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Résumé

L’hydrologie alpine est une science particulièrement difficile en raison de la complexité du

terrain montagneux et de la variabilité spatiale et temporelle des paramètres météorologiques

tels que la précipitation, la température et l’évaporation. Mesurer le cycle de l’eau en altitude

reste une tâche ardue et peu de bassins versants alpins sont intensivement suivis. Pourtant,

améliorer la compréhension des processus hydrologiques dans les régions alpines est essentiel

dans la gestion des ressources en eau et la protection contre les dangers naturels. Depuis 2009,

le bassin versant du haut Val Ferret dans les Alpes suisses en Valais est équipé de nombreux

et divers instruments afin de mesurer des paramètres hydrologiques, météorologiques et

pédologiques à une haute résolution temporelle et spatiale. Dans ce travail, nous utilisons les

données récoltées au cours de trois campagnes de mesures estivales de 2011 à 2013. Nous

avons déployé un réseau sans fil de stations météorologiques, mesuré continuellement le débit

de la rivière à trois endroits différents et utilisé un modèle numérique de terrain à un mètre de

résolution. En particulier, nous nous sommes intéressés à l’influence de la géomorphologie

sur différents processus hydrologiques.

La complexité topographique et géomorphologique du bassin versant du Val Ferret est illustrée

par la structure du réseau hydrographique qui a été minutieusement relevé sur le terrain. La

distribution spatiale du réseau hydrographique est particulièrement hétérogène, notamment

dans certaines parties où la densité de sources d’eau souterraine et de rivières pérennes est

particulièrement élevée. Les méthodes classiques d’extraction du réseau hydrographique à

l’aide du modèle numérique de terrain ne sont pas capables de reproduire cette variabilité

spatiale. Celle-ci a cependant eu un impact significatif sur la modélisation des hydrogrammes

de crue. Ceux simulés avec les réseaux hydrographiques des différentes méthodes d’extrac-

tion reproduisent tous correctement le timing du pic de la crue mais pas sa partie décroissante.

Les périodes de tarissement sont définies comme des épisodes sans pluie durant lesquelles la

réserve d’eau souterraine diminue et le débit décroit. Leurs liens avec la géomorphologie du

bassin versant est analysé en détail. Nous proposons un modèle conceptuel simple basé sur

une étude récente où l’évolution du réseau hydrographique est simulée et comparée à une

paramétrisation classique des courbes de tarissement. En particulier, nous avons démontré

que la variabilité spatiale du réseau hydrographique joue un rôle prépondérant dans les

courbes de tarissement.
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Résumé

De plus, nous avons analysé en détail les fluctuations journalières du débit survenant durant

les périodes de tarissement. Dans un des sous bassin versant, nous avons observé un cycle

de débit diurne induit principalement par l’évaporation d’eau dans la zone riveraine. Dans

un autre sous bassin versant, nous avons observé un cycle de débit induit par la fonte d’un

petit glacier. Les deux cycles surviennent à des heures similaires mais sont de signe opposé.

Durant les campagnes de mesures précédentes, le cycle induit par l’évaporation n’a jamais été

observé à l’exutoire du bassin du Val Ferret vu son amplitude inférieur à l’amplitude du cycle

dû à la fonte de glace. En analysant minutieusement la géomorphologie de la zone riveraine

induisant le cycle d’évaporation, nous avons pu déduire combien d’eau a dû fondre du glacier

en tenant compte d’une composante d’évaporation dans le cycle de débit diurne de fonte de

glace.

Afin de mieux comprendre la formation de crues, nous avons finalement étudié en détails la

relation entre certains paramètres pédologiques et des caractéristiques de l’hydrogramme de

crue. Nous avons observé un comportement de seuil entre le potentiel matriciel préalable

à l’averse et les coefficients d’écoulement. Au-dessus du seuil de potentiel matriciel, les

coefficients d’écoulement augmentent et la réponse du bassin versant devient plus courte.

Contrairement à de nombreuses études récentes, nous n’avons pas observé de comportement

de seuil entre l’humidité du sol préalable à l’averse et les coefficients d’écoulement. Nos

résultats indiquent que les effets d’hystérèse dans la teneur en eau dans le sol pourraient jouer

un rôle prépondérant dans l’augmentation du débit lors d’épisodes pluvieux. Ces effets non

linéaires ne sont pas encore bien compris et nécessitent plus de recherche afin de pouvoir les

implémenter correctement dans les modèles hydrologiques.

Mots clefs : Hydrologie alpine, hydrologie du bassin versant, Géomorphologie, terrain com-

plexe, mesure de débit, modèle numérique de terrain, réseau hydrographique, période de

tarissement, cycles diurnes, évaporation, réseau de capteurs sans fil.
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Abstract

Alpine hydrology is particularly challenging due to the complexity of mountainous terrain

and the spatial and temporal variability of meteorological parameters such as precipitation,

temperature and evaporation. Sensing the hydrosphere in high altitude areas remains a tough

task and few alpine watersheds have been intensively monitored. Yet improving our under-

standing of hydrological processes in alpine regions is critical for freshwater management and

for protection against natural hazards. Since 2009, the upper Val Ferret watershed (20.4 km2)

in the Swiss Alps is monitored with a large variety of instruments to measure hydrological,

meteorological and pedological parameters at high temporal and spatial resolution. In this

dissertation, the data collected during three consecutive summer field campaigns from 2011

to 2013 has been utilized. We deployed a wireless network of meteorological stations, con-

tinuously measured the stream discharge at three locations and made use of a one meter

resolution Digital Elevation Model of the watershed. In particular, we focused on the influence

of the geomorphology on several streamflow generation processes.

The topographical and geomorphological complexity of the Val Ferret watershed is illustrated

by the structure of the channel network, which was carefully mapped in the field. The spa-

tial distribution of the channel network was particularly heterogeneous, with certain areas

characterized by a high density of groundwater channel heads and perennial streams. This

highly uneven drainage density had a significant impact on modeling storm hydrographs.

Other channel networks, extracted from the Digital Elevation Model using classical methods,

were not able to capture this spatial variability. More advanced extraction techniques relying

on curvature and openness showed superior efficacy. The hydrograph estimated with the

different networks were all able to capture the discharge peak timing but not the recession

parts.

Recession events are defined as periods without precipitation during which water stored in

the watershed is released and the streamflow is in decline. Although they have been widely

studied previously, we have analyzed their link to the basin geomorphology in detail. Based

on a recent study, we propose a simple conceptual model in which the temporal variation of

the river network is computed and linked to a classic power law parametrization of recession

curves. In particular, we show that in high altitude watersheds, the spatially heterogeneous

structure of the channel network could play a major role in the streamflow recession.

Furthermore, we analyzed daily streamflow fluctuations that occurred during recession events
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Abstract

in the upper Val Ferret watershed. In one of the monitored sub basins, we observed that

evaporation from the perennial riparian area was inducing a diurnal streamflow cycle. In

another sub basin, we observed a diurnal streamflow cycle induced by ice melt from a small

glacier. Both cycles occurred at similar times of the day but with perturbations in opposite

directions. However, the evaporation induced streamflow cycle was never observed at the

outlet of the watershed as the amplitude of the glacier-fed ice cycle was larger than the one due

to evaporation. By analyzing cautiously the geomorphology of the riparian area contributing

to the evaporation cycle, we assessed how much water must have melted from the glacier to

produce the observed diurnal cycle, given that it is damped by evaporation.

Finally, in order to better understand streamflow generation during precipitation events, we

performed an extensive assessment of the relation between antecedent soil water state and

stormflow characteristics. We observed previously unreported threshold relations between

antecedent soil water potential and runoff coefficients above which runoff coefficients were

increasing and the response time of the catchment shortened. Unlike many recent studies,

we did not observe threshold behaviors between antecedent soil moisture and runoff coef-

ficients. Our results suggest that hysteresis effects in the hillslopes might play a dominant

role in streamflow generation during precipitation events. These nonlinearities are still poorly

understood and need to be investigated further before they can be appropriately incorporated

into hydrological models.

Key words: Alpine Hydrology, catchment hydrology, Geomorphology, complex terrain, stream-

flow generation, Digital Elevation Model, drainage network, recession events, diurnal cycles,

evaporation, threshold behavior, wireless sensor network.
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1 Introduction

Our understanding of hydrological processes and ability to predict the discharge in moun-

tainous regions are essential to face societal challenges regarding freshwater management,

protection against natural hazards such as floods and droughts or for hydropower production,

especially in the actual context of climate change. To tackle those challenges, the use of

basin-scale hydrological models has become widespread. In the last several decades, spatially

explicit models, also referred to as distributed models, have received increasing interest due

to growing computational power and to the advent of numerous technologies allowing us to

better sense the hydrosphere (Beven, 2011). Yet, simulating the discharge from mountain-

ous watersheds remains an open challenge in the field of hydrology. First, our ability to run

distributed hydrological models in mountainous areas is hampered by the complex structure

of the watershed, epitomized by the heterogeneous nature of its geomorphology, geology,

topography, vegetation cover and soils. Second, the spatial variability of the forcing fluxes

such as rainfall, snowfall and evaporation is difficult to capture in mountainous areas, which

is often recognized to be among the main limitations of distributed models performance and

robustness (Beven, 2011, Chap. 3). In this dissertation, these two critical aspects are treated

and exemplified by an extensive study of a high altitude alpine watershed in Switzerland. The

complex structure of the catchment is analyzed through its geomorphology and the spatial

variability of meteorological parameters partially captured through an ambitious distributed

monitoring campaign. Both aspects are developed in the following.

1.1 Basin Geomorphology and Catchment Hydrology

In mountainous areas, the study of the basin geomorphology is of crucial importance for

hydrological modeling. Indeed, the streamflow response of a mountainous watershed is

strongly influenced by topographic controls such as elevation gradient, aspect or curvature,

all reflecting the geomorphology of the basin. For instance, at the hillslope scale, the snow

or ice melt rates are mainly governed by the orientation and steepness of the slope which

affect the total energy balance locally (Lehning et al., 2006). The rainfall-runoff response

of steep hillslopes is also partially controlled by topography. Indeed, it is widely known
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Chapter 1. Introduction

that subsurface flow is the dominant process in steep hillslopes compared to infiltration

excess overland flow or saturation excess overland flow (Brutsaert (2005, Chap. 11) and Dunne

(1978)). However, the rainfall-runoff response at the hillslope scale or headwater scale of

mountainous areas is not fully understood yet but considerable advances were achieved in the

last decades through the use of natural or artificial tracers. In that context, experimental sites

like Maimai in New Zealand, Panola in Georgia or HJ Andrews and Low Pass in Oregon (just to

cite a few) have characterized and demonstrated the importance of macropores, preferential

flow paths or flow at the bedrock interface for stormflow generation. This led to important

debates in the hydrological community related to residence times in catchments (Botter et al.,

2010; McDonnell, 2003; McDonnell et al., 2010). Recently, several studies also underlined

the importance of non-linearities in rainfall runoff responses, leading to new concepts of

stormflow generation (Spence and Woo, 2003; Tromp-van Meerveld and McDonnell, 2006; Lin,

2010; Sidle et al., 2001).

However, upscaling our understanding of processes from the hillslope to the catchment

scale remains critical for modeling purposes and is a very active area of research in hydrology

(Tetzlaff et al., 2008). In that context and even more for mountainous areas, the geomorphology

of the basin, described through a high resolution Digital Elevation Model (DEM), is certainly

key to upscale our understanding of hydrological processes. In hydrology, the geomorphology

of the basin has been mainly studied through the structure and features of the channel

network (Horton, 1932, 1945; Rodriguez-Iturbe and Rinaldo, 2001; Strahler, 1952) and through

the geomorphologic theory of the unit hydrograph (Rodriguez-Iturbe and Valdes, 1979) which

is still widely applied in rainfall-runoff modeling (Rinaldo et al., 2006a,b; Schaefli et al., 2014).

In that context, the introduction of DEMs has enabled deeper insights in the structure of

channel network and flow paths.

Whereas DEMs were obtained by interpolating contour lines, nowadays airborne or terrestrial

LiDAR (Light and Detection RAnging) are used to produce DEM with a resolution of few meters

and even less (Tarolli, 2014). At national scales, high resolution models are now also provided

(50 m in the UK and France, 30 m in the USA, 10 m in Italy, 25 m overall in Switzerland and

2 m below 2000 m above sea level). These high resolution DEMs allow defining the shape of

the hillslope accurately and getting new insights of flow pathways from the hillslope to the

stream. This was not the case before with coarser DEMs, especially in mountainous regions

where the elevation gradients can be in the same order of magnitude as the DEM resolution.

An essential point in the analysis of a DEM remains the distinction between hillslope and

channel network, which is a necessary step in running a distributed or semi-distributed

hydrological model. The classical and most widely used methods consist of pit removal,

computation of flow direction based on several algorithms (O’Callaghan and Mark, 1984;

Quinn et al., 1991; Tarboton, 1997) and determination of the area draining in each cell of

the DEM. The channel network is then obtained by selecting a threshold based on drainage

area and/or local slope. However, classical methods rely on a unique threshold for channel

initiation in the entire catchment, but several studies recently reported that such a unique

2



1.2. Distributed monitoring

threshold does not exist (Tarolli, 2014). New methods relying on high resolution DEMs are

able to extract channel network that are spatially very heterogeneous (Tarolli, 2014). Accurate

representation of the channel network together with high resolution DEMs have also brought

new insights in distributed riparian zone estimation (McGlynn and Seibert, 2003), flowpaths

distributions (Tucker et al., 2001) and enabled exploring new links between geomorphology

and stream temperature (Comola et al., 2015) or geomorpholgy and baseflow recessions

(Biswal and Marani, 2010).

1.2 Distributed monitoring

One of the basic rules in mountaineering taught by one’s father or grandfather is to always

carry an impermeable layer for any outing, short or long. In these environments, temporal

and spatial variability of meteorological conditions is an old and well known fact. However,

quantifying the spatial variability of precipitation (liquid or solid), evaporation, wind speed and

direction or even just temperature remains challenging in alpine environments (Huwald et al.,

2009). Besides from feeding spatially explicit hydrological models with distributed forcing

fluxes and boundary conditions, distributed monitoring of hydrological, meteorological and

pedological parameters have the potential to further increase our understanding of streamflow

generation, storage dynamics and transit times at the catchment scale.

Among the recent developments in sensing the hydrosphere, the most spectacular advances

have probably been realized with remote sensing techniques. Large datasets provided by

satellites provide regular information of hydrological states, inputs and outputs such as soil

moisture, snow cover, precipitation, surface temperature or evaporation. However, the spatio-

temporal resolution of the dataset makes them usually inappropriate for use in alpine envi-

ronments (Botteron et al., 2013). Concerning precipitation datasets, many national weather

forecast institutions now also provide measurements obtained with ground-based radars.

Their spatial (1 to 4 km) and temporal (5-15 min) resolutions make them particularly adapted

to applications in high altitude landscapes. However, radar based precipitation measurements

remain very challenging in mountainous areas due, among others, to ground clutter or vertical

variability of precipitation (Germann et al., 2006). Moreover, radar measurements are usually

corrected for global bias with “ground truth” adjustments measured by rain gauges, which are

also source of severe errors, typically due to wind effects.

In smaller mountainous areas, there is a need for higher spatial resolution for hydrological

applications and recent advances were achieved in that sense. For instance, new applications

of Raman scattering distributed temperature sensing (DTS) by fiber-optic cables have recently

shown considerable promise in snow pack or streamwater monitoring (Selker et al., 2006),

river-groundwater interactions (Briggs et al., 2012) or in indirect soil moisture estimations

(Ciocca et al., 2012). Recent advances in LiDAR also provide wind and temperature fields of

unprecedented resolutions to probe the atmospheric boundary layer (Froidevaux et al., 2013).

However, among the recent developments, wireless sensor networks that can be deployed
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in the field have drawn particular attention in catchment hydrology. Indeed, wireless sensor

networks allow to spatially monitoring parameters such as precipitation, temperature, wind

speed and direction, radiation, snow or water level. Nowadays, those networks are self-

organized with multihop routing which makes them particularly suited for deployment in

harsh conditions. Besides their affordable costs, wireless sensor networks have proven to be

of great potential for hydrometeorological studies in alpine catchments (Simoni et al., 2011;

Tobin et al., 2013), forested catchments (Trubilowicz et al., 2009), or in urban areas allowing

estimation of sensible heat fluxes at high spatial resolution (Nadeau et al., 2009). Moreover,

open-source platforms for micro-controllers such as Arduino or Raspberry pi systems are now

very well documented and will help for further developing wireless sensor networks at very

low costs.

1.3 The upper Val Ferret catchment

Though many “instrumented” watersheds exist, there has been relatively few intensive field

sensor deployments in high alpine landscapes where distributed measurements of evapora-

tion, precipitation, snow melt, local energy and stream discharge were undertaken. In 2009,

the Environmental FLUid Mechanics (EFLUM) laboratory decided to undertake a long term

monitoring campaign in the Swiss Alps. There were several major constraints for choosing

a field site: 1) find a site with very little anthropogenic influence, 2) have a sufficient cell-

phone network coverage to run real time monitoring devices and 3) find a site close enough

to Lausanne for logistical reasons. However, in a land where more than half of the electricity

is produced by hydropower facilities, the first point was certainly a large constraint and the

upper part of the Val Ferret quickly became an evidence.

The Val Ferret catchment is located in the southernmost ridge of the Swiss Alps bordering Italy,

covering a total area of 20.4 km2 with elevation ranging from 1773 m above sea level (asl) at

the outlet, to 3236 m asl at the highest point (mean elevation is 2423 m asl). The slopes are

moderate to steep (mean 31.6◦, maximum 88.9◦). The land cover of the watershed consists

mainly of mountain grassland (58%), bedrock outcrops (24.7%), rocks (12.7%), shrubs (2%),

a small glacier (Glacier des Angroniettes, 2%) and three small lakes (Lacs de Fenêtre, 0.2%).

The riparian area of the watershed is mainly composed of grassland, moss and debris but

almost no vegetation with deep roots. The geology of the site is complex, the strata consist

mainly of sedimentary shale, quartzite, limestone and sandstone. The analysis of several soil

samples revealed a dominance of sandy silt loam and light clay type of soils. Apart from a

small drinking water intake of maximum 17 l/s and the presence of two cow herds during

summer, there is very little anthropogenic influence on the hydrologic streamflow regime.

Individual maps showing the land use of the watershed will be presented in specific chapters

of the dissertation.

Since 2009, small automatic meteorological stations have been deployed in the Val Ferret

watershed, whereas in parallel, similar stations were also deployed by the EFLUM laboratory in
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Burkina Faso (Ceperley, 2014; Mande, 2013). The stations form a multi-hop and self organized

wireless network and rely on Sensorscope technology (Ingelrest et al., 2010), an EPFL spin-off.

All the stations are powered with solar panels and transmit their data to a master station which

in turn transmit the data to a server through GPRS connection, allowing for quasi real-time

monitoring. The meteorological stations typically include measurements of air temperature,

humidity, wind speed and direction, incoming shortwave radiation, surface skin temperature,

soil moisture and temperature, soil water potential and rainfall gauge (see Figure 1.1 for an

illustration). During the period of this dissertation, three field campaigns were undertaken

with the deployment of 26 stations in 2011, 25 in 2012 and 20 in 2013, installed from early

Summer until late Fall.

(a) (b)

Figure 1.1: Examples of Sensorscope stations (a) close to the outlet of the watershed and (b)
close to the Glacier des Angroniettes.

The stream water levels were monitored at the outlet of the catchment and at a location 2.9 km

upstream of the outlet. During 2012, a third location was also monitored, 2.1 km upstream

of the outlet. Water levels were recorded at a temporal resolution of one sample every 5

minutes using pressure sensors (HyMADD, MADD Technologies Sàrl, Switzerland). The data

were retrieved on a bi-weekly basis to avoid measurements gaps, errors, thermal effects and

seasonal drift (Cuevas et al., 2010; McLaughlin and Cohen, 2011). Due to restrictions in the

area, it was not possible to install a weir in the stream. Because of year-to-year changes in the

streambed, a rating curve had to be computed for each field campaign. The streamflow Q

was obtained with the salt dilution technique (Rantz, 1982; Weijs et al., 2013) and measured

on a bi-weekly basis for establishing a rating curve of the different gauging sites. The largest

changes in the streambed occurred during spring and not during the deployments so that the

coefficients of the stage-discharge relationship were considered valid and constant during

each deployment.
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The hydrologic regime of the watershed is largely influenced by snow accumulation. The

climate of the watershed is characterized by a long winter where permanent snow cover

becomes significant in December and lasts until mid-summer. Spring period runoff is typ-

ically snowmelt dominated and summer is generally mild with occasional thunderstorms

and typically low-base flows. Heavy rains, and occasional snowfalls, become more regular

and important in autumn. In a first study realized in 2010, Simoni et al. (2011) applied a

simple lumped hydrological model to analyze the streamflow dynamics of the watershed. The

discharge was decomposed in four main reservoirs: snowmelt, icemelt due to the presence

of the small glacier, baseflow and rainfall-runoff response. In particular, the snow and ice

components were simulated with a simple degree-day model (Hock, 2003) with a melt factor

that was constant during the season. Moreover, the icemelt component was found to be quite

constant during the entire deployment and was well captured by the degree day model. The

results of the simulation are shown in Figure 1.2. The spatial variability of air temperature and

precipitation was also studied in terms of distance and aspect. The Val Ferret watershed has

also been chosen to study katabatic and anabatic flows on steep slopes (Nadeau et al., 2013;

Oldroyd et al., 2014).

3

Figure 1.2: Main components of the streamflow as simulated by Simoni et al. (2011) for the
2010 field campaign with a simple lumped hydrological model.

Finally, a LiDAR based DEM of one meter resolution has been acquired in August 2010 by the

company Helimap System SA. The LiDAR data was acquired from a helicopter using a Riegl

VQ-480, flying at an altitude of 500 meters above ground on a clear sky and snow-free day. The

flying speed was around 45 knots, the scan angle was 60° and the pulse frequency used was of

25 kHz. The survey point density was specified to 4-5 points/m2, with an absolute vertical and

horizontal accuracy of respectively 10 cm and 15 cm. Vegetation and bare ground points were

filtered using the ground routine of the Terrascan® software.
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1.4. Research questions and organization of the thesis

1.4 Research questions and organization of the thesis

The overall objective of the present dissertation is to improve our understanding of streamflow

generation in the Val Ferret experimental watershed, seen as a representative high altitude

alpine catchment. To that end, a multi-year field observation campaign with selective inten-

sive monitoring periods has been undertaken to further increase our understanding of the

dominant processes affecting the monitored hydrograph. Given its importance for any alpine

watershed, the geomorphology of the Val Ferret basin is studied in details and its influence on

streamflow generation is deciphered. Figure 1.3 illustrates the main hydrological processes

addressed in this dissertation and how they are related to the monitored hydrograph.
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Figure 1.3: Illustration of the processes studied in the different chapters of the thesis and their
link to the hydrograph.

In Chapter 2, we extensively study the channel network that was carefully mapped in the field

and extracted from the one meter resolution DEM. A particular attention is paid to the key role

of spatially heterogeneous drainage density on distributed hydrological modeling. We address

the following questions: (i) Are classical channel network extraction methods and more

advanced techniques able to reproduce key geomorphological features of the monitored/true

network? (ii) What is the influence of the channel network on the hydrological response of the

watershed during storm events? (iii) Is it possible to separate the perennial and intermittent

portions of the channel network automatically? The channel network obtained in this chapter

serves as a basis for the two following chapters.

In Chapter 3, we investigate possible links between basin geomorphology and base flow

recession curves. A widely used method linking discharge to temporal discharge variation

during recession events (Brutsaert and Nieber, 1977) is applied to study base flow features

of the Val Ferret and 26 other catchments located in Switzerland. A new conceptual model
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inspired by a recent study (Biswal and Marani, 2010) is proposed to describe the impact of the

basin geomorphology on the recession curves. It is based solely on the analysis of the basin

DEM through the temporal evolution of the stream network. The questions we address are:

(i) Do catchment recession curves bare the signature of geomorphology? (ii) Can we predict

base flow features for ungauged basins through the analysis of a DEM? (iii) Is there a unique

Storage-Discharge relation in a basin?

In Chapter 4, we analyze in details two types of streamflow diurnal cycles observed in the Val

Ferret catchment. In one monitored sub basin, the streamflow diurnal cycle was dominated by

evaporation whereas ice melt from the glacier was mainly feeding the diurnal cycle observed

in another sub basin of the watershed. However, earlier results suggested that the streamflow

diurnal cycle observed at the outlet were solely due to snow or ice melt (Simoni et al., 2011).

The questions addressed in this Chapter are the following: (i) Is the ice melt induced diurnal

streamflow cycle affected by the evaporation-induced diurnal streamflow cycle? (ii) What and

where is the area contributing to the evaporation-induced diurnal streamflow cycle?

In Chapter 5, we study the influence of antecedent soil moisture and soil water potential on

streamflow generation during precipitation events. The soil moisture and soil water potential

data were obtained from the wireless network of meteorological stations equipped with soil

sensors. The questions we address are the followings: (i) Is there a threshold controlling runoff

response in the Val Ferret watershed? (ii) What is the influence of soil moisture and soil water

potential on runoff generation? (iii) Are the streamflow generation mechanisms similar for

wet or dry antecedent conditions?

Finally, the main findings of this dissertation are presented in Chapter 6 along with recommen-

dations for future study in the Val Ferret watershed or any experimental alpine catchment.
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2 Geomorphological study of the Val
Ferret watershed

This chapter has been submitted for publication with the following citation:

Mutzner R., Tarolli P., Sofia G., Parlange M.B. and Rinaldo Andrea. Spatially heterogeneous

drainage densities in a high-altitude alpine catchment and impact on travel time distributions.

Hydrological Processes, under review

Abstract: This chapter addresses the role of accurate mapping of spatially heterogeneous

drainage densities in high altitude alpine catchments on any spatially explicit modeling of

hydrological response. The channel network and its channel heads have been mapped in the

field within a high mountain catchment in the Swiss Alps. The monitored channel network is

characterized by highly uneven drainage density. Different channel networks were extracted

from a one meter resolution LiDAR derived Digital Elevation Model and compared to the moni-

tored channel network through geomorphologic parameters, hillslope-to-channel distance and

travel time estimation in the rescaled width function formalism, seen as a basic kinematic char-

acterization of spatially explicit models of the hydrologic response. Travel times are represented

by a proxy involving unchanneled and channeled lengths from any site to the outlet. Our results

show that the channel network derived by statistical analysis of surface morphology is consistent

with the monitored network. Larger discrepancies were observed when the channel network

was obtained with classical threshold based approaches relying on cumulative drainage area

and local slope. The influence on catchment travel time distributions of the actual arrangement

of drainage densities proves important, especially for the recession limb of the hydrograph. Dis-

crepancies among travel time estimations derived from classical extraction methods compared

to the ones obtained with the monitored network were the largest. Thus we conclude that spatial

heterogeneity of the drainage density plays an important role in runoff formation processes

which cannot be captured by classical extraction methods.
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Chapter 2. Geomorphological study of the Val Ferret watershed

2.1 Introduction

Recently, the increased availability of remote-sensing techniques offered new insight on Earth

surface processes. In particular, airborne and terrestrial LiDAR (Light Detection And Ranging)

have been used to produce high resolution topographic maps, opening new opportunities for

studying river and basin geomorphology (Jaboyedoff et al., 2012; Tarolli, 2014). LiDAR-derived

Digital Elevation Models (DEMs) provide fine scale knowledge of a watershed’s geomorphology

which is crucial for environmental, agricultural and flood management. High resolution DEMs

also serve as a basis to model the hydrological response in poorly monitored basins (Beven,

2011) and are instrumental to describe features needed by topographic threshold of shallow

landslides or debris flow (Simoni et al., 2008; Tarolli et al., 2012; Cavalli et al., 2013). In

this context, spatially explicit hydrological models capable of accurate geomorphological

descriptions are often used to reproduce flood hydrographs (Szilágyi and Parlange, 1999;

Schaefli et al., 2014; Singh et al., 2014). Among them, the Width Function Instantaneous Unit

Hydrograph (WFIUH) model has gained particular interest with the emergence of remote

sensing techniques since it is mainly based on the analysis of DEMs. In the WFIUH models, the

width function, defined as the number of channelized pixels located at a hydrological distance

x from the outlet divided by the number of channelized pixels, is used as a probability density

function of travel length (Kirkby, 1976; Troutman and Karlinger, 1985; Mesa and Mifflin, 1986;

Gupta and Mesa, 1988). However, this approach neglects the travel time across the hillslopes

which might be valid only in large basins (D’Odorico and Rigon, 2003). Following the idea of

van der Tak and Bras (1990), Rinaldo et al. (1995) introduced the Rescaled Width Function

(RWF), defined as the number of cells located at a distance L taken as the sum of flow path

inside the river network Lc and the flow path across the hillslope Lh . The latter is amplified by

a factor r = uc /uh where uh and uc are two parameters representing the hillslope and channel

velocity respectively.

The RWF formulation of the WFIUH has been extensively used in the past to analyze the

contribution of hillslope and channels to the hydrologic response (D’Odorico and Rigon, 2003;

Botter and Rinaldo, 2003), for regionalization and scaling properties of storm hydrographs

(Di Lazzaro, 2009; Di Lazzaro and Volpi, 2011) and to model the hydrological response during

flood events (Giannoni et al., 2003; Borga et al., 2007; Zoccatelli et al., 2010). The RWF is

also used to estimate basin travel time distribution by dividing the flow path inside the river

network Lc and the flow path across the hillslope Lh by their respective velocities. Generally,

the hillslope and channel velocities are assumed to be constant on the catchment scale but

are typically separated by an order of magnitude. Recent studies proposed to vary the hillslope

velocity spatially, based on land use or topographic characteristics(Noto and La Loggia, 2007;

Grimaldi et al., 2010, 2012; Petroselli, 2012).

The RWF model and travel time estimations rely on a proper partitioning of the landscape

into hillslope and channel network parts. Surprisingly, few studies have tried to assess the

impact of channel identification procedures on RWF models and travel time estimations. The

simplest and most widely used method to automatically extract the channel network consists
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of computing the contributing area A of each cell, i.e. computing the number of cells draining

in each cell following the steepest path among the eight neighboring cells. Then, a constant

critical support area is chosen (O’Callaghan and Mark, 1984; Tarboton et al., 1991) as criterion

for channel initiation. Gandolfi and Bischetti (1997) analyzed the effect of the area threshold

on the Geomorphologic Instantaneous Unit Hydrograph and geomorphlogical indexes in

two small alpine basins using 10 meter resolution DEMs. Their result showed that the choice

of threshold area was impacting the hydrologic response significantly especially when the

hillslope residence time is in the same order as the residence time in the network. Nardi et al.

(2008) studied the impact of flow direction computation and flat area removal on the RWF

and geomorphological parameters. The second widely used method to automatically extract

the channel network is based on experimental data from Montgomery and Dietrich (1989).

They proposed an empirical threshold for channel initiation depending on contributing area

A and local slope S, in the form ASk . Unlike the method based solely on contributing area

thresholding, this method allows the drainage density to vary spatially which is its main

advantage. Giannoni et al. (2005) proposed a procedure to objectively and automatically

establish the ASk threshold and studied the effect of the threshold on the hillslope path

length frequency distribution and on the RWF. Although a deep debate is currently focused on

issues of nonstationarity and variance in the hydrologic response, especially of source areas

roughly identified here as unchanneled sites (Rodhe et al., 1996; McDonnell, 1990; McGlynn

and McDonnell, 2003; McGlynn et al., 2003; Davies et al., 2011, 2013; McDonnell and Beven,

2014), here we argue that the RWF concept is particularly suited to the present investigation,

as it contains intact the geomorphological features addressed by extraction methods which

ultimately acts as a proxy of the stationary behavior of the system.

Usually, the thresholds used for channel initiation are assumed to be constant on the catch-

ment scale. However, several studies have underlined that a unique threshold for channel

head identification and channel network extraction might not exist (Jaeger et al., 2007; Tarolli

and Dalla Fontana, 2009; Passalacqua et al., 2010a; Orlandini et al., 2011; Jefferson and McGee,

2012). Moreover, new extraction methods relying on high resolution DEMs and computation

of local curvature and openness are now available and able to suitably detect channel heads

and channel networks (see (Tarolli, 2014) for a review). Recently, Passalacqua et al. (2010a);

Orlandini et al. (2011); Henkle et al. (2011) reported two main processes for channel initiation

related to surface erosion/landslide and to groundwater seeping upward processes in alpine

terrains. Several studies also highlighted the importance of the differentiation of perennial and

intermittent network (Gregory and Walling, 1968; Bishop et al., 2008; Buttle et al., 2012; Godsey

and Kirchner, 2014). At the time, no automatic extraction method is able to differentiate peren-

nial and intermittent channels in the channel network. In most of the hydrological models, the

channel network is extracted and compared to orthophotos or official maps but no temporal

variation of the channel network is taken into account. However, it was recently proposed

(Botter et al., 2013) that a criterion to infer the transition from ephemeral to perennial streams

could be identified with the aid of tools like the ones studied here. Therein the transition is

identified at the threshold λ/k = 1 where λ is the frequency of runoff-producing daily rainfall
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and k is the inverse of the hydrograph decay rate. Thus scaling of k with total catchment area,

or else the point-wise determination of the mean travel time through techniques like the ones

outlined here, should be able to differentiate the network sites where the probability of no

flow shows departure from zero (Ceola et al., 2014; Widder et al., 2014).

In this work, we investigate the effects of using different channel networks on the estimation of

travel time distribution through the RWF approach and on geomorphological characteristics in

a high alpine headwater catchment. We also study the effect of differentiating the intermittent

and the perennial streams in the channel network. Our contribution does not intend to review

the latest (quite lively) work on the hydrologic response specifically focused on the inferences

on nonstationarity of travel time distributions. Rather, using the simplest formulation of the

rescaled width function approach, entirely DEM-based, we intend to probe the effects of

accurate network extraction techniques on key features of the catchment hydrologic response.

The chapter is organized as follows: after a description of the site, the available dataset and the

monitoring campaign (section 2.), the different extraction techniques and channel network

comparison criterions are presented in Section 3 and the results shown in Section 4. After

discussing some implications and limitations of our study in Section 5, the conclusions are

reported in Section 6.

2.2 Study Area and Survey

For a general description of the watershed, the reader is referred to the Study Area description

in the Introduction of the thesis. In this Chapter, we make use of the one meter resolution

LiDAR-derived DEM of the watershed that was acquired in August 2010. Aerial photographs

are provided by the Swiss Federal Office of Topography with a resolution of 0.25 m (see

www.swisstopo.ch for more details).

Channel network and channel heads survey

During August 2011, an intensive field campaign was conducted in the Val Ferret watershed

aiming at monitoring the channel heads and channel network. During this time of the year,

the main river was in its low-flow regime, mainly fed by the release of groundwater and

glacier melt. The watershed was systematically walked along all drainage lines up to the

catchment divide in order to locate and map 373 channel heads with a vertical accuracy of a

few centimeters using a high-precision Global Navigation Satellite System (Topcon GRS-1 GPS

and GLONASS), see picture a) in Figure 2.1 for an illustration. Based on field observations, the

channel heads were classified in two main categories: 1) 190 groundwater channel heads due

to groundwater seeping upward and laterally processes, driven by perennial flow (picture (a)

in Figure 2.1), 2) 183 runoff channel heads initiated by soil erosion or landsliding processes

due to surface or fast sub-surface runoff during rainfall or snowmelt flow induced events

(picture (b) in Figure 2.1). Similarly to (Orlandini et al., 2011), the positions of the channel

heads were defined as the upstream limit of concentrated flow, at the hillslope converges to
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2.2. Study Area and Survey

an observable drainage line and downstream flow path. Four additional channel heads were

mapped in the southernmost part of the watershed and are due to water coming out of the

moraine and fed by glacier melt, which we called glacier channel heads in Figure 2.2. Some

channel heads located in inaccessible and dangerous areas, but well defined as surface runoff

channel heads, were also mapped using 1 m resolution hillshade map and aerial photographs,

double checked with pictures taken in the field. Based on the observations during the field

survey, the channels were classified as perennial when there was water flowing in the transect

and intermittent channels otherwise (see Figure 2.2). In the following, the channel network

resulting from the survey is referred to as Monitored network and the wet part as Perennial

network.

(a) (b)

Figure 2.1: Examples of (a) a channel head formed by groundwater seeping upward flow in a
low-slope area; (b) a channel head formed by a combination of flow accumulation and slope,
with soil erosion in the Val Ferret experimental area.

19



Chapter 2. Geomorphological study of the Val Ferret watershed

1800

2800

270
0

1900

2700

2700

20
00

2100

2200

23002400

2500

2600

230
0

2300

23
00

2300

230
0

2300

2400

2400

240
0

2400
2400

2500

2500

250
0

2500

250
0

2600

26
00

2600

2600

2600

2200

2200

2200

2200

2100

210
0

2100

2700

2700

2000
2000

2600

2400

240
0

2500

2200

0 1 20.5 km

±

grassland
talus deposit
bedrock outcrops
shrubs
glacier
shallow landslides
lake

glacier catchment
# Gauging Stations

groundwater channel head
runoff channel head
glacier channel head
intermitent stream
perennial stream

45°53'6.71''N
7°7'4.74''E

Glacier Catchment

Figure 2.2: Topographic map of the study area. Channel heads and their type, channel and
their state, gauging stations and land surface properties are shown in the map.

2.3 Methods

2.3.1 Channel network extraction

Our study case is characterized by the presence of a small glacier in the southernmost part of

the watershed (see Figure 2.2). This area results in a complex morphology with pronounced

concavities/convexities on the ground that are completely unrelated to the channel network.

Therefore we decided to roughly mask these areas, depicted in Figure 2.2 as glacier catchment,

to prevent glacial channels to be considered as river network. In this work we considered three

different channel network extraction methods, described in the following.

Area and Slope-Area threshold approach

The area threshold At and the slope-area threshold ASn
t methods are widely used in the

literature and are defined as classical approaches to extract the channel network. For each of

the channel heads mapped in the field, the values of A and S were considered and averaged for

the determination of drainage area threshold At and for slope area threshold ASn
t . Concerning

this last approach, we used the function ASn
t with n = 2 as suggested by Montgomery and
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Dietrich (1992). The resulting thresholds are At = 6092 m2 and AS2
t = 1675 m2. After removing

depressions in the DEM, the flow direction, slope and cumulative area are computed following

the steepest path among the neighboring cells (d8 method) and the network is extracted by

applying the aforementioned threshold for hillslope and channel differentiation. The resulting

channel networks are referred to as Area threshold and Slope Area threshold in the following.

Moreover, we also determined larger thresholds so that the resulting networks obtained

from the area threshold and the slope-area threshold methods would have the same channel

network length as the monitored network, i.e. the same hortonian drainage density Dd ,

defined as the total length of stream channels divided by the area they occupy (Horton, 1932,

1945). This results in thresholds of At = 21959 m2 and (AS2
t = 25475 m2. The two resulting

channel networks are referred to as Area threshold 2 and Slope Area threshold 2 in the following.

Statistical approach

A statistical approach has been applied for the automatic extraction of channel network (Sofia

et al., 2011). This approach has been chosen because 1) it integrates both curvature (Evans,

1972, 1979) and topographic openness (Yokoyama and Pike, 2002; Prima et al., 2006), providing

a method more sound to errors in the original topographic data (the openness, expressing

an angular measure of the relation between the surface morphology and horizontal distance,

indeed avoids uncertainties related to the second derivatives operation); 2) it provides a

framework for an automatic definition of the scale of topographic attributes analysis. The

core idea of the Sofia et al. (2011) methodology is to use statistical descriptors to objectively

identify channels where terrain geometry denotes a significantly convergent topography. In the

proposed approach, surface convergences are highlighted using two topographic attributes:

minimum curvature (Evans, 1972, 1979) and openness (Yokoyama and Pike, 2002). The choice

of the optimum scale of analysis (kernel) relies on a statistical analysis of the topographic

attributes distributions: the optimum kernel is the one providing the greater asymmetry in

the topographic parameter distribution (Sofia et al., 2011). In our study case, applying the

procedure described in Sofia et al. (2011), the kernel is found to be 15 m for openness, and

11 m for curvature.

The network extraction procedure is then a three-step method based on (a) the normalization

and overlapping of openness and minimum curvature in order to highlight the more likely

surface convergences, (b) a weighting of a multiple-flow upslope area (Quinn et al., 1991)

according to such normalized maps to identify drainage flow paths and flow accumulation

consistent with terrain geometry, and (c) the use of a value derived from the z-score nor-

malization of the weighted upslope area as non-subjective threshold for channel network

identification (Sofia et al., 2011). To obtain a fully connected network, a noise-filtering and

connection procedure is applied to the potential extracted network (Sofia et al., 2011). False

positives are discarded according to a majority filter: cells belonging to the extraction are

filtered based on the majority of their contiguous neighboring cells. The connection of the

network is based on a shortest-cost path approach, where the cost of traveling from one cell to

21



Chapter 2. Geomorphological study of the Val Ferret watershed

the other is given by the Euclidean distance of that cell from the extracted network(Sofia et al.,

2011). The resulting channel network is referred to as Statistical approach in the following.

2.3.2 Geomorphological characterization of the channel network

We use several geomorphological descriptors to compare the channel networks obtained with

the different extraction methods: 1) the hortonian drainage density Dd , expressed in km/km2,

2) the watershed orderΩ, 3) the length of the highest order stream Lc,Ω [m], 4) the drainage

frequency expressed in number of streams per unit of area [#/km2] and 5) the distance from

the farthest channel head to the outlet along the network Lc,max [m]. Obviously, these param-

eters are influenced by the choice of a channel network extraction method. Moreover, these

parameters are often used to compare basins of different size or to establish catchment-scale

hydrological parameters.

We also compute the local hillslope-to-channel distance Lh , defined per pixel as the length

covered following the steepest descent path until a channelized pixel is reached. The hillslope-

to-channel distance Lh relies on the proper identification of the channel network and is

therefore a good comparison basis for the different channel network extraction methods. The

classical hortonian drainage density Dd is physically related to the mean distance one has to

walk from a random location before encountering a channel. It is approximately taken as the

inverse of two times the mean hillslope-to-channel distance. Hence, the hillslope-to-channel

distance Lh can be seen as a local measure of the drainage density (Tucker et al., 2001). As

proposed in Tucker et al. (2001), the hillslope-to-channel distance Lh is treated as a spatial

random function allowing computing the probability distribution function and covariance

function of Lh . The covariance function, computed under the assumption of isotropy and

second-order stationarity (Tucker et al., 2001), is then fitted with an exponential model with

an effective range Λ, a widely accepted model in geostatistical modeling (Goovaerts, 1997).

The computation of this effective range aims at finding a suitable scale to compute mean

hillslope-to-channel distance and therefore map drainage density at the sub-catchment scale.

2.3.3 Width function and Travel Time Estimation

In a first part, the hillslope contribution to the travel time is neglected and the width function

is computed as the number of cells located at a given hydrological distance from the outlet

following the river network, normalized by the total number of cells belonging to the channel

network. In a second part, we take into account the hillslope contribution to the width

function and compute a Rescaled Width Function (RWF) (Rinaldo et al., 1995). The RWF is

computed as the number of cells located at a distance L taken as the sum of flow path inside

the river network Lc and the flow path across the hillslope Lh , the latter being amplified by a

factor r accounting for smaller hillslope velocity. For a cell located at position (x, y) within

the watershed, the distance to the outlet is therefore defined as L(x, y) = Lc (x, y)+ r Lh(x, y).

The number of cells located at a distance L is normalized by the total number of cells, i.e. the
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basin area in pixel units. Alternatively, the travel time τ of every cell of the watershed to the

outlet is defined as follows (Rinaldo et al., 1995; Grimaldi et al., 2010):

τ(x, y) = Lh(x, y)

uh
+ Lc (x, y)

uc
(2.1)

Similarly to the hillslope-to-channel distance Lh , the travel time τ is treated as a spatial random

function allowing computing a probability distribution function of the travel time.

The computation of the travel time distribution through the flow length approach requires

the estimation of the two parameters uh and uc . Recent studies have proposed different

approaches to account for spatially varying hillslope velocity (Noto and La Loggia, 2007;

Grimaldi et al., 2010, 2012; Petroselli, 2012). However, the hillslope and channel velocities

are usually assumed to be separated by one or two orders of magnitude and are considered

constant over the watershed. In our study, we decided to use a constant channel velocity

of 2 m/s and to compute the travel time distribution for three different hillslope velocity

cases, namely uh = 0.04 m/s, uh = 0.2 m/s and uh = 0.1 m/s. The choice of different hillslope

velocities will be discussed later but the three different hillslope velocities used in our study

are comparable to the value of the factor r reported in the literature. Note that for modeling

purposes, the parameters uc should be carefully calibrated with lag time or concentration

time approaches. However, our purpose is not to model rainfall-runoff events but only to test

whether the extracted channel networks are able to reproduce the travel time distribution

when taking the monitored network as a reference. The choice of the channel velocity value

of 2 m/s has been motivated by the observation of glacier melt induced streamflow diurnal

cycles at the outlet of a sub-catchment and at the outlet of the watershed. The channel velocity,

computed as the time difference in the occurrence of maximum streamflow divided by the

distance between the two outlets along the channel network, has been found to be relatively

constant at values oscillating between 1.5 m/s and 2.5 m/s.

2.4 Results

2.4.1 Channel heads location and characterization

Table 2.1 reports some simple statistical characteristics of the drainage area and local slope

of the monitored channel heads and Figure 2.3 shows box plots of drainage Area A and local

Slope S for both channel head type. These values indicate that groundwater channel heads

tend to present a lower critical support area and relatively lower slope compared to runoff

channel heads. Moreover, the standard deviation of the local drainage area is especially large

compared to the mean which reflects a large spatial variability in the channel initiations.

We performed a non-parametric Mann-Whitney U test at a level of significance α= 0.05 in
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Table 2.1: Statistical characteristics of drainage area and local slope of the monitored channel
heads with and without classification. the term std stands for standard deviation.

Area [m2] Slope [m m−1]

mean median std mean median std
All channel heads 6092 1296 17649 0.4472 0.4111 0.2754

Groundwater 2879 895 6801 0.407 0.361 0.273
Runoff 8983 2246 23863 0.488 0.484 0.2725
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Figure 2.3: Box plots of A and S for each channel heads types.

order to test the null hypothesis that groundwater and runoff channel heads have identical

continuous distribution of drainage area and local slope. Concerning the channel heads

drainage areas, we found a very small p-value (1.24×10−13) suggesting a highly statistically

significant difference between groundwater and runoff channels. In the case of the local

slope, the p-value was larger but still indicating that the distribution of the slope of the two

channel heads groups is different. This simply suggests that the contributing area is a better

descriptor for separating groundwater channel heads from runoff channel heads than local

slope. A power law was fitted through least squares between the contributing area and the

local slope but the correlation was found to be weak for each channel head type (R2 = 0.0044

for groundwater channel heads and R2 = 0.031 for runoff channel heads).

Channel network characterization

Table 2.2 summarizes some geomorphological parameters of the extracted networks. As ex-

pected, all the parameters change with the different channel networks. The hortonian drainage

density obtained from the classical methods with field-based thresholds is particularly large.

Among the two methods, the discrepancy is the largest for the slope-area method. Even though

the statistical approach does not capture the watershed order and the length of the highest

order stream, the drainage density and drainage frequency are close to the one obtained with

the monitored network. We also note that the area and slope-area methods appear to do
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satisfactory when used with a larger threshold (Area threshold 2 and Slope Are threshold 2). In

particular, the highest order stream length and the drainage frequency are close to the one

obtained with the monitored network. Finally, we note that the distance from the farthest

channel head to the outlet is similar for the different channel networks. Concerning the state of

the monitored network, we found that 52.9% of the total channel network length are perennial

channels whereas the remaining 47.1% are intermittent channels activated during storm or

snowmelt runoff events. The hortonian drainage density and the drainage frequency of the

perennial network are therefore almost half of the monitored network ones.

extraction method

drainage
den-
sity Dd

[km/km2]

watershed
orderΩ

highest order
stream length
Lc,Ω [m]

drainage
frequency
[#/km2]

longest
distance
to outlet
Lc,max [m]

Monitored network 5.27 6 1436.15 32.99 8046.12
Statistical approach 4.82 5 3827.41 33.97 8002.32
Area method 11.50 6 3211.99 92.45 8291.07
Slope Area method 27.18 7 3211.99 457.06 8348.38
Area method 2 5.27 5 1437.56 26.27 8207.21
Slope Area method 2 5.27 5 1437.56 26.23 8013.11
Perennial network 2.79 5 1436.15 16.27 8046.12

Table 2.2: Geomorphological features of the extracted networks

The width function extracted for the six different networks is represented in Figure 2.4. We

note some common features although significant differences can be observed between the

different methods. Except for the perennial network, the dominant flow distance (roughly

located between 0.5 and 0.65) is for instance well captured by all the extraction methods. This

is due to the fact that the highest order channels are well identified by all the methods. The

discrepancy is the largest for normalized flow distances between 0.3 and 0.4. The discrepancy

is also important for large flow distances, i.e. for the low order streams with some peaks of the

monitored network width functions that none of the channel network extraction methods is

able to capture. This illustrates the problem of properly identifying the channel heads and the

non-uniqueness of a critical support area on a basin scale.

2.4.2 Study of the hillslope-to-channel distance

Figure 2.5 shows both the extracted channel networks in blue and the color-coded hillslope-

to-channel distance Lh obtained with the monitored network and different channel network

extraction methods. For clarity, the results obtained with the perennial network are not shown

in Figure 2.5. As can be seen in panel a), the monitored channel network is characterized by a

local drainage density that is not constant spatially. In particular, we observe a high density

of channels in the westernmost and south-westernmost parts of the catchment resulting in

low values of Lh . The classical methods with low threshold values (c and d) exhibit clearly

a much larger extent of channeled portions of the landscape than the one shown by the

real network. When used with larger threshold values (e and f, same hortonian drainage

25



Chapter 2. Geomorphological study of the Val Ferret watershed

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Normalized flow distance

W
id

th
 F

un
ct

io
n 

W
(x

)

 

 

Monitored network
Statistical approach
Area threshold
Slope Area threshold
Area threshold 2
Slope Area threshold 2
Perennial network

Figure 2.4: Width function of the watershed using the different network extraction methods.

density as the monitored network), the classical extraction methods present a good spatial

distribution of the hillslope-to-channel distance Lh . However, with this larger threshold value,

the two classical methods are not able to capture the high density of channels observed in the

westernmost and south-westernmost parts of the catchment.

As previously mentioned, Lh is treated as a random function. This allows the computation

of a probability distribution as in Tucker et al. (2001), obtained for the different methods

and presented in Figure 2.6. The distances have been normalized by the largest hillslope-

to-channel distance found for the true network (Lh,max = 1530 m, note that the maximum

distance Lh of 2470.2 m mentioned in Figure 2.6 is to be found in the glacier catchment

that has been discarded in our calculations, see Methods section). All methods suggest

an approximate exponential frequency distribution (note the semi-log axes). The mean,

maximum and standard deviations for the different extraction methods are listed in Table 2.3.

When used with the lower thresholds, the At and (AS2)t methods completely underestimate

the hillslope-to-channel distance, leading to a severe overestimation of the hortonian drainage

density. This is especially the case for the (AS2)t methods with a mean hillslope-to-channel

distance of 63.6 m, more than four times smaller than the value found with the monitored

network. The maximum hillslope-to-channel distance is also largely underestimated with

the classical network methods. When used with larger threshold values, the At and (AS2)t

also tend to underestimate the hillslope-to-channel distance Lh . For small values of Lh , the

frequency distribution of Lh is relatively close to the one found for the monitored network

but the discrepancy is more important for larger values of Lh (see Figure 2.6). Interestingly,

the (AS2)t method is closer to the monitored network when used with a larger threshold

value, which was not the case with the field-based threshold value. The discrepancy between
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Figure 2.5: Hillslope-to-channel distance Lh and channel network for different methods: a)
real network, b) the statistical approach c) the At method, d) the (AS2)t method, e) the At

method with larger threshold and f) (AS2)t method with larger threshold. 27
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Figure 2.6: Frequency distribution of the hillslope-to-channel distance Lh for the different
extraction methods. The local distance to channel has been normalized by the maximum
value of Lh (Lh,max = 1530 m) computed with the real network. Upper right plot: frequency
distribution of Lh without normalization.

the statistical approach and the true observed network is smaller even though the statistical

approach tends to overestimate the hillslope-to-channel distance Lh . The discrepancy is

also relatively large when only the perennial channels of the network are considered. Indeed,

the hillslope-to-channel distance tend to be larger when the intermittent channels are not

considered, leading to an increase in the mean and maximum hillslope-to-channel distance

of 56.3% and 27.9% respectively.

Extraction method Lh,mean [m] σL [m] Lh,max [m]
Effective
range [m]

R2

Monitored network 280.66 256.31 1529.91 645.39 0.9696
Statistical approach 284.82 261.96 1574.52 674.10 0.9403
Area method 100.89 81.65 713.04 243.69 0.9646
Slope Area method 63.60 57.29 595.3 124.75 0.9719
Area method 2 179.76 138.41 1058.93 330.13 0.9555
Slope Area method 2 219.07 170.95 1066.55 395.27 0.9575
Perennial network 438.81 366.74 1957.76 791.02 0.9597

Table 2.3: Properties of the hillslope-to-channel distance obtained with the different extracted
networks.
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Figure 2.7: Covariance functions of the hillslope-to-channel distance Lh for the different
channel network extraction methods. The values have been normalized by the variance of the
hillslope-to-channel distance Lh for each method.

The covariance functions of Lh are presented in Figure 2.7. As expected, Lh is strongly au-

tocorrelated at the scale of individual hillslopes (short lag distance r ). At larger scales, the

correlation breaks down to values oscillating around zero. The covariance of the different

networks has been computed for maximum radial distances of 1600 m. Note that the corre-

lation of the perennial network also oscillates around zero but for larger lags which are not

shown in Figure 2.7 for clarity purposes. The correlation function of the statistical approach is

close to the monitored network, whereas the correlation breaks down relatively faster with the

classical methods and slower for the perennial network. As mentioned in the Methods section,

an exponential model with an effective range has been fitted to all the computed covariance

functions of Fig 2.7. The values of the effective range can be found in Table 2.3 along with

the coefficient of determination R2. The results show again that the statistical approach is

much closer to the monitored case than the classical network approaches. Even though the

results improve when we use a larger value of the threshold for the At and (AS2)t methods,

the effective range is still approximately half the value than the one found with the monitored

network. Among the two classical methods used with larger threshold values, the covariance

of the (AS2)t method is closer to the monitored network than the At method. In the case

of the perennial network, the effective range increases by 22.5%. From the results obtained

with the monitored network, the hortonian drainage density can be mapped by averaging the

inverse of two times Lh using a circular moving window of 645 meters as proposed by Tucker

et al. (2001). This method allows to quantify the spatial variability of the drainage density

Dd , mainly due to the spatial variability of channel heads density and the different processes

responsible for the channel initiation.

Figure 2.8 shows the relation between mean hillslope to channel distance and basin area for

50 sub-basins of the Val Ferret catchment. The sub-basins have been selected to cover a large
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Chapter 2. Geomorphological study of the Val Ferret watershed

range of area within the limits of the Val Ferret catchment (starting from 3 ha to 20.4 km2).

As can be observed, the scatter is the largest for the monitored and the statistical approach

networks. Concerning the classical methods, we observe some scatter for small values of

sub-basin areas and constant mean hillslope-to-channel distances for larger areas across

the sub-basins considered, with mean values close to the ones reported in Table 2.3. This

illustrates the inability of the classical methods to capture spatially variable drainage density in

this mountainous watershed with obvious relevance to (and implications on) spatially explicit

models of the hydrologic response.

104 105 106 107 108101

102

103

Area [m2]

L
h

[m
]

Monitored network
Statistical Approach
Area threshold
Slope Area threshold
Area threshold 2
Slope Area threshold 2

Figure 2.8: Relation between mean hillslope-to-channel distance and basin area for several
sub-basins.

2.4.3 Travel time distribution

The distribution of travel time estimation is presented in Figure 2.9 for three different cases

and their first four statistical moments along with the time to peak are summarized in Table 2.4.

As expected, the mean and standard deviation of the distribution increase with decreasing

hillslope velocity as it would take a droplet of water longer to reach a channel network. Con-

cerning the monitored network, the time to peak of the distribution is relatively constant at a

value of 50 minutes for all the three cases. This shows that the occurrence of the maximum

streamflow is mostly influenced by the channel velocity and not the hillslope velocity. We

also observe that all the channel networks are able to represent an estimated time to peak as

compared to the monitored network. From Figure 2.9, we also observe that the amplitude

of the travel time distribution maximum decreases with decreasing channel velocity. The

amplitude of the maximum streamflow is therefore strongly influenced by the choice of the

hillslope velocity. However, the scope of this section is not to characterize possible real storm

hydrographs but rather to investigate whether the different networks are able to reproduce
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this simplistic estimation of travel time.
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Figure 2.9: Travel time distribution of the watershed using the different channel network
extraction methods and different hillslope velocity values.

As noticed by Rinaldo et al. (1995), the travel time distribution becomes skewed positively with
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Chapter 2. Geomorphological study of the Val Ferret watershed

decreasing hillslope velocity. Achieving a positive skewness of the travel time distribution is

necessary to reproduce real recession events. In the first case where the channel and hillslope

celerity are only separated by an order of magnitude, the travel time distributions are less

positively skewed in the case of the monitored, perennial and statistical approach networks

and almost not skewed at all in the case of the area classical approaches (see Table 2.4). The

skewness of the travel time distributions increases with the decrease of the hillslope velocity

for all the different networks. In all the different cases, the travel time estimation of the

statistical approach is similar to the one obtained with the monitored network. Concerning

the classical approaches, the discrepancy between the distributions is larger when the lower

threshold is used. However, when a larger threshold is used, the difference between the

classical approaches and the monitored network is smaller. As can be seen in Figure 2.9 and

Table 2.4, the travel time distribution of the Slope Area method 2 is closer to the travel time

distribution of the monitored network than the one obtained with the Area method 2. When

the perennial network is considered, the discrepancy is comparable to the cases of the Area

threshold and Slope Area threshold networks. In particular, the mean travel time is larger in

the case of the perennial network leading to longer recessions.

The mean travel time of the 50 selected sub-basins has been computed in the three different

cases of hillslope velocities and are presented in Figure 2.10. Similarly to Figure 2.8, the scatter

is the largest for the monitored and the statistical approach networks. Except for the Slope Area

threshold 2 method, the mean travel time computed with the classical extraction methods

seems to follow a power law, as has been already proposed in earlier studies (Robinson and

Sivapalan, 1997). We also note that the discrepancy between the classical methods is larger

with decreasing hillslope velocity.
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Figure 2.10: Mean travel time versus basin area for several sub-basins using different channel
network extraction methods and different hillslope velocity values.
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2.5. Discussion

An interesting derived quantity that might shed light on the scaling of mean travel times

with total contributing area is illustrated in Figure 2.11. Therein, we present for the sub-

streams of the monitored network mean hillslope-to-channel distance versus drained area.

The kinematic treatment of Eq. 2.1 suggests that the mean unchanneled length < Lh > is a

proxy of mean travel time. The scaling relation sought in Figure 2.11 is meaningful for the

broad range of scales typically encompassed by the unchanneled distances within high Alpine

catchments. Here, the scaling exponent is practically 0.5, quite different from commonly

accepted values in the order of 1/3 (Robinson and Sivapalan, 1997).
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Figure 2.11: Mean hillslope length versus area draining in the sub-streams for the monitored
network. The sub-streams have been binned along drained area and the vertical errorbars
represent the standard deviation of the hillslope-to-channel distance.

2.5 Discussion

We note that groundwater channel heads occur at lower total contributing drainage area

and lower local slope when compared with ephemeral runoff-controlled channel heads,

confirming that the initiation process are of different nature. This is in line with previous

findings in alpine contexts (Passalacqua et al., 2010a; Orlandini et al., 2011; Henkle et al., 2011).

We found that slope is a less powerful criterion to differentiate the two groups of channel

heads. High-altitude environments in Alpine landscapes present a complex scenario where

different channel initiation processes coexist and where exposed lithology (and shallow soil

profiles) concert very heterogeneous conditions as far as drainage density is concerned. This is

partly driven by groundwater seepage and saturation from below and partly by other processes

unrelated to A and S (like snow melt or vertical cliff erosion in hollows). Moreover, our results

also confirm earlier findings that a unique threshold of A or AS2 for channel head identification

might not exist at the catchment scale (Jaeger et al., 2007; Tarolli and Dalla Fontana, 2009;

Passalacqua et al., 2010b; Orlandini et al., 2011; Jefferson and McGee, 2012).
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Large differences were observed in the hortonian drainage density Dd among the different

channel networks. Moreover, the drainage density was found to be very heterogeneous at

the catchment scale. In particular, we observed a high density of streams in the parts of the

catchment where a high density of groundwater channel heads was surveyed and relatively

lower channel density where runoff channel heads were monitored. We also found that the

Dd varied by a factor of two between the entire monitored network and the perennial net-

work. The classical definition of the hortonian drainage density is a good descriptor of how

dissected a landscape is by channels but does not reflect the marked heterogeneity in the

spatial distribution of the channels observed in mountainous regions. This was also noted by

Marani et al. (2003) who observed major differences between hortonian and actual drainage

densities in tidal environments in the northern lagoon of Venice. We therefore support the

approach of Tucker et al. (2001) in adopting the framework that describes hortonian drainage

density Dd through the features of the probability distribution of unchanneled lengths. The

drainage density proves to be strongly spatially heterogeneous, marked by large variations of

the hillslope-to-channel distance at the sub-basin scale. We found that the autocorrelation

scale of the hillslope-to-channel distance was much smaller than the catchment width, illus-

trating the fact that the drainage density is highly uneven in this mountainous environment.

We also found that the mean hillslope-to-channel and mean travel times are highly variable at

sub-basin scales and that this variability was not captured by the classical network extraction

methods which suggested a spatially constant hillslope-to-distance.

The analysis of the travel time distribution through the rescaled width function showed that

the results were sensitive to the channel network extraction methods. The different channel

networks used in this study are able to reproduce the timing of the maximum discharge

satisfactory with little differences in the occurrence of the distribution maximum. However,

larger discrepancies were observed for longer travel times corresponding to the recession

part of the storm hydrographs. This is due to the fact that the classical extraction methods

underestimate the hillslope-to-channel distances compared to the ones obtained with the

monitored network and the statistical approach. The differences between the networks

obtained with the classical methods (field-based thresholds) and the monitored network

were increasing with decreasing hillslope velocities which illustrate that the contribution

of the hillslope to the storm hydrograph is of critical importance. When we used larger

threshold in order to equalize the hortonian drainage density to the one of the monitored

network, the Slope-Area method performed better than the Area method. This is due to the

ability of the Slope-Area method to account for uneven drainage densities which results in

a better representation of the hillslope-to-channel distance. It is also important to mention

that the hydrodynamic dispersion in the channel has not been taken into account in the

calculation of the travel time distribution. However, a large positive skewness is already

achieved when the hillslope and channel velocities are separated by two orders of magnitude.

We also acknowledge that our approach of using spatially constant hillslope and channel

velocities is simplistic and the velocities should vary spatially as proposed by Grimaldi et al.

(2010). However, our goal is to discuss the effect of the channel network on the travel time
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estimation and not the validity of the spatially varying velocities. Finally, we argue that taking

into account the state of the channels (intermittent or perennial) could play an important

role in modeling the storm hydrograph in the RWF formalism. Even though the timing of

the maximum streamflow was well captured when only the perennial network was used

in the travel time estimation, the difference was larger for the recession events. However,

unless field campaigns are undertaken, it is a difficult task to identify the perennial part of the

channel network based solely on remote sensing techniques. Further research is needed first

to understand and model possible ephemeral character of the active drainage network which

can be conceptually linked to a seasonal evolution induced, for instance, by snowmelt in snow

covered catchment.

Even though the Slope-Area method was outperforming the Area method, the discrepancies in

the travel time estimation between the Slope-Area method and the monitored network were

important. As a result, we can safely recommend avoiding standardized extraction criteria for

defining the proper channeled portion of high altitude landscapes and estimating travel time

distribution. In these environments, slope-dependent or plain area thresholding methodolo-

gies for channel network extraction are far from optimal, while statistical approaches blending

different topographic attributes (here topographic curvature and openness) seem optimal. To

that end, however, highly detailed DEMs prove necessary. Landform curvature in particular,

owing to its capability to detect convex surfaces when using high resolution topography at

one meter DEM, overcomes all issues affecting thresholding analysis of A and S.

In our study, the extracted networks were systematically compared to the field monitored

network. However, some errors can also be introduced during the field campaign of the

channel heads and channels. The location of the channel heads is not always well defined in

the field, especially for the case of the groundwater channel heads when the soil around the

channel head is saturated. However, the error on the channel head positions is relatively low

and partially considered by moving the monitored channel position to the nearest convergent

cell. Some parts of the channel network can be activated during snowmelt season or for short

periods of time after large storm events. It is therefore important to undertake field campaign

of channel heads and channel network when the river is in its low flow regime as was done in

this study.

2.6 Conclusions

The accurate representation of stream network is a key topic in many hydrological and ge-

omorphological applications. Few studies have examined the impact of drainage density

on hydrological modeling. In this work, we studied the influence of spatially heterogeneous

drainage densities on common geomorphological parameters, hillslope-to-channel distance

and travel time estimation in the rescaled width function analysis. The channel network and

the channel heads were carefully mapped in the field using a high precision GPS device. We

compared the monitored channel network with different channel networks obtained on one
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hand with a statistical approach that considers statistical analysis of surface morphology and

topographic parameters such as curvature and openness and on the other hand with classical

approaches using threshold related to cumulative drainage area and local slope. The thresh-

olds used for the area and slope-area threshold are based on the monitored channel heads. The

influence of the channel network on the travel time estimation proves important. Even though

the different networks are able to reproduce the timing of the maximum streamflow satis-

factory, larger discrepancies are observed for the recession part of storm hydrographs when

classical channel extraction methods were used. The discrepancies are larger with decreasing

hillslope velocities. The travel time distribution estimated with the statistical approach outper-

forms the classical approaches and is comparable to the travel time distribution obtained with

the monitored network. For mountainous environments, we therefore recommend to avoid

standardized channel network extraction criteria and to use novel techniques relying on the

analysis of surface morphology via high resolution DTMs. Finally, we extend previous findings

to Alpine contexts, specifically with reference to the inadequacy of the classical definition of

hortonian drainage densities where the spatial distribution of the channel heads stems from

diverse channel initiation processes resulting in widely heterogeneous drainage densities for

first order catchments.

36



2.6. Conclusions

Table 2.4: Moments of the travel time estimation for the three different cases of hillslope
velocities. The units of the mean, the standard deviation (STD) and time to peak tmax are
expressed in minutes whereas the skewness (SKW) and kurtosis (KTS) are unitless.

uc = 2 m/s uc = 2 m/s
case 1 uh= 0.2 m/s case 2 uh= 0.1 m/s

Extraction method tmax MEAN STD SKW KTS tmax MEAN STD SKW KTS
Monitored network 49.92 56.01 24.66 0.65 3.63 49.83 79.43 43.61 1.02 3.99
Statistical approach 45.33 56.30 24.77 0.66 3.52 45.17 80.03 44.17 1.05 3.99

Area network 46.17 42.52 16.21 -0.01 2.5 46.17 50.92 19.86 0.19 2.82
Slope Area network 43.17 39.72 15.84 0.04 2.42 46.5 45.02 17.97 0.22 2.81

Area network 2 51.83 48.43 18.24 -0.02 2.54 62.00 63.41 26.56 0.32 2.80
Slope Area network 2 46.17 51.38 20.91 0.22 2.71 54 69.64 32.54 0.52 2.88

Perennial network 60.17 67.85 31.18 0.54 2.99 60.33 104.42 59.82 0.86 3.31

uc = 2 m/s
case 3 uh= 0.04 m/s

Extraction method tmax MEAN STD SKW KTS
Monitored network 50.25 149.68 106.08 1.17 4.07
Statistical approach 50.25 151.14 107.86 1.20 4.16

Area network 51.08 76.15 36.61 0.77 3.76
Slope Area network 50.33 60.92 28.52 0.87 4.31

Area network 2 64.58 108.35 58.49 0.75 3.32
Slope Area network 2 59.00 124.4 73.20 0.76 3.11

Perennial network 60.17 214.12 150.34 0.99 3.49
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3 Geomorphic signatures on base flow
recession analysis

This chapter was previously published with the following citation:

Mutzner R., Bertuzzo E., Tarolli P., Weijs S.V., Nicotina L., Ceola S., Tomasic N., Rodriguez-Iturbe

I., Parlange M.B., Rinaldo A. 2013: Geomorphic signatures on Brutsaert base flow recession

analysis, Water Resources Research, 49, 5462-5472. doi: 10.1002/wrcr.20417.

Abstract: This paper addresses the signatures of catchment geomorphology on base flow

recession curves. Its relevance relates to the implied predictability of base flow features, which

are central to catchment-scale transport processes and to ecohydrological function. Moving from

the classical recession curve analysis method, originally applied in the Finger Lakes Region of

New York, a large set of recession curves has been analyzed from Swiss streamflow data. For these

catchments, digital elevation models have been precisely analyzed and a method aimed at the

geomorphic origins of recession curves has been applied to the Swiss dataset. The method links

river network morphology, epitomized by time-varying distribution of contributing channel

sites, with the classic parametrization of recession events. This is done by assimilating two

scaling exponents, β and bG with | dQ/d t |∝Qβ where Q is at-a-station gauged flow rate and

N (l ) ∝ G(l )bG where l is the downstream distance from the channel heads receding in time,

N (l ) is the number of draining channel reaches located at distance l from their heads, and

G(l ) is the total drainage network length at a distance greater or equal to l , the active drainage

network. We find that the method provides good results in catchments where drainage density

can be regarded as spatially constant. A correction to the method is proposed which accounts

for arbitrary local drainage densities affecting the local drainage inflow per unit channel length.

Such corrections properly vanish when the drainage density become spatially constant. Overall,

definite geomorphic signatures are recognizable for recession curves, with notable theoretical

and practical implications.
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3.1 Introduction

Groundwater is the main contributor of a river catchment’s base flow whose predictability

during recession events is of crucial importance for water resource management. Recession

curves have been widely studied in the past and their characteristics used to establish basin

scale parameters (see Tallaksen (1995) for a review). In particular, Brutsaert and Nieber (1977)

analyzed daily discharge values of six basins in the Finger Lakes region of the northeastern US

and proposed an analytical tool to characterize the recession flow based on the description of

the discharge change rate dQ/d t as a function of the discharge Q. Unlike many non-linear

recession flow models, this method avoids the knowledge of the precise beginning of the

recession event which can be difficult to evaluate due to the continuous nature of streamflow

measurements. The main feature of their method is the comparison of the observations with

analytical solutions of the Boussinesq equation for an unconfined rectangular aquifer under

particular boundary conditions. Two exact solutions of the Boussinesq equation (Boussinesq,

1904; Polubarinova-Kochina, 1962) and an approximated linearized solution (Boussinesq,

1903) can be expressed in the form

dQ

d t
=−kQβ (3.1)

where β and k are constants depending on the flow regime considered. In order to avoid

contributions from relatively fast subsurface flow, overland flow and evapotranspiration,

Brutsaert and Nieber (1977) recommended the use of the lower envelope of the point cloud

in the ln(−dQ/d t) versus lnQ plot, corresponding to the slowest recession rate. Based on

their study, they identified two typical values β describing the rate of decline in streamflow

recessions: ≈ 1.5 for low Q (long-term response) and ≈ 3 for high Q (short-term response).

Moreover, some parameters of the watershed such as the saturated hydraulic conductivity

stemming from the Boussinesq equation have been computed from the intercept of the

ln(−dQ/d t ) versus lnQ plot.

The method has been widely applied to estimate basin scale parameters in relatively natural

areas (Brutsaert and Lopez, 1998; Brutsaert and Sugita, 2008; Brutsaert and Hiyama, 2012; Eng

and Brutsaert, 1999; Malvicini et al., 2005; Mendoza et al., 2003; Parlange et al., 2001; Szilágyi

et al., 1998; Troch et al., 1993; Vogel and Kroll, 1992; Zecharias and Brutsaert, 1988) and in

engineered catchments (Rupp et al., 2004; Wang and Cai, 2010), to formulate base flow in a

watershed model (Szilágyi and Parlange, 1999), in order to separate the base flow (Szilagyi

and Parlange, 1998) or to assess long term groundwater storage changes (Brutsaert, 2008).

Rupp and Selker (2006a,b) showed some limitations of the method e.g. in the case of sloping

aquifers. Recession curve studies moving from Brutsaert and Nieber (1977) work have proved

of central importance in a broad range of topics ranging from comprehensive water resource

management to studies on fluvial biodiversity, catchment-scale transport, eco-hydrology and

the so-called old-water paradox (Bertuzzo et al., 2007; Botter et al., 2007a,b, 2009, 2010; Ceola

et al., 2010; Harman et al., 2009; Kirchner, 2009; Kondolf et al., 1987; Palmroth et al., 2010;

Rinaldo et al., 1995a,b, 2006; Rodriguez-Iturbe et al., 2009; Tague and Grant, 2004; Thompson
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and Katul, 2012; Wittenberg, 1999; Zaliapin et al., 2010).

Recently, several studies (Biswal and Marani, 2010; Biswal and Nagesh Kumar, 2012; McMillan

et al., 2011; Rupp et al., 2009; Shaw and Riha, 2012) analyzed the recession events on a

seasonal or event-based timescale and discussed their shifts in the ln(−dQ/d t) versus lnQ

plot, linking them to different antecedent soil moisture and evapotranspiration happening

over the season. In particular, Biswal and Marani (2010), Biswal and Nagesh Kumar (2012)

and Shaw and Riha (2012) proposed to obtain the parameters β and k of Eq. 3.1 by fitting

a linear model to every recession event in order to obtain a distribution of the parameters

instead of fitting a line to the lower envelope of the point cloud. With this method, the

authors found that the slopes of the individual recession curves, i.e. the parameter β, were

in general larger than the one of the lower envelope, resulting in an underestimation of the

streamflow decline rate when described by a unique dQ/d t −Q relationship. Moreover, Biswal

and Marani (2010) proposed to link recession event parameterization to river morphology

through a time-varying geometry of saturated channel sites. In particular, they developed

a theory based on geomorphological arguments to link the exponent β of Eq. 3.1 to that

characterizing an empirical relation resulting from the analysis of Digital Elevation Models

(DEM). In this model, the variation of the discharge is linked to the direct drainage into a

time-varying Active Drainage Network (ADN). When the recession hydrograph at an outlet is

dominated by drainage of the unconfined aquifer as in Brutsaert and Nieber (1977), the ADN

is the length of the channel network instantaneously intersecting it. The model relies on four

main assumptions. First, the authors assume that the recession flow could be studied as a

succession of steady flows since the timescale at which the discharge varies is much longer

than the timescale of water propagating in the network. Second, by assuming a spatially

constant discharge per unit length qL , the total discharge Q(t ) can be expressed as:

Q(t ) = qL(t )G(l (t )) (3.2)

where G(l (t)) is the total length of the drainage network actively contributing at time t and

l (t ) is the distance between the actual source of the ADN and their location at the beginning

of the recession event (Figure 3.1). Third, they assume that all sources of the ADN recede at

the same speed c = dl/d t , constant in space and time such that the change in time of the

network length is proportional to the number of sources N (dG/d t = dG/dl .dl/d t ∝ N .c).

Equation 3.2 can be differentiated in time:

dQ(t )

d t
=−qL(t )cN (t )+ d qL(t )

d t
G(t ) (3.3)

where the third assumption has been employed. The first term at right-hand side of Eq. 3.3

embeds the geomorphologic signature and the second the Brutsaert recession proper. Fourth,

they studied the case where the variation in time of the ADN, assumed to be much larger than

the variation in time of the discharge per unit length, dominates the second term in Eq. 3.3

which can thus be neglected. This work has clearly established that baseflow recession curves

bear the signatures of the geomorphological structure of the contributing river basin.
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l

Drainage Network
Active Drainage 
Network (ADN)

Sources of ADN

Total Drainage Area

Area Drained 
by the ADN (AT) 
Area Drained by the
sources (AN) 

Figure 3.1: Idealized example of a recession described by the geomorphological conceptual
models. The Active Drainage Network ADN is represented in blue solid lines and the dry part
of the ADN is represented in red solid lines. The sources (here N = 14) are represented in red
solid circles, the blue shaded area represent the fraction of the basin drained by the ADN (AT ).

However, the innovative method proposed by Biswal and Marani (2010) postulates constant

drainage density, classically defined as the total length of stream channels divided by the area

they drain (Horton, 1932, 1945) and properly described by a random space function endowed

with spatial correlation (Tucker et al., 2001). Other formulations have also been proposed

(Marani et al., 2003) as it was shown that networks with the same hortonian drainage density

may embed rather different distributions of unchanneled pathways, and thus different extents

of the actual density of the drainage network. Random functions are defined by the statistical

properties of the length of the (steepest-descent) distance from any unchanneled site to the

first occurrence of a stream channel (Tucker et al., 2001). The consequences are far from

obvious. In fact, the Hortonian definition applies reasonably well only in cases where locally

the mean unchanneled lengths vary little from subcatchment to subcatchment, thus postu-

lating that channel initiation processes are homogeneous – technically, whenever automatic

network extractions assume it, like e.g. in the case of constant support area (for a review see

e.g. (Rodriguez-Iturbe and Rinaldo, 2001)). This is seldom the case in nature (e.g Montgomery

and Dietrich (1988, 1992)). Typically, in proglacial catchments, mean unchanneled distances

exhibit a broad range varying from tens of meters in shallow-soiled topographically concave

source areas to a few km in deep moraines (e.g. Montgomery and Foufoula-Georgiou (1993);

Tarolli and Dalla Fontana (2009)). Thus one wonders whether the geomorphic framework

proposed by Biswal and Marani (2010) for predicting the shape of Brutsaert recession curves
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can be suitably generalized to account for spatially uneven drainage densities. In practice,

one needs to relax certain assumptions therein and check empirically whether geomorphic

signatures could still be interpreted in such context, possibly improving the explanatory power

of the original method and reducing to it in the limit case of constant drainage density. This is

precisely what this paper addresses.

3.2 Study areas and available data

We analyze 26 catchments located in Switzerland (Figure 3.2) presenting different sizes, relief,

slope and soil properties. The watersheds are all characterized by relatively little anthro-

pogenic influence on the streamflow behavior. The hourly averaged streamflow data of the 26

gauging stations are obtained from the Swiss Federal Office for the Environment. The rainfall

data is obtained through SwissMetNet, a network of automatic weather stations operated

by MeteoSwiss. All the stations are measuring the precipitation within a maximum radius

of 10 km from the corresponding discharge gauging station. The DEM of the 26 basins were

extracted from a 25 meter resolution DEM of Switzerland provided by the Swiss Federal Office

of Topography with standard commercial GIS software. Table 3.1 summarizes the principal

characteristics of the 26 catchments.

Figure 3.2: Map of the experimental catchments used in this study. Some geomorphologic
characteristics and description of the available data are listed in Table 3.1

We also analyze the Val Ferret catchment (catchment 27 in Table 3.1), an experimental site we

have monitored since 2008 (see Simoni et al. (2011)). Stream flow data are available every 5

minutes and obtained through water level measurements and a rating curve that was derived

using the salt-dilution method on a yearly basis for the period 2008-2012. Recently, Weijs et al.

(2013) decreased the error on the rating curve by combining the waterlevel with the natural
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electrical conductivity of streamwater which appears particularly useful for Alpine watersheds.

The rainfall data for the Val Ferret catchment is obtained along with other forcing parameters

by a wireless network of up to 26 small meteorological stations deployed on representative sites

of the catchment (Simoni et al., 2011). For this catchment we used both a 5 meter resolution

LiDAR-derived DEM and the 25 meter resolution DEM provided by the Swiss Federal Office

of Topography. Moreover, the actual channel network of the Val Ferret catchment has been

surveyed by Differential Global Positioning System during an extensive field campaign in 2011.

3.3 Methods

In order to compute the recession exponents, measured discharge has been averaged from

hourly values to daily values in order to filter out the diurnal contributions of snow or icemelt

to the streamflow daily periodicity. Precipitation has been integrated over the same period

and used to define recession events as 6 consecutive days without precipitation. Moreover,

following Biswal and Marani (2010), we only considered events with peak discharge larger

than the average discharge in order to enhance the geomorphic signature on the baseflow

recession and to insure that the whole catchment is active at the onset of recession – unlike

the original method from Brutsaert and Nieber (1977) where the focus was on the groundwater

hydraulics signature. The discharge variations and values have been computed as −dQ/d t =
(Qt −Qt+∆t )/∆t and Q = (Qt +Qt+∆t )/2 following Brutsaert and Nieber (1977), where∆t is the

time step of one day used in the analysis. Recession events with non-monotonically decreasing

discharge values were discarded from the analysis (i.e. events containing days with dQ/d t = 0

were removed from the analysis). In the log-log plot, the single −dQ/d t versus Q curves

tend to be shifted depending on the maximum peak discharge, antecedent soil moisture and

evapotranspiration. According to Biswal and Marani (2010), Biswal and Nagesh Kumar (2012)

and Shaw and Riha (2012), a value of the exponent β is obtained for every recession event

by fitting a linear model in the log-log space using ordinary least squares. In the following,

we will refer to the recession exponent β of a catchment as the median of the exponent β’s

frequency distribution. This event-based approach differs from the previous studies linking

the analyzed recession discharges based on a one-to-one relationship between the amount of

water stored in the catchment and the discharge occurring during recessions.

The variables N (t ) and G(t ), instrumental for the geomorphological analysis, can be obtained

from the analysis of DEMs by extracting the channel network on the basis of standard topo-

graphic threshold methods (O’Callaghan and Mark, 1984; Tarboton et al., 1991) or slope- or

topographic curvature-dependent support areas mimicking different channel initiation pro-

cesses (Montgomery and Dietrich, 1988, 1992; Montgomery and Foufoula-Georgiou, 1993; Sofia

et al., 2011; Tarolli and Dalla Fontana, 2009), the latter being capable of rendering spatially

heterogeneous drainage densities. As done in Biswal and Marani (2010), we use a simple flow

accumulation threshold as channel network extraction method to standardize procedures,

except for the case where ground truthing was available (for catchment 27, see Section 3.2).

After a certain time t , the number of sources N (t) is determined by the number of reaches
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located at distance l = c(t − t0) from their farthest upstream initial source (Figure3.1). Under

the assumption that the ADN varies quickly, such that the term in d qL/d t can be neglected,

one has dQ/d t ∝−N (t ) from Eq. 3.3 and Q ∝Gt (t ) from Eq. 3.2. Inserting these two relations

in Eq. 3.1, one finally has:

N (l ) ∝G(l )bG (3.4)

where bG = β if the geomorphological exponent correctly captures the exponent obtained

from the analysis of the recession curves.

In this work, we propose a revised approach of the conceptual model developed in Biswal

and Marani (2010). We assume that the directly contributing discharge Q is drawn not from

an unconfined aquifer like in the traditional way but in our case by the unchanneled area

draining directly in the ADN:

Q(t ) = ∑
i∈ADN (t )

ai qi ∼ q
∑

i∈ADN (t )
ai ∝

∑
i∈ADN (t )

ai = AT (t ) (3.5)

where ADN is the Active Drainage Network at time t , AT is the area draining directly in the

ADN, ai is the directly contributing area at site i and qi is the discharge-per-pixel at site i (see

Figure 3.1). The second approximation derives from assuming q constant as done in Biswal

and Marani (2010). As such we assume that the variation of the contributing discharge is

proportional to the rate of change in directly contributing area therein and hence on local

drainage density in the sense of Tucker et al. (2001):

dQ

d t
∝ d

dl

( ∑
i∈ADN (t )

ai

)
dl

d t
∝ c

d

dl

∑
i∈ADN (t )

ai = c
d AT

dl
(3.6)

where c is the speed at which the sources recede, assumed constant in space and time as in a

negative traveling wave. The approach is thus based on the computation of the direct drainage

areas of the ADN. Moreover, the change in direct drainage area is given by the areaAN draining

directly in the sources of the ADN at time t :

d AT

dl
∝ AN (l ) (3.7)

Combining Eq. 3.1, 3.5, 3.6 and 3.7, we obtain similarly to Eq. 3.4:

AN ∝ AbA
T (3.8)

where bA =β if the geomorphological exponent obtained with the new method matches the

exponent obtained from the analysis of the recession curves. In this study, we propose to

compute the geomorphological exponents bG of Eq. 3.4 and bA of Eq. 3.8 for the 27 watersheds

considered and to compare them with the values of the recession exponent β obtained from

the recession analysis. Then, we study the differences between the two methods in terms of

mean catchment altitude, aiming at improving our understanding of the geomorphological
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origin of the recession curves.

3.4 Results

Examples of three catchments (basins 15, 25 and 27, see Table 3.1 for geomorphological

characteristics) where the two different methods have been applied are shown in Figure 3.3.

The examples present different cases and results characteristic of the correction we propose

in this work. The channel network has been suitably extracted from the DEM using a flow

accumulation threshold of 100 pixels and is here color-coded in blue in the upper panels, row

a). Different flow accumulation threshold values and another channel network extraction

method (depending on a slope-area threshold) have been used without appreciable changes in

the following results. For the study of the Val Ferret catchment (watershed 27 in Table 3.1), the

monitored network (see Section 3.2) has been used as the basis for the determination of the

ADN. The distribution of the distance from any unchanneled site to its nearest stream channel

following the steepest path has been studied in relevant sub-catchments of the watersheds.

It appears that the hillslope distance to the nearest channel and therefore the local drainage

density (Tucker et al., 2001) cannot be considered constant in most high mountain catchments

and especially in the case of the Val Ferret catchment where the real monitored network has

been used.

The recession slope analysis has been carried out for each of the 27 basins by fitting each

recession event separately with least squares and by computing the frequency distribution of

the β values. Some examples of individual fits are color coded in the second row b) of plots

in Figure 3.3, along with the cloud of points obtained for all the events (gray dots). The solid

black line represents the fit of all the events. As expected, the exponent β of Eq. 3.1 obtained

with the global fit is less than the average of the coefficients fitted on single events. The results

of the recession slope analysis are presented in Table 3.2. In the following, the values of a

catchment’s median exponent β are used as a comparative basis for the scaling exponents

bG and bA of the different geomorphological models. Note that, in general, the standard

deviations of the exponent β are relatively large due to the inferences of fast responses of

the catchments to precipitation or glacier melts. The low extreme (β = 1.06, basin 20, see

in Table 3.2) corresponds to a largely glaciated, high altitude catchment whereas the high

extreme (β= 6.24, basin 6, Table 3.2) corresponds to a highly urbanized catchment. Both cases

have been discarded in the following calculations.

The comparison of the two models is shown in the lower panels of Figure 3.3. In c), as per the

method developed in Biswal and Marani (2010), we show the number of sources N plotted

versus the total length G of the ADN. As postulated by the original method, the number of

sources decreases or stays constant in time, resulting in a monotonically decreasing function

N (G). The plots result in a piecewise constant function at low values of the network length

since low order channels have dried out already so that the ADN stems mainly from high-order

streams. In order to better estimate the geomorphological parameters bG and bA , the data
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Figure 3.3: Example of the results obtained for watershed 15 (column 1), watershed 24 (column
2) and watershed 27 (column 3), see basins characteristics in Table 3.1. The different lines
correspond to a) the channel network obtained with the area threshold method in blue and in
black and white the distance L to the nearest channel following the steepest path (except for
watershed 27, column 3 where the real, monitored network has been used), b) the cloud of
points in gray obtained from the recession analysis with some events and their fit represented
in different colours. Note that only few events are presented in colours for better visibility, c):
Number of sources N (l ) versus ADN length G(l ) from which we obtain the geomorphologic
exponent bG and d) total area draining directly in all sources of the ADN AN versus total area
draining directly in the ADN AT from which we obtain the geomorphologic exponent bA .

53



Chapter 3. Geomorphic signatures on base flow recession analysis

have been fitted only up to when 80% of the initial ADN has receded in order to avoid the last

part where N (G) is piecewise constant. In d) of Figure 3.3, according to the proposed revision

of the original method, we show the area AN draining directly in the sources of the ADN versus

the total area AT draining in the ADN. In the three plots, the cloud of points is quite noisy

at the end of the recession (that is, for the smallest total areas) which is a signature of the

watershed geometrical attributes and of uneven local drainage densities. All the values of the

exponents bG and bA are presented in Table 3.2. The two exponents bG and bA are similar

in the case of catchment 15 (first column in Figure 3.3), a catchment with fairly constant

hillslope to channel distance. This supports our ansatz that the different methods provide

indistinguishable results in cases where drainage density can be regarded as relatively uniform

in space. In the case of catchment 24 (second column in Figure 3.3) and especially in the case

of catchment 27 (third column in Figure 3.3), major differences arise from the two methods.

Both catchments exhibit very variable patterns in the hillslope distance to the nearest channel.

Remarkably, however, it appears that a scaling relation between AN and AT can still be found

and that allows a fair determination of the scaling exponent bA . In the case of catchment 27,

the exponents bG obtained with the two DEM of different resolution were very similar but

relatively different for the exponent bA (see Table 3.2). The values computed with the 5 meter

resolution DEM have been used in the following for the catchment 27.
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<β-bA>=0.20

(b)

Figure 3.4: Recession exponent β versus geomorphological exponent for a) bG with the N
versus G method and b) bA with the AN versus AT method. The insets in a) and b) correspond
to a simple frequency distribution of the residuals β−bG and β−bA respectively.

The geomorphological exponents of the two conceptual models, bG and bA , have been com-

pared to the recession exponents β of all the basins in Figure 3.4 a-b respectively. The horizon-

tal uncertainty bars represent the standard deviation of the recession exponents β computed

on a single event basis and the solid black line represents the one-to-one relation. The upper

plot is visibly more scattered than the lower plot where the points are more aligned along the

one to one line. More formally, a simple frequency distribution of the difference between the

geomorphological exponents bG and bA and the median recession exponents β is presented
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3.4. Results

in the insets of Figures 3.4 a-b respectively. With a mean residual of 0.20, it appears clearly that,

on average, the exponent bA obtained with the new method matches better the exponent β of

the recession analysis than the exponent bG obtained with the first method (mean residual of

0.67).

The improvement of the new method is even more remarkable when the residuals are classified

along mean basin altitudes, see color coding in Figure 3.5. For low altitude basins (mean

altitude below 1000 m, first line in green in Figure 3.5), the mean residuals decrease between

the first and the second method. For the watersheds at medium mean altitudes (mean

altitude between 1000 m and 2000 m in red in Figure 3.5) and especially for watersheds at

high mean altitudes (mean altitude above 2000 m in blue in Figure 3.5), the new method

improves the results with a larger decrease in the mean residual. Assuming increasing spatial

complexity of the channel network with mean basin altitude, our results suggest that the

proposed revised method provides better results in catchments where local drainage density

is naturally heterogeneous reflecting the variety of channel initiation processes (i.e. proglacial,

high altitude catchments). In the case of low altitude catchments, where local drainage density

tends to be uniform in space, the two methods provide similar results.

β-bG
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<β-bG>=0.70 <β-bA>=-0.06

a) b)
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Figure 3.5: Histogram of the residuals between the recession exponent β and the geomorpho-
logical exponents bG (left histograms a, c and e) and bA (right histograms b, d and f) classified
along mean basin altitude, from top to bottom in green (first row, a and b) for basins at mean
altitude below 1000 m, in red (c and d) for basins at mean altitude between 1000 m and 2000
m and in blue (e and f) for basins at mean altitude above 2000 m.
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Chapter 3. Geomorphic signatures on base flow recession analysis

Number of 
events

Coeff. β for all 
events 

together

Median coeff. β 
for separated 

events

Mean coeff. β 
for separated 

events

Standard 
deviation of β

bG (N vs G)
residuals 

median β-bG
bA (AN vs AT)

residuals 
median β-bA

1 30 1.75 2.58 2.70 0.98 1.70±0.01 0.87   1.56±  0.03 1.02

2 36 2.21 3.28 3.27 0.80 1.69±0.01 1.59   1.99±  0.03 1.29

3 30 1.66 2.16 2.12 0.65 1.75±0.01 0.41   1.83±  0.07 0.34

4 23 1.24 1.96 1.83 0.51 2.21±0.01 -0.25   2.82±  0.05 -0.86

5 59 1.73 2.54 2.80 1.06 1.89±0.01 0.64   1.95±  0.02 0.59

6 25 2.55 6.24 6.96 4.52 2.45±0.02 3.78   2.52±  0.07 3.71

7 19 1.03 2.54 3.26 2.28 1.80±0.02 0.74   1.76±  0.11 0.78

8 19 1.73 2.35 2.26 0.87 2.21±0.02 0.13   2.83±  0.07 -0.49

9 14 1.88 2.89 2.61 0.87 2.32±0.02 0.56   2.49±  0.05 0.40

10 25 1.81 2.91 2.86 1.29 1.99±0.01 0.91   2.64±  0.02 0.27

11 56 1.82 3.34 3.91 2.01 0.79±0.09 2.56   1.12±  0.15 2.22

12 13 1.48 1.20 1.77 1.03 1.10±0.06 0.11   1.55±  0.13 -0.35

13 36 1.15 2.20 2.17 0.86 1.42±0.01 0.79   1.44±  0.06 0.76

14 44 1.80 2.28 2.55 1.23 2.03±0.01 0.25   2.18±  0.02 0.11

15 20 1.57 2.57 2.55 1.33 2.19±0.01 0.38   2.37±  0.03 0.20

16 23 1.87 2.39 2.70 1.05 1.60±0.01 0.79   2.96±  0.04 -0.57

17 10 1.51 1.29 1.70 0.78 1.59±0.01 -0.30   2.04±  0.06 -0.75

18 17 0.74 2.04 2.49 2.07 1.98±0.01 0.06   2.87±  0.03 -0.83

19 12 1.42 2.86 3.01 1.23 1.36±0.02 1.50   1.14±  0.07 1.72

20 13 0.89 1.06 2.65 2.94 1.88±0.01 -0.81   2.99±  0.12 -1.92

21 25 1.73 2.73 3.63 3.16 1.94±0.02 0.78   2.03±  0.06 0.70

22 14 0.59 1.31 1.32 0.59 1.02±0.01 0.29   2.15±  0.13 -0.84

23 14 1.53 3.20 3.48 1.61 2.12±0.08 1.07   3.53±  0.25 -0.34

24 18 1.75 2.66 2.95 1.49 1.37±0.02 1.29   2.38±  0.07 0.29

25 40 1.79 3.90 4.29 3.18 1.37±0.02 2.53   1.29±  0.08 2.62

26 11 1.72 2.82 2.81 1.79 1.62±0.01 1.20   1.51±  0.09 1.31

1.48±0.02 (a) 1.99 4.11±0.15 (a) -0.64

1.53±0.01 (b) 1.94 3.40±0.04 (b) 0.07
27 12 1.05 3.47 5.51 4.59

Table 3.2: Summary of the results obtained from the recession analysis (exponent β), from the
model comparing N versus G (geomorphological exponent bG ) and from the model comparing
AN versus AT (geomorphological exponent bA) and their respective residuals compared to
bet a. For watershed 27, the results are obtained with (a) the 25 m resolution and (b) the 5 m
resolution DEM.

3.5 Discussion

We find that the discrepancies arising between the exponent β obtained from the analysis

of the recession curves and the geomorphological parameter bG obtained from the original

method proposed in Biswal and Marani (2010) are relatively small for low altitude basins

but larger for higher altitude basins. Compared to the watersheds studied in Biswal and

Marani (2010), the watersheds chosen in this study are probably less suited to the original

conditions envisioned by Brutsaert and Nieber (1977): they are relatively smaller, structurally

inconsistent with the conceptual model of simple drainage of an unconfined aquifer and

generally exhibiting faster responses to rainfall impulses especially due to steep hillslopes.

Often, as highlighted in the physical features of Table 3.1, the catchment response shows

signatures of snow or ice melt, both leading to larger uncertainties in the evaluation of the

recession exponent β. Moreover, such discrepancy is very large in the case of an urbanized

watershed (basin 6 in Table 3.1 and Table 3.2), confirming that the method is mostly suited to
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3.5. Discussion

watersheds with little anthropogenic influence. However, the discrepancies between bG and β

cannot be explained only by the uncertainty in the exponent β, and some assumptions made

by the method must be relaxed when hydrologic and geomorphic conditions required are not

met.

Our proposed correction of the method indeed accounts for uneven local drainage density,

because it assumes that the local contributing discharge per unit length of receding ADN is

limited by the local hillslope to channel distance and its directly contributing area. This is

typically occurring in high altitude, proglacial dominated catchments where channel initiation

processes are most diverse and unchanneled distances may vary from tens to thousands of

meters. The inclusion aims at improving our understanding of the geomorphological origin of

the recession curves, as noted in the Methods section. The system is described by the evolution

in time of AT , the area draining directly into the ADN relative to the area AN draining into the

sources of the ADN, leading to an empirical relation AN ∝ AbA
T . Our results suggest that the

new geomorphological parameter bA is closer to the exponent β, resulting in a decrease of the

residuals between the two exponents (Figure 3.4). In particular, the correction is substantial in

the Val Ferret catchment (number 27) where the real, monitored network has been used for

the calculations. For this high-altitude catchment, endowed with highly uneven local drainage

density, the residuals between the exponents β−bG and β−bA decrease from 1.99 to -0.64

and from 1.94 to 0.07 between the two methods for the 25 meter resolution and the 5 meter

resolution DEM respectively. In other particular cases where the local drainage density is

more even, the two methods produce very similar results (see catchments 3, 5 or 7) and the

two methods give comparable results as expected from the fact that the approaches tend to

collapse into the same formulation.

We acknowledge several sources of uncertainty introduced in the model, chiefly through

the resolution of the DEM and through the area threshold method adopted for the channel

network extraction (which is known to fail in complex terrain where heterogeneities of channel

initiation processes are major). In the Val Ferret catchment, the uncertainty in the channel

network extraction is dramatically decreased by an accurate field channel network monitoring

resulting in improved results for the method proposed here. However, the time series available

for measured streamflows for this watershed is less compared to the 26 others leading to a

greater uncertainty in the exponent β. Field campaigns in other small watersheds aimed at

monitoring channel initiations would probably improve the performance and the reliability

of this conceptual model. In the Val Ferret catchment, our results were not affected by the

DEM resolution since the geomorphological parameter bA was closer to β than bG to β in

both DEM resolution cases. Therefore, the uncertainty introduced by the DEM resolution

might only alter the accuracy of the predicted exponent but not the essence of our method.

We also acknowledge larger uncertainties in the estimation of the parameter bA due to the

larger scatter in the AN versus AT plots which is the mark of uneven local drainage densities.

We note, however, that the error in the estimate of the parameter bA is still small compared to

the error in the exponent β. Finally, we note that our study pinpoints that the most critical

assumption of the conceptual model lies in neglecting the term d q/d t in Eq. 3.3 with respect
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Chapter 3. Geomorphic signatures on base flow recession analysis

to the change in the ADN geometry. Further studies are thus needed in order to combine the

results of the method here formulated with a possibly geomorphically-controlled integration,

modeling the speed of the negative travelling wave of active stream switch-offs.

3.6 Concluding remarks

Catchment recession curves bear the signatures of geomorphology. Two conceptual models

based on empirical relations obtained solely from the analysis of DEMs have been compared.

Both models describe the impact of geomorphology on the recession curves of the stream

network, described in the first model by the evolution of the number of sources in the active

channel network versus the total active channel network length, and in the latter by the area

draining in the sources of the receding network versus the total area draining directly in the

network. From the analysis of 27 catchments relatively unaffected by anthropogenic influence,

our results suggest that the two models give similar results in the cases where local drainage

density is approximately constant. In the cases of spatially uneven local drainage density,

the first model does not hold and the new model presented here improves the results for

high altitude basins. In general, we suggest that this conceptual model might be useful to

estimate the low flow regime of natural ungauged basins by predicting its features solely from

information remotely acquired and objectively manipulated through DEM data.
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4 Controls on the diurnal streamflow
cycles in the Val Ferret watershed

This chapter has been submitted for publication with the following citation:

Mutzner R., Weijs S.W., Tarolli P., Calaf M., Oldroyd H., Parlange M.B. Controls on the di-

urnal streamflow cycles of two sub-basins in an alpine headwater catchment. Water Resources

Research, under review

Abstract: In high altitude alpine catchments, streamflow diurnal cycles are typically dominated

by snowmelt or ice melt. During a field campaign in the summer 2012 in an alpine catchment in

the Swiss Alps (Val Ferret catchment, 20.4 km2, glaciarized area: 2%), we observed a transition

in the early season from a snowmelt to an evapotranspiration-induced diurnal streamflow cycle

in one of the two monitored sub-basins. The two different cycles were of comparable amplitudes

and the transition happened within a time span of several days. In the second monitored

sub-basin, we observed an ice melt-dominated diurnal cycle during the entire season due to

the presence of a small glacier. Comparisons between ice melt and evapotranspiration cycles

showed that the two processes were happening at the same times of day but with a different sign

and a different shape. The amplitude of the ice melt cycle decreased exponentially during the

season and was larger than the amplitude of the evapotranspiration cycle which was relatively

constant during the season. Our study suggests that an evapotranspiration-dominated diurnal

streamflow cycle could damp the ice melt-dominated diurnal streamflow cycle. The two types

of diurnal streamflow cycles were separated using a method based on the identification of the

active riparian area and measurement of evapotranspiration.
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Chapter 4. Controls on the diurnal streamflow cycles in the Val Ferret watershed

4.1 Introduction

During recession events or during low flow conditions, daily or sub-daily streamflow variations

can take place in many different types of watersheds. The study of those daily variations

can improve our understanding of the processes happening at different scales and improve

hydrological modeling (Kirchner, 2009). As raised by Lundquist and Cayan (2002), when

caused by solar radiation and temperature variations, the study of streamflow diurnal cycles

can also be used to assess the impact of climate change on the watershed behavior. Streamflow

or groundwater level diurnal cycles have been observed in very diverse places (see Gribovszki

et al. (2010) for a review). For instance, Lundquist and Cayan (2002) detected streamflow

diurnal changes in a large variety of watersheds in the Western United States featuring both

snowmelt and evapotranspiration/infiltration driving processes and classified the watersheds

by the diurnal cycle properties. The characteristics of the streamflow diurnal cycles can

therefore serve as a comparison tool between catchments. Diurnal streamflow cycles are

characterized through their amplitude, timing of the minimum or maximum streamflow (Bren,

1997; Bond et al., 2002; Caine, 1992; Graham et al., 2013; Lundquist and Cayan, 2002; Lundquist

et al., 2005; Wondzell et al., 2007), shape and asymmetry (Caine, 1992; Lundquist and Cayan,

2002).

In alpine regions, diurnal streamflow cycles are mainly caused by ice melt or snowmelt result-

ing in a streamflow increase. These perturbations are observed at gauging stations with delays

depending on the size of the watershed (Lundquist et al., 2005). Ice melt or snowmelt diurnal

streamflow cycle characteristics have been used to study catchment scale snowpack proper-

ties (Caine, 1992; Kobayashi and Motoyama, 1984; Lundquist and Dettinger, 2005), estimate

hydraulic parameters of the riparian zone (Loheide II and Lundquist, 2009), characterize the

glacier drainage network (Collins, 1995, 1979) or to study suspended sediment transport at the

snout of a glacier (Singh et al., 2005). High temporal resolution hydrological models are now

able to reproduce diurnal streamflow cycles in alpine regions even though simple degree-day

models remain widely used (see Hock (2005) for a review). For instance, Simoni et al. (2011)

successfully applied a modified version of the simple degree-day formulation taking into ac-

count the daily and hourly mean air temperatures to reproduce hourly ice melt and snowmelt

in a high-altitude Swiss catchment. Several studies achieved more accurate results at hourly

resolutions by adding a shortwave or net radiation term in the classical degree-day method

(Cazorzi and Fontana, 1996; Jost et al., 2012; Kane et al., 1997; Kustas et al., 1994; Martinec,

1989; Tobin et al., 2013). More sophisticated distributed energy balance models (Lehning et al.,

2006; Rigon et al., 2006) have also successfully reproduced diurnal streamflow cycles, but are

less commonly used due to the need of spatially distributed hydrometeorological forcing data.

Even though the robustness of hydrological models are usually evaluated on larger timescales,

diurnal streamflow cycles are of critical importance for calibration and performance evalua-

tion of hydrological models running at hourly or higher resolution timescales (Reusser et al.,

2009).

Diurnal streamflow cycles characterized by a decrease in streamflow have been associated with
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4.1. Introduction

processes such as evapotranspiration and groundwater recharge in losing streams. Diurnal

streamflow cycles induced by groundwater recharge processes are related to the daily fluctua-

tions of streamwater and streambed temperatures (Constantz et al., 1994; Constantz, 1998;

Ronan et al., 1998). These diurnal streamflow variations are the largest when the streamflow is

low and/or the hydraulic radius is small and when the stream is unshaded and highly exposed

to solar radiative fluxes (Lundquist and Cayan, 2002).

Diurnal streamflow cycles induced by evapotranspiration have been studied for decades

with diurnal groundwater level cycles in a broad range of watersheds and their origin are

still investigated (Barnard et al., 2010; Bren, 1997; Graham et al., 2013). Several methods

have been proposed to estimate daily evapotranspiration based on diurnal groundwater level

fluctuations (White, 1932; Dolan et al., 1984; Hays, 2003; Gribovszki et al., 2008; Loheide II ,

2008; Soylu et al., 2012; Szilágyi et al., 2008). These methods can be used for estimation of

evapotranspiration at relatively low cost compared to evapotranspiration measured with fast-

response sensors or lysimeters. Diurnal streamflow cycles have also been used to estimate

evapotranspiration of riparian zones by simply computing the difference between the curve

that connects daily maximums and actual streamflow rates (Bond et al., 2002; Boronina et al.,

2005; Cadol et al., 2012; Meyboom, 1965; Tschinkel, 1963).

At catchment scale, evapotranspiration rates are often estimated with eddy covariance or

alternatively measured with lysimeters, though both are much less common (Brutsaert, 1986;

Katul and Parlange, 1992; Parlange and Katul, 1992; Parlange et al., 1995). When measured

evapotranspiration rates are available along with evaporated water estimated with the analysis

of diurnal streamflow cycles, the area contributing to the overall measured evapotranspiration

can be estimated (Bond et al., 2002; Cadol et al., 2012; Stagnitti et al., 1989; Tsang et al., 2014;

Weisman, 1977). However, few studies have tried to geographically identify those areas of

active riparian evapotranspiration (see (Orellana et al., 2012) for a review). Tsang et al. (2014)

proposed to establish this area by applying a threshold on a modeled depth to the groundwater

around the channel network whereas Boronina et al. (2005) estimated this area based on land-

use maps. Remotely sensed infrared imagery (Loheide II and Gorelick, 2006; Pfister et al., 2010)

as well as field campaigns aimed at mapping the perennial portion of the stream network

(Godsey and Kirchner, 2014; Penna et al., 2011) allow for better determination of the extent

of the active riparian area. These riparian area estimations are critical for linking observed

evapotranspiration-induced diurnal streamflow cycles to catchment scale processes.

In general, most of the aforementioned studies have analyzed cases where only one type of

diurnal streamflow cycle was observed. Hence, possible transitions from snowmelt or ice melt

to evapotranspiration-dominated diurnal streamflow cycles have been poorly documented.

Moreover, the two types of diurnal streamflow cycles might happen at similar times of the day,

but separating them by visual inspection can be difficult, especially if one of the processes is

dominant. This issue is addressed in this study by using a paired catchment approach in an

intensively monitored catchment in the Swiss Alps. Previously, diurnal streamflow cycles were

solely attributed to ice melt during the low flow season in this catchment (Simoni et al., 2011).
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However, in our study, one sub-basin experiences a transition from a snowmelt-dominated

streamflow diurnal cycle to an evapotranspiration-dominated cycle. In the second sub-basin,

diurnal streamflow cycles are dominated by ice melt due to the presence of a small glacier. In

particular, we assess the impact of evapotranspiration on the ice melt-dominated streamflow

cycle in the second sub-basin.

4.2 Study Area and Instrumentation

4.2.1 The Val Ferret Watershed

Since 2009, a relatively small watershed is monitored in the Swiss Alps to study streamflow

generation in steep alpine environments. The experimental site shown in Figure 4.1 is located

in the southernmost ridge bordering Italy, covering a total surface area of 20.4 km2 with

elevations ranging from 1773 m above sea level (asl) at the outlet of the catchment, to 3236 m

asl at the highest point (mean elevation is 2423 m asl). The mean annual precipitation of the

area is of 1360 mm. More specific details on the climatic regime of the site can be found in

Simoni et al. (2011). Since 2012, two sub-basins of the Val Ferret catchment are also intensively

monitored (see Figure 4.1). The land cover of the watershed is summarized in Table 4.1

and features a small glacier (Glacier des Angroniettes). The riparian area of the watershed is

mainly composed of grassland, moss and debris but almost no vegetation with deep roots.

The geology of the site is complex, the strata consist mainly of sedimentary shale, quartzite,

limestone and sandstone. The analyses of several soil samples revealed a dominance of sandy

silt loam and light clay types of soils. One of the appealing factors of this watershed for

hydrological studies is the fact that apart from a small drinking water intake of maximum

17 l/s, there is very little anthropogenic influence on the streamflow regime.

Table 4.1: Summary of land cover, expressed in percent of the total area, and geomorphological
characteristics of the watershed and the two monitored sub-basins. The terms altitude and
slope refer to mean values.

Land Cover [%] Geomorphology
grass talus bedrock glacier lake shrubs Area [km2] altitude [m] slope [◦]

watershed 58.3 24.7 12.8 2.0 0.2 1.8 20.4 2423.2 31.6
sub-basin 1 69.7 22.9 7.4 0 0 0 4.5 2357.7 31.1
sub-basin 2 43.1 32.1 19.5 4.4 0.9 0 9.3 2535.1 31.5
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Figure 4.1: Map of the Val Ferret watershed showing the locations of the meteorological
stations (in blue if operated during winter), the meteorological tower, the hydrometric gauging
stations, the land cover, the locations of the mapped channel heads and the channel network.
The intermittent and perennial parts of the channel network are represented respectively
by the solid black and blue lines. Based on field observation, the channel heads have been
classified as groundwater channel heads (wet, represented in blue), runoff channel heads (dry,
represented in red) or glacier channel heads (wet and coming out of the moraine, represented
in white).

4.2.2 Channel network survey

During fall 2011, an intensive field observation campaign was conducted to accurately map

the stream network, the location of the channel heads and the perennial part of the stream

network. The watershed was systematically walked along the main drainage lines up to the

catchment divide with a high precision Global Navigation Satellite System device (based

both on GPS and GLONASS with typical horizontal error of tens of centimeters) and the

locations of 373 channel heads were mapped (see Figure 4.1). Based on field observations, the

channel heads have been classified into two main categories: 1) 183 dry runoff channel heads

initiated by soil erosion or land sliding processes due to surface or sub-surface runoff activated

during rainfall or snowmelt events, 2) 190 wet groundwater channel heads due to groundwater

surfacing process, driven by perennial flow (see Figure 4.2a for an illustration). Four other

channel heads coming out of the moraine and fed by glacier-melt were also mapped and

71



Chapter 4. Controls on the diurnal streamflow cycles in the Val Ferret watershed

named accordingly in Figure 4.1.

Figure 4.2: Examples of a) a mapped groundwater channel head and b) a mapped part of the
watershed with a high density of groundwater surfacing channel heads and large riparian area.
Both pictures were taken in the westernmost part of sub-basin 2.

A one meter resolution Lidar derived Digital Elevation Model (DEM) and the mapped channel

heads served as the basis for channel network mapping. The channel network was recon-

structed by following the flow direction, i.e. the steepest path, from all channel head locations

down to the outlet (see Figure 4.2b for an illustration). This field observation based channel

network has been used successfully in a geomorphological model predicting properties of

baseflow recession events (Mutzner et al., 2013). According to the channel head type and field

survey, i.e. runoff or groundwater, the channels have been classified into intermittent and

perennial streams, respectively shown in red and blue in Figure 4.1. Over the total network
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length, we observed that 52.9% of the channels are perennial whereas the remaining 47.1% are

intermittent. This field observation campaign serves as basis for estimating the riparian area

of the sub-basins (see Section 4.3 and Section 4.4), that is linked to the evapotranspiration-

induced diurnal streamflow cycle.

4.2.3 Meteorological data

The watershed has been heavily monitored since 2009 with a wireless network of small me-

teorological stations (Sensorscope stations (Ingelrest et al., 2010)) distributed over the entire

catchment (see Figure 4.1). In the Val Ferret catchment, these stations were previously used

to study the impact of the spatial variability of air temperature and precipitation on a simple

hydrological model (Simoni et al., 2011), to improve snowmelt modeling based on the degree-

method (Tobin et al., 2013) and to analyze extreme rainfall events (Thibaud et al., 2013). These

stations were also used in an urban environment to study the spatial variability of sensible

heat flux (Nadeau et al., 2009). The stations typically provide near-surface air temperature

and humidity, wind speed and direction, incoming shortwave radiation, surface temperature,

rainfall, soil moisture, soil temperature and soil water potential at a temporal resolution of

one minute. In this particular study, data of near-surface air temperature and rainfall are

used, both measured at all stations. Rainfall is measured with an unheated tipping bucket

rain gauge (Davis Rain Collector II) installed 0.4 m above the ground. The air temperature

measurements were collected at 1.5 m above the surface using a Sensirion SHT75 sensor

protected by a radiation shield.

The locations of the stations were determined to best represent catchment morphological

features in terms of slope, aspect and elevation. For most of the stations, it is not possible to

maintain them during winter due their exposure to avalanche activity. Most of the stations

are therefore usually deployed in late spring and uninstalled in the fall. During the 2012

campaign, all the stations were deployed after the 5th of June and most of them uninstalled the

23rd of October, 18 days before uninstalling the stream water level sensors (see the following

section). This was done for logistical and safety reasons to avoid the snowfalls and resulting

difficult access to remote parts of the watershed and possible avalanche activity. To capture

snowmelt processes, three stations were maintained during the winter, namely stations 2, 13

and 17 in Figure 4.1. In addition, two automatic cameras were installed at station 2, facing

south-east and south-west directions respectively. Photographs were recorded at a resolution

of 10 megapixels every 2 hours during daytimes of the entire period to estimate snowcover

throughout the season.

During fall 2012, a short-term deployment was undertaken, aimed at isolating large coherent

turbulent structures in the atmospheric boundary layer as has been previously done above a

lake (Calaf et al., 2013). For that purpose, a meteorological tower equipped with fast-response

sensors was deployed to measure all the components of the surface energy budget and has

been therefore used in this study to establish evapotranspiration rates. The station was
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installed at an elevation of 2004 m asl near the outlet of sub-basin 2 and at 1.5 km from the

outlet of sub-basin 1 (see Figure 4.1). The station was equipped with two sonic anemometers

(CSAT3,Campbell Scientific Inc, USA) mounted parallel to the surface at elevations of 2 m and

4 m above ground. An open-path infrared fast-response CO2-H2O analyzer (Li-7500, Li-Cor,

USA) was mounted with the lower sonic anemometer for eddy covariance flux measurements.

The three sensors were sampling at a frequency of 20 Hz in conjunction with a CR-5000 data

logger (Campbell Scientific Inc, USA) and calibrated before deployment. The station was also

equipped with a four-component radiometer (Pyranometer CM21 and Pyrgeometer CG4, Kipp

& Zonen B.V., The Netherlands) mounted parallel to the surface to measure the components

of the radiation balance. The meteorological tower was deployed from September 5th 2012

until October 6th 2012, with a notable gap of 9 days in the data.

4.2.4 Streamflow data

Stream water levels were monitored at the outlet of the catchment and at two locations

upstream (see Figure 4.1). Water levels were recorded using pressure sensors (HyMADD,

MADD Technologies, Switzerland) with a temporal resolution of one sample every 5 minutes.

The loggers were installed inside a metal tube fixed at relatively constant cross-sections of the

respective catchment main rivers. The data were downloaded from the loggers and quality-

checked on a bi-weekly basis to avoid measurement errors and thermal artifacts (Cuevas et al.,

2010; McLaughlin and Cohen, 2011) by comparing the logged water level with manual water

level measurements. However, the water level sensor installed at the outlet of the watershed

suffered from continuous fine sediment deposition during the 2012 campaign resulting in

unreliable measurements, which were therefore discarded in the present study. The water

level sensors of sub-basin 1 and sub-basin 2 were both operational from July 17th of 2012 to

November 7th of 2012. The water level sensors were not deployed during winters because of

snow and ice blockage that would lead to unreliable measurements. The water-level sensors

were only operational from the 17th of July 2012 because of large snow accumulation in the

valley floor due to avalanche activity. The streamflow was regularly measured using the salt

dilution method. In total, 7 and 12 gaugings were used to model the rating curve of sub-

basins 1 and 2 with a power function (Weijs et al., 2013). The water temperature and electrical

conductivity were also monitored at the gauging stations at a temporal resolution of 5 minutes.

Throughout the deployment, the discharge observed at the outlet of sub-basin 1 varied be-

tween 0.080 m3/s and 0.69 m3/s (see Figure 4.3a). A seasonal decreasing trend in streamflow

can be observed along with peaks due to rainfall events. The discharge peak of 0.69 m3/s was

measured during a rainfall event on September 24th (cumulative precipitation of 29.46 mm)

accompanied by high soil moisture. At the outlet of sub-basin 2, the discharge varied between

1.2 m3/s and 0.24 m3/s (see Figure 4.3b). Similarly to previous years, when the streamflow com-

position was analyzed in detail (Simoni et al., 2011), the runoff was dominated by snowmelt

during July whereas groundwater release and melted water from the glacier are more dom-

inant in the rest of the season. During the entire deployment, diurnal cycles in streamflow

could be observed in both sub-basins 1 and 2 and are analyzed in detail in Section 4.4.
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4.3 Methods

This study mainly focuses on the diurnal cycle signal of the streamflow. To isolate days with

relatively undisturbed diurnal cycles, days with influence of precipitation on streamflow have

been discarded. To that end, the precipitation collected over all stations was integrated from a

resolution of one minute to daily values. Only three stations were maintained after October

23rd and station 13 was chosen for its relative central location in the watershed. Days with

median precipitation above 1 mm were discarded from the analysis (see Figure 4.3). The first

subsequent day was also discarded from the analysis to avoid the steep part of the recession

curve. The threshold value of 1 mm and median precipitation over all stations were used to

reduce sensitivity to measurement errors of the tipping bucket rain gauges.

The daily streamflow variation is obtained by subtracting a 24-hour moving average window

from the measured streamflow and is referred to as detrended streamflow in the following.

Several characteristics are analyzed and used to compare the two types of diurnal streamflow

cycles: 1) the sign of the perturbation (increase or decrease during the day), 2) the hours of

occurrence of the minimum and maximum streamflow during the day, 3) the amplitude of the

diurnal streamflow cycles, defined as half the difference between maximum and minimum

detrended streamflow and 4) their shape, studied through the duration of rise and decline

times of the diurnal streamflow cycles, defined as the time elapsed from minimum streamflow

to next maximum streamflow occurrence for the rise time and vice versa for the decline

time. We also quantify the total volume of water gained or lost due to the diurnal streamflow

cycles. This is done by integrating the area between the detrended streamflow and the curve

connecting two subsequent maximums (if the diurnal cycle induces a streamflow decrease)

or between two subsequent minimums (if the diurnal cycle induces a streamflow increase)

(Boronina et al., 2005; Gribovszki et al., 2010).

The data from the fast-response sensors installed at the meteorological tower were processed

to obtain daily evapotranspiration rates. They were first estimated over 30 minutes periods by

applying the eddy covariance method. After spike removals, the classical double rotation and

tilt corrections were applied to account for errors in the deployment of the sonic anemometers.

Finally, density-induced fluctuations are accounted for by applying the well known WPL-

correction (Webb et al., 1980). Evapotranspiration rates were then integrated to daily values

for the nine rainless days according to the data available at the meteorological tower (see

Figure 4.3).
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4.4 Results

The diurnal streamflow cycles obtained for sub-basin 1 and sub-basin 2 by subtracting the de-

trended streamflow and by considering rainless days are presented in Figure 4.4 and Figure 4.5,

respectively. In sub-basin 1, the diurnal streamflow patterns varied seasonally as depicted in

Figure 4.4. Early in the season, i.e late July, the fluctuations are characterized by an increase of

streamflow during the afternoon (see red parts in Figure 4.4b) and a minimum streamflow in

the morning. During this period, some snow patches were still visible in the pictures taken

by the automatic cameras. This increase of streamflow during the day is therefore linked

to snowmelt processes. Later in the season (mid-August) when there is no snow left in the

sub-basin, we observe a streamflow decrease during the day, with a typical minimum in the

middle of the afternoon and a maximum in the early morning (see blue parts on the right side

of Figure 4.4b). This decrease of streamflow during the day is linked to evapotranspiration

forcings. Late in the season (the 30th of October), after a small snowfall event recorded by

the automatic cameras, we observed a return to a snowmelt-dominated streamflow variation

cycle (see Figure 4.4b).
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Figure 4.4: Observed diurnal streamflow cycles at the gauging station of sub-basin 1. The
streamflow variation has been obtained by subtracting a detrended streamflow hydrograph.
In a), the dates are color coded whereas the streamflow variation is color coded in b). The
dashed line in b) corresponds to noontime.

The variation of the diurnal streamflow cycles observed at sub-basin 2 is depicted in Figure 4.5.

In sub-basin 2, the fluctuations are characterized by an increase of streamflow during the day

(see the increase color-coded in red/orange in Figure 4.5b) and a streamflow minimum in the

morning. The diurnal streamflow cycle in sub-basin 2 is mainly due to snowmelt and ice melt

from the small glacier (see Figure 4.1). In the following, the diurnal cycles observed in the two

sub-basins are analyzed in detail.
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The hour at which minimum and maximum detrended streamflow occurs is presented in Fig-

ure 4.6. In the case of sub-basin 1 (Figure 4.6a), at the beginning of the season, the maximum

streamflow occurs in the middle of the afternoon during the snowmelt-dominated period (me-

dian at 16h25 until the 29/07) whereas the minimum streamflow is observed in the morning

(median at 10h30 until the 29/07). Afterwards, three large precipitation events were observed

between July 29th and August 7th (see Figure 4.3a). Two days with diurnal streamflow cycles

were observed during this period. These two diurnal streamflow cycles were characterized by

a minimum steamflow occurrence late in the morning, similar to the period dominated by

snowmelt, but the maximum streamflow occurred in the early morning (see Figure 4.6a). After

August 7th, the maximum and minimum streamflow are respectively observed in the early

morning (median at 5h50) and in the afternoon (median at 14h05). During this period, the di-

urnal streamflow cycles are dominated by evapotranspiration processes. Therefore, the period

between July 29th and August 7th is considered as a transition from the snowmelt-dominated

period to the evapotranspiration-dominated period (see Figure 4.6a). During the latter period,

the hour of minimum streamflow occurrence slowly shifts from the middle of the afternoon

towards noon as the season progresses (−3.1±1.7 min/day with uncertainty given as 95%

confidence intervals here and in the following), whereas no seasonal trend was observed for

the hour of maximum streamflow occurrence.

In the case of sub-basin 2 (Figure 4.6b), the maximum and minimum streamflow occurrences

are always in the afternoon and morning, respectively. The time difference between the peaks

is relatively constant during the season (mean difference of 6h55, standard deviation of 1h40).

However, the maximum and minimum streamflows occur later as the season progresses (daily

shift of +0.91±0.67 min/day for the maximum and +1.04±0.60 min/day for the minimum). It
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the main drivers of the streamflow diurnal cycles of sub-basin 1.

is also noteworthy to observe from Figure 4.6 that the minimum streamflow of sub-basin 1

tends to occur at the same time as the maximum streamflow of sub-basin 2.

The amplitude of the diurnal streamflow cycles is represented in Figure 4.7. In the case of sub-

basin 1, the amplitude decreases from 16 l/s to 5 l/s in the snowmelt-dominated period from

the beginning of the season until July 29th (see Figure 4.7a). After the 7th of August, during the

period dominated by evapotranspiration, the amplitude decreases slowly from values around

7 l/s towards 2-3 l/s at the end of the field campaign (with a variation of -0.037±0.014 l/s/day).

In the case of sub-basin 2, the amplitude decreases exponentially with a decay constant of

46±10 days (exponential fit with R2 = 0.72 (see Figure 4.7b). The amplitude of the diurnal

signal observed in sub-basin 2 was best predicted by the daily mean discharge (R2 = 0.53) and

by the daily total incoming shortwave radiation measured at the small meteorological stations

(R2 = 0.53) with a higher predictive power when both are combined (R2 = 0.79). In contrast,

the mean daily air temperature had a lower predictive power (R2 = 0.24), and even weaker
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when raised to a power of four to approximate the long-wave radiation correlation (R2 = 0.09).

The rise and decline times of the diurnal streamflow cycles are reported in Table 4.2. In the case

of sub-basin 1, we observe that the mean rise and decline times of the snowmelt-dominated

and evapotranspiration-dominated signals are different. This illustrates that the two different

cycles have a different shape, as could be observed in Figure 4.4a. We note that for the cases

of streamflow increase during the day (i.e. the snowmelt-dominated period in sub-basin 1

and the ice melt signal in sub-basin 2), the diurnal streamflow cycles are characterized by a

short mean rise time and a longer mean decline time. On the contrary, when the streamflow

decreases during the day (i.e. the evapotranspiration-dominated period in sub-basin 1), the

diurnal streamflow cycles are characterized by a short mean decline time and a longer mean

rise time. The two types of observed diurnal streamflow cycles are therefore characterized by

faster changes in the direction of the perturbation.
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Table 4.2: Mean rise and decline times of the diurnal streamflow cycles observed in the two sub-
basins, classified by the dominant process. The uncertainty refers to the standard deviation of
the rise and decline times.

dominant process tr i se [hours] tdecl i ne [hours]
sub-basin 1 snowmelt 5.73 ± 1.93 17.52 ± 1.75
sub-basin 1 evapotranspiration 15.98 ± 1.84 7.70 ± 2.70
sub-basin 2 icemelt 6.99 ± 1.67 17.07 ± 1.30

In order to evaluate and decipher the origin of the evapotranspiration diurnal cycle observed

in sub-basin 1, the volume of evaporated water during the rainless days was estimated as

mentioned in the Methods section and illustrated in Figure 4.8a. Therein, baseflow is assumed

to vary linearly between two consecutive maximums of daily streamflow. These estimated

volumes of water are then linked to the evapotranspiration measured through eddy covariance

at the meteorological tower installed in the watershed (see Figure 4.1) by computing an

active area of evapotranspiration as mentioned in the Methods section. According to the

data available from the meteorological tower, this active evapotranspiration area has been

computed for nine days among which five were consecutive (see Figure 4.3a), leading to a

mean and median area of respectively 23.16 ha and 17.43 ha, corresponding respectively to

4.9% and 3.7% of the total sub-basin area (minimum, maximum and standard deviation of

9.31 ha, 55.6 ha and 7.41 ha corresponding to 2.1% 12.1% and 1.6% of the total sub-basin

area). Similar to Tsang et al. (2014), we make the hypothesis that this active evapotranspiration

area corresponds to the riparian area of sub-basin 1 and comment this assumption in the

Discussion section.

07/09 08/09 09/09 10/09
80

90

100

07/09 08/09 09/09 10/09
280

320

360

St
re

am
�o

w
 [l

/s
]

Date (day/month)

ET1 ET2 ET3

Vmelt,1 Vmelt,2 Vmelt,3

a)

b)
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As mentioned in the Methods, we make use of the mapped channel network to estimate the ri-

parian area of sub-basin 1. When considering the entire channel network length, the riverbank

width should be of 5.7 meters for the riparian area to be equal to the active evapotranspiration

area. However, in some parts of the catchment this is not reasonable, especially in the steep

intermittent streams which do not contribute to the evapotranspiration cycle since they are

dry most of the time (see Figure 4.1). Moreover, in some areas, the riverbank width is larger,

especially for the low order channel heads (see Figure 4.2b for an illustration). We therefore

only took into account the perennial part of the channel network which corresponds to 41%

of the total network in sub-basin 1. As mentioned in the Methods, a slope threshold larger

than the longitudinal mean channel slope and less than the ridge slope was set to separate

the riparian and hillslope areas. By comparing results to the orthophotos and pictures taken

during the field survey, we identified a slope threshold value of 25 degrees to be suitable to

distinguish riparian and hillslope zones in the vicinity of the perennial channel network. With

this threshold, we obtained a riparian area of 19.71 ha, corresponding to 4.2% of the sub-basin

area.

A similar procedure has been applied to sub-basin 2 to study the diurnal ice melt-induced

streamflow cycles. Analogous to sub-basin 1, daily volumes of ice melt water were computed

as illustrated in Figure 4.8b. Therein, baseflow is assumed to vary linearly between two con-

secutive minimums of daily streamflow. The two sub-basins represent similar geomorphology

as seen in the map of Figure 4.1, with areas covered by rocks in the southern parts of the

sub-basins and grassland areas in the northern parts of the sub-basins. Interestingly, there

is also an area in sub-basin 2 with a relatively large density of groundwater channel heads

and low slopes. It is therefore possible that similar diurnal cycles occur in sub-basin 2 due

to evapotranspiration. However, those diurnal cycles might not be detectable due to the

larger amplitude of the ice melt diurnal cycle compared to the evapotranspiration signal of

opposite sign (see Figure 4.7), both happening at similar times (see Figure 4.6). To quantify a

possible underestimation of the total amount of ice melted in the glacier, we separated the

observed ice melt-induced signal in a pure ice melt component and an evapotranspiration

component. To estimate the latter one, we applied the same method for establishing the

riparian area at the origin of the evapotranspiration diurnal cycle observed in sub-basin 1. In

sub-basin 2, using the same slope threshold of 25 degrees as in sub-basin 1, we obtained an

active evapotranspiration area of 26.9 ha, corresponding to 2.9% of the sub-basin area. For

the nine rainless days of reliable evapotranspiration estimated from the meteorological tower

dataset, an evaporated volume of water VET was computed as the product of the measured

evapotranspiration rates times the active evapotranspiration area. Therefore, the total volume

of ice melt water was computed as the sum of the volume of melted ice obtained from the

streamflow measurements (Vmel t , j in Figure 4.8b) and of the evaporated volume of water VET .

On average, the estimated total volume of water melted from the glacier during daytime was

increased by 26 %.
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4.5 Discussion

The diurnal streamflow cycle in the Val Ferret catchment was previously attributed to ice melt

during the low flow season (Simoni et al., 2011). However, we observed a diurnal cycle in

sub-basin 1 with a decrease of streamflow during daytime mainly due to evapotranspiration.

At the beginning of the season, diurnal streamflow cycles in sub-basin 1 are dominated by

snowmelt (see Figure 4.4). The amplitude of this snowmelt cycle was of the same order of

magnitude as the amplitude of the evapotranspiration cycle. Unfortunately, most of the snow

was already melted in sub-basin 1 when the water level probes were installed so that the

largest amplitudes of the snowmelt-induced diurnal cycles were not monitored. We found

that the smowmelt and evapotranspiration diurnal streamflow cycles of sub-basin 1 occur at

different times of the day (see Figure 4.6a). Moreover, they are characterized by different rise

and decline times (see Table 4.2) illustrating a different shape, in accordance with observations

in Californian watersheds (Lundquist and Cayan, 2002). Therefore, the evapotranspiration-

dominated diurnal streamflow cycles in sub-basin 1 cannot only be due to thermal artifacts as

questioned by Cuevas et al. (2010) and McLaughlin and Cohen (2011). Moreover, the transition

from the snowmelt-dominated diurnal cycles to the evapotranspiration-dominated diurnal

cycles happened during a short period of time characterized by similar diurnal air temperature

variations. Therefore, the pressure fluctuations induced by air temperature variations resulting

in erroneous waterlevel measurements should be similar for both types of diurnal cycles. A

pure thermal artifact of the waterlevel decrease during the day can therefore be reasonably

rejected. Furthermore, the water level probes were carefully and regularly checked to exclude

seasonal drift or sediment accumulation.

Other effects such as groundwater recharge in losing reaches could also induce diurnal stream-

flow decrease. During the periods when streamflow decrease was observed during daytime,

the measured water electrical conductivity was also decreasing in phase with the water level

over a diurnal cycle. In case of groundwater recharge being the only process for streamflow

decrease, the electrical conductivity should stay relatively constant during the day. Indeed,

infiltration of water along all streams to the groundwater through the hyporheic zone should

affect the water mass balance, but not the electrical conductivity, which reflects the water

salinity. Moreover, the water temperature remained relatively cold during the campaign, fluc-

tuating between 1.2◦C and 15◦C during the season with typical daily fluctuations of 7−8◦C

(see Figure 4.3c). Groundwater recharge depends on the hydraulic conductivity which is

inversely proportional to the temperature-dependent water viscosity. Diurnal cycles of water

temperature could therefore induce a diurnal variation of the hydraulic conductivity, resulting

in diurnal patterns in groundwater recharge. However, water with low temperature has a larger

water viscosity and therefore a lower hydraulic conductivity, resulting in low infiltration rates.

Groundwater recharge has therefore been neglected in our study and the daily streamflow

variation in sub-basin 1 has been attributed to evapotranspiration. The determination of

physical mechanisms leading to such diurnal cycles are still debated and are beyond the scope

of this article. The readers are referred to Graham et al. (2013) for a review of hypothetical

83



Chapter 4. Controls on the diurnal streamflow cycles in the Val Ferret watershed

physical mechanisms leading to evapotranspiration-induced diurnal cycles.

In sub-basin 2, the diurnal streamflow cycles were mainly due to ice melt from the small glacier.

During days with observed diurnal streamflow cycles, the minimum and maximum streamflow

always occurred respectively during the morning and the afternoon (see Figure 4.6b), but the

occurrence of minimum and maximum streamflow shifted during the season by approximately

one minute per day. This shift can be attributed to smaller water velocities as shown by the

decrease of the streamflow amplitude resulting in longer travel times, longer travel distances

due to the seasonal glacier ablation and eventually to the shift of sunrise occurrence. The

amplitude of the ice melt-induced diurnal cycle in sub-basin 2 decreased exponentially during

the field campaign and was characterized by a large scatter (see Figure 4.7b). The origin of this

amplitude decrease can be attributed to the seasonal glacier ablation. The seasonal decrease

of the ice melt-induced diurnal cycle casts some doubts on the previous understandings of

the Val Ferret catchment where the glacier contribution to total runoff was considered to

be constant during the season (Simoni et al., 2011). Moreover, the amplitude of the diurnal

streamflow cycle was better predicted by the total incoming solar shortwave radiation than by

the mean daily temperature. This supports the effort of including radiation measurements in

the simple degree-day method for snowmelt or ice melt modeling.

Active areas of evapotranspiration have been computed in sub-basin 1 by dividing daily

volumes of evapotranspirated water by evapotranspiration measured at the meteorological

station. On average, we found that this area corresponds to 4.17% of the total area of sub-

basin 1. While Bond et al. (2002) and Boronina et al. (2005) reported smaller values (0.1 to

0.7 %), our results are comparable to the values found recently by Tsang et al. (2014) (10% of

the watershed area), but this area is very site specific, depending on the land cover and the

catchment geomorphology.

Several errors can influence the estimation of the active areas of evapotranspiration. First,

some errors can be introduced when computing the volumes of evapotranspirated water from

the streamflow measurements. Recession flows usually exhibit an exponential streamflow

decay, but the error made by discretizing the recession flow with a straight line between two

subsequent days is relatively little. Moreover, this approach does not introduce any recession

timescale parameter as is usually needed with the use of an exponential decay. However,

this assumption results in a small overestimation of the evapotranspirated water. Finally,

groundwater recharge have been ruled out as principal process for inducing the decreasing

streamflow diurnal cycle, but can still contribute to streamflow losses and therefore result in a

small overestimation of the evapotranspirated water. Second, some errors can be introduced

by using the evapotranspiration rates measured at the meteorological station. Measurement

errors of the fast-response sensors are minimized by the calibration that was done before the

deployment and regular data quality checks undertaken during the deployment. The spatial

variability of evapotranspiration is not considered in this study and can be of critical impor-

tance. The topographical shading and local aspect as well as land use are some factors that

can vary local evapotranspiration values. However, the location of the eddy covariance tower
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was relatively central in the catchment. The site was comparable to both zones of sub-basins 1

and 2 where a large amount of groundwater channel heads were mapped, characterized by

relatively flat areas and very humid soils. The measured latent heat fluxes were generally in

excess of sensible heat fluxes so that the vegetation was not moisture limited. For estimating

evapotranspiration, direct measurements were preferred to formulations based on the energy

budget like the Penman-Monteith equation, since the latter one introduces parameters such

as the surface and aerodynamic resistances. Moreover, as the net radiation is only measured

at the meteorological tower, the number of days with evapotranspiration estimates would be

the same as when obtained with the eddy covariance method. As the soil in the vicinity of the

meteorological tower was always almost saturated, it is believed that the difference between

eddy covariance evapotranspiration estimates and Penman-Monteith evapotranspiration

estimates would be very similar.

In our study, the evapotranspiration-induced diurnal streamflow cycles observed in sub-

basin 1 has been attributed to the evapotranspiration in the riparian area. However, we note

that there is no physical evidence for such assumption. During rainless periods, transpiration

is high in the vegetation close to the river due to soil saturation and evaporation from streams

is high in the low order streams originating from the groundwater channel heads where the

flow rate is the lowest. In particular, we observed a high density of first order perennial streams

in the westernmost part of the sub-basins as illustrated in Figure 4.2a. The soil around and

upstream those first order channels was always saturated and hydrologically connected to

the channel network, i.e. contributing to total streamflow. Moreover, the riparian vegetation

observed in sub-basin 1 was characterized by relatively shallow roots (see section 4.2.1). A

separation between the evaporation and transpiration is beyond the scope of this study but

we acknowledge that the diurnal streamflow cycle might be dominated by direct evaporation

from streams only, which needs further research.

To geographically identify the active evapotranspiration area, we make use of only the peren-

nial part of the channel network which reduces the error on the riparian area estimation. Most

studies rely on an objective, automatic extraction of the channel network based on a critical

support area (i.e., O’Callaghan and Mark, 1984), which assumes constant drainage density.

This classical method makes no distinction between intermittent and perennial streams, re-

sulting in an overestimation of the riparian area, especially during low flow conditions when

most of the intermittent streams are dry. Note that it is also of critical importance to use a high

resolution DEM to better recognize the channel network (Tarolli, 2014) and therefore reduce

the error in the riparian area estimation. Moreover, we do not account for a possible temporal

evolution of the riparian zone which could be induced by a temporal evolution of the channel

network, especially during longer dry periods where some parts of the streams could dry out.

The comparison of the different diurnal streamflow cycles shows that the amplitude of the

evapotranspiration cycle of sub-basin 1 can be regarded as constant in contrast to the ampli-

tude of the ice melt cycle of sub-basin 2 (see Figure 4.7). However, the two types of diurnal

cycles occur at similar times of the day but with an opposite sign (see Figure 4.6). Therefore,
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by visual inspection of the diurnal cycle measured at sub-basin 2 alone, it is almost impossible

to detect the occurrence of a diurnal cycle of evapotranspirative nature. Even though the

amplitude of the evapotranspiration cycle was much lower than the amplitude of the ice melt

signal, the effect on the estimation of the daily icemelted volume of water was not negligible,

with an increased volume of 26%. This was achieved by separating the observed ice melt-

dominated diurnal streamflow cycle by a pure ice melt component and an evapotranspiration

component. We acknowledge that this method might only be applicable in relatively small

basins. In our case, the travel times are sufficiently short so that we observed occurrences

of evapotranspiration and ice melt diurnal streamflow cycles at similar times of the day. In

larger basins, timing and transport issues might hinder a clear separation between different

types of diurnal cycles as the travel distances are longer. Indeed, for large streams and even

more late in the season, snowmelt or ice melt-induced signals are subject to longer travel

times and wave dispersion, resulting in a delayed appearance and perhaps less pronounced

shapes of melt-water diurnal signals. In our case, the ice melt signal was induced locally by

one glacier but several snowmelt or ice melt signals might be added in larger basins which

could hinder the identification of diurnal streamflow cycles. Evapotranspiration signals can

be induced locally, but as well by riparian areas at longer distances from the gauging station.

All these factors must be considered carefully when adding and subtracting diurnal signals

for establishing water mass balances, and our result suggest that evapotranspiration diurnal

cycles should be included when assessing conceptual models for snowmelt or ice melt.

4.6 Conclusions

Diurnal streamflow cycles in high alpine catchments are typically dominated by snowmelt or

ice melt in the presence of glaciers. We observed a transition from a snowmelt-dominated

diurnal streamflow cycle to an evapotranspiration-dominated diurnal streamflow cycle in a

sub-basin of a well monitored high altitude catchment in the Swiss Alps. The two processes

induced diurnal streamflow cycles of opposite signs at similar times during the day. In another

sub-basin of the catchment, we observed a diurnal streamflow cycle throughout the season

dominated by the ice melt from a small glacier. The amplitude of the ice melt-induced diurnal

streamflow cycle was larger than the amplitude of the evapotranspiration-induced cycle. Even

though the impact of the evapotranspiration cycles was not visible in the observed ice melt

cycles, our study suggests that damping of the ice melt cycle by the evapotranspiration cycle is

not negligible. Diurnal ice melt streamflow cycles are expected to be amplified with warming

climate. It is therefore of crucial importance to obtain accurate estimates of evapotranspiration

in mountainous areas for future glacier mass balance estimations and for hydrological models

to correctly simulate discharge at sub-daily temporal resolutions.
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5 Application of a meteorological wire-
less sensor network to understand
the influence of soil water status on
streamflow generation

This chapter presents preliminary results and analysis of data collected by the wireless network

of meteorological stations deployed in the Val Ferret catchment during summers 2011 to 2013.

The results are aimed to be submitted for publication with the following citation:

Mutzner, R., Weijs S.V. and Parlange M.B. (2015): Influence of soil water potential and moisture

on streamflow generation in an alpine catchment. in progress.

Summary

A field observation campaign was conducted during three consecutive summers from 2011 to

2013 in a 20.4 km2 alpine catchment in the Swiss Alps. A wireless network of 20 meteorological

stations was deployed, along with river streamflow monitoring. The objective of the study was

to understand dominant mechanisms of streamflow generation during precipitation events

by analyzing antecedent soil water content and antecedent soil water potential monitored

at the weather stations. Our result show a relatively sharp threshold in the relation between

antecedent soil water potential and runoff coefficients yet unreported in previous studies.

On the other hand, threshold relationship between antecedent soil water content and runoff

coefficients were less evident. Our study suggests that hysteresis effect in the water-retention

curve at the hillslope scale could largely affect streamflow generation at the catchment scale.
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5.1 Introduction

Hydrologic systems are complex per se due to the heterogeneous nature of the geological,

pedological and morphological structure of the watershed. In hydrologic systems, non-linear

and threshold behaviors are the rule rather than the exception and manifest at different

temporal and spatial scales (Zehe and Sivapalan, 2009). Recently, hydrologists have devoted a

lot of attention to study threshold-based processes leading to a paradigm shift in the field of

streamflow generation and storage-discharge relationship (Ali et al., 2013; McDonnell, 2003;

Spence, 2010). Understanding the processes leading to threshold behavior of hydrological

systems is of fundamental importance for modeling and conceptualization purposes (Tetzlaff

et al., 2008).

In particular, streamflow generation is not completely understood yet at the hillslope and

headwater catchment scale. For steep and humid catchments, chemical and isotopic tracers

have identified subsurface flow as being an important component of stormflow generation

beside overland flow (Brutsaert, 2005, Chap. 11). A lot of effort is currently spent by the hydro-

logical community to understand the origin of threshold behaviors in stormflow generation

but few mechanisms have been proposed to explain such threshold behaviors. The proposed

mechanisms, namely connectivity of lateral preferential flowpaths (Lin, 2010; Sidle et al., 2001)

and the fill and spill hypothesis (Spence and Woo, 2003; Tromp-van Meerveld and McDonnell,

2006a), all underline the importance of the soil-bedrock interface in the generation of storm-

flow. Ongoing research is trying to reproduce such threshold behaviors in hydrological models

at hillslope or small catchment scales (Fu et al., 2013a; Graham and McDonnell, 2010; Hopp

and McDonnell, 2009; Lehmann et al., 2007)

Many studies reported the existence of stormflow generation threshold behaviors that are

analyzed and described by linking stormflow characteristics to a combination of soil water

content at the hillslope scale and total precipitation amount. Most of the time, stormflow

is characterized by runoff coefficients, defined as the ratio between stormflow (obtained by

subtracting baseflow from total flow) and total precipitation amount (see Blume et al. (2007) for

a review). Some studies analyzed the relation between runoff coefficients and Antecedent Soil

Moisture (ASM), defined as the soil moisture before the onset of precipitation. For instance,

Western and Grayson (1998) reported a marked increase of surface runoff above an ASM

threshold of 41-46% in the Tarrawarra catchment, South-eastern Australia. The data collected

in this very intensively monitored 10.5 ha catchment lead to some pioneer study on the spatial

organization, variation and connectivity of soil moisture (Western et al., 1998, 1999, 2001).

Similarly, James and Roulet (2007, 2009) observed a very clear threshold at approximately

23% ASM above which runoff ratios passed from low values (less than 0.05) to values ranging

between 0.1 and 0.6. In a small alpine watershed in Northern Italy, Penna et al. (2009) found

that the runoff coefficients were significantly increasing above ASM of 45% (averaged over the

0-30 cm depth). Below this threshold, runoff coefficients were lower (<0.1) and were attributed

to the direct precipitation interception by the streams and saturation excess overland flow in

the riparian area.
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On the contrary, Zhang et al. (2011) reported an absence of threshold relationship between

ASM and runoff coefficients in small semiarid watersheds in Arizona which was explained

by low temporal variability of soil moisture in these environments. Recently, von Freyberg

et al. (2014) reported the absence of a threshold behavior between runoff coefficients and

antecedent conditions in a small prealpine headwater watershed in Switzerland. However,

antecedent conditions were defined as initial discharge and total precipitation amount seven

days prior to the event instead of ASM to characterize the wetness state of the catchment

before the event.

Some studies analyzed threshold behaviors at the hillslope or catchment scale by inspecting

the relation between runoff coefficients and total precipitation amount (Buttle et al., 2004;

Fu et al., 2013b; Graham et al., 2010; Guebert and Gardner, 2001; Noguchi et al., 2001; Tromp-

van Meerveld and McDonnell, 2006b). Tani (1997) reported the precipitation threshold to be

depending on ASM. Alternatively, the streamflow response above the precipitation threshold is

shown to be different before dry or wet ASM conditions in terms of response timings (Tromp-

van Meerveld and McDonnell, 2006b). Additional studies reported clear thresholds between

runoff coefficients and the sum of total precipitation and stored water, referred to as ASM

index (Detty and McGuire, 2010a,b; Fu et al., 2013b; Haga et al., 2005; Penna et al., 2014). ASM

index is obtained by integrating the different soil moisture values over the soil thickness to

obtain a depth of stored water. The main advantage of using a threshold based on ASM index

and total precipitation is that it allows for better representation of mass balance at the hillslope

or catchment scale. However, the computation of the ASM index needs a precise knowledge of

the soil depth to correctly estimate the total amount of water available in the soil. Moreover,

the estimation of total volume of water available in the soil relies on a discrete number of soil

moisture content measurements which can lead to non negligible systematic errors (Lunati

et al., 2012).

In most of the aforementioned studies, the hillslopes or catchments have been instrumented

with soil moisture sensors, piezometers, rain and stream gauges. However, among them, very

few have instrumented their study sites with tensiometers even though their use has proven

to be fundamental in experimental hydrology (McDonnell, 1990). Fu et al. (2013b) used soil

suction in a very seminal way to analyze the effect of bedrock depressions on the threshold

behavior on the catchment scale. Latron and Gallart (2008) reported a clear threshold on

the seasonal scale between soil water potential and daily runoff or groundwater level in a

small Mediterranean catchment. In a sprinkler-irrigation experiment in a steep unchanneled

hillslope, Torres et al. (1998) recognized the influence of the soil water retention curve on the

hydrologic response and observed a propagation of a pressure head wave advancing much

faster than the wetting front. In other fields, monitoring soil water suction have helped to

understand threshold on occurrence of landslides (Berti and Simoni, 2010; Matsushi and

Matsukura, 2007) and is actively used for irrigation management (McCutchan and Shackel,

1992).

However, soil moisture and soil water potential are intrinsically related by the Soil Water
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Retention Curve (SRWC), different for every type of soil (Brutsaert, 2005, Chap. 11). The SWRC

is usually obtained by fitting soil moisture and soil water potential to a widely used parametric

model (Van Genuchten, 1980) from which the unsaturated hydraulic conductivity can also

be obtained (Mualem, 1976). Yet hysteresis effects are not negligible and different wetting or

drying SWRC are used (Parlange, 1976). Perhaps hysteresis effects have hampered hydrolo-

gists to present results showing threshold behavior between soil water potential and runoff

coefficient or maybe the cost, maintenance effort and skills required to operate tensiometers

have hindered their use in experimental watersheds. On the other hand, if hysteresis effects

are negligible on a seasonal scale, the threshold value of antecedent soil water potential could

be easily obtained from the antecedent soil moisture threshold through the SWRC.

In the present study, we use the dataset collected in the Val Ferret experimental catchment

during a field campaign that was undertaken during three consecutive summers. Both soil

moisture and soil water potential are measured at two depths and several locations of this

high altitude, steep catchment, along with semi distributed streamflow measurements. The

main objective is to study the relation between streamflow response to precipitation events

and soil antecedent conditions in terms of soil moisture and soil water potential. The main

questions raised are the followings: (i) Do we observe threshold behaviors in the Val Ferret

catchment? (ii) Is there a threshold relationship between stormflow and antecedent soil water

potential? (iii) Are local hysteresis effects in the SWRC important for the streamflow generation

at the catchment scale? The Chapter is organized as follows: after a short description of the

available dataset for the analysis, we present the methods and results of the study, followed

by a discussion where we comment the assumptions and weak points of the study before

concluding and give recommendations for future deployments.

5.2 The Field Campaigns in the upper Val Ferret Watershed

For a general description of the watershed, the reader is referred to the Study Area description

in the Introduction of the thesis.

Wireless network of weather stations

During the summers 2011 to 2013, a wireless network of small meteorological stations was

deployed, among others, to measure the spatial variability of main hydrological variables. The

stations are relying on Sensorscope technology (Ingelrest et al., 2010) and were deployed in

representative locations of the watershed in terms of morphological features such as slope,

aspect and elevation (see Figure 5.1 and Figure 5.2). Due to their high exposure to avalanche

activity and snow accumulation, most of the stations were not operated during the winter

except for stations 1033 and 1238. The stations 1232 was operated during the winter from 2012

to 2013. The other stations have been deployed in late Spring until Fall (see Table 5.1 for a

summary of the deployments). A high precision GPS and pictures taken in the field were used

to deploy the stations at consistent locations. All the stations were equipped to measure wind
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speed and direction, precipitation, near surface and skin temperature, incoming shortwave

radiation and air humidity. An additional meteorological station connected to the network

was also deployed at the outlet of the catchment to measure the water level of the stream with

an ultrasound sensor (MB7060 XL-MaxSonar-WR1, MaxBotix Inc.).

Figure 5.1: Map of the experimental watershed. Filled and dashed contour line show 100
meters, respectively 50 meters contourlines. Red and blue points represent meteorological
stations with and without soil sensors.

Among the 20 meteorological stations, 12 were also equipped to measure soil temperature and

soil Volumetric Water Content (VWC [%], measured with 5-TM sensors from Decagon Devices

Inc.) and Soil Water Potential (SWP [kPa], measured with MPS-1 sensors from Decagon Devices

Inc.), see red stations in Figure 5.1. All the parameters were recorded at a time resolution

of one minute. The soil sensors were systematically installed at depth of 20 cm and 40 cm

below surface, see Figure 5.3 for an illustration of sensor installation. As suggested by the
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Figure 5.2: (a) Normalized histogram of elevations in the watershed with station elevations.
(b) Normalized histogram of slopes in the watershed along with station slopes. G1 stands for
stations 1173, 1038 and 1172. (c) Normalized radial histogram of aspects in the watershed.
Note that pdf stands for probability density function.

manufacturer, the sensors were installed very carefully in the soil. The hole that was excavated

to install the sensors was back-filled and repacked to obtain native bulk-density. However,

the data corresponding to the five first days of measurements were systematically discarded

from the analysis to let the sensors equilibrate with the surrounding. The soil sensors were

always deployed far enough from the tipping bucket rain gauge to avoid interference with

the measurements in the soil. Even though the stations were installed at similar locations

from year to year, the soil sensors were not exactly deployed at the same locations but within

a radius of 2 meters from the station. It was not possible to collect large undisturbed soil

samples at all the locations and at the two different depths to calibrate the soil sensors so

that the standard calibration equation provided by the manufacturer was used. Some small

soil samples were collected in previous studies for soil water retention analysis in laboratory

and are presented in Appendix 5.C of this chapter. The MPS-1 sensor can measure SWP

between -9 kPa to -500 kPa with a resolution of 1 kPa from -9 kPa to -100 kPa and of 4 kPa from
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(a) location 1 (b) location 2

Figure 5.3: Installation of soil sensors at 20 cm and 40 cm at two different locations with
different type of soil

-100 to -500 kPa with an accuracy of ±40%. The lower range and accuracy of the MPS-1 is a

limiting monitoring factor in our analysis (see Figure 5.21) and will be discussed thoroughly

in the Discussion section. The 5-TM sensors can measure VWC between 0 and 100% with

a resolution of 0.08% and an accuracy of ±3%. Precipitation, soil moisture and soil water

potential were aggregated to 15 minutes intervals for the analysis.

Table 5.1: Summary of the field campaigns undertaken from 2011 to 2013 in the Val Ferret
Catchment.

2011 2012 2013

start end # stations start end # stations start end # stations
Q outlet 15.04 17.11 2 10.03 22.10 1 19.04 09.10 2

Q sub-basin 1 NO DATA 0 17.07 07.11 1 NO DATA 0
Q sub-basin 2 08.07 07.11 2 05.06 31.12 1 11.07 31.12 1

meteo. stations 12.05 15.10 26 06.06 22.10 24 02.07 07.10 20

Streamflow data

For this study, we make use of the streamflow data collected during the three field campaigns.

During the year 2012, the pressure sensor located at the outlet suffered from continuous

deposition of fine sediment during the entire deployment. The pressure probe was therefore

buried most of the time even though a lot of maintenance efforts were undertaken to clean

the gauging site during the campaign. For the 2012 campaign, we therefore used the water

level measured with the ultrasound sensor installed on the meteorological station at the outlet.

As mentioned in the Introduction and Chapter 4 of this dissertation, it was not possible to

install a weir in the stream and rating curves had to be established for each location for each

field campaign. Table 5.2 summarizes the coefficients of the rating curves obtained during the

different campaigns. The streamflow data was also aggregated to 15 minutes intervals for the

analysis.
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Table 5.2: Rating curves for the different years

α [-] h0 [cm] β [-] R2 # of gaugings

2011
outlet 3.648×10−1 12.799 2.4066 0.962 37

sub-basin 2 1.0792 0.543 1.708 0.52 10

2012
outlet 4.285×10−5 1.094 4.0377 0.934 14

sub-basin 2 1.78×10−5 -0.587 4.576 0.984 12
sub-basin 1 2.93×10−5 3.565 4.349 0.996 7

2013 outlet 7.85×10−5 9.091 2.822 0.938 14
sub-basin 2 2.46×10−4 0.821 3.8663 0.982 9

5.3 Methods

5.3.1 Rainfall-runoff event selection and runoff coefficients

We adopted a similar approach as proposed by Penna et al. (2011). Rainfall-runoff events were

selected automatically when the precipitation was exceeding a total amount of 6 mm and

were considered as distinct when at least 6 hours without precipitation were observed. Runoff

coefficients were computed to link rainfall-runoff response of the catchment to antecedent

soil state conditions. To that end, the total streamflow has to be separated in eventflow and

baseflow components. Several methods have been proposed in the past for hydrograph

separation: graphical methods (Hewlett and Hibbert, 1967; McNamara et al., 1997; Sujono

et al., 2004; Szilagyi, 1999), digital filtering methods (Arnold and Allen, 1999; Blume et al.,

2007; Chapman, 1999; Wittenberg, 1999) and analytical solutions of the Boussinesq equation

(Szilagyi and Parlange, 1998). However, for all those methods, identifying the end of the event

(i.e. return to baseflow) and interpolating the baseflow variation during the event remains

challenging. In our case, the end of the storm was identified graphically as done in Penna

et al. (2011) and baseflow was assumed to vary with constant slope between onset and end

of the event. The baseflow component was then subtracted from the total streamflow and

the event runoff coefficients were computed as the ratio between event stormflow and the

total precipitation. Table 5.4 summarizes the main characteristics of the precipitation events

observed in the Val Ferret catchment.

When computing the runoff coefficient of an event for an entire basin, one intrinsically

assumes a uniform precipitation over the watershed which might not be realistic for large

scales and especially in mountainous areas where spatial variations of precipitation are the

rule rather than the exception. To get a representative catchment-wide precipitation, we

selected for each year five meteorological stations with the lowest percentage of missing

precipitation data and manually checked that those stations were not neighboring stations.

For each 15-min timestamp, we took the median amount of precipitation measured at those

five stations to create a dataset which is used for the runoff coefficient calculations. We also

computed the runoff coefficients of the two monitored sub-watersheds. For the sub-basin 1,
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we used the median precipitation of the stations 1033, 1043 and 1238; the median of the

stations 1240, 1232, 1242, 1243 and 1244 for the sub-basin 2.

5.3.2 Volumetric water content corrections based on soil water retention curves

We observed a large year to year variation of the mean VWC at most of the locations and at

the different depths whereas the SWP was more consistent from year to year, see Figure 5.9

to Figure 5.20 in the Appendix of the Chapter. As mentioned earlier, the soil sensors had to

be reinstalled every year due to logistical and safety reasons. To compare the VWC values

between the different years, we corrected the measured VWC from year to year based on the

assumption that the Soil Water Retention Curve (SWRC) was similar for a given location and

a given depth below surface. In other words, we assumed that the soil is homogeneous in a

radius of two meters from the meteorological stations. The radius of two meters corresponds

to the maximum distance from the meteorological stations where the soil sensor were installed.

To that end, we used one of the most popular SWRC parametrization used in soil science

(Van Genuchten, 1980):

θ(ψ) = θr + θs −θr

[1+ (α|ψ|)n]1−1/n
(5.1)

where ψ is the SWP [cm of water], α(> 0) [cm−1] and n(> 1) are two parameters related to the

inverse of the air entry suction and to the pore-size distribution, θs is the saturated VWC, θr

is the residual VWC [m3 m−3]. For each location, each year and each depth, we fitted an in

situ SWRC curve through the data averaged on an hourly basis. The residual VWC was used

to compare the SWRC obtained in situ from the different years and eventually to correct the

soil moisture measurements. Note that it is outside the scope of this study to compare in situ

SWRC and under controlled conditions SWRC as reported in 5.C. The residual VWC was used

instead of the saturation VWC since the SWP sensor used in this study are not operational

near saturation. The example of station 1232 at 20 cm depth is illustrated in Figure 5.4. For

instance, the data obtained for the 2011 deployment has a residual VWC of 5.91% whereas

for 2012 and 2013, the residual VWC is of 17.31%. Note that the station 1232 was maintained

on site during the winter 2012 to 2013 so that the SWRC obtained with the 2012 and 2013

compares reasonably well without any correction. In this example, we therefore shifted all the

2011 soil moisture values by +11.4% so that the three SWRC overlap (see Figure 5.4b). For all

the stations, the measurements of the 2012 campaign were taken as reference as it was the

deployment with the largest time span and relatively little data missing. Note that we only

corrected the VWC measurements but not the SWP measurements.

5.3.3 Computation of antecedent conditions and response time

For each event and station with installed soil sensors, we computed the antecedent VWC and

SWP as the mean in the hour preceding the onset of precipitation. For the computation of the
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Figure 5.4: Example of a) raw SWRC at station 1232 and 20 cm depth and b) corrected SWRC
obtained with corrected VWC.

antecedent conditions, we used the precipitation measured at each station. If the precipitation

data was missing at a station for a given event, we used the precipitation measurements of the

closest station having a percentage of missing values less than 5 % for that given event.

To study the dynamical properties of the streamflow response to precipitation, we computed

the response time of discharge, soil moisture and soil water potential. The response time Tr es

is defined as the delay between onset of the precipitation and the occurrence of the maximum

of the parameter analyzed. For the discharge response time, we used the same precipitation

dataset as used for the runoff coefficient calculation (i.e. median of 5 distributed locations). For

the soil moisture and soil water potential response time, we used the precipitation measured

at each station for the computation of the antecedent conditions.

5.4 Results

5.4.1 Streamflow response to precipitation

The runoff coefficients were highly variable over the three field campaigns. The values ranged

between 0.004 and 0.496 with mean, median and standard deviation values of respectively

0.0634, 0.0427 and 0.0760. We could not observe a clear relation between runoff coefficient

and total precipitation amount or maximum precipitation intensity. The response of the

catchment was highly non linear, as illustrated with the highest runoff coefficient (0.496)

obtained for the event of the 20th of June 2012 with a relatively small total precipitation

of 6.35 mm. At this time of the year, the watershed is typically partially covered by snow.

It is out of our scope to understand the origin of such a high runoff coefficient value but a

complex interaction between precipitation and snow patches such as a flushing effect could be
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important. Moreover, the streamflow was the largest at this time of the year so that small errors

in the computation of the end of the event can have larger effect on the runoff coefficient.

The runoff coefficients of the sub-basin 2 ranged between 0.005 and 0.419 with mean, median

and standard deviation of 0.0835, 0.0532 and 0.0857. In general, they were larger than the

runoff coefficients computed for the entire catchment, with a mean and median difference

between the coefficients of 0.016 and 0.010. Concerning sub-basin 1, only 16 events could be

analyzed, and the runoff coefficients ranged between 0.003 and 0.154 with mean, median and

standard deviation of 0.046, 0.029 and 0.041. Similarly to sub-basin 2, the runoff coefficients

were on average larger than the ones computed for the entire catchment (mean and median

difference of 0.013 and 0.002).

Two elements could explain the fact that the runoff coefficients are larger in both sub-basins. In

sub-basin 1, the drainage density is larger than the one of the entire catchment (7.82 km/km2

compared to 5.27 km/km2) so that a larger amount of precipitation is directly intercepted

by the riparian area and converted to streamflow. In sub-basin 2, the drainage density is

lower (4.13 km/km2) than for the entire basin but the land cover is different and could affect

stormflow generation. Whereas grassland covers more than half of the total area in sub-basin 1

and over the entire catchment (respectively 70% and 60% of sub-basin 1 and outlet, 41% of

sub-basin 2), the talus deposit and bedrock outcrops cover more than half of sub-basin 2

(52% of the sub-basin 2, 29% and 38% of sub-basin 1 and of the entire watershed). Obviously,

soil covered areas have larger storage capacities compared to bare rock/moraine areas which

could partially explain the higher coefficients observed in sub-basin 2.

5.4.2 Thresholds on streamflow generation

The relation between runoff coefficients and antecedent VWC or SWP are shown in Figure 5.5

to Figure 5.8. For most of the locations, a threshold relationship between antecedent SWP

and runoff coefficients could be observed at both depths. On the other hand, threshold rela-

tionships between VWC and runoff coefficients were less evident to determine. We identified

VWC thresholds at stations 1035, 1036, 1173 and 1238 even though at these locations, the SWP

threshold is easier to identify. The VWC thresholds will be commented on in the Discussion

section but are not taken into account in the following results since they are more uncertain

than the SWP thresholds. Table 5.3 summarizes the thresholds of SWP observed at the different

locations. When taking into account all the locations and depths, a threshold relationship

between antecedent SWP and runoff coefficients could be observed at 83% of the cases. It

is remarkable to notice from Figure 5.5 to Figure 5.8 that the total precipitation amount was

not playing a significant role in the relation between runoff coefficient and antecedent soil

parameters as there is no clear pattern in the colors associated to the total precipitation. This

was also the case when event duration, maximum or mean precipitation intensity were used.

We could not observe a SWP threshold at station 1172 at 40 cm and at stations 1240, 1242 and

1243 at 20 cm depth. Concerning station 1172 and 1243, not enough antecedent conditions
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could be established due to the gaps in the data. Concerning stations 1240 and 1242, the

relation between runoff coefficient and antecedent SWP is more scattered, i.e. the absence of

threshold relationship can not be explained by a lack of observable antecedent conditions.

Compared to the other stations, the 20 cm depth SWP signal obtained during the campaign

2012 at stations 1240 and 1242 was slowly increasing during the season until the beginning of

July without any type of response to precipitation. It is therefore believed that the SWP sensors

at stations 1240 and 1242 were not correctly installed during the 2012 campaign. This could

be due to small soil disturbance or air gaps.
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Figure 5.5: Relation between runoff coefficients and VWC (θ, left of each subfigure) or SWP (ψ,
right of each subfigure). The upper and lower lines show the data from the sensors installed at
respectively 20 cm and 40 cm depth. The columns one to three correspond to the data from
stations 1035, 1036 and 1038. The dashed line correspond to the threshold of SWP and VWC
on runoff generation. Every point is color-coded with the total precipitation amount of the
event.

The value of the SWP thresholds reported in Table 5.3 have been established manually since

no objective and automatic criterion could be defined to extract them. However, a quantity

describing the sharpness of the threshold relationship was introduced, defined by the product

of the standard deviation of the antecedent SWP values above the threshold and the standard

deviation of the runoff coefficients of the events with antecedent SWP values under the

threshold. The criterion is reported as sharpness in Table 5.3 and tends to zero in the case of a

perfect threshold relationship. With this criterion, we can objectively report that the sharpest
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threshold relationships between runoff coefficients and antecedent SWP were observed at

stations 1238 and 1232.

Table 5.3: Threshold values for the different locations and different depth. The term not
observed means that no threshold relationship between antecedent SWP and runoff coefficient
could be identified and the term a.u stands for arbitrary unit.

location SWP20 cm [kPa] sharpness [a.u] SWP40 cm [kPa] sharpness [a.u]

1035 -33.381 0.229 -17.814 0.019
1036 -40.605 0.312 -24.009 1.501
1038 -17.523 0.041 -16.852 0.063
1043 -19.207 0.030 -14.171 0.100
1172 -32.405 0.056 not observed
1173 -16.358 0.052 -13.247 0.014
1232 -15.568 0.033 -12.788 0.039
1238 -11.002 0.005 -10.937 0.007
1240 not observed -20.373 1.786
1242 not observed -18.641 0.103
1243 not observed -15.438 0.034
1244 -20.532 0.126 -40.475 1.150

Similar thresholds were observed when we used the runoff coefficients of the sub-basin 2 and

the stations belonging to the sub-basin 2 (i.e. stations 1232, 1240, 1242 and 1244). For sake of

clarity, the relations between runoff coefficients and antecedent VWC or SWP are not shown

in Figure 5.5 to Figure 5.8. For sub-basin 1, only few events were available for computation of

the runoff coefficients. However, a similar threshold was observed for stations 1238 and 1043

at both depths.
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(c) 20 cm depth
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Figure 5.6: Same as Figure 5.5 for stations 1043, 1172 and 1173.
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(d) 40 cm depth
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(e) 40 cm depth
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Figure 5.7: Same as Figure 5.5 for stations 1232, 1238 and 1240.
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(b) 20 cm depth

15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

θ 20cm [%]

ru
no

ff 
co

ef
fic

ie
nt

 [−
]

−150 −100 −50
ψ 20cm [kPa]

 

 

to
ta

l p
re

ci
pi

ta
tio

n 
[m

m
]

10

15

20

25

30

35

40

45

50

station 1244
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Figure 5.8: Same as Figure 5.5 for stations 1242, 1243 and 1244.

Response time of discharge, soil moisture and soil water potential

Some simple calculations based on the response time of the soil parameters and discharge

were done to see if the streamflow generation dynamics could be different above or under

the SWP thresholds. The response time of the discharge at the outlet was highly variable (see

Table 5.4) but is highly correlated to the event duration (Pearson linear correlation coefficient:

0.7145, p = 5.42×10−12). Needless to say, the response time of soil moisture and soil water

potential was found to be always shorter than the discharge. Moreover, the response time of

the soil moisture was on average shorter than the response time of the soil water potential

for all the locations at both depths. Compared to the soil moisture sensors, the soil water

potential sensor needs a longer time to equilibrate with the surrounding matrix, specified by

the manufacturer between 10 minutes and one hour. Hysteresis effects in the SWRC could also

explain the differences in the response times of the two parameters. However, understanding

such differences in the dynamics of the soil moisture and soil water potential would require

numerical simulations using Richards equation and our dataset as boundary conditions which

is outside of the scope of this study.

According to the various thresholds observed, the events were classified for each location and

each depth as wet (above SWP threshold) or dry (under SWP threshold) antecedent conditions.

The difference between the discharge response time and the VWC or SWP response times has
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been computed for both populations. We found that when taking into account all locations

and depth with observed thresholds, the difference between discharge response time and

VWC response time is 29% larger when dry antecedent conditions were preceding the event,

18% larger in the case of the difference between discharge response time and SWP response

time.

5.5 Discussion

We find a clear threshold relationship between antecedent SWP and runoff coefficients at

various sites of the catchment and various depth below surface. To our knowledge, this

threshold behavior has been reported for soil water content and/or the sum of soil water

content and precipitation amount but has not been reported for SWP. We acknowledge that

several aspects could possibly alter the observed threshold relationships and are discussed in

the following.

First, there are certainly some errors in the computation of the runoff coefficients. We used

a graphical method for selecting the end of the event and assumed that the baseflow was

varying with a constant slope during the storm events (Blume et al., 2007). The main objective

of the analysis is not to study the dynamics leading to the runoff coefficients but rather to use

them as a quantitative tool to analyze the effect of antecedent soil conditions on stormflow

generation. As long as the uncertainty in the runoff coefficient is relatively small, we don’t

think that the threshold relationships obtained in our analysis are affected by the error on

the computation of the runoff coefficients. Actually, we obtained similar threshold behaviors

when the baseflow was not separated from the total flow, i.e. when runoff coefficients were

computed as the total streamflow divided by the total precipitation amount. We therefore

believe that this threshold relationship is robust and not depending on a method of baseflow

separation technique.

Second, the accuracy and range of detection of the soil sensors are also important factors in

our study. As specified by the manufacturer, the MPS-1 sensors used to measure SWP is not

adapted to very wet soils since it does not measure values above -9 kPa. However, we can see

from the Figures reported in the Appendix of this Chapter (Figure 5.9 to Figure 5.20) that in

general, the SWP measured at the different locations were fluctuating and not always at the

upper limit of the measurable range. With the sensor that we use, we have no details on the

SWP when the soil is close to saturation, which might occur during important precipitation

events. On the other hand, the 5-TM sensors used for measuring the VWC have no range

limitation and are able to measure VWC close to saturation. However, the threshold behavior

observed at some locations was not as well defined as in studies reported earlier (James and

Roulet, 2007, 2009; Penna et al., 2011; Western and Grayson, 1998). Maybe if we would have

the full range of SWP measurement possible, then the relation between antecedent SWP and

runoff coefficients would be more scattered and look like the relation observed for the VWC.

We acknowledge that the VWC measurements become relative with the corrections based

108



5.5. Discussion

on the SWRC. However, if we would not carry out those corrections, the relation between

antecedent VWC and runoff coefficients would be even more scattered. For all the locations

and depths, we investigated the existence of thresholds on a yearly basis without correcting

the VWC data. Yet no such threshold behavior were observed on the yearly basis. The fact that

VWC thresholds are less easily observable than SWP thresholds can therefore not be explained

by the SWRC-based corrections.

The year to year variability of the VWC measurements was not negligible even though the

meteorological stations were installed every year at similar locations. With the correction

based on the SWRC, we can correct the range (i.e mean) of the VWC. However, for some

locations, we see that the dynamics are very different from year to year. The VWC measured at

station 1172 is a good illustration of this problem. From Figure 5.13), we can observe large

variation of the VWC at 40 cm depth during precipitation events in the year 2013. This is

not the case in the year 2012 with little variation even though the value of the mean VWC

are comparable from year to year. Compared to the MPS-1 sensors, the 5-TM sensors are

more sensitive to bad installation, for instance due to the presence of stones or pebbles in the

vicinity of the sensor.

Based on the criterion introduced to quantify the sharpness of the threshold behavior, we

observed that the most pronounced threshold relationships were identified at stations 1238

and 1232. Those two stations were maintained during the winters. Most likely, it is not a

coincidence that the threshold relationship is the best for the stations where the soil sensors

were not moved between deployments and installed just once, even though the effect of the

measurable range of the MPS-1 can also affect this sharpness. However, for future studies

in the Val Ferret watershed, it is highly suggested to keep the soil sensors on site during the

winter. This represents a challenge not negligible given the large avalanche activity that is

observed in the Valley during winters.

We did not intend to establish threshold relationship between total amount of precipitation

and stored amount of water as done in earlier studies (Fu et al., 2013b; Haga et al., 2005; Detty

and McGuire, 2010a,b). The knowledge of the soil/bedrock interface is of critical importance

to correctly estimate the total amount of water available in the soil before the event. Obvi-

ously, this information is extremely difficult to estimate at the catchment scale, especially in

mountainous catchment where the geology is complex.

The analysis of the response time of the discharge, VWC and SWP showed the importance

of subsurface flow in the stormflow generation. The difference between the occurrence of

the soil moisture peak and the streamflow peak was lower for wet antecedent conditions.

Based on our results, it is hard to speculate whether the fill and spill hypothesis (Spence and

Woo, 2003; Tromp-van Meerveld and McDonnell, 2006a) or connectivity of lateral preferential

flowpaths (Lin, 2010; Sidle et al., 2001) can better explain the threshold behaviors observed

in our experimental watershed. Our understanding of the phenomena is that above a cer-

tain threshold of SWP, the transport of water through the unsaturated zone is enhanced by
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increasing hydraulic conductivity. In other words, the SWP thresholds that we observed could

actually reflect thresholds of the hydraulic conductivity (Torres, 2002). Our results also strongly

suggest to investigate hysteresis effects at the hillslope scale, illustrated in our study site by the

presence of SWP thresholds and almost no VWC thresholds. Torres et al. (1998) recognized

the influence of hysteresis effects near saturation in an irrigation-controlled unchanneled

hillslope, but less attention has been paid to this phenomena on larger and naturally driven

hillslope or headwater catchments.

Some non negligible differences were observed in the values of the SWP thresholds regarding

both location and depth. Further investigations will need to clarify the role of the topography,

distance to stream, land cover and porosity effects on these thresholds. Moreover, we found

interesting to identify such clear thresholds with relatively little accurate sensors for which we

used the manufacturer’s default calibration. At the time of writing, Decagon Inc. has launched

the version #6 of the MPS sensor with a marked increase in accuracy compared to the sensors

deployed in the study. However, the upper limit of the measurable range remains similar

but this drawback is partially compensated by the lower costs and little maintenance needed

compared to classical tensiometers.

5.6 Conclusion

Many recent studies have reported threshold relationships between antecedent soil mois-

ture and runoff coefficients during precipitation events at the hillslope or small headwater

catchment scale. The existence of such threshold behaviors were investigated in the Val Ferret

watershed with a deployment of 20 meteorological stations during three consecutive summers

from 2011 to 2013. Among the 20 meteorological stations, 12 were equipped with sensors

deployed at 20 cm and 40 cm to monitor soil moisture and soil water potential. The analysis

of 69 precipitation events showed that there is a clear threshold behavior between soil water

potential and runoff coefficients, observed at 83% of the locations. The value of the soil

water potential thresholds was varying both in space and depth. Above this threshold, the

runoff coefficients were larger and the response time of the watershed was shorter. Threshold

relationship between soil moisture and runoff coefficients were less systematically observed.

However, two issues related to measurement challenges are mitigating our results. First, the

sensors had to be reinstalled every year due to their high exposure to avalanche activities. This

created some year to year variability of the soil moisture and soil water potential measurements

even though the meteorological stations were deployed at consistent locations. The soil water

potential sensors were less sensible to this issue and showed less variability compared to the

soil moisture sensors. A correction based on in situ Soil Water Retention Curves was proposed

to account for this logistical issue. Second, the sensors used to measure the soil water potential

had a limited measurable range which does not cover states near saturation. However, even

though this issue was not negligible in our study, the threshold relationship between soil water

potential and runoff coefficients remains valid but could possibly be more scattered if the full
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range of soil water potential was measurable.

Our results underline that hysteresis effects at the hillslope scale might play an important role

in stormflow generation. In our opinion, tensiometers are not being sufficiently deployed

in experimental hydrological studies, where streamflow, precipitation and soil moisture are

regularly monitored. Given that the cost of tensiometers have decreased along with increasing

accuracy, we recommend to use them more systematically in hillslope or catchment hydrology.

Hysteresis effects of soil water retention need to be further investigated through numerical

simulations or at intensively monitored slopes as they are possibly linked to recently proposed

mechanisms of threshold-based stormflow generation.
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5.A Plots of data

Figures 5.9 to 5.20 show the data recorded at the meteorological stations equipped with soil

sensors. In each figure, the three columns correspond to the deployments 2011, 2012 and

2013. The first line shows the discharge time series along with the precipitation dataset used

in the study. The second and third line show the Volumetric Water Content (VWC) and soil

water temperature respectively, obtained with the 5-TM sensors. The VWC data shown has

not been corrected with the method relying on the Soil Water Retention Curves. The fourth

line shows the Soil Water Potential (SWP) obtained with the MPS-1 sensors. In lines two to

four, the solid blue lines and red lines show the data measured at 20 cm depth, respectively

40 cm depth. While the axis of lines one to three are similar for all figures, note that the axis for

the SWP have been adapted for each measurement location.
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Figure 5.9: station 1035. Blue and red lines correspond to data measured at 20 cm and 40 cm
below surface.
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Figure 5.10: station 1036
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Figure 5.11: station 1038
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Figure 5.12: station 1043
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Figure 5.13: station 1172
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Figure 5.14: station 1173
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Figure 5.15: station 1232
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Figure 5.16: station 1238
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Figure 5.17: station 1240
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Figure 5.18: station 1242

Jun Jul Aug Sep Oct Nov
0

5

10

15

st
re

am
flo

w
 [m

3 /s
] 2011

0

3

6

Jun Jul Aug Sep Oct Nov
0

5

10

15

2012
0

3

6

Jun Jul Aug Sep Oct Nov
0

5

10

15

2013
0

3

6

P
 [m

m
/1

5m
in

]

Jun Jul Aug Sep Oct Nov
10

30

50

V
W

C
 [%

]

Jun Jul Aug Sep Oct Nov
10

30

50

Jun Jul Aug Sep Oct Nov
10

30

50

Jun Jul Aug Sep Oct Nov

5

10

15

T so
il [°

C
]

Jun Jul Aug Sep Oct Nov

5

10

15

Jun Jul Aug Sep Oct Nov

5

10

15

Jun Jul Aug Sep Oct Nov
−200

−150

−100

−50

0

S
W

P
 [k

P
a]

Jun Jul Aug Sep Oct Nov
−200

−150

−100

−50

0

Jun Jul Aug Sep Oct Nov
−200

−150

−100

−50

0

Figure 5.19: station 1243
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Figure 5.20: station 1244
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5.B. Selected Events

5.B Selected Events

Table 5.4: Summary of the storm events and streamflow response at the three monitored
locations. ∆Q is the difference between baseflow and streamflow peak, Tr es the difference in
time between precipitation onset and maximum streamflow occurrence, rf coeff is the runoff
coefficient defined as total stormflow divided by the total precipitation.

rainfall outlet sub-basin 1 sub-basin 2
Date Ptot al duration ∆Q rf coeff. Tr es ∆Q rf coeff. Tr es ∆Q rf coeff. Tr es

[mm] [h] [l/s] [-] [h] [l/s] [-] [h] [l/s] [-] [h]

13.05.2011 20.45 3.5 1256.7 0.076 3.75 - - - - - -
14.05.2011 8.00 8.25 167.7 0.007 2.75 - - - - - -
26.05.2011 17.02 25 512.4 0.041 5 - - - - - -
30.05.2011 14.10 2.25 1255.2 0.068 3 - - - - - -
31.05.2011 11.94 13.5 233.4 0.018 12.5 - - - - - -
01.06.2011 22.35 5.75 20.6 0.001 1.25 - - - - - -
03.06.2011 9.40 10.75 808.1 0.254 22 - - - - - -
07.06.2011 18.54 48 187.7 0.055 32.75 - - - - - -
16.06.2011 9.65 8.25 763.3 0.087 3 - - - - - -
17.06.2011 42.93 22.25 1741.9 0.054 20.5 - - - - - -
21.06.2011 12.19 17.25 343.5 0.017 9 - - - - - -
22.06.2011 10.03 6.75 699.4 0.117 4.5 - - - - - -
29.06.2011 10.92 13.25 83.2 0.015 1 - - - - - -
07.07.2011 8.51 9.25 101.4 0.006 1 - - - - - -
09.07.2011 13.72 1.75 2392.1 0.059 2.25 - - - 981.2 0.020 2
12.07.2011 48.39 35.5 3806.7 0.127 20.75 - - - 1223.5 0.095 20.5
16.07.2011 43.31 18.5 4718.3 0.156 13.5 - - - 1283.1 0.092 12.5
19.07.2011 18.92 32.25 937.3 0.036 3.25 - - - 338.2 0.054 2.75
03.08.2011 17.78 21.25 591.2 0.034 10.25 - - - 230.7 0.024 10
06.08.2011 12.70 15.75 335.4 0.076 6 - - - 121.2 0.050 5.75
23.08.2011 6.60 1.75 206.1 0.018 1.25 - - - 92.2 0.019 1
25.08.2011 10.16 0.75 138.4 0.007 2.25 - - - 113.4 0.006 1.75
26.08.2011 39.62 9 3155.5 0.057 7.5 - - - 1361.4 0.097 7
31.08.2011 6.73 3 587.2 0.096 2.25 - - - 320.8 0.106 2
03.09.2011 25.40 2.75 2500.3 0.038 3 - - - 1205.0 0.053 3
04.09.2011 19.56 27.5 734.6 0.106 3.75 - - - 491.6 0.167 3.25
11.09.2011 6.86 12 75.1 0.007 2 - - - 113.5 0.014 1.25
17.09.2011 37.85 29.75 875.1 0.029 20 - - - 810.7 0.095 19.5
06.10.2011 29.21 22.5 249.4 0.007 10.5 - - - 106.0 0.011 10
06.06.2012 6.10 8.75 326.8 0.004 8 - - - 123.7 0.086 3.75
07.06.2012 14.22 11.5 1372.1 0.389 20.25 - - - 2096.0 0.393 3.25
10.06.2012 21.59 8.75 993.6 0.062 7 - - - 510.9 0.037 8
12.06.2012 14.73 18.75 366.7 0.020 2.5 - - - 158.1 0.037 5.75
20.06.2012 6.35 8.25 1880.8 0.496 4.75 - - - 807.0 0.198 1
21.06.2012 7.11 6 1001.3 0.264 6 - - - 155.1 0.031 0.25
01.07.2012 49.53 28.5 2677.7 0.165 13.75 - - - 1488.4 0.139 21.5
04.07.2012 10.16 3.75 812.7 0.059 3 - - - 277.8 0.035 2.75
05.07.2012 8.64 15.75 1811.1 0.054 8.25 - - - 647.9 0.063 8
06.07.2012 6.86 5 258.2 0.014 2 - - - 293.3 0.053 1.75
13.07.2012 36.07 14 1078.4 0.126 4.25 - - - 333.7 0.016 13.25
15.07.2012 10.67 5.5 519.6 0.061 3.5 - - - 32.7 0.006 3
20.07.2012 7.37 12.75 99.7 0.023 11.25 4.1 0.003 2.75 34.1 0.009 1.25
28.07.2012 17.53 25.5 1196.7 0.029 7 187.8 0.026 6.75 395.6 0.046 6.5
01.08.2012 13.21 2.5 750.3 0.027 3.25 138.6 0.019 3 312.1 0.023 3
04.08.2012 32.26 23 468.2 0.022 1.5 71.5 0.017 15.25 423.5 0.049 1.25
06.08.2012 10.41 4.75 902.2 0.045 3.25 111.2 0.032 3 404.1 0.097 3.25
23.08.2012 10.41 14.5 300.9 0.018 4.25 29.7 0.014 3.75 211.3 0.015 4
25.08.2012 11.68 5.25 332.9 0.030 2 41.2 0.012 3 229.8 0.029 2
29.08.2012 19.81 34 340.3 0.033 9.75 49.9 0.016 9.5 228.2 0.044 9.25
11.09.2012 31.75 20.5 715 0.043 11.25 390.3 0.065 14.75 308.3 0.039 11
18.09.2012 14.22 16.5 272 0.039 12.75 127.2 0.052 12 132.5 0.055 6.5
22.09.2012 7.37 8.5 82 0.007 3.75 17.6 0.013 9.25 46.5 0.005 3
24.09.2012 29.97 8.75 1548.9 0.064 4.75 586.5 0.093 5.25 717.5 0.103 5.5
26.09.2012 26.42 9.5 824.7 0.038 7.75 313.8 0.058 7.75 365.6 0.044 7.5
28.09.2012 6.60 18.25 322.5 0.037 18.5 61.6 0.100 18.5 318.0 0.264 18
06.10.2012 8.38 14 187.7 0.015 5.25 77.1 0.069 5.5 111.9 0.087 5.75
08.10.2012 33.15 25.5 1492.3 0.066 17.5 508.7 0.154 16.75 514.2 0.086 17
03.07.2013 6.86 7.75 15.4 0.004 0.25 - - - - - -
08.07.2013 6.60 1 11.3 0.004 3.5 - - - - - -
16.07.2013 17.78 6 1078.9 0.041 3.75 - - - 987.7 0.127 6
17.07.2013 24.64 4.25 2485.2 0.092 2.75 - - - 3356.4 0.268 2.75
21.07.2013 11.18 3 6443.6 0.180 3.25 - - - 4368.6 0.368 2.75
29.07.2013 34.80 16.75 989.5 0.046 12.5 - - - 1499.4 0.115 13
06.08.2013 52.58 50 1056.4 0.121 21.25 - - - 1313.8 0.146 47.5
24.08.2013 19.94 14 476.3 0.031 4.75 - - - 252.5 0.036 4.25
07.09.2013 39.37 34.25 1171.9 0.076 25.25 - - - 593.6 0.116 19.25
16.09.2013 17.78 12 512.9 0.046 11 - - - 116.6 0.021 10.25
17.09.2013 37.85 38.5 1507.7 0.159 28.25 - - - 477.9 0.126 39
04.10.2013 12.07 5.75 911.7 0.049 6.25 - - - 492.0 0.095 6
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5.C Soil samples analysis

Small soil samples were collected during the summer of 2009 (stations 1033 to 1042) and

summer 2011 (stations 1232 to 1244) in the vicinity of the meteorological stations and analyzed

under controlled conditions. The results of the laboratory analysis are shown in Figure 5.21.

At each location, three samples were collected to reduce the error on the analysis so that each

value presented in Figure 5.21 is an average of three measurements. At each location, we

parametrized the SWRC with a widely used model (Van Genuchten, 1980), see Eq. 5.1, and

the results are shown in Table 5.5. For sake of clarity, the parametrization is not shown in

Figure 5.21. The dashed line in Figure 5.21 represents the lower limit that the sensors (MPS-1)

used in this Chapter can measure.
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Figure 5.21: SWRC obtained under controlled conditions in the laboratory.

Table 5.5: Parameters of the SWRC model.

α n θr θs R2

1033 0.027 1.450 19.34 32.51 0.994
1034 0.011 1.669 24.69 35.59 0.991
1035 0.038 1.559 16.19 32.33 0.993
1036 0.019 1.376 16.68 36.66 0.992
1037 0.076 1.141 11.44 35.94 0.982
1038 0.095 1.179 14.45 28.35 0.980
1041 0.053 1.113 13.58 29.47 0.989
1042 0.120 1.259 15.13 30.00 0.988
1232 0.046 1.285 4.36 30.42 0.977
1238 0.017 1.576 16.22 35.15 0.993
1240 0.019 1.619 17.13 32.74 0.995
1241 0.139 1.162 11.22 32.65 0.988
1242 0.026 1.714 16.68 35.92 0.987
1244 0.010 1.663 14.37 35.45 0.970
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6 Conclusions and Future Work

This dissertation focused on investigating streamflow generation processes in a high altitude

alpine catchment. Particular attention was paid to the influence of the basin geomorphology

on stormflow generation, recession curves and diurnal streamflow cycles. To that end, a

one meter resolution DEM was acquired and an ambitious field observation campaign was

undertaken in the upper Val Ferret area. A wireless network of automatic meteorological

stations was deployed and the streamflow was measured at three different sites during three

consecutive summers.

In Chapter 2, we showed that the channel network carefully monitored on site was spatially

very heterogeneous and that none of the classical channel network extraction methods were

able to reproduce complex features of the channel network. We analyzed in detail the travel

time distribution of water in the catchment during storm flow in the framework of the Rescaled

Width Function and showed that the drainage network had a non negligible influence on

the modeled storm hydrograph. Even though the classical methods were able to reproduce

the amplitude and timing of the streamflow peak satisfactorily, the discrepancies with the

hydrograph obtained with the monitored network were larger for the receding part of the

events.

Recession events were also analyzed in Chapter 3, we showed that recession curves bear the

signature of a basin geomorphology. Based on a recent study, we proposed a new conceptual

recession model that accounts for spatially varying drainage density. Therein, the discharge

variation is linked to the area draining directly in a time varying channel network. The

discharge and DEM of the Val Ferret and 26 other catchments were analyzed in detail with this

conceptual model. Our results show that the modifications proposed by the new model are of

utter importance for high altitude catchments where heterogeneous drainage densities are

the rule rather than the exception. Moreover, the new model is of great interest for prediction

of low flow regimes in poorly gauged mountainous basins given that it is based solely on the

analysis of the DEM.

In Chapter 4, we examined glacier-fed ice melt and evaporation-induced diurnal streamflow
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cycles observed during recession events in two monitored sub basins of the Val Ferret water-

shed. The melt and evaporation induced diurnal streamflow variations occurred at similar

times of the day, but with perturbations in opposite directions. Comparisons between the

water deficit of the diurnal cycles and evaporation measured at an eddy covariance station

revealed that the area contributing to the evaporation cycle could be attributed to the riparian

area of the perennial network. In the other sub basin where ice melt was dominant throughout

the campaign, we assessed how much ice must have melted to give the observed signal if

evaporation in the riparian area would damp the ice melt dominated streamflow cycle. Our

results suggests that damping of the ice melt cycle by the evaporation cycle is not negligible

and that the perennial part of the network plays a significant role in daily fluctuations of the

streamflow during recession events.

Finally, in Chapter 5, we studied the influence of antecedent soil moisture and soil water

potential on streamflow generation by analyzing the data from the wireless sensor network.

We observed a clear threshold behavior between antecedent soil water potential and runoff

coefficients for 83% of all the monitored sites. The stations were deployed at representative

sites of the catchment in terms of elevation, slope and aspect, such that confident speculations

can be made that the observed threshold behavior can be attributed to the entire watershed.

However, the observed threshold values varied both in space and depth. Above this threshold,

the runoff coefficients were larger and the response time of the watershed shorter. Unlike many

recent studies, we did not observe a threshold behavior between antecedent soil moisture

and runoff coefficients. However, our results are hampered 1) by the measurable range of

the sensor used to measure soil water potential, which does not operate close to saturation

and 2) by some very small year to year variability of the soil sensors deployment locations

in the vicinity of each meteorological stations. The soil moisture measurements were more

sensitive to these small deployment inconsistencies. Nonetheless, our results tend to show that

hysteresis effects in the soil water retention curve might play a dominant role in the subsurface

streamflow generation mechanisms, which is a debated and intensively investigated topic in

the hydrological community.

The results from Chapters 2-4 underline the importance of accurately representing the chan-

nel network of the watershed. In particular, the differentiation between the perennial and

intermittent parts of the network was instrumental to the conclusions drawn from the analysis

of the evaporation-induced diurnal streamflow cycle. However, the extraction of the drainage

network is often overlooked by hydrologists in their journey of modeling a catchment with

spatially distributed models. This step is usually performed once, but the sensitivity and

uncertainty of the model to the stream network is seldom studied.

Many questions and new research opportunities have arisen from this dissertation. We have

shown that the soil water potential was a key descriptor in the processes happening at both

the hillslope and catchment scale. However, we did not fully conclude what physical processes

lead to such threshold behavior. Unfortunately, due to the lack of information concerning the

soil thickness and topography of the soil-bedrock interface, we could not complete forensic in-
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vestigations on subsurface streamflow generation processes. Possible links between proposed

mechanisms (i.e., fill spill hypothesis or connectivity of lateral preferential flowpaths) need to

be explored in future studies. However, we strongly suggest future deployments in hillslope or

catchment hydrology to deploy tensiometers more systematically, given that our results point

out some strong hysteresis behavior at the hillslope scale.

In the quest of upscaling observed threshold behaviors at the hillslope scale to the catchment

scale, hydrological connectivity will be or is already a major source of research in catchment

hydrology. The model proposed in Chapter 3 needs to be investigated and tested in more

detail as it has large potential for studying hydrological connectivity at the catchment scale.

Further research will be needed to study the spatio-temporal dynamics of the channel network.

A suggested strategy is to relax certain assumptions made in the geomorphological recession

model, especially the hypothesis concerning the spatially uniform recession speed of the

channel network. The increasing use of drones, possibly equipped with Infra-red cameras for

riparian zone monitoring, or the deployment of optical fibers to measure the temperature

as a proxy of the stream state (i.e. wet or dry) could open new possibilities in catchment

hydrology. This is in line with important ongoing efforts toward mapping and understanding

the dynamics of the perennial part of the stream network. This could, for instance, give us

more insights into the spatial patterns of storage at the catchment scale.
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A Other Author’s Contribution

Electrical conductivity in rating curves of alpine streams

This study is based on streamflow measurements undertaken in the Val Ferret watershed and

aims at establishing rating curves based on water level and/or water electrical conductivity.

The results have been published with the following citation:

Weijs S.V, Mutzner R. and Parlange M.B, 2013: Could electrical conductivity replace water level

in rating curves for alpine streams? Water Resources Research, 49, 1-9. doi: 10.1029/2012WR012181
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[1] Streamflow time series are important for inference and understanding of the
hydrological processes in alpine watersheds. Because streamflow is expensive to
continuously measure directly, it is usually derived from measured water levels, using a
rating curve modeling the stage-discharge relationship. In alpine streams, this practice is
complicated by the fact that the streambed constantly changes due to erosion and
sedimentation by the turbulent mountain streams. This makes the stage-discharge
relationship dynamic, requiring frequent discharge gaugings to have reliable streamflow
estimates. During an ongoing field study in the Val Ferret watershed in the Swiss Alps, 93
streamflow values were measured in the period 2009–2011 using salt dilution gauging with
the gulp injection method. The natural background electrical conductivity in the stream,
which was measured as by-product of these gaugings, was shown to be a strong predictor
for the streamflow, even marginally outperforming water level. Analysis of the residuals of
both predictive relations revealed errors in the gauged streamflows. These could be
corrected by filtering disinformation from erroneous calibration coefficients. In total,
extracting information from the auxiliary data enabled to reduce the uncertainty in the
rating curve, as measured by the root-mean-square error in log-transformed streamflow
relative to that of the original stage-discharge relationship, by 43.7%.

Citation: Weijs, S. V., R. Mutzner, and M. B. Parlange (2013), Could electrical conductivity replace water level in rating curves for
alpine streams?, Water Resour. Res., 49, doi:10.1029/2012WR012181.

1. Introduction

[2] Streamflow, as a spatially integrated watershed
response, is one of the most important inputs for hydrological
modeling [Brutsaert and Nieber, 1977; Szilagyi et al., 1998].
Because of the difficulties of continuously measuring stream-
flow (Q) directly in an inexpensive and simple way, stream-
flow records are often based on permanent measurements of
water levels (h), sometimes even obtained remotely [Liebe
et al., 2009], in combination with a stage-discharge relation,
Q(h). The stage-discharge relation is based on regular gaug-
ings in different conditions. In the case of fixed structures,
like flumes, Q(h) is well defined and can also be derived the-
oretically, while in more natural situations, the relationship
needs to be calibrated and can be influenced by, for example,
vegetation or sediment dynamics.

[3] The role of dynamic morphology is especially impor-
tant in alpine watersheds, where the streams are never lying
quietly in their beds, but constantly changing them under
the influence of the steep gradients and turbulent erosion of

the sediments. Together with the often hard to reach loca-
tions and challenging conditions, this makes it difficult to
monitor streamflow in alpine watersheds. The resulting
uncertainty in streamflow records has a negative impact on
hydrological modeling, especially because it is often not
explicitly accounted for.

[4] One remedy to reduce the impact of uncertainties on
hydrological modeling is to quantify the uncertainties in
the discharge signal, so that the model knows what it can
learn from the data and what it cannot learn. Over the last
decade, significant progress has been made to address
uncertainties in the data (both input and output) and models
[Ciach and Krajewski, 1999; Anagnostou et al., 1999;
Szilagyi and Parlange, 1999; Vrugt et al., 2005; Kavetski
et al., 2006; Thyer et al., 2009; Di Baldassarre and
Montanari, 2009; Schoups and Vrugt, 2010; Kuczera
et al., 2010; Kampf and Burges, 2010; Westerberg et al.,
2011]. Other approaches focused on including observatio-
nal uncertainties in information theoretical evaluation crite-
ria for probabilistic forecasts [Weijs and Van de Giesen,
2011] and provided arguments why explicitly representing
uncertainties in the model and data formulation and cali-
brating with information-theoretical measures has advan-
tages from a philosophy of science viewpoint [Weijs et al.,
2010]. Because using the same information twice can be
logically inconsistent, it might be important to formulate
models for the data uncertainty independently of the formu-
lation of hydrological models. In the case of discharge
measurements, this means replacing a simple curve repre-
senting the stage discharge relationship by a probabilistic
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model that may employ several sources of information for
estimating streamflow and its uncertainty.

[5] In this paper, we investigate the potential for stream
water natural electrical conductivity (EC), measured before
each of the 93 discharge gaugings, as an auxiliary informa-
tion source for improving streamflow estimates in morpho-
logically dynamic alpine streams. For our study area, we
found the natural EC to have a predictive power for the
measured streamflow comparable to that of water level.
When a single relation was sought for the entire 3 year mea-
surement period, the stage-discharge relationship was even
slightly outperformed by the EC-streamflow relationship.

[6] Although strong relations between EC and stream-
flow have been observed before [Collins, 1979; Collins
and Young, 1981; Gurnell and Fenn, 1985; Evans and
Davies, 1998; Duffy and Cusumano, 1998; Dzikowski
and Jobard, 2011], its potential for improving stream-
flow records has, to our knowledge, not been discussed.
Although these relations are often complex, with lags
and hysteresis, we focus on simple models that can be
derived without continuous data. An extensive review of
possible mechanisms at work behind the relations is
therefore outside the scope of this paper but can be found
in the aforementioned references. Since methods for ex-
plicitly incorporating output (streamflow) uncertainty in
hydrological models are advancing and probabilistic
treatment of uncertainties in a Bayesian framework has
the potential of optimally combining various sources of
information, we believe that future more extensive con-
tinuous measurements of EC have the potential to
improve streamflow records and advance understanding
of alpine hydrology.

2. Site, Data, and Methods

2.1. Val Ferret Watershed

[7] Val Ferret, situated in the Swiss canton of Valais, is
an alpine valley draining into the Dranse de Ferret, the
Dranse, and eventually the Rhone. The area of study meas-
ures around 20 km2 and ranges in elevation between
1775 m above sea level (asl) to 3206 m asl, with a mean of
2423 m asl. The slopes are moderate to steep (mean 31.6�,
maximum 88.9�) and partly soil mantled. Vegetation is
mainly grasses while some patches of firs are found at
lower elevations. The river is partly fed by the melt of the
small glacier des Angroniettes in the upper part of the
catchment. See Simoni et al. [2011] for a more detailed
description of the study site. The streamflow shows a regu-
lar diurnal signal, which gradually decreases in amplitude
going from spring to autumn. Also, the average flow itself
shows this decreasing trend over the season, suggesting a
snow melt-dominated flow regime in spring, gradually chang-
ing to a signal of groundwater outflow recession curves, a
small diurnal signal from glacier melt, and response to rain-
fall events. The main stream has a bankfull width of around
4 m and an average bed slope of 5% around the measurement
location. The bed material consists mostly of rocks and
pebbles of 5–30 cm, with some finer sediments deposited in
the stiller pools, especially after flood events. The morphol-
ogy around the measurement point is braided, while more
upstream, the stream is confined to a narrow gorge, with
some small waterfalls occurring.

2.2. Water Level Measurements

[8] Water levels of the stream were monitored at the out-
let of the studied catchment, at the bridge at l’Ars Dessus.
They were recorded using a pressure sensor with logger,
placed close to the bank, 1 m upstream from the bridge,
where the water is fairly stagnant. During winter, reliable
measurements are unavailable due to snow and ice blockage.
The embankments under the bridge are stabilized, constrain-
ing the stream width, while the river bed consists of rocks
and finer sediments that can be moved by the water. The
time series have a temporal resolution of one sample per mi-
nute. For use in the rating curve, averages over a window of
60 min, centered around the salt peak, are used. The standard
deviations within these windows are shown in Figure 1.

2.3. Streamflow Measurements Using Salt
Dilution Gauging

[9] To measure streamflow, salt dilution gaugings, using
the slug injection method [Day, 1976; Kite, 1993; Moore,
2005], are taken regularly under different flow conditions.
In total, we took into account 93 gaugings from the year
2009 to 2011. By injecting a known mass of salt M, usually
5 or 10 kg, and measuring the concentration of injected salt
210 m downstream as a function of time, c(t), we obtained
the streamflow, Q, using

Q ¼ MR1
0

c tð Þdt
: (1)

The measurement is cut off by the time the injected salt
concentration is within the measurement accuracy, i.e.,
when the total ionic concentration is indistinguishable from
the natural ionic concentration. Because this is relatively
short (in our case, usually around 15 min) compared to the
timescale of variation in the natural background concentra-
tion, we can assume the latter to be constant during the
measurement. Another assumption behind the method is
that, the concentration we measure downstream at time t is
representative for the ratio between the mass of salt that
passes the cross section and the volume of water passing
the cross section. In other words, the salt should be well
mixed within the cross section or the places in the cross-
section with different concentration do not contribute to the
flow significantly.
2.3.1. Calibration Procedure

[10] The time-varying signal of the injected salt concen-
tration, c(t), cannot be measured directly. Instead, the EC
�(t) of the water is measured by means of an alternating
current. In the range of measurement, the (temperature
compensated) EC has a linear relation with the salt concen-
tration, which is calibrated on site before the gauging by
repeatedly pipetting 1 ml of calibration solution (10 g/L)
into 500 mL of water from the stream. This results in linear
relations of the form:

c tð Þ ¼ � � tð Þ � �b tð Þ½ �; (2)

where �b(t) is the natural conductivity or base conductivity
of the stream, which depends on the natural ionic concen-
trations in the stream water, and � is the linear calibration
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coefficient with unit mg=Lð Þ= lS=cmð Þ. The calibrations
have coefficients of determination R2 close to one, with a
minimum of 0.98 over all calibrations.

[11] For the salt dilution gaugings, we used the MRS-4,
by Sommer mess–systemtechnik, a device with a built-in
capability of integrating the signal and calculating the
streamflow. The device has two EC probes, which were
placed at different points in one cross-section to check the
cross-sectional mixing. For each probe, the calibration and
streamflow calculation is done independently, resulting in
two streamflow values. The device stores the raw EC data
at a 1 s sampling rate and some auxiliary data, including
the individual calibration points, probe temperatures, and
the natural EC of the stream �b at the time before the gaug-
ing. These data are used for the analysis in this paper.

2.4. Stage-Discharge Model

[12] Traditionally, the Q(h) relation is modeled as a
power function, which is often fitted with least squares
[Singh, 2010]:

Q hð Þ ¼ � h� h0ð Þ�; (3)

�; �; h0 ¼ arg min
�;�;h0

Xn

i¼1

Q hobs tið Þ; �; �; h0ð Þ � Qobs tið Þð Þ2
" #

; (4)

where �, �, and h0 are the parameters of the Q(h)-relation,
hobs tið Þ and Qobs tið Þ are the observed water level and calcu-
lated discharge during the gauging number i at time ti. This
assumption of least squares is equivalent to assuming inde-
pendent and identically distributed (iid) Gaussian errors. In
the case of streamflow measurements, heteroscedastic
errors are usually a better description, as uncertainties in
the gaugings tend to grow with discharge [Sorooshian and
Dracup, 1980]. A heteroscedastic error model was achieved
by finding a least-squared fit on the log-transformed dis-
charge, implicitly assuming a Gaussian uncertainty in the

log-transformed discharge, i.e., a lognormal error in dis-
charge. Furthermore, this serves to avoid assigning proba-
bility to negative streamflow values, as is the case with
the Gaussian error assumption underlying equation (4).
Figure 1 shows the rating curves for fitting Q (lin) and
log Q (log) with least squares, with the corresponding equa-
tions and R2 values listed in Table 1. The residuals of both
lin and log fits were checked for normality using QQ-plots
(not shown) and the Shapiro-Wilk test. The p value for that
test gives the maximum confidence level (accepted proba-
bility of falsely rejecting) at which one would not reject the
null hypothesis that the residuals are normally distributed
with unknown mean and variance. This indicated that the
log-transformed Gaussian error model is satisfactory
(p ¼ 0.08), while the linear is less so (p < 0.001).

2.5. EC Measurements and Model

[13] The measurements of EC in the stream were
obtained as a by-product of the salt dilution gaugings used
to determine discharge. The EC measured in the stream
before injecting the salt varied from gauging to gauging
and reflects changes in the natural ionic composition in the
stream. This resulted in 93 measured EC values at the out-
let of the study catchment, spread over the years 2009–
2011.

[14] To use EC as predictor, its relation to streamflow
must be modeled. The behavior of EC as function of

Figure 1. Stage-discharge rating curves for the different years and for all years combined (black). The
dotted lines indicate those fitted with a homoscedastic Gaussian error model (least squares in linear
space), while the solid lines are fitted to logQ, which is consistent with a more realistic heteroscedastic
lognormal error model. The horizontal error bars give the 6 one standard deviation of the water level in
a 60 min window centered around the time of the Q-gauging, while the vertical error bars give the Q
values determined from the two independent probes.

Table 1. Parameters and Coefficients of Determination for Q(h)a

Lin Log

2009 2010 2011 All 2009 2010 2011 All

� 227.4 386.4 9.75 25.28 9.79 102.6 7.93 0.14
� 0.71 0.80 1.56 1.47 1.56 1.16 1.61 2.69
h0 1.08 �8.19 5.50 1.00 9.62 �3.85 5.77 15.38
R2 0.77 0.90 0.87 0.80 0.90 0.92 0.91 0.87

aCurves of the form Q ¼ � h� h0ð Þ� as depicted in Figure 1.
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streamflow has been investigated previously, mainly in the
field of glaciology, where EC measurements have been used
to distinguish between subglacial and englacial contributions
to flow at proglacial streams. Gurnell and Fenn [1985] stud-
ied the relation between EC and streamflow in a Swiss alpine
valley relatively close to our field site and considered differ-
ent spatial and temporal sampling strategies, focusing mostly
on a location relatively closer to the glacier snout. They
reported an R2 value of 0.91 for a linear relation predicting
EC from the logarithm of the streamflow for hourly values
measured in June and July 1978. Collins [1979] noted a sim-
ilar inverse relation between the diurnal cycles of streamflow
and those of EC for two alpine proglacial streams and tried
to separate different flow components based on a mixing
model. Recently, such mixing models were further investi-
gated in relation to measurements taken in a French high-al-
pine valley [Dzikowski and Jobard, 2011].

[15] Since our interest is primarily in obtaining estimates
of streamflow and not enough data are available to formu-
late mechanistic models, we focused on simple empirical
relationships. For comparison, we also considered a simple
conceptual two member mixing model and fitted the pa-
rameters empirically. The limited temporal resolution and
spatial extent of the EC data precluded more detailed anal-
ysis of the true mixing processes, full ionic composition, or
sources of solutes, which could possibly lead to more

accurate models [see, e.g., Walter et al., 2007; Salmon
et al., 2001; Botter et al., 2008, 2009; Duffy, 2010].

3. Results

[16] For the fit on the entire data set, Figure 2 shows dif-
ferent alternative functional relations. The mixing law rela-
tion is a conceptual model in which a constant, high EC
groundwater outflow is mixed with a varying flow of low
EC water from, e.g., snow melt or rainfall fast runoff. The
empirical logarithmic relationship and the power law have
a significantly better fit than the two-reservoir mixing
model. As more distributed measurements of streamflow
and EC of the different contributing water sources will
become available after continued field campaigns, it will be
interesting to find a better conceptual model capturing the
(dynamic) relationship, possibly enhancing generalization.

[17] The quantile-quantile plots in Figure 3, which com-
pare the distribution of errors around the curve to a normal
distribution, show that the heteroscedastic error model for
Q, which assumes Gaussian errors in log Q, is more realis-
tic than least squares on Q when checked a posteriori. This
indicates that a least squares fit on log-transformed stream-
flow is the preferred method of inference on a relationship
and that a heteroscedastic error model of this type can be
used to describe the ‘‘measurement’’ uncertainty in a

Figure 2. Three different relationships fitted to describe the EC-streamflow relationship. The mixing
law employs a two reservoir mixing model, the ‘‘linlog’’ fit is a linear regression model between � and
logQ (see Figure 6). The ‘‘loglog’’ fit is a linear regression model between log� and logQ.

Figure 3. The quantile plots for the relations shown in Figure 2. The fit on (b) logQ matches better
with the Gaussian error assumption than the fit on (a) Q directly, as can be seen by the p values of the
Shapiro-Wilk normality test shown in the legend.
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streamflow time series derived from continuous EC meas-
urements. It also confirms that the R2 values calculated on
the log-transformed streamflow are adequate measures of
predictive power or mutual information.

[18] Figure 4 shows that the slow fluctuations and the
higher frequency fluctuations between streamflow and EC
follow each other (note that the negative log of streamflow
is plotted to obtain equal signs). Figure 4b shows the resid-
uals of the logarithmic Q(�) relation next to the measured
water level and is intended to reveal whether residuals are
associated with certain hydrological events. Apart from the
consistent underprediction during 2010, there is no obvious
pattern in the data, although future analysis in conjunction
with meteorological data might reveal further relationships.
The residuals were also plotted against time of year, time
of day, and water temperature (not shown), but this did not
reveal any patterns or correlations to explain them.

[19] When looking at the residuals of the linear relation
between log Q and � on the one hand and of the relation
between log Q and log h on the other, it appears that both
series of residuals are correlated. Furthermore, a clustering
is visible of the results of different years; see Figures 4
and 5. This is particularly interesting, since the information
provided by water level and EC would be expected to be
more or less independent. Possible explanations are dis-
cussed in the next section, which also proposes a correction
to the measurements of Q that partly solves the problem
of correlated residuals (right-hand side of Figure 5). An

overview of the coefficients of determination for the rela-
tions is given in Table 2. Note that the Q(�) relation outper-
forms Q(h) for the complete dataset, probably indicating
that performance of Q(h) is affected by interannual mor-
phological shifts in the river bed.

4. Discussion

[20] The general inverse relationship between Q and �
seems consistent with the conceptual idea of the function-
ing of the catchment, where a relatively constant, solute-
enriched base flow is mixed with a fluctuating low ion
content flow from snow melt or rainfall response. From
Figure 4, it can be seen that the EC follows the seasonal
pattern of streamflow, which is mainly caused by snow
melt. While a hyperbolic relationship may be physically
more plausible, we found the logarithmic Q(�) relationship
to have the most predictive power. This result is in accord-
ance with a relation found by Gurnell and Fenn [1985] in a
similar watershed. To obtain more insight into the dynam-
ics and finding possible explanations for the logarithmic
relationship in Val Ferret, continuous EC measurements
are currently ongoing.

4.1. Analysis of Residuals

[21] The relatively high correlation between the resid-
uals, depicted in Figure 5 on the left, is quite surprising and
somewhat suspicious. Since relations between deviations in

Figure 4. (a) Streamflow and EC over 3 years, with y axes matched according to the linear regression.
(b) Residuals of regression for Q(�), alongside water level.

Figure 5. (a) Relation between the residuals in predicting logQ from logh on the one hand and logQ
from � on the other, the gray area indicates � performs best. (b) Same, after the correction of Q to Q?, as
proposed in section 4.
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h and � from their respective estimates based on Q are a
priori not very likely, the correlation may be the result of
errors in the measurements of Q obtained from the salt dilu-
tion gaugings. This suspicion is supported by the fact that
the R2 of a direct relation between log h and � is sometimes
stronger than that of both variables’ relation to Q (Table 2),
while, logically, the causality in the relation would indicate
Q as a cause and � and h as effects.

[22] Because the calibration data from the gaugings were
available, we were able to further investigate possible sour-
ces of errors in the gaugings of Q. One of the stored varia-
bles was the set of calibration coefficients � mg=Lð Þ=½
lS=cmð Þ� describing the slopes of the linear relations

between � and the concentration of the added NaCl salt in
the water for each calibration preceding a gauging. Each
calculation of Qi from the salt wave (equation (1)) uses the
values of �i from the calibration preceding gauging i. The
EC measurement is temperature compensated, and therefore
the calibration coefficient would be expected to be constant.
Differences in the coefficient could occur either (1) as a
result of probe fouling, poor connections, or other electroni-
cal causes or (2) as a result of differences (errors) in the
calibration procedure, such as incorrect concentration in the
calibration fluid, volume in the pipette, or initial water vol-
ume in the calibration reservoir.

[23] The first type of errors would not influence the gaug-
ings of Q, since they are present in both the calibration and
the actual gauging conductivities, but they would influence
the measurements of base conductivity. This would, how-
ever, not explain the correlation between the residuals
depicted in Figure 5. The second type of errors, those in the
calibration procedure, would influence the measurements of
Q, through errors in calibration coefficient � and therefore
explain the correlated residuals. In that case, one would also
expect the calibration coefficients to be correlated to the
residuals of both the Q(h) and the Q(�) relationship.

4.2. Correction for Discharge Measurements

[24] The results summarized in Table 3 confirm the sec-
ond hypothesis and indicate that errors in the calibration
procedure (whose exact sources are for the moment
unknown) are a likely cause of errors in Q. Gauged values
for Q are inversely proportional to the coefficients � used
in their calculation, which mostly varied in the range 0.37–
0.55, with five outliers around 0.87. When we assume all
variation in � to be the result of calibration errors, the
gauged values of Q can be corrected by undoing the
calibration:

Q?
i ¼

�i

�
Qi; (5)

where Q?
i is the corrected value for Qi at gauging i and � is

the mean over all calibration coefficients. When Q? is used
as a variable in the rating curves, the strength of both the
Q?(h) and Q?(�) relationships improve those of Q(h) and
Q(�), see Figures 6 and 7 and Table 4. The uncertainty as
measured by the standard deviation of the residuals in
log Q was reduced by 28.6% for Q(�). The R2 for all rela-
tions using Q? are shown in the last column of Table 2.

[25] It must be noted that we are dealing with reducing
and quantifying observational uncertainty, without access
to golden standard observations. This precludes objective,
assumption-free evaluation of the predictions (in fact, this
is true for all science but is generally less evident). The bet-
ter fits on the relationships can therefore only be interpreted
as improvements when the interpretations and assumptions
on causes of the scatter (Table 3) hold. In absence of more
likely explanations for the improvements in the predictions,
we believe they are probably closer to the truth; see also
the discussion in Weijs and Van de Giesen [2011].

[26] Under these assumptions, the total reduction in
uncertainty due to the use of auxiliary information on the

Table 2. R2 Coefficients of Determination of Several Linear Relationshipsa

Linear Relation (Response; Predictors) 2009 2010 2011 All All, Q? Q?, val

log(Q); h,C 0.7684 0.8597 0.8676 0.8411 0.9093 0.9048
log(Q); log h� h0ð Þ,C 0.8947 0.9173 0.9074 0.8665 0.9251 0.9215
log(Q); �,C 0.9261 0.9101 0.8054 0.8735 0.9320 0.9291
h ; �,C 0.8142 0.9210 0.8578 0.8751 0.8751 0.8690
log(h) ; �,C 0.9306 0.9474 0.8713 0.8942 0.8942 0.8895
log(Q); �,log h� h0ð Þ,C 0.9305 0.9263 0.908 0.8945 0.9546 0.9517
log(Q); �,log h� h0ð Þ,thourofday,Tw,C 0.9381 0.9326 0.9283 0.8974 0.9590 0.9538

aR2 calculated on the log-transformed streamflow values. Predictor C stands for a constant, i.e., a linear relation with intercept. Parameter h0 is esti-
mated for each column separately. Q? are the corrected streamflow measurements, which are introduced in section 4. The last column shows the resulting
R2 values for leave-one-out cross validation. This allows a fairer comparison between models of different complexity.

Table 3. Coefficients of Determination for Identification of Measurement Error Causes

Variables R2 Interpretation

res Q(h), res Q(�)a 0.404 Measurement errors in Q or common cause for deviations in � and h
�, res Q(h) 0.476 Scatter in Q(h) relationship partly explained by errors in Q induced by �
�, res Q(�) 0.468 Scatter in Q(�) relationship partly explained by errors in Q induced by �
�, � 0.001 Variations in measured EC not explained by instrumentation errors
res Q?(h), res Q?(�) 0.086 Correction of Q for variations in �, reduces correlation between residuals
Q?(h) 0.925 Much sharper relation in the rating curve for h when Q is corrected
Q?(�) 0.932 Much sharper relation in the rating curve for � when Q is corrected
Q?(h,�) 0.955 Combining h and � further improves, adjusted R2 ¼ 0.954

a‘‘res’’ indicates residuals in log Q from the given relationship All are calculated on the entire data set.
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calibration coefficients � and base-conductivities �b can be
calculated. This is done by comparing the initial scatter
around the Q(h) relation to the scatter around the rating
curve Q?(h, �). The latter curve uses both water level and
EC and corrects the streamflow gaugings by undoing the
calibration procedure, using information from the previously
applied calibration coefficients �. Since the uncertainty is
still best described by a lognormal heteroscedastic model, the
relative errors are more of interest than the absolute, in terms
of information gain. We, therefore, characterize the uncer-
tainty by the root-mean-squared error in the log-transformed
streamflows computed from the relations; see the scatter
plots in Figure 8 and interpretation in Figure 9. The total per-
centual reduction in streamflow uncertainty around the rating
curve can thus be characterized by

1� RMSE log Q? h; �ð Þ
RMSE log Q hð Þ � 100% ¼ 43:7%:

In terms of the untransformed Q, this means the RMS
multiplicative error went down from a factor 1.36 to a
factor 1.19.

5. Summary and Further Work

[27] The main finding of this work is that EC presents a
major opportunity to improve continuous streamflow series

for alpine streams. For the stream considered in this paper,
the EC has a predictive power apparently comparable to
that of water level. Detailed analysis of the residuals of
both relations in conjunction with the calibration data
revealed the calibration coefficients as a likely correctable
source of error in the gaugings. Assuming it is correct, this
correction, combined with both water level and EC as
streamflow predictors, leads to an additional reduction of
uncertainty in the stage-discharge relationship, bringing the
total reduction in uncertainty to 43.7%.

[28] The results presented here can have significant prac-
tical value, since salt dilution gauging is a common method
for determining discharge in alpine streams. The predictive
power of natural EC can be readily checked for other
streams where data from salt dilution gaugings is available.
Whether this power is present depends on the dynamics of
the catchment. If a strong relation is found, it is advisable
to monitor EC continuously and try to use it in a predictive
model for streamflow. It should be noted, however, that
time lags and hysteresis in the EC signal can cause artifacts
in the discharge series. It is probably best to use EC along-
side water level as a predictor, rather than replacing it. Fur-
thermore, using a more physically based dynamic and
mechanistic model is preferred over simple regression to
optimally combine information from both sources to track
variations in streamflow on all timescales. Such models
could make predictions that are more transferable to other
catchments and perform better under changing conditions
such as land use.

[29] When predictive power is found in the EC snapshots
from the Q gaugings, various analyses of the residuals, like
the ones presented here, may further help to identify errors
and point to their sources, in our case, the calibration coef-
ficients as a source of error for measured Q. This is of
course equipment and procedure specific rather than catch-
ment specific. Especially, in morphologically dynamic
streams, EC might be useful as an independent input to
supplement standardized error checking procedures already
in place at the agencies responsible for streamflow mea-
surement [see, e.g., Kennedy, 1984; Sauer, 2002; World
Meteorological Organization (WMO), 2010]. Although
results may vary from case to case, we hope that this paper
inspires ideas to take a closer look at the data underlying
rating curves and discharge data, as this might significantly
reduce uncertainties in the final streamflow series. This
extraction of information from various data fits well into a
more probabilistic view on streamflow measurements as

Figure 6. Relation between EC and the natural logarithm
of the corrected streamflow.

Figure 7. Updated version of Figure 4, now based on the corrected streamflow values Q?.
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being model forecasts with predictive uncertainties, which
should not be hidden but rather explicitly presented to aid
hydrological modeling.

[30] While for the current analysis, only sparse EC meas-
urements were available that were collected during the
streamflow gaugings, continuous EC measurements at
higher temporal resolution have now been deployed. This
will give insight in the daily patterns. Since previous
research has shown that EC signals can lag behind the
streamflow signals by a few hours [Gurnell and Fenn,
1985], a model taking this into account may further
improve the streamflow estimation and will possibly give
more insight in hyporheic exchanges caused by diurnal
cycles [Loheide and Lundquist, 2009]. This also allows
more detailed analysis of temporal patterns of rainfall
response or snow melt events, especially when tributaries
are monitored for both EC and stage [Lundquist et al.,
2009]. Monitoring EC in different water sources, such as
tributaries, groundwater wells, and glacier melt, may
improve estimates and give more insight in the hydrologi-
cal processes. In future research, we plan to advance this
insight by using EC measurements in combination with
analysis of isotopes, chemical analysis, and distributed
modeling based, for instance, on travel time distributions
[see e.g. Szilagyi and Parlange, 1999; Rinaldo et al.,
2006; Kampf and Burges, 2007; Nic�otina et al., 2008; Bot-
ter et al., 2008].

[31] Ongoing research focuses on how to incorporate
various sources of information in a dynamic model of

streamflow uncertainty. Once a continuous EC signal is
available, this enables the use of the long-term stable Q(�)
relationship, while h can be used to track fast variations.
The dynamic model can then combine both information
sources to provide a probabilistic streamflow time series.
These can subsequently be used to aid model inference
while balancing maximum extraction of information and
minimum extraction of misinformation. This is achieved by
having sharp and reliable uncertainty estimates based on all
available relevant information.
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Extreme rainfall modeling in the Val Ferret watershed

The precipitation dataset collected in the Val Ferret watershed with the wireless network of

meteorological station has been used to spatially model extreme rainfalls. The results of the

study have been published with the following citation:

Thibaud E., Mutzner R. and Davison A.C., 2013: Threshold modeling of extreme spatial

rainfall, Water Resources Research, 49, 4633-4644. doi: 10.1002/wrcr.20329.

The map of the Val Ferret catchment has been selected by the editor in chief to appear on the

front of the August 2013 issue of Water Resources Research.
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