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[1] In this study, LIDAR snow depths, bare ground elevations (topography), and
elevations filtered to the top of vegetation (topography + vegetation) in five 1-km2 areas
are used to determine whether the spatial distribution of snow depth exhibits scale
invariance, and the control that vegetation, topography, and winds exert on such behavior.
The one-dimensional and mean two-dimensional power spectra of snow depth exhibit
power law behavior in two frequency intervals separated by a scale break located between
7 m and 45 m. The spectral exponents for the low-frequency range vary between 0.1 and
1.2 for the one-dimensional spectra, and between 1.3 and 2.2 for the mean two-
dimensional power spectra. The spectral exponents for the high-frequency range vary
between 3.3 and 3.6 for the one-dimensional spectra, and between 4.0 and 4.5 for the
mean two-dimensional spectra. Such spectral exponents indicate the existence of two
distinct scaling regimes, with significantly larger variations occurring in the larger-scale
regime. Similar bilinear power law spectra were obtained for the fields of vegetation
height, with crossover wavelengths between 7 m and 14 m. Further analysis of the snow
depth and vegetation fields, together with wind data, support the conclusion that the break
in the scaling behavior of snow depth is controlled by the scaling characteristics of the
spatial distribution of vegetation height when snow redistribution by wind is minimal and
canopy interception is dominant, and by the interaction of winds with features such as
surface concavities and vegetation when snow redistribution by wind is dominant.
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1. Introduction

[2] Spatial heterogeneity has been identified as one of the
main features of snow covers in several environments [e.g.,
Elder et al., 1991; Blöschl and Kirnbauer, 1992; Luce et al.,
1998]. The spatial distribution of snow is controlled by
precipitation patterns and the interaction of the snow with
factors such as topography, slope, aspect, vegetation, short-
wave and longwave radiation, and wind. These interactions
result in a highly heterogeneous snow cover in space and in
time. Accounting for this heterogeneity is of paramount
importance for hydrologic modeling and for appropriately
describing land surface–atmosphere interactions [e.g., Luce
et al., 1997, 1998; Liston and Sturm, 1998; Liston, 1999;
Liston et al., 1999; Greene et al., 1999].
[3] Efforts to characterize this variability of snow prop-

erties have focused on exploring the statistical relationships
between these properties and topographic variables that can
be easily obtained by using digital elevation models
(DEM’s) and other computational tools. Elder et al.
[1991] attempted to accurately determine the distribution
of snow water equivalent (SWE) over a small alpine basin

by identifying and mapping zones of similar snow proper-
ties on the basis of topographic and radiation parameters
that account for variations in both accumulation and abla-
tion. In their study, slope, elevation and radiation were used
to obtain regressions of SWE as the dependent variable.
Radiation consistently showed higher correlation with
SWE, although weak correlations were obtained for all of
the variables. Blöschl and Kirnbauer [1992] also studied
the relationship between snow cover patterns and terrain
characteristics, i.e., elevation and slope, in a mountainous
area in the Austrian Alps. They noted an increase in snow
covered area with increasing elevation and decreasing
slope, although no unique relationship to terrain parameters
was apparent. Similar examples of this type of study
include Evans et al. [1989] and Hosang and Dettwiler
[1991]. Although these approaches provide insight on
how snow cover properties relate to each of these influenc-
ing variables, regression type relationships are only able to
explain a small percentage of the variability, and no unique
relationship can be defined for different environments
because of differences in the dominant processes for dif-
ferent locations.
[4] The applicability of such relationships has been

explored in the development of methodologies to spatially
extrapolate variables, such as snow depth and snow water
equivalent, throughout an area on the basis of information
obtained from local and limited observations. Included in
these efforts are the SWETREE model [Elder et al., 1995,
1998; Winstral et al., 2002], which uses binary decision
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trees to estimate SWE and snow depth on the basis of
redistribution indices, terrain features and radiation. Other
approaches involve the application of subgrid parameter-
izations of snow distribution, using depletion curves to
relate snow covered area with normalized snow water
equivalence [Luce et al., 1999; Luce and Tarboton, 2001,
2004], and the complex mean geostatistical methodology
[Erickson et al., 2005], which uses a kriging scheme with a
nonlinear trend model to interpolate snow depth measure-
ments. Erxleben et al. [2002] compared several of these
spatial interpolation methods for estimating snow distribu-
tion in the Colorado Rocky Mountains. Snow depths
measured on three 1-km2 areas were interpolated by using
inverse distance weighting, ordinary kriging, modified re-
sidual kriging and cokriging, and binary regression trees.
Additionally, snow density samples were interpolated by
using linear regressions with elevation, slope, aspect, and
net solar radiation, and SWE estimates were obtained by
combining these two variables. They found binary regres-
sion trees to provide the most accurate estimates of snow
depth; however, substantial portions of the variability were
left unexplained by the models and none of them out-
performed the others in all of the environments. These
results illustrate the necessity for a better and more accurate
characterization of the spatial and temporal organization of
snow cover properties, focusing on the characteristics of the
variability for different environments. Blöschl [1999]
addresses several issues related to the accurate representa-
tion of snow cover properties, and the relationships between
processes, measurement and model scales. Answers to
questions about the nature of the spatial variability of snow
properties across several scales, and about how this vari-
ability determines the scales at which snow measurements
should be obtained still need to be addressed in order to
improve our understanding of snow processes and to
accurately represent snow cover properties in hydrologic
applications.
[5] In recent years, the concepts of fractals and scale

invariance have been introduced to analyze the spatial and
temporal structure of variables such as rainfall [e.g., Lovejoy
and Schertzer, 1985; Tessier et al., 1993; Over, 1995; Over
and Gupta, 1996; Marsan et al., 1996; Kang and Ramı́rez,
2001], soil moisture [e.g., Rodrı́guez-Iturbe et al., 1995],
topography [e.g., Mandelbrot, 1967, 1982; Brown, 1987;
Turcotte, 1987, 1989; Huang and Turcotte, 1989], drainage
network slopes [e.g., Tarboton et al., 1988; Rodrı́guez-
Iturbe and Rinaldo, 1996; Molnar and Ramı́rez, 1998],
and steady state and transient infiltration rates [e.g., Meng
et al., 1996]. In the case of snow properties, these concepts
have been applied in the analysis of snow-covered area
[e.g., Shook et al., 1993; Shook and Gray, 1997; Blöschl,
1999; Granger et al., 2002], snow depth [e.g., Shook and
Gray, 1994, 1996 and 1997; Kuchment and Gelfan, 2001;
Deems et al., 2006] and SWE [e.g., Shook and Gray, 1997],
indicating that such variables exhibit fractal characteristics
within a finite range of spatial scales.
[6] Shook et al. [1993] analyzed the perimeter-area and

area-frequency relationships of snow and soil patches of
melting snow covers in prairie and alpine environments for
different stages during the melting season suggesting that
snow and soil patches are fractals. They conclude that snow
patches are not random and their size distribution is pre-

dictable and can be described by the use of simple power
law equations characterized by their fractal dimension.
Granger et al. [2002] made use of these power law relation-
ships to describe snow and soil patches characteristics in the
development of a methodology to determine the amount of
energy removed by the snow patch surface as warmer air
moves over it. Shook and Gray [1994, 1996] analyzed the
fractal nature of snow depth in shallow snow covers by
looking at the variation in the standard deviation of snow
depth transects as a function of sample distance. Their
results indicate a power law type increase in the standard
deviation up to sampling distances of the order of 20 m,
after which the relationship curves toward a horizontal slope
in the log-log plot. They conclude that this segmented
power law shape relationship indicates that the spatial
distribution of snow depth is fractal at small scales
(<30 m) and random at scales larger than this threshold,
and that the cutoff length is related to the macroscopic
(>100 m) variability of topography. On the basis of these
findings, Shook and Gray [1997] implemented a method-
ology for generating a synthetic snow cover that forms snow
patches having fractal properties, on the basis of a fractal
sum of pulses technique. In their methodology, the synthetic
data generated with the fractal technique are adjusted to
resemble the characteristics of natural snow covers by
adjusting the generated frequency distribution to that esti-
mated from field measurements. The statistical properties of
the generated snow covers agree well with those of the
measured fields, supporting the application of fractal tech-
niques for synthetic generation of snow cover properties.
Kuchment and Gelfan [2001] extended the analysis of snow
depth to straight-line courses from 100 m to several kilo-
meters in length to represent the microscale and mesoscale
variability in several types of landscapes and relief, obtain-
ing power law relationships in the variograms concluding
that the snow depth fields could be considered statistically
self-similar. Similar results were obtained by Arnold and
Rees [2003] from the analysis of semivariograms of snow
depth courses in glacier surfaces, concluding that snow
depth distributions on glacier environments also exhibit
fractal properties at short spatial separations and become
random as separation increases.
[7] In a recent publication, using data derived from Light

Detection and Ranging (LIDAR) observations, Deems et al.
[2006] analyze the variograms of snow depth, topography
and vegetation topography of three 1-km2 study areas with a
strong influence of snow redistribution by wind. From the
observed log-log linearity of the variograms, they infer
fractal behavior in the elevation, vegetation topography
(elevation + vegetation height) and snow depth data sets.
Their analyses seem to indicate the existence of two distinct
scale regions with fractal distributions for the snow depth
and vegetation topography data sets, separated by a scale
break that varies between 15 m and 40 m for snow depth,
and between 31 m and 56 m for vegetation topography,
similar to the results obtained by Shook and Gray [1994,
1996], Kuchment and Gelfan [2001], and Arnold and Rees
[2003]. The fractal dimensions obtained for snow depth are
of the order of 2.5 for the shorter scale range and 2.9 for the
longer scale range. From these values, Deems et al. [2006]
infer that for the short range there is a balance between high-
and low-frequency variations, while at larger distances the
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distribution of snow depth approaches a spatially random
distribution. Regarding the location of the breaks, Deems et
al. [2006] speculate that the length of the scale break might
be related to the overall terrain relief, and that the process
change revealed by the breaks in the variograms of the
vegetation topography (topography + vegetation height)
data potentially influences the scaling behavior of snow
depth. From relatively small variations of the fractal dimen-
sions for different directions of the order of 0.1 in the snow
depth, Deems et al. [2006] conclude that such variations
show a strong qualitative relationship to prevailing winds
and large-scale topographic orientation.
[8] In this study, the spatial scaling characteristics of

snow depth are explored on the basis of the analysis of
the power spectral densities of high-resolution LIDAR
measurements (�1 m) distributed within five 1-km2 areas
(two of them used by Deems et al. [2006]) with significant
differences in the characteristics of the spatial variability of
the snow cover caused by differences in terrain, vegetation,
and wind patterns. Spectral analyses are performed on the
1-km2 raster fields of snow depth, topography, topography +
vegetation height, and vegetation height. The data set used
in this study not only includes environments in which
redistribution of snow by wind is dominant, but also
includes environments in which snow redistribution is
minimal and canopy interception of snowfall is dominant,
allowing for the identification of differences in the spectral
characteristics between these two types of environments.
The results from the power spectral analysis are comple-
mented by an analysis of maximum wind speeds and
directions, and of the separation distance between peaks
in the snow depth and vegetation height profiles. Also, the
spectral characteristics (e.g., spectral exponents) are com-
pared to wind patterns in search for any relationship
between the two. Throughout section 5, the results and
conclusions obtained in this study are compared to those
obtained in the previous point data studies, and in particular
those presented by Deems et al. [2006], pointing out the
new insights in the actual knowledge of the spatial vari-
ability of snow depth provided by the results presented here
not pointed out in the published literature. A summary

description of the scale invariance concepts applied in this
study is included in Appendix A.

2. Field Description and Data Set

[9] The data used in this study were collected as part of
the Cold Land Processes Experiment (CLPX) in 2003. The
CLPX was a cooperative effort of NASA, NOAA and other
government agencies and universities designed to advance
the understanding of the terrestrial cryosphere, providing
information to address questions on cold land processes,
spatial and temporal variability of the snow cover, and
uncertainty of remote sensing measurements and models
(D. Cline and Cold Land Processes Working Group, Cold
Land Processes field experiment plan, 2001, available at
http://www.nohrsc.nws.gov/~cline/clpx.html). The study
area of the CLPX is conformed by a nested array of study
areas at five different scale levels in the state of Colorado and
a small portion of southern Wyoming (Figure 1). The two
first levels correspond to one large and one small regional
study areas of 3.5� � 4.5� and 1.5� � 2.5�, respectively.
Three Meso-cell study areas (MSA) of 25 km � 25 km and
nine 1 km � 1 km intensive study areas (ISA’s) conform the
third and fourth scale levels, respectively. The last scale
level corresponds to one local-scale observation site (LSOS)
of 1 ha. This study focuses on five of the nine 1-km2 ISA’s.
The ISA’s located in the North Park MSAwere not included
in this study because their snow-covered area is less than 35%
in all cases, while the Alpine ISA located in the Fraser MSA
is analyzed in a separate study to illustrate differences
between snowpack characteristics in alpine and subalpine
environments. The areas included here correspond to the
Fool Creek (FF) and Saint Louis Creek (FS) ISA’s located in
the Fraser MSA, and the Buffalo Pass (RB), Spring Creek
(RS), and Walton Creek (RW) ISA’s located in the Rabbit
Ears MSA. A summary of the major characteristics of these
areas is presented in Table 1.
[10] The Fool Creek ISA is located in a forested area

with a complex topography and variations in vegetation
characteristics. Elevations range between 3014 m above sea
level (asl) and 3284 m asl. The ISA is part of the area of the
Fraser Experimental Forest where extensive research has
been performed on the effect of forest management practices
on runoff. These forest management practices have led to a
pattern of plots of cut and leave strips that produced differ-
ences in coniferous vegetation height. The Saint Louis Creek
ISA is located at the lower part of the Fraser Experimental
Forest. Elevations range between 2701 m asl and 2756 m asl.
The area presents mild slopes and a uniform coniferous forest
cover, except for some small patches of open terrain. The
Buffalo Pass ISA has an elevation range of 3053 m asl to
3233 m asl. A stream that flows from east to west divides the
area into a north facing and a south facing slopes. The Spring
Creek ISA is an area with a more complex topography.
The minimum and maximum elevations are 2668 m asl and
2903 m asl. Aspect variations are a major feature in this ISA,
with several south and north facing slopes spread over the
area. Vegetation cover consists of dense patches of deciduous
vegetation, and only a few clusters of coniferous trees. The
rest of the area is covered by short vegetation and grass.
Finally, theWalton Creek ISA is characterized by mild slopes
and open areas. Elevation ranges between 2915 m asl and
2998 m asl. A small percentage of the ISA is covered by

Figure 1. Location of the mesoscale study areas of the
Cold Land Processes Experiment (CLPX) within the state of
Colorado (United States).
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coniferous vegetation, and the valleys are mostly covered by
sage and willow shrubs.
[11] This study makes use of LIDAR topographic maps

collected for each of the ISA’s for snow-covered and snow-
free conditions. The data set consists of LIDAR elevation
returns (filtered to bare ground/snow, and filtered to top of
vegetation), elevation contours (0.5 m), and snow depth
contours (0.1 m) [Miller, 2003]. These data were processed
from the LIDAR elevation returns with an average horizon-
tal spacing of 1.5 m and vertical tolerance of 0.05 m. The
snow depth contours were obtained by subtracting the two
topographic surfaces corresponding to snow-covered con-
ditions close to maximum accumulation (8–9 April 2003)
and no-snow conditions (18–19 September 2003). The
contour covers were used to generate Triangulated Irregular
Network (TIN) surfaces of the fields in ArcGIS, which then
were converted to rasters of 1024 by 1024 grid cells
covering the entire 1-km2 areas with a grid spacing of
approximately 1 m for snow depth, bare ground elevations
(topography), and elevation to the top of vegetation
(topography + vegetation).

3. Methods of Analysis

3.1. One-Dimensional Power Spectra

[12] One-dimensional power spectra were obtained sepa-
rately for each of the west to east (x) rows and each of the
north to south (y) columns of the fields on each of the ISA’s
by following the procedure described below. First, the
complex coefficients of the discrete Fourier transform of
the original series or signal were determined by using:

X kð Þ ¼ 1

N

XN�1

n¼0

x nð Þ exp �j 2p=Nð Þnk½ � ð1Þ

where k is the wave number (from 0 to N/2), N is the total
number of data points in the discrete signal x(n), and j is
the square root of �1. The power spectrum was then
estimated by obtaining the square of the absolute value of
the complex coefficients of the discrete Fourier transform
as

f kð Þ ¼ X kð Þj j2 ð2Þ

where f (k) is the power spectrum of the function x(n). If
the mean of the original signal is subtracted from the

signal, the sum of the power spectrum over the entire
range of frequencies equals the variance of the process. In
this way, the power spectrum represents the absolute
contribution of each frequency (or scale) to the total
variance of the process. If the power spectrum is then
divided by the variance, a power spectral density is
obtained, where the value of the spectrum corresponds to
the percentage of the total variance contributed by each
frequency. The individual power spectral densities of the
profiles in the x and y directions were then averaged over
each direction, reducing the variability of the individual
spectra and facilitating the fitting of power laws.

3.2. Directional One-Dimensional Power Spectra

[13] In order to examine anisotropic behavior, that is,
changes of the behavior of the power spectra of snow depth
as a function of direction, this analysis makes use of
directional rasters for which the directions of the x
and y coordinates of the lattice coincide with the directions
for which the analysis is performed. For example, a rotation
of the snow depth contours of 30� with respect to the west to
east axis allows for the analysis of the power spectra for a
30�–210� (x axis) direction, and for a 120�–300� (y axis)
direction. These lines correspond to two perpendicular
directions, similar to rotating the east-west and north-south
axes by an angle of 30�. These rasters were generated for
even intervals of 10� (i.e., 0�–180�, 10�–190�, 20�–200�,
. . ., 170�–350� with respect to the east axis; equivalent to
E–W, N 80�E–S 80�W, N 70�E–S 70�W, . . ., N 80�W–S
80�E). Because the power spectral analysis must be per-
formed on a square grid, the rotations of the contour maps
cause a reduction of the available information to a grid of
512 � 512 cells (next power down from 210) centered in the
area. The one-dimensional power spectra for each direction
were obtained by following the procedure described in
section 3.1.

3.3. Mean Two-Dimensional Power Spectra

[14] A similar procedure is followed for the two-dimen-
sional spectral analysis. First, the two-dimensional discrete
Fourier Transform is estimated by using

X k; lð Þ ¼ 1

N 2

XN�1

m¼0

XN�1

n¼0

x m; nð Þ exp �j
2p
N

kmþ lnð Þ
� �

ð3Þ

where k and l are the wave numbers in the x and y directions
(from 0 to N/2), N is the total number of data points in both

Table 1. Major Characteristics of the Intensive Study Areas (ISA’s)a

Name Site Characteristics

Fool Creek FF moderately high-density coniferous (spruce-fir) forest, on wet
north facing slope

St. Louis Creek FS moderate density coniferous (lodgepole pine) forest, on a flat
aspect with low relief

Buffalo Pass RB dense coniferous forest interspersed with open meadows; low
rolling topography with deep snow packs

Spring Creek RS moderate density deciduous forest (aspen); moderate topography
on west facing slope, with moderate snow packs

Walton Creek RW broad meadow interspersed with small, dense stands of coniferous
forest; low rolling topography with deep snow packs

aSource is D. Cline and Cold Land Processes Working Group (Cold Land Processes field experiment plan, 2001, available at
http://www.nohrsc.nws.gov/~cline/clpx.html).
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the x and y directions, and x(m, n) is the original function.
The two-dimensional power spectrum is then obtained by

f k; lð Þ ¼ X k; lð Þj j2 ð4Þ

[15] The power spectral densities of the fields were
obtained by dividing the power spectra by the variance.
These two-dimensional power spectral densities were used
to obtain mean two-dimensional power spectral densities.
An equivalent wave number is assigned to each f (k, l)
following

r ¼ 1

L
k2 þ l2
� �1=2 ð5Þ

where L is the dimension of the side of the square area for
which the analysis is being performed (1000 m in this case).
The mean spectral density fj for each equivalent wave
number r is given by

fj ¼
1

Nj

XNj

i¼1

Xi k; lð Þj j2 ð6Þ

where Nj is the number of values that satisfy the condition
j/L < r < ( j + 1)/L, and the summation is carried out over all
the coefficients located in this frequency range.

4. Results

4.1. Snow Depth

4.1.1. One-Dimensional Power Spectra
[16] The log-log plots of the one-dimensional power

spectral densities of snow depth are presented in
Figure 2. None of the one-dimensional power spectra
present log-log linearity throughout the entire range of
frequencies, although they can be subdivided into two
frequency intervals within which the spectra is well
represented by a power law. The scale break in each of
the sites splits the power spectrum in a low-frequency
(larger-scale) interval with a mild slope, and a high-
frequency (smaller-scale) interval with a steeper slope.
These power spectra with segmented power law indicate
that the characteristics of the spatial variability of snow
depth can be classified in different frequency regions or
scale intervals within which the self-affinity condition (A3)
(see Appendix) is met. A summary of the average spectral
exponents and scale breaks is presented in Table 2. The
wavelengths that separate these two intervals vary between
8 m and 35 m, with the smallest breaks at Fool Creek,
Saint Louis Creek and Spring Creek. For these sites, little
difference is observed in the crossover wavelengths in the
x and y directions. On the contrary, the corresponding x
and y crossover wavelengths for the Buffalo Pass and
Walton Creek fields differ 12 m and 13 m, respectively,
indicating some degree of anisotropy on the variability of
these snow depth fields. The spectral exponents obtained
vary between 0.2 and 1.4 for the low-frequency intervals,
and between 3.1 and 3.6 for the high-frequency intervals.
These large differences between the spectral exponents of
the larger and smaller-scale intervals indicate marked
differences in the nature of the variability of the snow

depth cover above and below the scale break. Such
differences are addressed in the discussion section.
4.1.2. Directional One-Dimensional Power Spectra
[17] The distributions of the spectral exponents and scale

breaks of snow depth are summarized in Figure 3 and
Table 3. The spectral exponents (Figure 3a) vary between
0.06 and 1.17 for the low frequencies, and between 2.93 and
3.58 for the high frequencies. Little variations are observed
in the high-frequency values with respect to those observed
in the corresponding low-frequency exponents. Average
values range between 0.4 and 1.1 for the low frequencies,
and between 3.1 and 3.4 for the high frequencies. The
smallest and largest average exponents are found at Buffalo
Pass and Spring Creek for the low frequencies, and at
Walton Creek and Saint Louis Creek for the high frequen-
cies, respectively. The crossover wavelengths (Figure 3b)
are located at scales of the order of meters and tens of
meters. The scale breaks at Fool Creek, Saint Louis Creek
and Spring Creek present little variation around the mean,
with average breaks between 9 m and 12 m. In contrast, the
breaks at Buffalo Pass and Walton Creek exhibit larger
variations and are located at larger scales that range between
19 m and 45 m, with average values of 21 m and 34 m,
respectively. These variations indicate a more significant
heterogeneity and directionality in the snow covers of these
two areas.
4.1.3. Mean Two-Dimensional Power Spectra
[18] The mean two-dimensional power spectral densities

of snow depth are presented in Figure 4. Spectral exponents
and scale breaks are summarized in Table 4. Consistent with
the results of the one-dimensional spectra, the break in the
scaling of snow depth is observed at wavelengths between
7 m and 22 m. At Fool Creek, Saint Louis Creek and Spring
Creek, the breaks occur at wavelengths between 7 m and
9 m, while at Buffalo Pass and Walton Creek they occur at
18 m and 22 m, respectively. The spectral exponents vary
between 1.3 and 2.2 for the low frequencies, and between
4.0 and 4.5 for the high frequencies. These spectral expo-
nents for both intervals differ approximately by a unit with
respect to the corresponding one-dimensional exponents.

4.2. Topography and Topography Plus
Vegetation Height

4.2.1. One-Dimensional Power Spectra
[19] The power spectra of topography in all of the study

areas behave like k�b for the entire range of frequencies. The
spectral exponents vary between 1.99 and 2.02, with almost
no variations from site to site. Similar scaling behavior has
been observed in previous studies of topographic profiles
and contour lines, illustrating the vertical self-affinity and
horizontal self-similarity of topography [e.g., Mandelbrot,
1967, 1982; Brown, 1987; Turcotte, 1987, 1989; Huang and
Turcotte, 1989]. In these studies, spectral exponents around
2.0 were found for one-dimensional topographic profiles.
Complementarily, the spectra of topography + vegetation
height exhibit a distortion of the power law relationship
with frequency observed in the spectra of topography. This
distortion is more evident at Fool Creek and Saint Louis
Creek, which are characterized by taller and denser vegeta-
tion. Also, the distortion is sometimes more evident in one
of the two directions because of differences in the relative
contribution of vegetation to the variability/roughness of
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Figure 2. Average one-dimensional power spectral densities of snow depth in the east-west (x dir) and
north-south (y dir) directions; k is the wave number divided by the length of the profiles (1000 m).
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the profiles along each direction. When vegetation height is
of a similar order of magnitude as the elevation range, the
contribution of vegetation to the total variance of the profile
increases, leading to a more noticeable distortion in the
power spectrum at the smaller scales. On the contrary, when
the elevation range is greater than vegetation height, the
contribution of vegetation to the variability of the profile is
reduced, and little distortion in the power spectrum is
perceived. These differences are more evident at Fool
Creek, Saint Louis Creek, and Walton Creek, where the
elevation range is greater in one direction than in the other.

None of the scale breaks in the power spectra of snow depth
can be observed in the power spectra of bare ground eleva-
tions, or in the spectra of topography + vegetation. Neither
the power spectrum exponents nor the scale breaks of the
snow depth fields can be explained on the basis of the power
spectrum of the underlying topography and topography +
vegetation. If the scale break in the scaling characteristics of
snow depth observed at the smaller scales is the product of a
switch in the dominant process(es) driving the variability of
the snow cover properties, this change is not, at least
evidently, explained by the spectral characteristics of either
the underlying topography or topography + vegetation.
4.2.2. Directional One-Dimensional Power Spectra
[20] The power law exponents of the directional spectra

of topography vary between 1.94 and 2.1, with an average
of 2.0. Little anisotropy is perceived in the characteristics of
the directional spectra. The inclusion of vegetation height in
the topographic profiles induces a distortion of the power
law relationship in all directions. No scale breaks are
observed in the directional spectra of topography or
topography + vegetation.
4.2.3. Mean Two-Dimensional Power Spectra
[21] Spectral exponents between 2.92 and 2.94 were

obtained for the mean two-dimensional power spectra of
topography, which differ approximately by a unit with
respect to the one-dimensional values. Such spectral expo-
nents are consistent with similar analyses of the mean two-
dimensional power spectra of topography [e.g., Huang and
Turcotte, 1989], in which an average exponent of 2.82 was
found for different types of topography.

4.3. Vegetation

4.3.1. One-Dimensional Power Spectra
[22] The average one–dimensional power spectra of

vegetation height are presented in Figure 5 and the spectral
exponents and scale breaks are summarized in Table 5.
Vegetation exhibits similar scaling characteristics as the
corresponding snow depth covers. A low-frequency interval
with mild slopes and a high-frequency interval with steeper
slopes are separated by a scale break located at wavelengths
between 7 m and 16 m. The spectral exponents vary
between 0.3 and 1.2 for the low frequencies, and between
1.9 and 3.4 for the high frequencies. The breaks at the Fool
Creek, Saint Louis Creek and Spring Creek differ from
those in the snow depth scaling between 0 m and 3 m, while
at Buffalo Pass and Walton Creek the differences vary
between 9 m and 15 m, with breaks at larger scales for
snow depth. There is a difference in the scaling behavior of

Table 2. Average Spectral Exponents and Scale Breaks of Snow

Depth From the One-Dimensional Analysis of the Nonrotated

Rastersa

FF FS RB RS RW

Low-frequency b 1.0 0.4 0.5 1.3 0.4
High-frequency b 3.5 3.4 3.5 3.3 3.3
Scale break, m 8 11 25 9 28

a1024 � 1024.

Figure 3. Distribution of the characteristics of the
directional power spectral densities of snow depth in all
possible directions. (a) Spectral exponents for the lower
frequencies (smaller values) and higher frequencies (larger
values) intervals and (b) scale breaks. The external lines
cover the entire range of the data, the lower and upper limits
of the box mark the 0.25 and 0.75 percentiles, while the
internal line marks the median. The dots correspond to the
mean of the set.

Table 3. Average Spectral Exponents and Scale Breaks of Snow

Depth From the Directional One-Dimensional Analysisa

FF FS RB RS RW

Low-frequency b
Mean 0.9 0.4 0.4 1.1 0.5
Standard deviation 0.11 0.12 0.23 0.09 0.23
High-frequency b
Mean 3.2 3.4 3.3 3.2 3.1
Standard deviation 0.10 0.09 0.11 0.12 0.11
Scale break, m
Mean 9 10 26 12 34
Standard deviation 0.9 0.6 4.1 0.8 6.2

a512 � 512.
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the snow covers of these last two areas with respect to that
of the corresponding vegetation covers.
4.3.2. Mean Two-Dimensional Power Spectra
[23] The spectral exponents and scale breaks in the mean

two-dimensional spectra of vegetation height are summa-
rized in Table 6. The scale breaks are located between 7 m
and 11 m, and the slopes vary between 1.1 and 2.0 for the
low frequencies and between 2.9 and 4.3 for the high
frequencies. The breaks at Buffalo Pass and Walton Creek
differ from those in the mean two-dimensional spectra of
snow depth by 7 m and 13 m, respectively. The spectral
exponents of snow depths for each of the intervals do not
correspond exactly to the exponents of vegetation heights
because of the differences between the magnitudes of the
variations of the snow depth cover and those of the
corresponding vegetation cover at each scale.

5. Discussion

[24] Overall, the results from the spectral analyses of
snow depth indicate the existence of two distinct scaling
regimes within the interval between 1 m and 1 km, each
characterized by a distinct spectral exponent. These two
regimes are separated by a scale break located at scales of
the order of meters to tens of meters. The existence of these
scaling regimes is caused by differences in the character-
istics of the variability above and below the break. Within
each interval, the power spectrum follows a power law

dependence on frequency indicating self-affinity in the
snow depth covers within finite frequency/scale intervals.
This type of scaling behavior with segmented power law
spectrum, referred to as bilinear (two intervals) or multi-
linear (multiple intervals) [Veneziano and Iacobellis, 1999],
has been observed in several other processes such as rain
rate [Crane, 1990] and groundwater base flow [Zhang and
Schilling, 2004; Zhang and Li, 2005]. For the case of rain
rate, Crane [1990] associates the changes in the spectral
exponents and the wave numbers at which these breaks
occur with the characteristics of the two-dimensional tur-
bulent processes that determine the spatial distribution of
rainfall. Zhang and Schilling [2004] and Zhang and Li
[2005] obtained similar bilinear power spectra for estimated
time series of base flow on five different rivers in the state
of Iowa (United States). They conclude that the high-
frequency variations of the base flow are related to individ-
ual rainfall events ranging from a few hours to a few days,

Table 4. Exponents and Scale Breaks for the Mean Two-

Dimensional Power Spectra of Snow Depth

FF FS RB RS RW

Low-frequency b 1.9 1.3 1.4 2.2 1.4
High-frequency b 4.3 4.5 4.4 4.0 4.2
Scale break, m 7 8 18 9 22

Figure 4. Mean two-dimensional power spectral densities of snow depth for all of the study areas; r is
the equivalent wave number as in (5).
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Figure 5. Average one-dimensional power spectral densities of vegetation in the east-west (x dir) and
north-south (y dir) directions; k is the wave number divided by the length of the profiles (1000 m).
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while the low-frequency variations are the result of seasonal
changes.
[25] For the case of snow depth, similar scale breaks have

been observed in previous studies of point data. Shook and
Gray [1994, 1996] analyzed the standard deviation of snow
depth transects in prairie and artic environments as a
function of sample size (� sample distance), covering
distances up to 1200 m. Their results indicate a power
law type increase in the standard deviation up to sampling
distances of the order of 20 m, after which the relationship
curves toward a slope of 0.06 in the log-log plot. Shook and
Gray [1996] defined a cutoff length as the point of inter-
section between the initial slope and a horizontal tangent to
the end of the curve in the log-log plot of standard deviation
versus sample distance. This definition is used to compare
the scale at which the break occurs in different environ-
ments, extending the analysis to transects in two other areas
with variations in elevation range. Cutoff lengths between
30 m and 500 m were obtained for the three environments.
Arnold and Rees [2003] obtained similar results from the
analysis of semivariograms of snow depth courses in glacier
surfaces. Their results indicate an increase in the variance
with separation under scales between 20 m and 30 m in the
summer, and between 35 m and 45 m in the spring, after
which the semivariograms reach a reasonably flat sill. In a
more recent study, Deems et al. [2006] analyzed the vario-
grams of the LIDAR snow depths of the Buffalo Pass,
Walton Creek and Alpine ISA’s. Their results indicate a
similar bilinear behavior with a break at scales between
15 m and 40 m. However, Deems et al. do not present any
conclusive evidence of the link between such bilinear
behavior and the physical processes driving the variability
of snow depth. Later in this discussion, the relationship
between the observed bilinear behavior of the power spec-
trum of snow depth and controlling variables such as
vegetation and wind patterns is determined on the basis of
additional analysis of the vegetation height fields and wind
data in each of the study areas.
[26] The one-dimensional spectral exponents obtained for

snow depth vary between 0.1 and 1.4 for the low-frequency
intervals, and between 2.9 and 3.6 for the high-frequency
intervals. Such low-frequency exponents indicate that for
points separated by distances larger than the corresponding
scale break, the snow depth values are weakly correlated,
although the correlation is not necessarily zero, and there is
some weak long-range persistence. In contrast, the high-
frequency exponents indicate that snow depth values
for points separated by distances smaller than the
corresponding scale break are highly correlated, and that
the snow depth surface becomes smoother below the scale
break. The variability is significantly different above and
below the break. This spatial organization of snow depth
within these two scale intervals is described differently in

previous studies. Shook and Gray [1994, 1996] describe the
distribution of snow depth as fractal below scales between
20 m and 100 m, and random above such scales, on the
basis of slope values in the log-log plots of snow depth
versus sampling distance of 0.47 for the short-range inter-
val, and 0.06 for the long-range interval. Similarly, Arnold
and Rees [2003] conclude from the flattening of the log-log
semivariograms of snow depth above separation distances
between 10 m and 45 m that snow depth distributions show
fractal properties at short separations, and become random
as separation increases. Deems et al. [2006] also suggest,
from fractal dimensions of around 2.5 for the short range
and 2.95 for the long range, that the snow depth distribu-
tions exhibit fractal properties at short spatial separations
and become almost random above the corresponding scale
breaks. The scale breaks found in this study are located
within the same orders of magnitude as those found in the
quoted studies, although the spectral exponents for the low
frequencies indicate that the distribution of snow depth at
scales larger than the corresponding break is not completely
random, if the term ‘‘random’’ is used to refer to processes
of the white noise type which exhibit horizontal power
spectra (b = 0), indicating equal contributions from all
frequencies to the total variance. The results obtained in
this study indicate the existence of some organization at
scales larger than the scale break such that the contribution
of each frequency to the total variance can be described by a
power law, with an average spectral exponent (including all
sites) of 0.65 for the one-dimensional case, and 1.64 for the
two-dimensional case. Such exponents indicate a decaying
contribution of each frequency to the total variance. This
organization is site dependent, and although some of the
sites present spectral exponents that are closer to zero, the
range of exponents found indicates that the distribution of
snow depths above a characteristic scale of the order of
meters to tens of meters cannot be generalized as random or
uncorrelated.
[27] As expected (see Appendix A), the exponents of the

mean two-dimensional spectra for the two frequency
regions (i.e., the low and high frequencies) differ approxi-
mately by one with respect to the one-dimensional expo-
nents. Such difference is consistent with the theoretical
difference between the exponents of the one-dimensional
and two-dimensional power spectra for self-affine fields
where all directions in the x-y plane are equivalent, i.e., no
scaling anisotropy in the x-y plane (e.g., Appendix A) [Voss,
1985b]. When compared to the directional one-dimensional
exponents, the exponents of the mean two-dimensional
spectra for the low frequencies differ between 0.6 and 1.3
for Buffalo Pass, and between 0.7 and 1.4 for Walton Creek.
On the other hand, such differences vary between 0.8 and
1.1 at Fool Creek, between 0.7 and 1.1 for Saint Louis
Creek, and between 1.0 and 1.3 for Spring Creek. The range

Table 5. Spectral Exponents and Scale Breaks of Vegetation From

the One-Dimensional Spectral Analysis

FF FS RB RS RW

Low-frequency b 0.6 0.5 0.7 1.2 0.7
High-frequency b 3.2 2.8 3.3 2.2 3.4
Scale break, m 8 9 13 11 14

Table 6. Exponents and Scale Breaks for the Mean Two-

Dimensional Power Spectra of Vegetation Height

FF FS RB RS RW

Low-frequency b 1.1 1.4 1.3 2.0 1.7
High-frequency b 3.8 3.3 4.2 2.9 4.3
Scale break, m 7 7 11 9 9
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of variation of the difference between the exponents of the
mean two-dimensional spectra and one-dimensional spectra
for the low frequencies is larger for the Buffalo Pass and
Walton Creek areas, indicating a more significant scaling
anisotropy in such fields for the larger scales. On the
contrary, no significant scaling anisotropy is observed in
the high-frequency exponents for all of the areas, with
ranges of variation of the order of 0.3 in all of the five ISA’s.
[28] In search for explanations for the observed segmented

power law spectrum of snow depth, a similar scaling analysis
was performed on the fields of topography, topography +
vegetation and vegetation height. The topographic fields
contain information about the variations in elevation, slope,
and surface roughness which affect precipitation patterns,
wind dynamics, redistribution of snow by avalanches, and
energy fluxes due to variations in slope and aspect, among
others. The fields of vegetation height contain information
about the small-scale characteristics of the vegetation cover
such as the separation between individual trees, height and
area covered by the foliage, as well as larger-scale character-
istics such as the location of tree clusters and their average
characteristics. Such properties have a strong influence in the
distribution of snow through processes such as canopy

interception of snowfall and the interaction with wind. The
topography + vegetation fields provide information about the
combination of such controls. None of the breaks in the slope
of the log-log spectra of snow depth are present in the power
spectra of the corresponding fields of topography and topog-
raphy + vegetation. Neither the power spectrum exponents
nor the scale breaks can be explained on the basis of the
power spectrum of the underlying topography and topogra-
phy + vegetation. On the other hand, vegetation height
exhibits very similar scaling behavior as the snow depth
fields with bilinear power spectrum and scale breaks at
wavelengths between 7 m and 14 m, with mild slopes
for the low frequencies, and steeper slopes for the high
frequencies (Figure 5).
[29] The study areas can be separated into two groups

according to the similarities or differences between the
locations of the scale breaks in snow depth and the
corresponding vegetation height. The snow covers of Fool
Creek, Saint Louis Creek and Spring Creek exhibit scale
breaks at similar scales as the corresponding vegetation
fields, while at Buffalo Pass and Walton Creek the scale
breaks of the snow depth occur at larger scales with respect
to those of the corresponding vegetation height (see
Tables 2–4 for snow depth and Tables 5 and 6 for
vegetation height). However, there are also important differ-
ences in the nature of the variability of snow depth between
these two groups. Examination of the snow depth rasters of
the study areas (not shown) indicates that the snow covers
of Fool Creek, Saint Louis Creek and Spring Creek are
exposed to little or no wind redistribution, and small-scale
variability consistent with the vegetation patterns is domi-
nant. On the other hand, the snow covers of the Buffalo Pass
and Walton Creek exhibit patterns of drifts and scour areas
consistent with the location of obstacles such as vegetation
and ridges with respect to the predominant wind directions.
To illustrate the importance of wind-driven snow redistri-
bution in the study areas, wind data at 1 m above maximum
expected snow depth (lower sensor) and 10 m above the
ground (upper sensor) for the period October 2002 to April
2003 were analyzed. This period is chosen to represent the
meteorological characteristics between the first snowfalls
and the time at which the LIDAR snow depths were
obtained. These meteorological data were collected as part
of the CLPX within each of the ISA’s at towers located
approximately in the center of each area. Given that snow
redistribution due to wind is only likely to occur when the
air temperature is below freezing, only maximum wind
speeds for 10-min intervals with air temperature less than
0�C are analyzed. The empirical distribution functions of
the maximum wind speeds at the lower and upper sensors
are shown in Figure 6. The average maximum wind speeds
at the lower and upper sensors are 0.8 m/s and 1.8 m/s at
Fool Creek, 0.4 m/s (both levels) at Saint Louis Creek,
2.3 m/s and 2.6 m/s at Spring Creek, while they are 3.5 m/s
and 4.4 m/s at Buffalo Pass, and 3.8 m/s and 4.4 m/s at
Walton Creek, respectively. The empirical distributions
indicate higher wind speed regimes at the last two areas,
consistent with the observed patterns of snowdrifts and
scour areas in the snow depth rasters.
[30] With respect to the vegetation topography (topography+

vegetation height) data, the variogram analysis of Deems et
al. [2006] indicates the existence of a scale break at distances

Figure 6. Empirical distribution functions of maximum
wind speed every 10-min intervals for the period October
2002 to April 2003 measured within each intensive study
area (ISA) at (a) 1 m above the maximum expected snow
depth (lower sensor) and (b) 10 m above the ground (upper
sensor). Only data for intervals with air temperature lower
than 0�C are included. Average values are included in the
legends.
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of the same order of magnitude as those observed in the snow
depth variograms, though at a slightly longer absolute range.
On the other hand, their variograms of vegetation height data
(vegetation topography with bare earth terrain subtracted) do
not display a scale break. Deems et al. conclude that the
similarity between the scale break separating the two regions in
the terrain–vegetation distributions and that observed in the
snow depth data indicates that the process change revealed in
the vegetation–terrain data potentially influences the scaling
behavior of snow depth patterns. These observations are
contrary to what is observed in the power spectral analysis
presented in this study. As mentioned above, no scale breaks
are observed in the spectra of topography + vegetation. On
the other hand, the spectral densities of vegetation height
for all of the study sites exhibit a break at wavelengths
between 7 m and 16 m. The locations of the scale breaks in
the power spectra of vegetation height coincide with the
breaks in the spectra of snow depth only in the areas in which
little redistribution of snow by wind exists, and small-scale
variability consistent with the vegetation patterns is domi-
nant. On the other hand, the scale breaks in the snow depth
spectra in the areas where snow redistribution by wind is
dominant are located at larger spatial scales than those of the
corresponding vegetation.
[31] In order to compare the characteristics of the vari-

ability of the snow depth cover between these two environ-
ments, two sample profiles of snow depth of the Saint Louis

Creek and Walton Creek snow covers are presented in
Figure 7. The differences in the variability of the profiles
are evident. The Saint Louis Creek snow cover is charac-
terized by small-scale variations and lower variance (com-
pare the vertical scales), while the snow cover at Walton
Creek exhibits larger-scale variations and higher variance.
In Figure 7, ‘‘d’’ is defined as the separation distance
between peaks (or local maxima) above a threshold equal
to the mean snow depth of the profile. The Walton Creek
profile exhibits larger separations as a sign of larger
characteristic scales. On the basis of this definition, the
empirical distribution functions of the separation distance
‘‘d’’ were obtained using all of the profiles in each of the
snow depth fields in the x and y directions (Figure 8). The
distributions for the first group have very similar shapes
with a marked mode located between 7 m and 10 m, while
for the second group they are more uniform, with flatter
peaks, and with modes located between 11 m and 16 m. The
snow depth surfaces of Buffalo Pass and Walton Creek
exhibit larger separations between peaks. These results are
consistent with the spectral characteristics of the snow depth
fields, for which the breaks in the slope of the log-log
spectra occur at larger spatial scales at Buffalo Pass and
Walton Creek.
[32] The similarities between the power spectrum of snow

depths and vegetation heights at Fool Creek, Saint Louis
Creek and Spring Creek indicate similarities in the variability

Figure 7. Sample profiles of snow depth at (a) St. Louis Creek and (b) Walton Creek. The circled points
mark the location of the local maxima using a threshold equal to the average of the profile. The separation
‘‘d’’ marks the distance between these peaks.
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of the two corresponding fields. The empirical distribution
functions of the separation distance in the vegetation
height and snow depth fields of these study areas (Figure 9)
have very similar characteristics, with gamma-type distri-
butions and modes located within similar separation ranges
(from 5 m to 8 m for vegetation height and from 7 m to 10 m
for snow depth). The separations between peaks in both of
the fields exhibit similar statistical characteristics, indicating
similar characteristic scales. These similarities are a conse-
quence of the effect of vegetation in the distribution of snow
depth. Because of interception, the peaks (maxima) in
vegetation height coincide with valleys (minima) in the
snow depth surface, and the information that their
corresponding separation distances provide about the scales
of the variations is statistically equivalent in both fields. As
wind redistribution is minimal in these areas, the character-
istic scales of snow depths remain similar to those of the
vegetation heights.
[33] The directional analysis of the snow depth spectra

(Figure 3) indicates higher directionality in the Buffalo Pass
and Walton Creek snow depths, with the largest variations
in the low-frequency exponents and scale breaks with
direction. These variables are compared to the distributions
of wind direction for the period October 2002 to April 2003
in Figure 10. The distributions represent the percentage of
time that wind blows along a specific line (either direction).
Both the low-frequency exponent and scale break exhibit a
strong relationship with the predominant wind directions.

The lowest low-frequency exponents occur along the pre-
dominant wind directions while the highest occur along the
perpendicular to the predominant direction. This relation-
ship implies that the snow depth profiles are more variable
(rougher) along the predominant wind directions when
looked at scales larger than the corresponding scale break.
Lower spectral exponents imply a more horizontal slope in
the log-log spectrum and higher contributions of the low
frequencies to the variance of the profiles. Along the
predominant wind direction, most of the variations in snow
depth caused by redistribution are a consequence of the
vertical interaction of wind patterns with obstacles such as
ridges, depressions, and clusters of vegetation. Along the
perpendicular direction, a switch in the processes occurs and
most of the variations in snow depth caused by redistribu-
tion are a consequence of horizontal interactions of wind
patterns with obstacles such as trees and rocks. The char-
acteristic scales of such processes depend mainly on the
separation distance between obstacles, wind velocities
(speed and direction) and surface conditions (e.g., cohesion
and roughness). The differences between these processes
translate in anisotropy and directionality of the snow depth
surface. The results obtained in this study are a consequence
and evidence of such directional effect, and the gradual
variation of the scaling properties of snow depth in wind-
dominated environments (Figure 10) is a consequence of the
combination of the vertical and horizontal interaction of
wind patterns with obstacles along directions between the
predominant and perpendicular directions. The results pre-
sented in Figure 3 also indicate little or no directionality in
the spectral properties of snow covers with little or no
redistribution. The spectral exponents and scale breaks for
the snow covers of Fool Creek, Saint Louis Creek and
Spring Creek exhibit little variations with direction. The
characteristics of the variability of snow depth are relatively
similar along any direction, as snow redistribution by wind
does not cause extended patterns of snowdrifts and scour
areas along any particular direction.
[34] For Buffalo Pass and Walton Creek, Deems et al.

[2006] report that for distances shorter than the scale break,
the snow depth fractal dimensions are larger in directions
normal to the prevailing winds, while for longer scales, the
largest dimensions occur parallel to the dominant wind
direction. However, the variations in the fractal dimensions
reported by Deems et al. without indicating their signifi-
cance level are of the order of 0.1 or less for the two scale
regions, variations that might be easily induced by small
changes in the number of data used for the regressions. In
this study, consistent variations with direction at the Buffalo
Pass and Walton Creek ISA’s were only observed in the
spectral exponents of larger-scale intervals and the locations
of the scale breaks. Little variations were observed in the
spectral exponent of the smaller-scale intervals (Figures 3
and 10).
[35] A hypothesis proposed first by Shook and Gray

[1996], and adopted later by Deems et al. [2006], to explain
the bilinear behavior of the spatial scaling of the distribution
of snow depth relates the scale break distance to topographic
relief. The results presented in this study reveal that relief
does not play a significant role in the observed scaling
behavior of the spatial distribution of snow depth, and
instead, variables such as vegetation and winds are far more

Figure 8. Empirical distribution functions of the separa-
tion distance between peaks in the snow depth profiles.

W07409 TRUJILLO ET AL.: SPATIAL SCALING OF SNOW DEPTH

13 of 17

W07409



relevant when explaining such behavior within the range of
scales analyzed.
[36] The differences between the two scaling regimes

(i.e., low and high frequencies) in the snow depth fields
have important consequences for the characterization of the
snow cover. As discussed earlier, the scale break is a
measure of the separation between peaks in the snow depth
surface. When the snow depth surface is analyzed above
such scales, the average effects of the controlling variables
need to be accounted for. Such effects correspond to the
average snowfall interception by vegetation in environ-
ments dominated by canopy interception of snowfall, and
the average accumulation or scour induced by redistribution
of snow in wind-dominated environments. When the snow
cover is looked at scales smaller than the corresponding
break, the detailed characteristics (variability between
peaks) become evident, and the small-scale interactions
become dominant (e.g., vegetation interception by individ-
ual trees and wind interaction with surface concavities, trees
and rocks). The scales at which snow models work should
be selected according to such characteristic scales. Unless
the available input data allows for an accurate representation
of the small-scale interactions, model scales should be
selected within the low-frequency (larger-scale) range. The
results presented here indicate that such scales should

exceed 10 m in environments where snow redistribution is
minimal, and between 20 m and 40 m in environments
where wind redistribution is dominant. These scales are
expected to change according to the particular character-
istics of each environment, so the values presented in this
paper should be used only as reference scales.

6. Conclusions

[37] LIDAR snow depths, bare ground elevations and
elevations filtered to the top of vegetation obtained in April
and September of 2003 were analyzed to characterize the
spatial variability of snow depth. On the basis of the
characteristics of the power spectral densities of these fields,
the relationship of such variability to influencing factors
such as topography and vegetation was defined. The power
spectra of snow depth behave as k�b within two distinct
frequency intervals, each with different spectral exponent.
The one-dimensional spectral exponents obtained for snow
depth vary between 0.1 and 1.4 for the low-frequency
intervals, and between 2.9 and 3.6 for the high-frequency
intervals, while the exponents of the mean two-dimensional
power spectra vary between 1.3 and 2.2 for the low
frequencies, and between 4.0 and 4.5 for the high frequen-
cies. Such values indicate that the snow depth surface is

Figure 9. Empirical distribution functions of the separation distance between peaks in the vegetation
height and snow depth profiles of the Fool Creek, St. Louis Creek, and Spring Creek ISA’s.
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more variable (or rougher) when observed at scales larger
than the corresponding scale break, while much smaller
variations appear when looked at scales smaller than such
break. The larger scales explain the majority of the vari-
ability. The scales that separate these two intervals are
located at wavelengths between 8 m and 45 m. None of
the scale breaks in the snow depth power spectra were
observed in the power spectra of bare ground elevation, or
in the spectra of topography + vegetation. Neither the power
spectrum exponents nor the scale breaks can be explained
on the basis of the power spectrum of the underlying
topography and topography + vegetation. On the other
hand, the spectrum of vegetation height exhibits very
similar behavior as the snow depth spectrum, with a low-
frequency interval with mild slopes between 0.3 and 1.2 for
the one-dimensional spectra, and between 1.1 and 2.0 for
the mean two-dimensional spectra, and a high-frequency
interval with steeper slopes between 1.9 and 3.4 for the one-
dimensional spectra, and between 2.9 and 4.3 for the mean
two-dimensional spectra. These two intervals are separated
by a scale break located between 7 m and 16 m for the one-
dimensional spectra, and between 7 m and 11 m for the
mean two-dimensional spectra.
[38] When the spectra of snow depth are compared to the

spectra of the corresponding vegetation height, two distinct

scaling behaviors can be identified. In the areas in which
snowfall interception is dominant and snow redistribution
by wind is minimal, the scale breaks in the snow depth
spectra occur at similar scales as those of the corresponding
vegetation. On the other hand, in areas where snow redis-
tribution by wind is dominant, the scale breaks in the
snow depth spectra are displaced toward scales larger than
those of the corresponding vegetation. Redistribution of
snow by wind leads to the formation of snowdrifts and
scour areas over larger scales, affecting the scaling char-
acteristics of the snow depth surface after the snow is
initially deposited. The scales at which the switch in the
scaling properties of snow depth occurs are comparable to
the separation distance between peaks (local maxima
above a threshold) in the snow depth profiles. These
characteristics support the conclusion that the break in
the scaling behavior of snow depth is controlled by the
vegetation characteristics (e.g., height, area covered by the
canopy, and separation between trees) when wind redistri-
bution is minimal and canopy interception is dominant,
and by the interaction of winds with features such as
surface concavities and vegetation when wind redistribu-
tion is dominant. Such effect of wind redistribution is also
evidenced in the directional spectra, with the lowest low-
frequency exponents and the largest scale breaks occurring
along the predominant wind directions, as sign of scaling
anisotropy and directionality in wind-dominated environ-
ments. Until this study, evidence of the links between
these processes and the scaling behavior observed in the
power spectrum of snow depth in these two types of
environments had not been provided.
[39] The results obtained in this study have important

implications with respect to processes, measurement and
model scales. The existence of a break in the scaling of
snow depth at scales of the order of meters to tens of meters
indicates a switch in the characteristics of the variability
above and below the break. Within each scale interval,
similar processes are controlling the variability as indicated
by the power law relationship that characterizes the
spectrum within each range. If the objective is to reveal
small-scale processes such as vegetation interception by
individual trees and wind interaction with small features
such as surface concavities, trees and rocks, measurement
and model scales should be selected within the high-
frequency range. In this way, the details of the snow depth
surface between the peaks can be revealed. If the objective is
to represent the average effect of processes such as canopy
interception of snowfall and snow redistribution due to
wind, measurement and model scales should be selected
within the low-frequency range. For practical purposes in
hydrologic applications, accurate description of the small-
scale interactions might not be necessary and the detailed
information required to reproduce such processes might not
be available. Model and measurement scales should be
selected according to such objectives. Further analysis of
spatially distributed data for different times in the season and
larger spatial scales is required to expand the characteriza-
tion of the variability of snow properties.

Appendix A

[40] Scale invariant systems are systems whose (statistical)
properties at different scales are related by a scale-changing

Figure 10. Spectral exponents for the low-frequency
intervals (left axis) and scale breaks (right axis (m)) as a
function of direction for the (a) Buffalo Pass and (b) Walton
Creek ISA’s. The histograms correspond to wind directions
during intervals with air temperatures below freezing.
Similar histograms of wind direction are obtained for wind
speeds above thresholds of 4 m/s and 5 m/s.
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operation involving only a scale ratio. Statistical scale in-
variance can be expressed as [e.g., Voss, 1985b]

V t þ bDtð Þ � V tð Þ½ �d¼ bH V t þDtð Þ � V tð Þ½ � ðA1Þ

where b is a scale factor, H is the Hausdorff exponent, and
¼d indicates that the two sides of the expression possess
the same probability distribution function. Self-similarity
corresponds to the particular case of H equal to 1, implying
isotropic rescaling for the two coordinates, t and V. On the
other hand, self-affinity corresponds to the case in which
each coordinate is rescaled by a different scale ratio, i.e., H
other than 1. These concepts can be extended to higher
Euclidian dimensions by replacing t with a more general
vector x = (x1, x2, . . ., xE) in an E dimensional space, leading
to the following expression [e.g., Voss, 1985a, 1985b]:

V xþ bDxð Þ � V xð Þ½ �d¼ bH V xþDxð Þ � V xð Þ½ � ðA2Þ

[41] Equation (A2) implies scaling isotropy along the
coordinates of the vector x as the exponent H is constant
along any component of x but allows for scaling anisotropy
(i.e., self-affinity) with respect to V as H may be different
from 1. Scaling anisotropy or self-affinity may arise when
the coordinates are not equivalent (e.g., V and x, or x and t),
or when different processes affect the variability along
different directions. Such anisotropy can be analyzed by
looking at the scaling properties (e.g., spectral exponent)
along each coordinate independently or by analyzing the
changes of such properties along different directions (e.g.,
different combinations of x and y).
[42] For a self-affine function of one variable (e.g., t as in

(A1)) the power spectral density P(k) follows a power law
dependence on the wave number k as [e.g., Voss, 1985a,
1985b]

P kð Þ / k�b ðA3Þ

[43] Similarly, the two-dimensional power spectra of self-
affine functions in the x-y plane where all directions in the
x-y plane are equivalent also obey a power law as

P kð Þ / k2x þ k2y

� ��b=2
¼ kð Þ�b

k ¼ k2x þ k2y

� �1=2
ðA4Þ

but with a spectral exponent that differs by 1 with respect to
the corresponding one-dimensional exponent [e.g., Voss,
1985b]. Also observe that now k stands for a general wave
number. A more general form of (A4) allows also for
scaling anisotropy along each of the components of the
vector x as [e.g., De Michele and Bernardara, 2005]

P kx; ky
� �

/ a2
xk

2
x þ a2

yk
2
y

� ��b=2
ðA5Þ

[44] In the case of fractional Brownian motion, the one-
dimensional spectral exponent and the Hausdorff exponent
are related as [e.g., Voss, 1985a, 1985b]

b ¼ 2H þ 1 ðA6Þ

[45] The spectral exponent can be used as a measure of
the persistence for all values of b. Functions with low
spectral exponents are highly variable and adjacent values
are less correlated. As the exponent increases, the functions
become smoother and adjacent values become more corre-
lated. Low spectral exponents imply a more uniform con-
tribution of all frequencies to the variability of the series,
leading to a ‘‘rougher’’ pattern with high-frequency (short
wavelengths) variations of similar orders of magnitude as
the low-frequency variations (long wavelengths). As the
exponent increases, the contributions of the low frequencies
become increasingly dominant over the contributions of the
short frequencies, and as a consequence the correlation
between adjacent values of the series increases and the
profile becomes smoother. Weak long-range persistence
corresponds to 0 < b < 1, whereas strong long-range
persistence corresponds to b > 1. The value of the spectral
exponent also has important implications with respect to the
convergence or divergence of the variance [e.g., Malamud
and Turcotte, 1999]. The variance converges for b < 1, and
diverges for b > 1. Self-affine time series with b < 1 are
stationary while series with b > 1 are nonstationary, and b =
1 can be used as a crossover between weak and strong
persistence in time series [Malamud and Turcotte, 1999].
[46] Spectral techniques are often preferred over other

techniques, such as variogram analysis, for the study of the
scaling properties of random fields. This is because, depend-
ing on the value of b, different techniques are more or less
accurate in estimating the scaling properties of fields. In the
case of variogram analysis, the range of b for which one can
expect reasonably accurate results is 1.2 < b < 2.5, whereas
spectral techniques are accurate for all values of b [e.g.,
McSharry and Malamud, 2005]. Spectral techniques have
been used to explore the scaling characteristics of highly
variable processes such as rainfall rate [e.g., Crane, 1990;
Veneziano et al., 1996], topography [e.g., Brown, 1987;
Turcotte, 1987, 1989; Huang and Turcotte, 1989], soil
moisture [Kim and Barros, 2002], and groundwater base
flow [e.g., Zhang and Schilling, 2004; Zhang and Li, 2005].

[47] Acknowledgments. Support for this research was provided by
the USDA-USFS Rocky Mountain Research Station under contract 04-JV-
11221610-029. Base funding was provided by NASA under contract 02-IA-
11221610-104.
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