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Abstract

Long-term planning for energy systems is often based on deter-

ministic economic optimization and forecasts of fuel prices. When

fuel price evolution is underestimated, the consequence is a low pene-

tration of renewables and more e�cient technologies in favour of fossil

alternatives. This work aims at overcoming this issue by assessing the

impact of uncertainty on energy planning decisions.

A classi�cation of uncertainty in energy systems decision-making is

performed. Robust optimization is then applied to a Mixed-Integer

Linear Programming problem, representing the typical trade-o�s in

energy planning. It is shown that in the uncertain domain investing

in more e�cient and cleaner technologies can be economically opti-

mal.

Keywords: energy planning, robust optimization, uncertainty classi�-

cation, Mixed-Integer Linear Programming

1 Introduction.

Extrapolating current trends to 2050, global energy demand is expected to

increase by 70% compared with 2011 mainly due to growth of non-OECD

countries. As a consequence, greenhouse gas emissions would be 60% higher

compared with 2011, with catastrophic e�ects related to climate change.

Policies to limit the expected increase in global temperatures to a 2°C
threshold show the need to reduce the increase in energy demand to 25%

and to radically cut emissions by 50%. Reaching these ambitious goals

implies strategic decisions to be made for energy systems, fostering energy

e�ciency while gradually replacing fossil technologies with renewables and

more e�cient alternatives [9].

1.1 Motivation.

Long-term energy planning is a strategic decision-making process. In the

context of this work, it involves the selection, sizing and operation of energy

conversion technologies. Due to the typical lifetime of these technologies,

the time horizon of energy planning is usually 20-50 years. The decision-

making approach often involves modeling the evolution of the energy sys-

tem over time. In most cases this requires forecasting modeling e�orts,
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justi�ed by the principle that taking a decision would be immediate if the

future was known.

Koomey et al. [11] reviewed the available retrospectives on long-term energy

models, underlining the often forgotten importance of model backcasting

to learn from previous errors. Their conclusion is that long term energy

models are inevitably inaccurate as they miss pivotal events. They rec-

ommend learning from the past in order to create better and more useful

models for the future. Furthermore, adopting the classi�cation by Hodges

and Dewar [10], they de�ne energy models as "nonvalidatable", i.e. doomed

to inaccuracy. This is because energy systems are often not observable and

measurable, do not exhibit constancy of structure in time, do not exhibit

constancy across variations in conditions not speci�ed in the model and do

not permit the collection of ample data.

A particular subset within energy forecasting is the modeling of fossil fuels

availability and price over time. Siddiqui and Marnay [15] highlight how

U.S. natural gas generation costs over the period 1975 to 2006 have been

characterized by two clear regime switches, which are inherently unpre-

dictable. They also compare the forecasts by the Annual Energy Outlook

(AEO) of the International Energy Agency (IEA) with the actual wellhead

gas prices, exposing errors in predictions as high as 400%. Krugman [12]

has recently revisited the pioneering work by Nordhaus [19] in the �eld

of long-term econometric modeling of energy systems, �nding that pivotal

events have dramatically changed the course of history, and price forecasts

are quite divergent from predictions.

Some important energy models (NEMS [5], MARKAL-TIMES [6], META*Net

[13]) have been improved over time to include uncertainties. Nonetheless,

Siddiqui and Marnay [15] point out how sometimes the formalism of the

resulting stochastic models hides a very poor knowledge of the distribution

parameters. They conclude that these models, being very complex and

based on economic optimization, should take into account the fact that the

high uncertainty on key parameters (mainly economic) might be greater

than the modeling resolution.

When forecasts underestimate the evolution of fuel prices, the consequence

is a low penetration of renewables and more e�cient technologies in favour

of established fossil-based ones. Also, errors in forecasts often lead to over-

capacity and sub-utilisation of the installed technologies. This is the cur-

rent case with natural gas �red Combined Cycle power plants overcapacity
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in Europe [2]. As deterministic forecasting models have generally performed

poorly, various authors now agree that taking uncertainty into account in

energy systems planning and design, as well as in other disciplines, is a

priority [21], and this represents the key motivation of this work.

1.2 Key challenges.

Soroudi and Amraee [24] reviewed the various approaches to address the

problem of energy planning under uncertainty. Zhou et al. [27] performed a

complementary review mostly focused on Decision Analysis types of meth-

ods. The key gaps identi�ed in literature are:

• Uncertainty classi�cation: a methodology is needed to assess type

and degree of uncertainty for each parameter. The output of the un-

certainty classi�cation is the de�nition of ranges of variation or Prob-

ability Distribution Functions (PDFs) for each uncertain parameter.

• Methodology: various methods have been developed in literature for

optimization under uncertainty. A general methodology needs to be

de�ned;

• Energy system applications: most methods are only applied to small

subsystems or to the operation of the electricity sector. It is central

to focus on a system view of the problem, including heating and

transportation.

1.3 Goals and approach.

The focus of this work is mainly on parameter uncertainty. Model uncer-

tainty, dealing with the ability of the model to represent reality, is not

treated due to the classi�cation of energy models as "non-validatable".

The goals and innovative aspects of this work are based on the previously

identi�ed gaps:

• A set of criteria is applied to de�ne ranges of variation for the un-

certain parameters. This is a step towards the de�nition of a general

uncertainty classi�cation methodology.
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• The classical (probabilistic) way of treating uncertainties in optimiza-

tion uses probability distributions, however in many cases it is dif-

�cult (and possibly misleading) to associate a PDF to a parameter

when the PDF is unknown [15] [17]. Therefore, robust optimization

is chosen as it only requires the de�nition of ranges of variation for

the parameters. More speci�cally, the robust approach developed by

Bertsimas and Sim [1] is adopted. Compared to other robust opti-

mization methods, this approach presents the advantage of linearity

in the robust counterpart of a MILP problem. To the authors' knowl-

edge, it is applied here for the �rst time to a strategic energy system

planning problem.

Cleaner and e�cient technologies represent the optimal choice when the

objective is emissions or resources consumption, while high investment cost

is the key barrier to their wider di�usion. Thus, the interest of this work is

understanding how uncertainty impacts energy planning problems having

cost minimization as objective.

Firstly, a speci�c literature review covers previous e�orts in uncertainty

classi�cation and robust optimization applied to energy planning problems.

A conceptual Mixed-Integer Linear Programming problem is developed,

showing typical trade-o�s in energy planning, easily adaptable to urban or

national energy system cases. Ranges of variation for the uncertain pa-

rameters are identi�ed and used as input for a Global Sensitivity Analysis

(GSA). This allows for factor �xing, i.e. de�ning priorities for treating un-

certainty in the optimization by separating inuential from non-inuential

parameters. Robust optimization is applied to the MILP problem and rel-

evant results are discussed. The work is completed by a post-sensitivity

analysis, conclusions and identi�cation of the next steps.

2 Literature review.

The succinct literature review has the goal of covering previous e�orts

in uncertainty classi�cation and in robust optimization applied to energy

planning problems.
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2.1 Uncertainty classification.

Soroudi and Amraee [24] make a distinction between technical and eco-

nomic uncertain parameters: technical parameters are mostly related to

the electricity market and economic parameters are divided into micro-

and macro-economic ones. L�ken et al. [14] di�erentiate between external

and internal uncertainties. They focus on external uncertainties, dividing

them into three categories: physical, economic and regulatory. Internal

uncertainties are related to the decision-maker. They introduce the dis-

tinction between non-quanti�able and quanti�able uncertainties: the �rst

can be treated with sensitivity or scenario analysis and can be ranked by

non-stochastic decision criteria (dominance, maximax, maximin or min-

imax regret), while the second ones can be approached with stochastic

criteria (expected value). Dubuis [16] introduces a structured classi�cation

of uncertainties, mainly related to energy system design and operation.

These e�orts are mainly focused on a classi�cation of uncertainty by type.

To date, a general methodology for uncertainty classi�cation, assessing pa-

rameter uncertainty by type and degree (in terms of range of variation or

PDFs) is missing.

2.2 Robust optimization

The theory and methodology of robust optimization are discussed in section

5. Soroudi and Amraee [24] have reviewed applications of robust optimiza-

tion to energy decision-making under uncertainty. The key applications of

interest are: Plug-in Hybrid Electric Vehicles (long-term planning), unit

commitment problems for electricity generation, demand-side management

and electricity market.

As highlighted in the review, most applications are focused on short-term

unit commitment problems, while the present paper focuses on long-term

energy planning.

3 Optimization model.

A Mixed-Integer Linear Problem is developed accounting for typical trade-

o�s in energy planning. The model, shown in Fig. 1, compares di�erent

technology options for supplying heat and electricity to a Single Family
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Figure 1: Optimization model: technology choice for household energy

supply

Household (SFH). The goal of the optimization is investment decision-

making (technology choice and sizing). The conceptual model structure is

easily adaptable to urban and national energy planning problems. The key

assumptions and characteristics of the model are the following:

• Multi-period problem: the year is split into 12 periods for the di�erent

months, and one additional peak period for design.

• Household demand: yearly data for heating and electricity demand

are for a SIA 380/1 standard compliant SFH in Switzerland [3].

• Technology options: �ve technologies are available, with correspond-

ing parameters detailed in section 3.1.

• As monthly power averages are considered, it is assumed for photo-

voltaics that daily and weekly uctuations are managed by the inte-

gration in the electricity grid.

The optimization problem is written in AMPL [7]. The problem for-

mulation is detailed in the following subsections de�ning sets, parameters,

constraints and the objective function.

3.1 Sets, parameters, variables, constraints.

The following sets are de�ned:
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Table 1: Parameter list with description
Parameter Units Description Value

cng(t)
a [CHF/kWh] Cost of natural gas (ng) Table 6

cel,buy(t) [CHF/kWh] Cost of importing electricity Table 6

cel,sell(t)
b [CHF/kWh] Price of selling electricity Table 6

fmin(u), fmax(u) [-] Lower/upper bound for units size Table 5

Cinv,1(u), Cinv,2(u)c [CHF] Linear coe�cients for investment cost Table 5

Ėout,ref (u) [kW] Reference electrical power output Table 5

Q̇out,ref (u) [kW] Reference thermal power output Table 5

Ėdemand(t) [kW] Household electricity demand Table 6

Q̇demand(t) [kW] Household heat demand Table 6

top(t) [h] Period duration Table 6

i [-] Interest rate 0.05

n [years] Lifetime 20

cp(u, t) [-] Capacity factor Table 7

εel(u) [-] Units electrical e�ciency Table 5

εth(u) [-] Units thermal e�ciency Table 5

aAverage values for Natural gas and electricity prices taken from http://www.gaz-

naturel.ch
bAssumed to be 40% of the nominal value of cel,buy(t)
cData from producer catalogs in Switzerland

• UNITS u = {1, . . . , U} = {BOIL, FC, STO, PV,HP}: natural gas

Boiler, Fuel Cell, Heat Storage, Photovoltaic panel, Heat Pump, re-

spectively.

• PERIODS t = {1, . . . , T} = {1, . . . , 13}

Table 1 lists the parameters de�ned in the optimization model. The

default values used for the parameters are detailed in the corresponding

tables in Appendix A.

Table 2 lists the variables of the optimization model.

The unit multiplication factor f(u, t) is related to the operation of the

units and de�nes how much a unit is actually used in each period. The

variable fsize de�nes the size of the unit (installed capacity). It is de�ned
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Table 2: Variable list with description. All variables are continuous and

non-negative, Unless otherwise indicated.
Variable Units Description

y(u) ∈ {0, 1} [-] Binary variable, investment decision for the unit

f(u, t) [-] Multiplication factor, operation of the unit

fcp(u, t) [-] Multiplication factor taking into account the cp
Cinv(u) [CHF] Linearized unit investment cost

Ėin(u, t), Ėout(u, t) [kW] Electrical power in/out for each unit

Ėbuy(t) [kW] Electrical power imported

Ėsell(t) [kW] Electrical power sold

Q̇ng(u, t) [kW] Natural gas imported

Q̇in(u, t), Q̇out(u, t) [kW] Thermal power in/out for each unit

Q̇rej(t) [kW] Thermal power rejected by the system

fsize(u) [-] Multiplication factor for unit installed capacity

τ [-] Annualization factor for investment cost

STOlevel [kW] Thermal power level in the storage unit

as the multiplication factor maximum value over the di�erent periods:

f(u, t) ≤ fsize(u) ∀u, t (1)

y(u) is the binary variable related to the investment choice for each

unit. If y(u) = 1 the unit is purchased, and vice versa. The size of each

unit is limited by the parameters fmin(u) and fmax(u), the lower and upper

bound, respectively. The size of the unit is equal to zero if the unit is not

purchased, i.e. if y(u) = 0:

fmin(u) · y(u) ≤ fsize(u) ≤ fmax(u) · y(u) ∀u (2)

The investment cost Cinv(u) is linearized as the summation of two com-

ponents: the �xed cost Cinv,1, activated if the unit is purchased, and the

variable cost Cinv,2, associated to the size of the unit:

Cinv(u) = Cinv,1(u) · y(u) + fsize(u) · Cinv,2(u) ∀u (3)

The unit multiplication factor is multiplied by the capacity factor cp,

de�ned as the ratio between the maximum feasible average power output

for each month and the nominal unit size. fcp is the adjusted multiplication
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factor which takes into account the capacity factor of each unit:

fcp(u, t) = f(u, t) · cp(u, t) ∀u, t (4)

Ėout(u, t) and Q̇out(u, t) are respectively the electrical and thermal power

outputs for each unit and each period. They are calculated by multiplying

the respective reference values Ėout,ref (u) and Q̇out,ref (u) by the multiplica-

tion factor. Cogeneration units as the Fuel Cell, producing both heat and

electricity, need the de�nition of speci�c equations (section 3.1.1):

Ėout(u, t) = Ėout,ref (u) · fcp(u, t) ∀u, t
Q̇out(u, t) = Q̇out,ref (u) · fcp(u, t) ∀u ∈ {BOIL,HP, PV, STO},∀t

(5)

The following two constraints express respectively the energy balance

for electricity and heat.

The household electricity demand Ėdemand(t) and the units electricity de-

mand Ėin(u, t) are satis�ed by the production of electricity inside the sys-

tem Ėout(u, t) and by the electricity imports Ėbuy(t). Ėsell(t) is the excess

electricity production which is sold outside the system boundaries:

Ėbuy(t) +
∑
u

Ėout(u, t)−
∑
u

Ėin(u, t)− Ėdemand(t)− Ėsell(t) = 0 ∀t (6)

In the same way, the household heat demand Q̇demand(t) and units heat

demand Q̇in(u, t) are satis�ed by the production of heat inside the system

Q̇out(u, t). Q̇rej(t) is the excess heat rejected from the system:∑
u

Q̇out(u, t)−
∑
u

Q̇in(u, t)− Q̇demand(t)− Q̇rej(t) = 0 ∀t (7)

The investment cost annualization factor τ is a function of the unit

lifetime n (assumed equal for all units) and of the interest rate i:

τ =
i(i+ 1)n

(1 + i)n − 1
(8)

The possibility of importing electricity during the peak period is lim-

ited in order to avoid obtaining unrealistically small sizes for the various

technologies. Ėbuy(13) is limited to 6 kW, but this limit is reduced to 2 kW

if other units producing electricity (PV and FC) are selected. If the HP is

chosen, the limit is increased by 1 kW in order to satisfy the consequent

additional electricity demand:

Ebuy(13) ≤ 2 + y(HP ) + 4(1− y(PV ))(1− y(FC)) (9)
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3.1.1 Unit specific constraints.

Additional equations are needed to calculate the consumption of natural gas

Q̇ng(u, t) and electricity Ėin(u, t) for some units. The ratio between energy

input and output for each unit is expressed by the electrical e�ciency εel(u)

and the thermal e�ciency εth(u).

Q̇ng(BOIL, t) =
Q̇out(BOIL, t)

εth(BOIL)
∀t

Q̇ng(FC, t) =
Ėout(FC, t)

εel(FC)
∀t

Ėin(HP, t) =
Q̇out(HP, t)

εth(HP )
∀t

(10)

The thermal power output of the cogeneration unit (Fuel Cell) is cal-

culated in the same way:

Q̇out(FC, t) = Q̇ng(FC, t) · εth(FC) ∀t (11)

The storage is modeled in a simpli�ed way. The amount of heat stored

in the unit is expressed by STOlevel(t). The level can be increased over

the di�erent periods by inputs of heat and electricity, and decreased by the

heat outputs.

For this unit, the size is calculated based on the maximum value of STOlevel(t)

over the di�erent periods.

Two additional constraints are needed in order to avoid loops between the

heat output and input of the storage unit.

STOlevel(t) = STOlevel(t− 1) + Ėin(STO, t) + Q̇in(STO, t)− Q̇out(STO, t) ∀t
STOlevel(t) ≤ Q̇out,ref (STO) · fsize(STO) ∀t
Q̇in(STO, t) ≤ Q̇out(FC, t) + Q̇out(BOIL, t) + Q̇out(HP, t) ∀t
Q̇out(STO, t) ≤ STOlevel(t− 1) + Q̇in(STO, t) + Ėin(STO, t) ∀t

(12)

3.2 Objective function.

The objective is the minimization of the total annual cost of the energy

system, the sum of the annualized investment cost and the operating cost.

The operating cost is the di�erence between the cost of purchasing natural
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gas and electricity at their respective costs cng(t) and cel,buy(t), and the prof-

its generated by selling electricity at the price cel,sell(t). The multiplication

by top(t), the hours of duration of each period, allows the conversion from

power to energy units.

min (τ
∑
u

Cinv(u) +
∑
t

(
∑
u

cng(t)Q̇ng(u, t) + cel,buy(t)Ėbuy(t)−

−cel,sell(t)Ėsell(t)) · top(t))
(13)

4 Factor Fixing.

Various authors have used sensitivity analysis for ranking the inuence of

uncertain parameters in energy planning problems [8] [20]. Sensitivity anal-

ysis requires, as an input, the de�nition of PDFs or ranges of variation for

the uncertain parameters. In the authors' view, uncertainty classi�cation

should serve for this purpose.

Factor �xing is applied to the MILP model de�ned in section 3 with the goal

of de�ning priorities for treating uncertain parameters in the optimization.

It is applied in three steps as illustrated in Fig. 2. Firstly, uncertain pa-

rameters are identi�ed and grouped in order to reduce their number. The

second step is the application of a set of criteria to classify parameter un-

certainty in terms of ranges of variation. The third step is the GSA, which

ranks the parameters according to their e�ect on the outputs of interest.

This allows the separation of inuential and non-inuential parameters.

STEP 1!
Uncertain 

parameters 
identification and 

grouping

STEP 2!
Uncertainty 

classification

STEP 3!
Global Sensitivity 
Analysis (GSA)

Figure 2: Factor �xing steps
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4.1 Parameters identification and grouping.

The �rst step is the identi�cation of all the parameters in the model. Ac-

cording to the list in Table 1, the model has 185 parameters. Some of these

parameters do not present any uncertainty, e.g. the period duration top(t).

Others can be assumptions made by the modeler, such as the cp of all units

except HP and PV. This is because the latter two depend respectively on

the external temperature and on the solar irradiation.

The other parameters are grouped in order to reduce their number. For

multi-period parameters an uncertain multiplication factor is de�ned. For

example, the 13 parameters Q̇demand(t) are grouped by Q̇demand,mult. This re-

duces the number of uncertain parameters to 16, which are listed in Table 3.

4.2 Uncertainty classification.

Uncertainty classi�cation is applied to the MILP model with the goal of

de�ning ranges of variation for the uncertain parameters. For each of the

identi�ed uncertain parameters a set of sequential criteria is applied. The

idea behind this procedure is that parameter uncertainty can vary based on

who the Decision-Maker (DM) is and the conditions in which the decisions

are taken.

The sequential criteria, depicted in Fig. 3, are the following:

1. Does the parameter depend only on a choice made by the Deci-

sion Maker (DM)? A parameter can depend only on choices made

by the decision-maker, e.g. fuel taxation when the DM is the gov-

ernment. In this case, it is not uncertain, and it can be de�ned as

a decision variable instead. If the parameter partially depends on a

choice made by the DM, e.g. the implementation of an energy policy

by the government, information concerning the choice can reduce the

parameter uncertainty.

2. Is it a here-and-now parameter? There are cases in which the

uncertain parameter is known at the moment the decision is taken.

In this case the uncertainty is eliminated, or data can be collected to

assess ranges of variation or PDFs.
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Figure 3: Sequential application of criteria for uncertainty classi�cation

(Step 2)

3. Does the parameter depend on other parameters? If the uncertain

parameter depends on other parameters, a model or mathematical

relation might be available. If the additional parameters are not un-

certain, the accuracy of this model can be used to de�ne the ranges of

variation or PDFs (e.g. a thermodynamic model for the energy e�-

ciency). If the additional parameters are uncertain, the model can be

embedded within the problem formulation. If the model is not avail-

able a new model can be developed. In both cases, the additional

parameters become the new uncertain parameters to be classi�ed.

4. Can forecasts be made on historical data? If there is no further

dependency for the parameters, or the option of using or developing

a model is not chosen, forecasts based on historical data might be

available. Depending on the reliability of these forecasts, references

on their accuracy can be used to de�ne ranges of variation or PDFs.

The de�ned criteria are applied to uncertain parameters of the MILP

model. Results of the analysis are summarized in Table 3, which shows

which of the criteria are applied and the consequent range of variation

for each parameter. The range of variation is taken from references when

available. When references are not available, a ±5% variation is assumed
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for parameters with a low degree of uncertainty, ±10% for a medium degree

of uncertainty. For de�ning ranges of variations, values typical of a large

scale energy system are considered.

The following considerations hold for the uncertain parameters:

• The interest rate i has low uncertainty as it depends on a choice and

on the here-and-now �nancial conditions of the DM.

• The electrical e�ciency of the Fuel Cell εel(FC) can vary substantially

based on the Fuel Cell type. Once the type is chosen, thermodynamic

models can be used to set the boundaries. As fuel cells aren't a mature

technology, a medium uncertainty is considered.

• The unit investment cost Cinv(u) is a typical here-and-now parame-

ter. Thus, it has a low uncertainty, coinciding with the variability of

prices from the di�erent suppliers. A medium level of uncertainty is

considered for innovative technologies, such as the Fuel Cell.

• The thermal e�ciency of a boiler εth(BOIL) has a low uncertainty

as boundaries are set by thermodynamics. The average thermal ef-

�ciency of a heat pump εth(HP ) depends also on average external

temperatures. Average temperature forecasts can be obtained from

historical data. Low uncertainty is assumed for these forecasts, to be

added to the uncertainty of the thermodynamic models.

• Heating and electricity demand can be assessed by models or fore-

casted based on historical data. Here the latter case is considered,

and references on the forecast accuracy are used to de�ne the ranges

of variation.

• cp(PV, t) is modeled to be dependent only on average monthly solar

irradiation. Solar irradiation forecasts can be obtained from historical

data. Medium uncertainty is assumed for these forecasts. cp(HP, t)

uncertainty is related to the possibility of extreme external temper-

ature values. As above, low uncertainty is assumed for temperature

forecasts.

• The lifetime n of the technologies is referenced from historical data.

Medium uncertainty is considered due to the impact of fuel cells,

which are at an early stage of development.
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Table 3: Uncertainty classi�cation applied to the MILP problem
# Params C1 C2 C3 C4 Range Comment

1 i X X ±5% Depends on DM choice and con-

ditions. Low uncertainty

2 εel(FC) X X ±10% Thermodynamics sets boundaries.

Choice between various options
3 Cinv(BOIL)a X ±5% Here-and-now parameter

4 Cinv(FC) X ±10% Here-and-now parameter.

Choice between various options
5 Cinv(STO) X ±5% Here-and-now parameters

6 Cinv(PV ) X ±5% Here-and-now parameter

7 Cinv(HP ) X ±5% Here-and-now parameter

8 εth(BOIL) X ±5% Thermodynamics sets boundaries.

Very low uncertainty

9 εth(HP ) X X ±10% Thermodynamics sets boundaries.

Historical data on temperatures

10 Q̇demand,mult X X ±10%
Models and forecasts available.

Accuracy of forecasts [26]

11 Ėdemand,mult X X ±10%
Models and forecasts available.

Accuracy of forecasts [26]

12 cp,mult(PV ) X ±10% Depends on solar irradiation.

Accuracy of forecasts
13 cp,mult(HP ) X ±5% Historical data on temperatures

14 n X ±10% For old tech. data in [4]. For new

tech. (e.g. FC) higher uncertainty

15 cel,buy,mult X ±50%
Forecast unreliable.

Errors in forecasts [15]

16 cng,mult X ±50%
Forecast unreliable.

Errors in forecasts [15]

aCinv(u) groups Cinv,1(u) and Cinv,2(u)

• Cost parameters cel,buy(t) and cel,buy(t) are often forecasted based on

historical data. Based on the forecast inaccuracy discussed in section

1.1, a very high uncertainty is considered for these parameters.

These ranges of variation are the input to the GSA.
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4.3 Global Sensitivity Analysis.

The third step is the Global Sensitivity Analysis. The theoretical back-

ground is thoroughly presented in [22] and [23].

In general terms, given a model in the form Y = f(X1, X2, . . . , Xk), the

output Y depends on a set of k uncertain parameters Xi. STi
, the total

sensitivity e�ect of the i-th input, is de�ned as the ratio between the ex-

pected value of the output variance V (Y ) when only Xi is varying (all other

parameters are �xed), and V (Y ):

STi
=
E(V (Y |X∼i))

V (Y )
(14)

At the numerator the expected value is calculated so that STi
does not de-

pend on the chosen values for the �xed parameters, but instead interaction

of Xi with the other parameters is taken into account.

Theoretical results show that STi
= 0 is a necessary and su�cient condition

to declare Xi as a non-inuential parameter. Since STi
is often expensive

to calculate even for relatively low k values, the Elementary E�ect method

(Morris screening) is chosen [18]. The method is a One-at-a-Time Global

Sensitivity Analysis which allows estimating STi
in a computationally ef-

�cient way. It is a discrete sampling method: r trajectories are de�ned,

each one of them consisting of (k + 1) steps. At each step of a trajectory

the model is executed with one parameter varied of the quantity ±∆ across

p levels. This way, for each trajectory all parameters are varied once, al-

lowing the calculation of the elementary e�ect for each parameter. The

Elementary E�ect (EE) of the i-th parameter is de�ned as follows:

EEi =
[Y (X1, X2, ..., Xi−1, Xi + ∆, ..., Xk)− Y (X1, X2, ..., Xk)]

∆
(15)

Once the elementary e�ects are calculated for each parameter and for

each trajectory, µ∗
i is calculated by averaging the Elementary E�ect of the

i-th parameter over the r trajectories. µ∗
i is a proxy for STi

:

µ∗
i =

1

r

r∑
j=1

|EEj
i | (16)

The GSA is applied to the MILP model.

With reference to the methodology de�ned in [18], the method is run for
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k = 16 parameters. Due to the high number of parameters, a value of r =

100 trajectories is selected, along with p = 8 levels and ∆ = p/[2(p − 1)].

Firstly, samples of parameters are generated. Then the Elementary E�ect

method is applied by changing the parameter values for each run, allowing

the calculation of µ∗
i as in (16).

The outputs of interest of the sensitivity analysis (Y ) are the value of the

objective function and the installed capacity for each technology, fsize(u).

Fig. 4 shows the calculation of µ∗
i for the objective function, while Table 8

(Appendix B) reports the results for all the other outputs of interest. Non-

inuential parameters, with STi
close to zero, can be �xed at their nominal

value without having an impact on the output. It is clear that the two cost

parameters, cel,buy,mult and cng,mult, are the two most inuential parameters

on the objective function, the size of BOIL and HP. No parameter has a

high inuence on the size of the other units. For parameters with inter-

mediate values of STi
, such as Q̇demand,mult and Ėdemand,mult with respect

to the objective function, the decision of �xing them or not depends on

the modeler's goal for the analysis [22]. Since the goal of this analysis is

de�ning priorities for treating the uncertain parameters in the optimiza-

tion, cel,buy,mult and cng,mult are the two parameters selected as uncertain for

the application of robust optimization.

5 Robust optimization.

Robust optimization is applied to the MILP model for the most inuential

uncertain parameters identi�ed in the previous section. The following sub-

sections describe the methodology and its application to the optimization

problem, and highlight key results with speci�c focus on energy planning

applications.

5.1 Methodology.

Robust optimization in linear programming was �rst developed by Soyster

[25]. In his formulation ranges of variation need to be de�ned for the un-

certain parameters, and the optimization problem is solved assuming that

all parameters are at worst case. This produces indeed a robust solution,

but this solution is highly suboptimal compared to the deterministic case.

This problem has been more recently addressed by Bertsimas and Sim, who
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have developed a probabilistic approach for robust MILP problems, with

the idea that "nature will be restricted in its behavior, in that only a subset

of the coe�cients will change in order to adversely a�ect the solution" [1].

An optimization problem with an uncertain cost parameter vector c in the

objective function is formulated as follows:

min cTx

s.t. Ax ≤ b

cj = [cj, cj + dj] j ∈ J
(17)

J is the uncertainty set, containing bJc uncertain parameters cj, whose

range of variation is delimited by the value dj. An equivalent formulation

applies if the uncertain parameters are in the constraints.

In this probabilistic formulation of the robust problem, a protection param-

eter Γ0 ∈ [0, bJc] is de�ned. This protection parameter controls the number

of parameters at worst case. If Γ0 = 0 then no parameter is at worst case,

i.e. the deterministic solution with all parameters at their nominal values

cj is obtained. If Γ0 = bJc then all parameters are at worst case, i.e. Soys-

ter's solution is obtained. The interest is evaluating how the solution of the

optimization problem changes with the variation of Γ0 between these two

extreme cases. This allows for the generation of various robust con�gura-

tions of the energy system, which could then be simulated in the uncertain

domain.

5.2 Application to the MILP problem.

For the MILP problem described in section 3, J = {cel,buy(t), cng(t)}. There-
fore, bJc = 26 is the number of elements in the uncertainty set. Based on

the methodology in [1], some modi�cations are made to the optimization

model.

The objective function is modi�ed with respect to (13), with the addition

of the protection parameter Γ0 and of the additional variables de�ned in

the robust counterpart: z0, p0,el(t), p0,ng(t). The role of these positive vari-

ables is to increase the value of the objective function as more parameters
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are at worst case.

min (
∑
t

(
∑
u

cng(t)Q̇ng(u, t) + cel,buy(t)Ėbuy(t)− cel,sellĖsell(t) · top(t)+

1

τ

∑
u

Cinv(u) + z0Γ0 +
∑
t

p0,ng(t) +
∑
t

p0,el(t))
(18)

For the cost of purchasing electricity cel,buy(t) the maximum allowed

variation at worst case is �xed by the parameter del. The positive variable

yel(t) assumes the value of xj(t) = Ėbuy(t)·top(t) at optimality. The following

constraints are de�ned in the robust counterpart to control the number of

parameters at worst case:

z0 + p0,el(t) ≥ delyel(t) ∀t
− yel(t) ≤ Ėbuy(t) · top(t) ≤ yel(t) ∀t

(19)

The same applies for the cost of natural gas. In this case, as the nominal

cost of natural gas is roughly half of the nominal cost of natural gas (Table

6), the maximum variation is set as dng = 1
2
del:

z0 + p0,ng(t) ≥ dngyng(t) ∀t

− yng(t) ≤
∑
u

Q̇ng(u, t) · top(t) ≤ yng(t) ∀t (20)

5.3 Results.

The robust counterpart of the MILP model is run with values of Γ0 ∈ [0, 26]

and del ∈ [0.05, 0.5] CHF/kWh, the latter subdivided into 10 discrete in-

tervals. The interest of this analysis is the evaluation of the two outputs

of interest, the value of the objective and the installed capacity of each

selected technology [kW] at di�erent values of Γ0 and del.

Fig. 5 and Fig. 6 respectively show the obtained results for of del = 0.2

CHF/kWh and del = 0.45 CHF/kWh. The two �gures display the values

of the objective function (total cost) and the size of the di�erent units for

increasing values of the protection parameter. In both cases, as expected

when Γ0 = 0 the deterministic solution is obtained: the heat for the house-

hold is provided by the natural gas Boiler and electricity is imported.

For del = 0.2 CHF/kWh this solution is the optimum up to values of Γ0 ≤ 9,
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Figure 5: Robust optimization results: size of the di�erent units and ob-

jective value for del = 0.2 CHF/kWh
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Figure 6: Robust optimization results: size of the di�erent units and ob-

jective value for del = 0.45 CHF/kWh
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then the Boiler is replaced by the more e�cient Heat Pump for heat produc-

tion and imports are replaced by the PV panel for electricity production.

If Γ0 = 5 parameters are allowed at worst case, the storage unit allows for

a reduction of the Boiler's installed capacity. After this threshold also the

objective function value becomes stable.

For the higher range of variation del = 0.45 CHF/kWh the deterministic

solution is replaced for very low values of the protection parameter. For

intermediate values of Γ0 the Fuel Cell is also selected. For higher values

of the protection parameter the Fuel Cell is no longer selected due to the

dependence on the cost of natural gas, and the solution for higher level

uncertainty involves the installation of PV panels, Heat Pump and Storage

units.

When analysing the choice and size of the di�erent units for the various

optimizations performed by varying Γ0 and del, the following behaviour is

observed:

• BOIL: The natural gas Boiler is chosen in the deterministic solution

for heat production. With increasing values of dng, it is not chosen

anymore even at low values of the protection parameter Γ0.

• FC: Chosen only for values of del ≥ 0.25 CHF/kWh, the Fuel Cell is

selected for intermediate values of the protection parameter, this due

to the dependency on natural gas prices.

• STO: Interesting for high values of both parameters. Also, low val-

ues of Γ0 produce variations in prices which make heat storage an

interesting option.

• PV: replaces electricity imports for higher values of Γ0 and del.

• HP: replaces natural gas Boiler for higher values of Γ0 and del.

The analysis shows how uncertainty of cost parameters can inuence

strategic energy planning.

This conceptual example shows that, when uncertainty on cost parameters

is taken into account, the deterministic solution is replaced by one using

more e�cient and renewables technologies even for very few parameters

at worst case (low values of Γ0). This is mainly due to the fact that these
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Table 4: fsize value of the con�gurations chosen for the post sensitivity

analysis
Solution BOIL FC STO PV HP

1 0.591 0 0 0 0

2 0.591 0 0 2.000 0

3 0.571 0 2.538 0 0

4 0.512 0 9.834 0 0

5 0.490 0 22.375 0 0

6 0 0 0 0 0.547

7 0 0 0 2.409 0.547

8 0 0 22.681 3.356 0.379

9 0 0 41.050 3.356 0.243

10 0 0.300 0 1.198 0.494

11 0 0.300 0 1.761 0.494

12 0 0.300 2.282 2.033 0.477

technologies have a higher investment-to-operating cost ratio, thus reducing

the dependence on the volatility of fuel prices.

6 Post-sensitivity analysis.

By varying the values of the uncertain parameters various con�gurations of

the energy system in Fig. 1 are obtained. The idea of the post-sensitivity

analysis is to see how these possible solutions would perform when sub-

jected to random variation of the uncertain parameters.

To do this, the optimization problem is modi�ed such that the here-and-

now decision variables, the investment choice for each technology y(u) and

the relative installed capacity fsize(u), become parameters. f(u, t), de�ning

the use of each technology, is left as a variable since operation of the units

can be adapted as the future unfolds.

Table 4 lists the 12 con�gurations chosen for the post sensitivity analysis.

They are selected among the various outputs of the robust optimization

runs. Additionally, other system con�gurations are generated ad hoc in

order to adequately cover the spectrum of possible solutions.

Each of these con�gurations is simulated 2000 times, with uncertain

parameters drawn from uniform distributions de�ned as follows: cel,buy ∈

23



 

 

Solution

To
ta

l C
os

t [
C

H
F/

ye
ar

]

 

 

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12
 

 5500

6000

 

 

 

 
Parameters at nominal value
Parameters at worst case

Figure 7: Boxplot of the post-sensitivity analysis output. The di�erent

solutions are numbered according to Table 4

[0.09, 0.68] CHF/kWh, cng ∈ [0.0485, 0.347] CHF/kWh. The upper limit

is consistent with the limits �xed in the robust optimization section. The

lower limit is set to half of the nominal price in order to verify how the

chosen solutions would perform in the case of favourable uncertainty.

Fig. 7 displays the simulation results. For each of the solutions, the

value of the objective function over the 2000 simulation runs is displayed

by the use of boxplots. In addition, each solution is evaluated with all the

uncertain parameters at their nominal values (purple mark), and at their

worst case (black mark). The following observations can be made:

• Solution 1 is the deterministic solution, optimal when all the parame-

ters are at their nominal value. As the natural gas Boiler is supplying

the heat and electricity is imported, it is the solution with the highest

range of variability.

• Solution 2 substitutes the imports with PV panels for electricity sup-
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ply. This consistently reduces the e�ects of the uncertainty of elec-

tricity cost.

• In solutions 3, 4 and 5, the natural gas Boiler is coupled with a storage

system of gradually increasing size. This has the e�ect of gradually

reducing the Boiler size and the ranges of variation, and of improving

the median value of the objective function. The storage unit acts as

a damper for the price uctuations.

• In solution 6 the Boiler is replaced by a Heat Pump. The much higher

e�ciency of the latter allows for a remarkable reduction of the range

of variation.

• The output variations due to uncertainty are further reduced in so-

lution 7, in which PV panels are added to partly replace import for

electricity supply.

• Solution 8 uses PV panels bigger than in Solution 7, and introduces

a storage unit. This further allows for a reduction of the uncertainty

oscillations.

• Solution 9 is the solution obtained from the robust optimization with

Γ0 = 26 and del = 0.5 CHF/kWh. As expected from the de�nition of

robust optimization, this solution shows the lowest value when all the

parameters are at worst case. It also has the lowest range of variation,

which implies the highest cost when all uncertain parameters are at

nominal values.

• In solutions 10 and 11 a combination of Fuel Cell, PV and Heat Pump

is selected. The combination of these three e�cient technologies al-

lows for the best median values, but the dependency on natural gas

prices increases the value of the objective function when all parame-

ters are at worst case.

• Solution 12 adds a Storage unit to the previous solutions, allowing

the further reduction of the uncertainty range.

The post-sensitivity analysis further highlights how the robust approach

can lead to solutions protecting against worst case scenarios, and allowing

for a reduction of the objective variations due to uncertainty. E�ciency
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and storage act, in this framework, as uncertainty dampers. The interest

of the probabilistic approach to robust optimization adopted in this work

is that it allows the comparison of varying solutions for di�erent values of

the protection parameter. An example of this is found in the comparison

of solution 9 and 10, respectively obtained with values of Γ0 = 26 and

Γ0 = 9. Solution 9, assuming all parameters at worst case (as in Soyster's

formulation) is over conservative. Solution 10, at a risk of an extreme worst

case unlikely to happen, shows instead better overall performances over the

simulations.

7 Conclusions.

A conceptual Mixed-Integer Linear Programming (MILP) model, showing

typical trade-o�s in energy planning, is presented and used as a testbed for

uncertainty classi�cation and robust optimization.

A set of criteria is applied to classify the uncertain parameters of the MILP

model. Uncertainty classi�cation de�nes boundaries of variation for the

parameters, with the idea that uncertainty is heterogeneous between dif-

ferent model parameters. This is a �rst step towards the development of a

methodology for uncertainty classi�cation. Uncertainty classi�cation serves

as an input to a Global Sensitivity Analysis, allowing the de�nition of pri-

orities between the parameters. In this application, the cost parameters

show the highest impact on the outputs of interest.

Robust optimization, following the probabilistic approach in [1], is per-

formed for the MILP model checking how the optimal solution changes

for di�erent values of the protection parameter. Results show how the

deterministic solution tends to be replaced by more e�cient and cleaner

technologies, even for a low number of parameters at worst case. For energy

system strategic planning, this highlights the relevant conclusion that, in

the uncertain domain, investing in more e�cient and renewable technolo-

gies can be economically optimal. The linearity of this approach and the

avoided need of de�ning PDFs for the uncertain parameters makes it a

promising tool for early-stage energy planning.

The post-sensitivity analysis stage compares the performance of various

possible solutions of the MILP problem when simulated in the uncertain

domain. This analysis highlights the interest of the adopted probabilistic
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formulation of robust optimization by comparing the performance of solu-

tions obtained with di�erent values of the protection parameter Γ0. It also

shows how renewable and e�cient technologies can be dampers of uncer-

tainty, as they reduce the exposure to future price uctuations.

Future work will involve application of this methodology to realistic

and more detailed energy system models at the urban and national level.

The criteria used for the uncertainty classi�cation step could evolve into

a methodology allowing a classi�cation of uncertainty by type and degree.

Also, a general classi�cation of uncertainty in the context of energy plan-

ning is envisioned.

As a next step, the authors see an interest in multi-stage energy planning

problems, which could take into account that uncertainty can gradually

unfold over time. This can be a relevant asset for decision-making. Within

this context, particular attention will be given to the relationship between

the concepts of robustness and exibility, with the perspective that energy

system design should not only protect against worst case, but possibly also

take advantage of favourable values of the uncertain parameters.
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A Parameters definition.

Default values for the parameters in the model.

Table 5: Unit parameters
Unit Ėout,ref Q̇out,ref εel εth Cinv,1(u) Cinv,2 fmin fmax

BOIL 0 10 - 0.9 4000 206 0 3.5

FC 3 0 0.55 0.35 0 20000 0.3 3

STO 0 0.08 - - 0 1501 0 360

PV 1 0 - - 0 3500 1 6

HP 0 12 - 4 10000 5000 0 2

Table 6: Multiperiod parameters
Period cel,buy

2 cng cel,sell Q̇demand Ėdemand top
1 0.22 0.097 0.088 2.513 0.371 744

2 0.20 0.097 0.080 2.624 0.349 672

3 0.17 0.097 0.068 1.227 0.377 744

4 0.18 0.097 0.072 0.687 0.335 720

5 0.16 0.097 0.064 0.192 0.318 744

6 0.15 0.097 0.060 0 0.273 720

7 0.15 0.097 0.060 0 0.354 744

8 0.16 0.097 0.064 0 0.331 744

9 0.17 0.097 0.068 0.026 0.297 720

10 0.18 0.097 0.072 0.595 0.352 744

11 0.20 0.097 0.080 1.790 0.416 720

12 0.22 0.097 0.088 2.310 0.375 744

13 0.18 0.097 0.072 5.908 3.764 0.01

1Investment cost for large scale storage is assumed
2Yearly price variation is assumed
3Monthly variation of PV in Switzerland in 2011 http://www.swiss-energyscope.ch
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Table 7: cp parameter de�nition

BOIL FC STO PV3 HP

1 0.9 0.9 1 0.054 0.9

2 0.9 0.9 1 0.087 0.9

3 0.9 0.9 1 0.122 0.9

4 0.9 0.9 1 0.151 0.9

5 0.9 0.9 1 0.159 0.9

6 0.9 0.9 1 0.155 0.9

7 0.9 0.9 1 0.167 0.9

8 0.9 0.9 1 0.159 0.9

9 0.9 0.9 1 0.126 0.9

10 0.9 0.9 1 0.089 0.9

11 0.9 0.9 1 0.052 0.9

12 0.9 0.9 1 0.037 0.9

13 1 1 1 1 0.9

B Uncertainty analysis.

Detailed results of the GSA applied with the Elementary E�ect method.
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Table 8: µ∗
i for each parameter with respect to the size of each unit, fsize(u)

# Params BOIL FC STO PV HP

1 i 0.00 0.00 0.00 0.11 0.00

2 εel(FC) 0.00 0.00 0.00 0.00 0.00

3 Cinv(BOIL) 0.01 0.00 0.00 0.00 0.01

4 Cinv(FC) 0.00 0.00 0.00 0.00 0.00

5 Cinv(STO) 0.00 0.00 0.00 0.00 0.00

6 Cinv(PV ) 0.00 0.06 0.18 0.07 0.00

7 Cinv(HP ) 0.13 0.00 0.01 0.00 0.13

8 εth(BOIL) 0.05 0.00 0.04 0.00 0.05

9 εth(HP ) 0.08 0.00 0.01 0.00 0.07

10 Qdemand,mult 0.18 0.00 0.05 0.00 0.12

11 Edemand,mult 0.00 0.06 0.00 0.03 0.00

12 cp,mult(PV ) 0.00 0.00 0.00 0.04 0.00

13 cp,mult(HP ) 0.03 0.00 0.03 0.00 0.04

14 n 0.03 0.06 0.23 0.24 0.03

15 cel,buy,mult 0.36 0.06 0.06 0.14 0.35

16 cng,mult 0.71 0.11 0.00 0.06 0.71
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