n� 1ÞPn�1ðsÞ þ
dPn�2ðsÞ

ds
; n P 2

The derivatives of the polynomials up to the fourth degree are
thus given by:

P00ðsÞ ¼ 0 P01ðsÞ ¼ 1 ¼ P0 P02ðsÞ ¼ 3P1 P03ðsÞ ¼ 5P2 þ P0

P04ðsÞ ¼ 7P3 þ 3P1

One fundamental property of the Legendre polynomials is that
they form a complete orthogonal set in the interval �1 6 s 6 1:Z 1

�1
PmðsÞPnðsÞds ¼ dmncn ð15Þ

wherein dmn is the Kronecker delta and cn ¼ 2=ð2nþ 1Þ.
The previous property is fundamental for the development of

the current finite element, since it enables the definition of gener-
alised stress-resultants which are not only independent between
each other, but also completely orthogonal to one another. This
leads to an unambiguous definition of the generalised stress-resul-
tants and to a minimisation of the coupling of equilibrium equa-
tions, unlike all previous HOBTs, as will be discussed later. In
view of the interval where the orthogonality property (15) holds,
the following normalised cross-sectional coordinates are adopted:

y� ¼ y
2
b
; z� ¼ z

2
h

ð16Þ

Consequently, Eq. (14) can be equivalently rewritten as:

uðx; y�; z�Þ ¼
Xn

i¼0

Xn

j¼0

U�;ijðy�; z�Þd�;ijðxÞ ¼ U�ðy�; z�Þd�ðxÞ ð17Þ
The classical beam theory generalised displacements

dijðxÞ ¼ uij
x uij

y uij
z

h iT
are thus replaced by the normalised gener-

alised displacements d�;ijðxÞ ¼ u�;ijx u�;ijy u�;ijz

h iT
, which account

for the normalisation procedure required to keep the orthogonality
property of the cross-sectional interpolation functions. The latter
are defined as follows:

U�;ijðy�; z�Þ ¼
Piðy�ÞPjðz�Þ 0 0

0 Pi�1ðy�ÞPjðz�Þ 0
0 0 Piðy�ÞPj�1ðz�Þ

264
375 ð18Þ

It can be observed that the transverse displacements have a one
degree lower polynomial function than the axial displacements.
This results in the same degree of approximation, considering the
contributions of both the axial and transverse displacements in
each set of modes ij, for the shear strain fields. A selected set of
cross-sectional displacement shapes for a specific rectangular sec-
tion is represented in the companion paper [59]. As already
pointed out, this formulation may be extended to other cross-sec-
tional geometries by using a power series expansion based on
MacLaurin polynomials, for instance, and orthogonalising such
functions through a Gram–Schmidt orthogonalisation procedure.
In fact, the Legendre polynomials in y� can be obtained as the result
of such approach to the polynomial series 1, y�; y�2; y�3; y�4, . . ., con-
sidering a rectangular section.

The displacement field up to the first-order is thus composed of
the following interpolation functions and associated weights,
where P�1ðsÞ ¼ 0:

U�;00ðy�; z�Þ ¼
1 0 0
0 0 0
0 0 0

264
375; d�;00ðxÞ ¼

u�x0

0
0

264
375

U�;10ðy�; z�Þ ¼
y� 0 0
0 1 0
0 0 0

264
375; d�;10ðxÞ ¼

�h�z
u�y0

0

264
375

U�;01ðy�; z�Þ ¼
z� 0 0
0 0 0
0 0 1

264
375; d�;01ðxÞ ¼

h�y
0

u�z0

264
375

U�;11ðy�; z�Þ ¼
y�z� 0 0

0 z� 0
0 0 y�

264
375; d�;11ðxÞ ¼

g�

u�;11
y

u�;11
z

264
375

which can be assembled into:

u1st order¼U�;1st orderd�;1st order ()
u1st order

x ¼u�x0þz�h�y�y�h�zþy�z�g�

u1st order
y ¼u�y0þz�u�;11

y

u1st order
z ¼u�z0þy�u�;11

z

8><>:
ð19Þ

The generalised displacements u�;11
y and u�;11

z are associated with
the torsional rotation h�x and cross-sectional distortion c�, which are
defined as:

h�x ¼ 1
2 u�;11

z � u�;11
y

� �
c� ¼ 1

2 u�;11
z þ u�;11

y

� �
8><>: )

u�;11
y ¼ c� � h�x

u�;11
z ¼ c� þ h�x

(

Replacing the previous relations in expression (19) yields, in
matrix form:
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u1st order¼U�;1st orderd�;1st order¼
1 0 0 0 z� �y� y�z� 0
0 1 0 �z� 0 0 0 z�

0 0 1 y� 0 0 0 y�

264
375

u�x0

u�y0

u�z0

h�x
h�y
h�z
g�

c�

266666666666664

377777777777775
ð20Þ

The first-order compatibility matrix A�;1st order transforming the
vector of classical generalised displacements d1st order (i.e., the one
from the ETBT) into the normalised generalised displacements
d�;1st order can be readily derived, as well as its inverse relation:

( )1st order 1st order 1st order 1st order 1st order 1st order

x xx x

y yy y

z zz z

xx x

y y

z z

x

u uu u

u uu u

u uu u

b h b h
b

h

b

bh

b h b h

1
, , , ,

0 00 0

0 00 0

00

1 1

4 4

2

2

4

4 4

θθ θ γ

θ θ

θ θ

η η

γ θ γ

−∗ ∗ ∗ ∗

∗∗

∗∗

∗∗

∗

∗

∗

∗

∗

= ⇔ = ⇔

=⎧ =
⎪ ==⎪
⎪ =⎪ =
⎪ + − = +⎪ = +
⎪
⎪⎪⇔ ⇔=⎨
⎪
⎪

=⎪
⎪
⎪ =⎪
⎪

− +⎪ = +⎪⎩

d A d d A d

x

y y

z z

x

h b h

h

b

bh

b h b h

1 1

2

2

4

1 1 1 1

θ γ

θ θ

θ θ

η η

γ θ γ

∗ ∗

∗

∗

∗

∗ ∗

⎧
⎪
⎪
⎪
⎪
⎪

⎛ ⎞ ⎛ ⎞⎪ + −⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎪
⎪ =⎨
⎪
⎪ =⎪
⎪
⎪ =⎪
⎪

⎛ ⎞ ⎛ ⎞⎪ = − + +⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

0
0

ð21Þ

The interpolation functions U�;ij and associated weights d�;ij cor-
responding to higher-order terms are not explicitly indicated
herein due to space limitations (see Almeida [70]), but again they
follow the form of expression (18). The number of terms and the
combination of indices ij adopted in the present beam-column
model was based on a balance between intended accuracy and
computational cost: all terms U�;ij up to the fourth-order in one
coordinate and first-order in the other were considered. As dem-
onstrated in the application examples of the companion paper
[59], the terms adopted are sufficient to retrieve the intended flex-
ural–shear–torsional interaction. Fig. 2 represents all 16 terms
considered for the longitudinal displacement ux in a Pascal triangle
type of representation. The transverse displacements uy and uz

contain 11 terms each, with one degree less in y� and z�, respec-
tively, than the corresponding terms in ux, resulting in a total of
38 displacement terms.

It is now possible to write down the complete expression of
each component of the displacement field associated with the
present formulation, including the higher-order terms:
( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

y z

P y y z P z

P y P y z y P z P z

P y P y z y P z P z

P y z y P z

22

3 2 2 3

4334

44

1
∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗∗ ∗ ∗

∗ ∗ ∗ ∗

Fig. 2. Polynomial terms considered for the longitudinal displacement ux .
ux ¼ u�x0 þ z�h�y � y�h�z þ y�z�g� þ P2ðy�Þu�;20
x þ P2ðz�Þu�;02

x

þ P2ðy�Þz�u�;21
x þ y�P2ðz�Þu�;12

x þ P3ðy�Þu�;30
x þ P3ðz�Þu�;03

x

þ P3ðy�Þz�u�;31
x þ y�P3ðz�Þu�;13

x þ P4ðy�Þu�;40
x þ P4ðz�Þu�;04

x

þ P4ðy�Þz�u�;41
x þ y�P4ðz�Þu�;14

x

uy ¼ u�y0 � z�h�x þ z�c� þ y�u�;20
y þ y�z�u�;21

y þ P2ðz�Þu�;12
y þ P2ðy�Þu�;30

y

þ P2ðy�Þz�u�;31
y þ P3ðz�Þu�;13

y þ P3ðy�Þu�;40
y þ P3ðy�Þz�u�;41

y

þ P4ðz�Þu�;14
y

uz ¼ u�z0 þ y�h�x þ y�c� þ z�u�;02
z þ P2ðy�Þu�;21

z þ y�z�u�;12
z þ P2ðz�Þu�;03

z

þ P3ðy�Þu�;31
z þ y�P2ðz�Þu�;13

z þ P3ðz�Þu�;04
z þ P4ðy�Þu�;41

z

þ y�P3ðz�Þu�;14
z

In expression (17), U�ðy�; z�Þ is a (3 � 38) matrix which, again, is
not depicted due to space restrictions, while the normalised
generalised displacements d�ðxÞ is the following (38 � 1) vector:

d� ¼ ½u�x0 u�y0 u�z0 h�x h�y h�z g� c� u�;20
x u�;20

y u�;02
x

u�;02
z u�;21

x u�;21
y u�;21

z u�;12
x u�;12

y u�;12
z u�;30

x u�;30
y

u�;03
x u�;03

z u�;31
x u�;31

y u�;31
z u�;13

x u�;13
y u�;13

z u�;40
x

u�;40
y u�;04

x u�;04
z u�;41

x u�;41
y u�;41

z u�;14
x u�;14

y u�;14
z �T ð22Þ

Similarly to the first-order components, it is possible to write
down the complete compatibility matrix A� (38 � 38) which con-
verts the classical generalised displacements vector d (38 � 1) into
the normalised generalised displacements vector d� (38 � 1):

d� ¼ A�d ð23Þ

Considering common engineering reasoning, the meaningful
classical generalised displacements are those of the first-order,
which are dealt with in Eq. (21). Hence, the components of vector
d related to higher-order generalised displacements are considered
here to be identical to the corresponding normalised generalised
displacements and the respective part of matrix A� is an identity
sub-matrix.
3.2. First and higher-order compatibility equations

In the compatibility equations herein developed, Legendre
polynomials and their derivatives appear in the definition of
generalised strains. However, those derivatives are not orthogo-
nal either to the Legendre polynomials or between each other.
Consequently, the generalised strains thus obtained would be
independent from one another but they would not constitute
an orthogonal set. Such lack of orthogonality would lead to a
dubious definition for the generalised stress-resultants, according
to Eq. (10), and to a large coupling of the equilibrium equations.
This is undesirable in a FB approach since it would become
extremely complex to obtain the self-equilibrated interpolation
functions for the generalised stress-resultants. Moreover, the
nodal BCs would also be coupled, which would unnecessarily
increase the model’s complexity. Hence, in order to have a
unique definition for the generalised stress-resultants and to
reduce the coupling between the equilibrium equations and
BCs to a minimum, those derivatives may and should be decom-
posed on a basis of Legendre polynomials. Every single general-
ised strain will then be associated with a unique Legendre
polynomial in each direction.

Analogously to the displacement field, the strain field can also
be decomposed into first and higher-order components. The first-
order strain field can be derived from Eqs. (20) and (2):



212 A.A. Correia et al. / Engineering Structures 89 (2015) 204–217
e1st order ¼

e1st order
x

e1st order
y

e1st order
z

c1st order
xy

c1st order
xz

c1st order
yz

266666666664

377777777775
¼ bDadju1st order ¼

¼

e0þz� v�;1st order
y �y� v�;1st order

z þy�z� v�;1st order
g

0

0

cy0�z� v�;1st order
x þz� v�;1st order

c

cz0þy� v�;1st order
x þy� v�;1st order

x

2c

266666666664

377777777775
()

() e1st order ¼

1 0 0 0 z� �y� y�z� 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 �z� 0 0 0 z� 0

0 0 1 y� 0 0 0 y� 0

0 0 0 0 0 0 0 0 1

26666666664

37777777775

e0

cy0

cz0

v�;1st order
x

v�;1st order
y

v�;1st order
z

v�;1st order
g

v�;1st order
c

2c

26666666666666666664

37777777777777777775

¼B�;1st ordere�;1st order

ð24Þ

where e0 ¼u�0x0¼u0x0, cy0 ¼ u�0y0 � 2h�z=b ¼ u0y0 � hz, cz0 ¼ u�0z0 þ 2h�y=h ¼
u0z0 þ hy, v�;1st order

x ¼ h�0x þg�ð1=h�1=bÞ, v�;1st order
y ¼ h�0y , v�;1st order

z ¼ h�0z ,

v�;1st order
g ¼ g�0, v�;1st order

c ¼ c�0 þ g�ð1=hþ 1=bÞ, and 2c are the gener-

alised strains, and e�;1st order is the vector of the first-order norma-
lised generalised cross-sectional strains. The superscript
‘�;1st order’ has been appended only to the components that differ
from the usual generalised cross-sectional strains associated with
the ETBT, as indicated in Section 2.2.

The corresponding beam local compatibility equations are:

e�;1st order ¼Dadj�;1st orderd�;1st order ()

e0

cy0

cz0

v�;1st order
x

v�;1st order
y

v�;1st order
z

v�;1st order
g

v�;1st order
c

2c

2666666666666666664

3777777777777777775

¼

¼

@=@x 0 0 0 0 0 0 0
0 @=@x 0 0 0 �2

b 0 0
0 0 @=@x 0 2

h 0 0 0
0 0 0 @=@x 0 0 1

h� 1
b 0

0 0 0 0 @=@x 0 0 0
0 0 0 0 0 @=@x 0 0
0 0 0 0 0 0 @=@x 0
0 0 0 0 0 0 1

hþ 1
b @=@x

0 0 0 2
b� 2

h 0 0 0 2
bþ 2

h

266666666666666664

377777777777777775

u�x0

u�y0

u�z0

h�x
h�y
h�z
g�

c�

266666666666664

377777777777775

Following an analogous rationale, the components of the com-
plete strain field including higher-order terms can be obtained.
Due to space limitations they are not depicted herein (see Almeida
[70]), as neither is the subsequent form e ¼ B�e�. In the latter
expression, e� is the (57 � 1) vector of generalised cross-sectional
strains and B� is the (6 � 57) strain approximation matrix.
Nevertheless, the following higher-order modifications to the
first-order generalised cross-section strains of Eq. (24), due to the
imposition of orthogonality between the deformation modes,
should be noted:

c�y0 ¼ cy0 þ 2
b u�;30

c�z0 ¼ cz0 þ 2
h u�;03

v�x ¼ h�0x þ g� 1
h� 1

b

	 

þ u�;13

h � u�;31

b

v�y ¼ h�0y ¼ v�;1st order
y

v�z ¼ h�0z ¼ v�;1st order
z

v�g ¼ g�0 ¼ v�;1st order
g

v�c ¼ c�0 þ g� 1
h þ 1

b

	 

þ u�;13

h þ u�;31

b

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
The final local compatibility equations are, as expected, given by

e� ¼ Dadj�d�, where d� is the vector of normalised generalised dis-
placements, as indicated in Eq. (22), and Dadj� is the (57 � 38) differ-
ential compatibility operator, not depicted herein for obvious
reasons.

For what concerns the compatibility BCs, these are expressed
by:

d� ¼ d�;y in x ¼ 0; L
3.3. First and higher-order equilibrium equations

The local equilibrium equations are obtained by using the same
projection method applied in expression (9), resulting in power-
conjugate or dual relationships to the local compatibility
equations:Z

A
ðU�ÞTðbDrþ bÞda ¼ 0 ()

() D�
Z

A
ðB�ÞTrda|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

s�

þ
Z

A
ðU�ÞT bdaþ

Z
C
ðU�ÞT ty ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p�

¼ 0 in L

Once more, it is possible to isolate the first-order components.
The corresponding local equilibrium equations are given by:

D�;1st orders�;1st orderþp�;1st order ¼0 ()

N0 þqx ¼0
V 0yþqy ¼0

V 0zþqz¼0
T�0 þ2 1

h� 1
b

	 

Vyzþm�x ¼0

M�0
y � 2

h Vzþm�y ¼0

M�0
z þ 2

b Vyþm�z ¼0
B�0 � 1

bþ 1
h

	 

Q � þ 1

b� 1
h

	 

T� þm�b¼0

Q �0 �2 1
hþ 1

b

	 

Vyzþm�q¼0

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
The normalised generalised stress-resultants s�;1st order ¼

N Vy Vz T� M�
y M�

z B� Q � Vyz
� �T relate to the classical
generalised stress-resultants, and conversely, through:
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For what concerns the distributed loads, it is assumed that mb

and mq (classical beam theory quantities) are null. Bearing in mind
these assumptions, the relevant first-order normalised distributed
loads can be obtained from the classical ones, and conversely, by:

The complete local equilibrium equations constitute a highly
indeterminate system of differential equations and are composed
of the (38 � 57) differential equilibrium operator D� (adjoint to
Dadj� and not explicitly represented due to space restrictions), the
(38 � 1) vector of normalised distributed loads p� and the
(57 � 1) vector of normalised generalised stress-resultants s�:
s� ¼ N M�
y M�

z B� N�;ijð12� 1Þ N�;ijy ð6� 1Þ N�;ijz ð6� 1Þ Vy T� Q � V�;ijy ð9� 1Þ Vz V�;ijz ð9� 1Þ Vyz V�;ijyz ð6� 1Þ
h iT
where the higher-order components are given by:

N�;ij ¼
R

A Piðy�ÞPjðz�Þrx da ð12 termsÞ
N�;ijy ¼

R
A Pi�2ðy�ÞPjðz�Þry da ð6 termsÞ

N�;ijz ¼
R

A Piðy�ÞPj�2ðz�Þrz da ð6 termsÞ

9>>=>>; for i P 2 or j P 2

V�;ijy ¼
R

A Pi�1ðy�ÞPjðz�Þsxy da ð9 termsÞ
V�;ijz ¼

R
A Piðy�ÞPj�1ðz�Þsxz da ð9 termsÞ

)
for i P 1 or j P 1

V�;ijyz ¼
R

A Pi�1ðy�ÞPj�1ðz�Þsyz da ð6 termsÞ for i P 1 and j P 1

It is noted that N�;ijy ;N�;ijz and V�;ijyz are related to the stresses ry;rz

and syz, respectively, which do not act in the cross-section of the
beam. Consequently, these 18 generalised stress-resultants,
together with the first-order one Vyz, will not appear in the static
BCs at the beam ends.

For what concerns the normalised distributed loads p�, the
assumptions regarding the first-order loads p�;1st order are valid.
Additionally, it is also assumed that all higher-order components
are zero.

After carrying out all the analytical developments [70,71], the
final form of the local equilibrium equations can be expressed by
eight uncoupled systems of dependent equations, in a total of 38
equations with 57 variables, which are depicted in Appendix A.

Again, the equilibrium BCs are obtained as in Eq. (12):

Z
A
ðU�ÞT

rx

sxy

sxz

264
375nxda ¼

Z
A
ðU�ÞT

tyx
tyy
tyz

264
375da

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
R�;y

() N�s� ¼ R�;y in x ¼ 0; L

ð25Þ

where N� is the (38 � 57) exterior unit normal matrix correspond-
ing to the differential equilibrium operator D�.
P� ¼ M�
yA M�

zA B�A N�;ijA ð12� 1Þ T�A Q �A V�;ijyA ð9� 1Þ V�;ijzA ð9� 1Þ N
h

4. Force-based formulation

In the previous paragraphs the higher-order beam equilibrium
and compatibility equations were derived. The choice of approxi-
mating either the field of generalised stress-resultants and strictly
verifying the equilibrium equations, or the field of beam displace-
ments together with the strict verification of the compatibility
equations originates either a FB formulation (also known as equilib-
rium or flexibility-based) or a DB formulation (also known as com-
patibility or stiffness-based). Moreover, in a FB formulation, if the
interpolated generalised stress-resultants’ field is not self-equili-
brated, then a simultaneous interpolation of the beam displace-
ments’ field is required and a mixed formulation is obtained. This
is the case when geometrically nonlinear effects need to be consid-
ered. As previously stressed, a FB formulation is envisaged in this
work. Hence, the field of generalised stress-resultants should
respect the beam local equilibrium conditions previously derived.
As mentioned above, there are a total of 38 local equilibrium
equations involving 57 unknown generalised stress-resultants
(see Appendix A). Thus, in order to determine the complementary
solution s�c of the homogeneous equilibrium equations D�s�c ¼ 0, a
few assumptions have to be made concerning the functions
describing the evolution of some generalised stress-resultants, as
already discussed in Section 2.2 for the first-order ETBT. Given that
the differential equations of equilibrium require only one BC each,
since they involve only first derivatives, a total of 38 BCs are
needed for this purpose. On the other hand, there are 76 available
BCs at both extremities of the beam, corresponding to the nodal
values of the 38 generalised stress-resultants related to the
cross-sectional stresses rx; sxy and sxz. Moreover, as discussed in
Section 2.2, six of these nodal values are dependent on the remain-
ing ones since they are related to the six rigid-body motions of the
beam. Hence, from the remaining 70 BCs, there are 32 which will
not be used to solve the equations of equilibrium and that may
be applied instead for defining a priori an assumed variation for
the 19 generalised stress-resultants related to the stresses ry;rz

and syz. Such assumed variation is not unique, which means that
different self-equilibrated approximations can be envisaged. In this
work, the field of those 19 generalised stress-resultants is approx-
imated by the simplest possible polynomial functions, namely lin-
ear and constant ones: the necessary assumptions on their
variations are briefly indicated in Appendix B. The solution corre-
sponding to such self-equilibrated higher-order stress-resultants
is too lengthy to be included herein, but can be verified in Almeida
[70]. Nevertheless, it is expressed in a compact form as:

s�c ¼ HsP�

where Hs is the (57 � 70) generalised stress-resultants’ interpola-
tion matrix, satisfying D�Hs ¼ 0, and P� is the following (70 � 1)
vector of independent or basic forces:
B M�
yB M�

zB B�B N�;ijB ð12� 1Þ Q�B V�;ijyB ð9� 1Þ V�;ijzB ð9� 1Þ
iT
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In the previous definition, the subscripts ‘A’ and ‘B’ stand for the ini-
tial and final element nodes (refer to Fig. 1), respectively. Moreover,
it is noted that the components of P� were directly identified with
the nodal forces at the beam ends, in the absence of span loads,
by using the static BCs of Eq. (25). Additionally, the remaining nodal
forces (NA;VyA;VzA;VyB;VzB and T�B) are not included in P� because
they are dependent generalised forces.

A particular solution s�0 equilibrating the possible span loads,
i.e., verifying D�s�0 þ p� ¼ 0, can also be developed. Some of the
application cases presented in the companion paper feature such
distributed loading [59]. Nonetheless, the complete solution of
the differential equilibrium equations is:

s� ¼ s�c þ s�0 ¼ HsP� þ s�0 ð26Þ

With the above mentioned approximation, equilibrium in the
domain and at the boundary is automatically satisfied. In order to
correctly formulate a new beam element, the compatibility in the
domain and the kinematic BCs have to be likewise satisfied.
So as to maintain power-conjugacy, the domain compatibility
equations are verified in a weighted form using the generalised
stress-resultants’ interpolation matrix as weighting functions,
resulting in the following adjoint compatibility conditions:

Z
L

HT
s ðe� �Dadj�d�Þdx¼0 ()

()v� �
Z

L
HT

s e�dx¼
Z

L
HT

s Dadj�d�dx()

() v� ¼�
Z

L
D�Hs|fflffl{zfflffl}
¼0

0@ 1AT

d�dxþ ðN�HsÞT d�
h i

x¼0;L
()

() v� ¼ ðN�HsÞTjx¼0jðN
�HsÞTjx¼L

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A�b

d�jx¼0

d�jx¼L

" #
|fflfflfflffl{zfflfflfflffl}

q�
b

()

() v� ¼A�bq�b

where A�b is the (70 � 76) nodal compatibility matrix that trans-
forms the (76 � 1) vector of nodal normalised displacements q�b into
the (70 � 1) vector of independent deformations v�. The latter are
power-conjugate to the independent forces P�, in the sense thatZ

L
ðe�ÞT s�cdx ¼ ðv�ÞT P�;

and can be interpreted as the projection of the beam generalised
strains in the space of interpolation functions for the generalised
stress-resultants. In the above derivation, the compatibility BCs
were introduced and the self-equilibrated properties of the
generalised stress-resultants interpolation matrix were used.
Recalling Eq. (23), the final compatibility equations can be
written:

v� ¼ A�bq�b ¼ A�b
A� 0
0 A�

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A�nodal

djx¼0

djx¼L

� �
|fflfflfflffl{zfflfflfflffl}

qb

¼ Abqb ð27Þ

The (70 � 76) final compatibility matrix Ab transforms the
(76 � 1) vector of nodal classical displacements qb into the
(70 � 1) vector of independent deformations v�.
The final equilibrium equations, on the other hand, can be
obtained as follows, making use of the equilibrium BCs (25) and
the self-equilibrated stress-resultant interpolation field (26):

N�s� �R�;y ¼ 0 in x¼ 0;L ()
() N�HsP� þN�s�0 �R�;y ¼ 0 in x¼ 0;L ()

()
ðN�HsÞjx¼0

ðN�HsÞjx¼L

" #
P� þ

N�s�0
	 


jx¼0

N�s�0
	 


jx¼L

" #
�

R�;yjx¼0

R�;yjx¼L

" #
¼ 0 ()

() A�b
	 
T P� þQ �b0 �Q �;yb ¼ 0)

) A�nodal

	 
T A�b
	 
T P� þ A�nodal

	 
T Q �b0 � A�nodal

	 
T Q �;yb ¼ 0 ()
() AT

bP� þQ b0 �Q yb ¼ 0 ð28Þ

where AT
b is the (76 � 70) final equilibrium matrix, Q yb is the

(76 � 1) vector of external nodal classical forces and Q b0 are the
nodal classical forces in equilibrium with the span loading consid-
ering the independent forces P� null.

The adjointness or duality of the presented beam theory equa-
tions is thus expressed by the following identity:

ðv�ÞT P� ¼ qT
b Q yb � Q b0

� �
()

() ðv�ÞT P� þ
Z

L
ðe�ÞT s�0 dx ¼

Z
L
ðd�ÞT p� dxþ qT

bQ yb

Finally, it is possible to obtain the corresponding incremental
equations required for nonlinear constitutive behaviour. The first
result which is necessary for such derivation is:

Dv� �
Z

L
HT

s De� dx ¼
Z

L
HT

s F�sectionDs� dx ¼

¼
Z

L
HT

s F�sectionHs dxDP� þ
Z

L
HT

s F�sectionDs�0 dx ¼

¼ F�elemDP� þ Dv�0 ð29Þ

where Dv�0 is the vector of increments of independent deformations
related to an increment of span loads, and F�section and F�elem are the
(57 � 57) and (70 � 70) tangent flexibility matrices, respectively,
of the cross-section and of the beam element (with respect to the
independent forces and deformations). The dual nature of e� and
s� and the assumed symmetry of the constitutive material tangent
stiffness operator imply that F�section is symmetric. Expression (29),
on the other hand, also ensures the symmetry of F�elem.

Making use of the previous relation, as well as of expressions
(27) and (28), it can be written:

Dv� ¼AbDqb

AT
bDP� þDQ b0�DQ yb¼0

()
DP� ¼ðF�elemÞ

�1AbDqb�ðF�elemÞ
�1Dv�0)

AT
bDP� ¼DQ yb�DQ b0

((
)AT

b F�elem

	 
�1Ab|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Kb

Dqb¼DQ yb�DQ b0þAT
bðF

�
elemÞ

�1Dv�0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�DQeb0

()

() KbDqb¼DQ yb�D~Qb0 ð30Þ

where Kb is the (76 � 76) symmetric stiffness matrix of the beam
element, with respect to the classical nodal forces and displace-
ments, and D~Qb0 is the vector of increments of classical nodal forces
in equilibrium with an increment of the span loads considering the
incremental classical nodal displacements to be null.

It is noted that the governing system of 70 equations associated
with the basic system (29) is six equations less than the global
nodal governing equations (30). This difference corresponds to
the rigid-body motions, as it would be expected.
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5. Conclusions

A new beam element based on higher-order cross-sectional
displacement modes was presented in this paper. It was derived
using a normalised version of the so-called Legendre polynomials
for the analysis of beams with solid rectangular cross-sections.
These functions feature the important property of orthogonality,
which is in turn reflected on the orthogonality of the cross-sec-
tional displacement modes. A further careful mathematical
manipulation also allows for an unambiguous definition of the
corresponding generalised stress-resultants and for a minimisa-
tion of the coupling between higher-order equations of
equilibrium, both in the domain and at the boundaries. The
higher-order displacement field contains, of course, the six com-
mon displacement modes of classical beam theory—and conse-
quently the usual cross-sectional stress-resultants as well,
which appeals to concepts that are familiar to engineers. Note
that any set of orthogonal displacement functions could be used
instead of Legendre polynomials; such orthogonal set could be
obtained from a set of independent base functions through a
Gram–Schmidt orthogonalisation procedure. Moreover, the latter
can be applied in order to extend this formulation to different
cross-sectional geometries.

Besides the aforementioned innovative aspects, the main
novelty is the development of a higher-order beam element based
on a flexibility approach. Accordingly, self-equilibrated stress-
resultants’ interpolation functions were chosen in order to guaran-
tee that the corresponding higher-order equilibrium conditions are
always respected. The strict satisfaction of equilibrium is of the
utmost importance to model the inelastic response of members,
such as that caused by earthquake or blast loads. However, its
advantages span to the elastic behaviour range as well, as it is
made apparent in the companion paper. Those equilibrium condi-
tions were obtained through a projection of the three-dimensional
continuum equilibrium equations on the space of the higher-order
displacement modes. This procedure guarantees the duality with
the associated one-dimensional higher-order compatibility equa-
tions. Hence the beam formulation is completely consistent from
the work-equivalency viewpoint.

The proposed model is inherently free from shear-locking
issues, contrary to the more traditional displacement-based
approaches, and is able to deal with arbitrary distributed loading
conditions as consistently as with nodal loadings. It includes the
interaction between the axial force, bi-directional shears, bending
moments, and torsion with all higher-order generalised forces.
Since explicit normal-shear stress interaction is directly accounted
for, such element is also deemed suitable for shear critical member
analysis.

The theory was developed independently of the constitutive
behaviour, and application examples to both linear and nonlinear
material response of members with relevant shear and torsional
deformations are presented in the companion paper. These
validate the present formulation, and demonstrate its accuracy
and promising capabilities when compared to other existing
approaches. Dynamic response and more general cross-sections
will be considered in future work.
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Appendix A

This appendix depicts the eight uncoupled systems of
dependent differential equations, involving only first derivatives,
representing the final form of the complete higher-order beam
equilibrium. The number of equations, unknowns and correspond-
ing BCs at the beam ends are also shown together with each
system of equations. Additionally, where pertinent, the number
of rigid-body modes (or equivalently, redundant BCs) are also
shown. Finally, the number of redundant BCs which are not
necessary for solving each system of equations is computed:

ð1Þ N0 þ qx ¼ 0

1 equation
1 unknown

2 BCs
1 rigid-body mode
ðaxial displacementÞ



ð2Þ

V 0y þ qy ¼ 0

M�0
z þ

2Vy

b þm�z ¼ 0

N�;300 � 2Vy

b � 10
b V�;30

y ¼ 0

V�;300
y � 6

b N�;30
y ¼ 0

8>>>>><>>>>>:

4 equations
5 unknowns

8 BCs
2 rigid-body modes
ðdisplacement along y;

rotation around zÞ
-------------------

2 unused BCs



ð3Þ

V 0z þ qz ¼ 0
M�0

y � 2Vz
h þm�y ¼ 0

N�;030 � 2Vz
h � 10

h V�;03
z ¼ 0

V�;030
z � 6

h N�;03
z ¼ 0

8>>>><>>>>:

4 equations
5 unknowns

8 BCs
2 rigid-body modes
ðdisplacement along z;

rotation around yÞ
-------------------

2 unused BCs



ð4Þ

T�0 þ 2 1
h� 1

b

	 

Vyz þm�x ¼ 0

B�0 � Q � 1
b þ 1

h

	 

þ T� 1

b � 1
h

	 

¼ 0

Q �0 � 2 1
b þ 1

h

	 

Vyz þm�q ¼ 0

V�;310
y � 6

b N�;31
y � 2

h V�;31
yz ¼ 0

V�;310
z � 2

b Vyz � 10
b V�;31

yz ¼ 0

N�;310 � Q�

b þ T�

b � 10
b V�;31

y � 2
h V�;31

z ¼ 0

V�;130
y � 2

h Vyz � 10
h V�;13

yz ¼ 0

V�;130
z � 6

h N�;13
z � 2

b V�;13
yz ¼ 0

N�;130 � Q�

h � T�

h � 2
b V�;13

y � 10
h V�;13

z ¼ 0

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

9 equations
14 unknowns

18 BCs
1 rigid-body mode
ðtorsional rotationÞ
-------------------

8 unused BCs



ð5Þ

N�;200 � 6
b V�;20

y ¼ 0

V�;200
y � 2

b N�;20
y ¼ 0

N�;400 � 6
b V�;20

y � 14
b V�;40

y ¼ 0

V�;400
y � 2

b N�;20
y � 10

b N�;40
y ¼ 0

8>>>>><>>>>>:

4 equations
6 unknowns

8 BCs
------------

4 unused BCs



ð6Þ

N�;020 � 6
h V�;02

z ¼ 0

V�;020
z � 2

h N�;02
z ¼ 0

N�;040 � 6
h V�;02

z � 14
h V�;04

z ¼ 0

V�;040
z � 2

h N�;02
z � 10

h N�;04
z ¼ 0

8>>>>><>>>>>:

4 equations
6 unknowns

8 BCs
-----------

4 unused BCs
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ð7Þ

N�;210 � 6
b V�;21

y � 2
h V�;21

z ¼ 0

V�;210
y � 2

b N�;21
y � 2

h V�;21
yz ¼ 0

V�;210
z � 6

b V�;21
yz ¼ 0

N�;410 � 6
b V�;21

y � 14
b V�;41

y � 2
h V�;41

z ¼ 0

V�;410
y � 2

b N�;21
y � 10

b N�;41
y � 2

h V�;41
yz ¼ 0

V�;410
z � 6

b V�;21
yz � 14

b V�;41
yz ¼ 0

8>>>>>>>>>>><>>>>>>>>>>>:

6 equations
10 unknowns

12 BCs
-----------

6 unused BCs



ð8Þ

N�;120 � 2
b V�;12

y � 6
h V�;12

z ¼ 0

V�;120
z � 2

h N�;12
z � 2

b V�;12
yz ¼ 0

V�;120
y � 6

h V�;12
yz ¼ 0

N�;140 � 6
h V�;12

z � 14
h V�;14

z � 2
b V�;14

y ¼ 0

V�;140
z � 2

h N�;12
z � 10

h N�;14
z � 2

b V�;14
yz ¼ 0

V�;140
y � 6

h V�;12
yz � 14

h V�;14
yz ¼ 0

8>>>>>>>>>>><>>>>>>>>>>>:

6 equations
10 unknowns

12 BCs
-----------

6 unused BCs


Appendix B

The assumptions concerning the order of the approximating
polynomials, for the solution of the sets of equilibrium equations
depicted in Appendix A, are as follows:

ð2Þ N�;30
y : linear

ð3Þ N�;03
z : linear

ð4Þ V�;13
yz ;V�;31

yz : constant; Vyz;N
�;31
y ;N�;13

z : linear

ð5Þ N�;20
y ;N�;40

y : linear

ð6Þ N�;02
z ;N�;04

z : linear

ð7Þ V�;21
yz ;V�;41

yz : constant; N�;21
y ;N�;41

y : linear

ð8Þ V�;12
yz ;V�;14

yz : constant; N�;12
z ;N�;14

z : linear
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