
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Odersky, président du jury
Prof. A. Wegmann, directeur de thèse

Prof. V. Kuncak, rapporteur
Prof. Y. Pigneur, rapporteur

Prof. I. Rychkova, rapporteuse

Animation-Based Service Specification, Verification and
Validation

THÈSE NO 6551 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 6 MARS 2015

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE MODÉLISATION SYSTÉMIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Biljana BAJIĆ-BIZUMIĆ

2

3

Thesis Statement

Service specifications are used to represent the service systems on different levels of
abstraction: from business down to IT. High-level service specifications are mostly used for
communication among different participants, to catalyze the discussions between them; but
only service specifications modeling IT systems have enough details to be simulated and
executed. As a consequence, it becomes difficult to create precise specifications at high-levels
of abstraction, potentially leading to severe project problems. This can be compensated with
the use of formal methods and code generation techniques to obtain abstract, yet precise
specifications with services that can be simulated and prototyped. By capturing design
decisions, the high-level service specifications can be refined into more detailed ones, with
the possibility to validate the specification at any level of abstraction.

Abstract
[Context] With the expansion of services and service science, service systems have

become an important abstraction for the service revolution. Service is defined as the
application of resources (including competences, skills, and knowledge) to make changes that
have value for another (system). The service system is a configuration of people,
technologies, and other resources that interact with other service systems to create mutual
value. Many systems can be viewed as service systems, including families, cities, and
companies, among many others. Therefore, services became very important for unifying
concepts from various disciplines. Service specifications are used to represent service
systems on different levels of abstraction: from business down to IT.

[Motivation and Problem] Traditionally, high-level service specifications are used
only for communication among different participants, to catalyze the discussions between
them; but only the specifications modeling IT systems have enough details to be simulated
and executed. As a consequence, it becomes difficult to create precise high-level
specifications and make sure that the implemented services are those that correspond to the
business needs, potentially leading to severe project problems. Therefore, the challenge is to
create abstract, yet precise service specifications, while keeping the relation between
specifications at different levels of abstraction.

[Idea and Results] In this work, we use formal methods and code generation
techniques to create service-prototypes from service specifications at any level of abstraction,
keeping the relations between different specifications. Stakeholders can try out the prototypes
and give feedback regarding services that are being provided. This way, prototypes are used
to validate the specifications and detect inconsistencies and unexpected behavior.

[Contribution] The contributions of our work are threefold. First, we provide the
visual formalism for service specification and simulation, by adding the necessary concepts
to the existing method SEAM. Second, we define two design spirals: for service specification
and for service validation and verification. The service specification spiral enables us to keep
the relation between several service specifications. It includes steps with explicit design
decisions on how to refine high-level specifications in order to include all the details
necessary for providing the identified services. The validation and verification spiral is used
to validate and verify specifications at any level of abstraction. Finally, it provides an

4

environment that enables the simulation and prototyping of service specifications that are
then used for their validation and verification.

[Relevance] In addition to the theoretical contribution to the knowledge base of
service design, we also provide the tools and guidelines that help business and IT analysts
create and validate the service model, as confirmed by a survey conducted with practitioners.
We illustrate the application of this work with a case study based on a consulting project we
conducted at EPFL.

Keywords: Service Design, Service Refinement, Service Validation, Service

Verification, Model Prototyping, Model Simulation

5

Stellungsnahme

Service-Spezifikationen werden verwendet, um Service-Systeme auf unterschiedlichen
Abstraktionsebenen zu definieren: vom Business-Level bis zur IT. High-Level-Service-
Spezifikationen für Geschäftsmodelle dienen vor allem der Kommunikation zwischen den
verschiedenen Parteien als Diskussionsbasis, wobei nur IT-Spezifikationen genügend Details
für Simulationen bieten. Entsprechend schwierig ist es, präzise Geschäftsmodelle zu
formulieren, was Tür und Tor für schwerwiegende Probleme im Projekt öffnet. Dies kann
durch den Einsatz von formalen Methoden und Codegenerierungs-Techniken kompensiert
werden. Dies resultiert in abstrakten und dennoch präzisen Spezifikationen und kann
simuliert und in einem Prototypen implementiert werden. Durch die detaillierte Erfassung
von Design-Entscheidungen können die High-Level-Service-Spezifikationen verfeinert
werden, was erlaubt, die Spezifikation jeder Abstraktionsebene zu überprüfen.

Zusammenfassung

[Kontext] Im Laufe des Ausbaus der Dienstleistungen und dessen Wissenschaft
wurden Service-Systeme zu einer wichtigen Abstraktion in der Dienstleistungsrevolution.
Service wird definiert als die Anwendung von Ressourcen (einschliesslich Kompetenzen,
Fertigkeiten und Wissen), um Wertsteigerungen in für einen anderen (oder ein anderes
System) herbeizuführen. Das Service-System ist eine Anordnung von Menschen,
Technologien und anderen Ressourcen, die mit anderen Dienstleistungssystemen
interagieren, um gegenseitigen Nutzen zu schaffen. Viele Systeme können als Service-
Systeme verstanden werden, wie z.B. Familien, Städte und Unternehmen. Entsprechend
wurden Dienstleistungen für vereinheitlichende Konzepte aus verschiedenen Disziplinen sehr
wichtig. Service-Spezifikationen werden verwendet, um unterschiedliche Service-Systeme
auf unterschiedlichen Abstraktionsebenen zu repräsentieren: von Business bis zur IT.

[Motivation und Problem] Traditionell dienen High-Level-Service-Spezifikationen
für Geschäftsmodelle vor allem der Kommunikation zwischen den verschiedenen Parteien als
Diskussionsbasis, wobei nur IT-Spezifikationen genügend Details für Simulationen bieten.
Entsprechend schwierig ist es, präzise Geschäftsmodelle zu formulieren, was Tür und Tor für
schwerwiegende Probleme im Projekt öffnet. Die Herausforderung besteht darin, abstrakte
und dennoch präzise Service-Spezifikationen zu erstellen und dabei die Beziehung zwischen
Daten auf verschiedenen Abstraktionsebenen zu erhalten.

[Idee und Ergebnisse] Diese Arbeit befasst sich mit High-Level-Service-
Spezifikationen und deren Umwandlung in genauere Spezifikationen. Es kommen formale
Methoden und Code-Generierungstechniken zum Einsatz, um die Service-Prototypen aus den
Service-Spezifikationen auf jeder Abstraktionsebene zu erstellen, wobei die Beziehung
zwischen verschiedenen Spezifikationen gewahrt bleiben. Die Benutzer können die
Prototypen ausprobieren und Feedback zum erhaltenen Service geben, wobei Daten validiert
sowie Inkonsistenzen und unerwartetes Verhalten aufgedeckt werden können.

[Beitrag] Diese Arbeit leistet drei Hauptbeiträge. Zum einen beschreibt sie einen
visuellen Formalismus für Service-Spezifikation und Simulation, indem sie das bestehende
SEAM-Verfahren um Konzepte erweitert. Das zweite Ergebnis ist eine Reihe von
spiralförmigen Prozessen: für Service-Spezifikation sowie für Service-Validierung und

6

Verifizierung. Der Spiralprozess ermöglicht es, die Beziehung zwischen verschiedenen
Service-Spezifikationen aufrecht zu erhalten. Ebenso beschreibt der Spiral-Prozess die
Schritte mit expliziten Design-Entscheidungen, um die High-Level-Spezifikationen zu
verbessern, inklusive aller notwendigen Angaben damit die identifizierten Dienste
gewährleistet werden können. Validierung und Verifizierung innerhalb des Spiral-Prozesses
stellt dann das Einhalten der Spezifikationen über die Abstraktionsebenen hinweg sicher.
Zum Dritten beschreibt die Arbeit ein Rahmenwerk für die Simulation und das Erstellen der
Service-Spezifikations-Protoypen, welche dann zur Validierung und Verifizierung verwendet
werden können.

[Relevanz] Neben theoretischen Beiträgen zur Wissensgrundlage im Service-Design
beschreibt die vorliegende Arbeit auch Werkzeuge und Richtlinien für Business- und IT-
Analysten, die erlauben, das Geschäftsmodell zu validieren. Die praktische Relevanz wurde
mit einer Umfrage unter Fachpersonen bestätigt. Zudem führten wir eine Fallstudie im
Rahmen eines Beratungsprojektes an der EPFL durch.

Stichworte: Service-Design, Service-Verfeinerung, Service-Validation, Service-

Verifikation, Modell-Prototypen-Entwurf, Modell-Simulation

7

Acknowledgements

First and foremost, I would like to sincerely thank to my thesis director prof. Alain Wegmann
for all the guidance and support during my work at EPFL. It was very motivating and
inspiring to work with him thanks to his great energy and ethusiasm with which he has
always approached any new idea we discussed. He helped me broaden my intellectual
horizon by challenging some basics that we very often take as granted. He taught me the
beauty of seeing the big picture and not just the pieces of the puzzle, which are often the
primary focus of us engineers. He taught me as well the importance of telling a good story. I
thank him for the freedom he gave me in my time and “space” management. Thank you Alain
for everything, it was such a great pleasure to work with you!
I thank to prof. Claude Petitpierre, my supervisor as well, with whom I had a pleasure to
work in the first few years of my PhD. Thank you for all the comments and discussions we
had and for creating Arcimboldo, a framework that helped me develop some parts of my
thesis. I also thank to all the members of LTI for all the time we spent together.
I would like to express my gratitude to prof. Viktor Kuncak and prof. Irina Rychkova for
always being ready for discussions and for all the constructive comments and ideas they gave
me during the years I worked on my thesis. I thank the other members of my PhD committee:
prof. Yves Pigneur, who contributed to my thesis with valuable academic and industrial
insights in business domain, and prof. Martin Odersky who kindly accepted the role of the
president.
I thank to Marko Ivanović (GSK, SC Johnson), Lazar Krstić (McKinsey&Company), Olivier
Hayard (ITECOR), Anastopoulos Giorgio (EPFL), and Alexandre Herrmann, who dedicated
their time to read about my research and participate in the survey. Their comments helped me
to better understand the practical value of my research and gave directions for future work.
I thank to Didier Rey and Alain for providing me the great opportunity to test some parts of
my thesis in a real project. Thanks for your trust in me and for giving me a chance to conduct
interviews and workshops with the relevant stakeholders, despite not having much experience
with business analysis before. It was a very valuable experience for me!
I am grateful to all the members of LAMS for making LAMS a great place to be in. Thanks
Gorica for all the great time we had together, for being wonderful friend and colleague. Merci
Gil pour tout les discussions philosophiques et pour être très patient avec nous quand nous
avons parlé français. Thanks Anshuman for the very useful comments you were giving me
for my work. Thanks George for making our life sweeter by always bringing all the cakes and
fruits to the lab, I will miss that in my future job. Thanks Aarthi for organizing all the events
and for making sure I always have my key and adapter for presentations. Thanks Blaise for
bringing the relaxed atmosphere to the lab and for taking all our wishes into account when
developing SEAMCad. Thanks to all the students whose projects I supervised, whose work
helped me understand better some aspects of my thesis. Thanks to everyone else who was in
LAMS and to the administrative staff as well. LAMS, thanks to all of you for all the
professional and non-professional discussions we had together, it was a pleasure to spend
time with you!

8

I wish to thank to all my friends, who made my life in Switzerland an unforgettable
experience. I thank to Nataša, Zlatko and Lenka for being my Swiss family; it is difficult to
thank you in just one paragraph, when I could write the whole thesis about our life here.
Thank you for all the great moments we had together, for all the positive energy you brought
into my life, for providing me not just a place to stay, but home, and for baby sitting me
together with Lenka when I was finishing my thesis: you really made me feel as if I am at
home. I thank to Giorgia, Sean and Alice for being my other Swiss family. I feel so lucky that
I had a chance to meet someone so special as you are, I do not think this happens twice in
life. There are no words with which I can express how special you are, I can just wish
everyone to have someone like you in their lives. Thank you for being you and for making
me change my perspective of this world! I thank Mira for all subtly, sophisticated, deep,
bohemian, philosophical discussions we had about our work and life, that I missed in the
engineering world. Thank you for all the great moments we had, new insights you brought
into my life and of course for helping me bind and submit my thesis!
I thank Mira, Danica and Renata for being great company for many lunches and coffee
breaks, for all the fun moments we had together, and for all professional and non-professional
comments and advices they gave me. I thank to all my friends who accommodated me in
Lausanne. I thank to all friends for making these 5 years special, with all the fun moments we
had, filled with parties, skiing, biking, wine tasting, traveling, hens parties, professional and
non-professional discussions, lunches, coffee breaks: Milena, Miloš, Andrej, Ivan, Jovana,
Milan, Aleksa, Valentina, Maja, Petar, Gemma, Xavier, Michael, Olya, Alejandro, Dražen,
Peđa, Aleks, Gvero, Aca, Anja, Boško, Bojana, Massimo, Michelle, Radhakrishna, Jasmina,
Mina, Dragana, Marina, Lazar, and many others. Merci beaucoup Alejandro pour être mon
tandem en français et pour aimer mon accent français même si c'est très horrible ☺ Danke
vielmals Michael für alle Unterrichte auf Deutsch und Schwyzerdütsch, für alle wunderbare
Momente die wir zusammen hatten und für last-minute Übersetzung meiner
Zusammenfassung ☺

I thank to my parents for everything they gave me and for all the love and support I got

during these years and before that. As the time passes, I realize more and more how great
parents they are and the importance of the values they thought me. The greatest credentials
for this thesis probably go to my sister Jelena, who has been my fascination since I was born
☺ She taught me to read, write, play the piano, tie laces, make trouble and everything else.
She brings music, heart, soul and life to our engineering family. Without you, I would never
see the world through same eyes and I would never be the same person. I am so lucky to have
you! ☺ I thank to my nephew Marko, who brought so much joy and happines into our lives
and whose smile has always been the great inspiration and great source of energy!

My greatest thanks I address to my husband Lazar, who was always there for me during this
5 years and before, with his advices, encouragements, love, care and understanding and who
is always able to make me laugh.

9

Table of Contents
List	
 of	
 Figures ... 11	

List	
 of	
 Tables ... 13	

1	
 Introduction ... 15	

1.1	
 Main	
 Concepts .. 16	

1.2	
 Motivation ... 17	

1.3	
 Business	
 Animated	
 Service	
 Specification	
 (BASS)... 18	

1.4	
 Assessment	
 of	
 Research	
 Project	
 Design.. 22	

1.5	
 Thesis	
 Organization ... 25	

2	
 The	
 State	
 of	
 the	
 Art .. 27	

2.1	
 Modeling	
 Methods .. 27	

2.2	
 Use	
 of	
 Formal	
 Methods	
 and	
 Code	
 Generation	
 Techniques	
 in	
 Modeling................... 38	

2.2.1	
 Model Formalization, Analysis and Verification ..39	

2.2.2	
 Model Simulation ..41	

2.2.3	
 Refinement ...42	

2.2.4	
 Alloy Applications ..43	

3	
 Knowledge	
 Base.. 44	

3.1	
 Systemic	
 Modeling	
 Paradigm	
 and	
 SEAM ... 44	

3.2	
 Model	
 Transformation .. 49	

3.3	
 Model	
 Verification	
 and	
 Alloy... 50	

3.4	
 Code	
 Generation	
 and	
 Arcimboldo ... 53	

4	
 BASS:	
 Concepts	
 and	
 Visual	
 Formalism .. 56	

4.1	
 BASS:	
 Concepts	
 and	
 Principles ... 56	

4.1.1	
 Service and Service System Modeling ...56	

4.1.2	
 Declarative Behavior Modeling ..59	

4.1.3	
 Expressing Semantics of Services: Functional Units ..60	

4.1.4	
 Use of Invariant ..63	

4.1.5	
 Modeling Service Multiplicity ..63	

4.1.6	
 Properties and Data ...64	

4.1.7	
 Simplified and Full Notation ...65	

4.2	
 BASS:	
 Meta-­model	
 (Abstract	
 Syntax) ... 67	

4.3	
 BASS:	
 Visual	
 Notation	
 (Concrete	
 Syntax)	
 and	
 Semantics .. 70	

5	
 BASS	
 Service	
 Design	
 Spirals:	
 Theory ... 75	

5.1	
 Service	
 Specification	
 Spiral:	
 Theory ... 75	

5.1.1	
 Initial Model Design ...76	

5.1.2	
 Step 1: External services ...77	

5.1.3	
 Step 2: Internal organization ..77	

5.1.4	
 Step 3: Internal services...78	

5.1.5	
 Step 4: Internal responsibilities ...78	

5.1.6	
 Step 5: Independent service systems (optional) ..79	

5.2	
 Validation	
 and	
 Verification	
 Spiral:	
 Theory... 79	

5.2.1	
 Initial Model Design ...80	

5.2.2	
 Step 1: Generate Samples ...80	

5.2.3	
 Step 2: Correct Model Based on Samples ...80	

5.2.4	
 Step 3: Check Assertions ..81	

5.2.5	
 Step 4: Correct Model Based on Assertions ...81	

6	
 BASS	
 Service	
 Design	
 Spirals:	
 Case	
 of	
 Order	
 Creation	
 at	
 Générale	
 Ressorts 82	

6.1	
 Working	
 Example:	
 The	
 Case	
 of	
 Order	
 Processing	
 at	
 Générale	
 Ressorts.................. 82	

6.2	
 Service	
 Specification	
 Spiral:	
 Case	
 of	
 Order	
 Creation	
 at	
 Générale	
 Ressorts............. 86	

10

6.2.1	
 Initial Model Design ...86	

6.2.2	
 Step 1: External Services ..87	

6.2.3	
 Step 2: Internal organization ..87	

6.2.4	
 Step	
 3:	
 Internal	
 services..89	

6.2.5	
 Step 4: Internal responsibilities ...90	

6.2.6	
 Step 5: Independent service systems (optional) ..92	

6.3	
 Validation	
 and	
 Verification	
 Spiral:	
 Case	
 of	
 Order	
 Creation	
 at	
 Générale	
 Ressorts 94	

6.3.1	
 Initial Model Design ...94	

6.3.2	
 Step 1: Generate Samples ...95	

6.3.3	
 Step 2: Correct Model Based on Samples ...96	

6.3.4	
 Step 3: Check Assertions ..97	

6.3.5	
 Step 4: Correct Model Based on Assertions ...98	

7	
 BASS2Alloy	
 and	
 Back:	
 Transforming	
 BASS	
 Service	
 Model	
 to	
 Alloy	
 and	
 Back .. 99	

7.1	
 Input	
 and	
 Output	
 of	
 Simulation ... 99	

7.2	
 Transforming	
 BASS	
 Model	
 to	
 Alloy	
 Specification ..100	

7.3	
 Service	
 Simulation..105	

7.4	
 Transforming	
 Alloy	
 Instance	
 to	
 BASS	
 Model ...106	

8	
 BASS2Java:	
 Transforming	
 BASS	
 Service	
 Model	
 to	
 Application	
 Prototype107	

8.1	
 Input	
 (Service	
 Specification	
 Template)	
 and	
 Output	
 (Java	
 Application)	
 of	

Prototyping..108	

8.2	
 Mapping	
 Prototypical	
 Specification	
 to	
 Arcimboldo	
 Project112	

8.3	
 Generating	
 GUI...116	

8.4	
 Transforming	
 Static	
 Elements	
 (Data) ..118	

8.5	
 Transforming	
 Dynamic	
 Elements	
 (Logic)...120	

9	
 The	
 Practical	
 Impact:	
 Evaluation	
 of	
 the	
 Developed	
 Theory	
 in	
 Practice125	

9.1	
 Case	
 Study:	
 The	
 Case	
 of	
 Research	
 Project	
 Management	
 at	
 EPFL125	

9.1.1	
 Initial Model Design .. 126	

9.1.2	
 Cycle 1: EPFL+ ... 127	

9.1.3	
 Cycle 2: Support organization .. 131	

9.1.4	
 Benefits of Using Proposed Method .. 136	

9.2	
 Comparison	
 with	
 Other	
 Methods...137	

9.3	
 Conducted	
 Survey:	
 Practical	
 Feedback ...140	

10	
 Conclusion	
 and	
 Future	
 Research	
 Directions ..145	

10.1	
 Theoretical	
 Contribution...145	

10.2	
 Practical	
 Recommendations...145	

10.3	
 Limitations	
 and	
 Drawbacks ..147	

10.4	
 Future	
 Work...147	

Appendix	
 I:	
 SEAM	
 Representation	
 of	
 Hevner	
 Research	
 Framework.......................151	

Appendix	
 III:	
 Case	
 of	
 Order	
 Creation	
 at	
 Générale	
 Ressorts	
 in	
 Alloy152	

Appendix	
 IV:	
 Survey	
 Questionnaire..163	

Computer	
 Data	
 Storage	
 at	
 EPFL ..164	

Computer	
 Data	
 Storage	
 at	
 EPFL:	
 BASS	
 Models...165	

Questionnaire ...169	

Glossary ..171	

Bibliography ...173	

Publications...182	

11

List of Figures

Figure 1: Service specification spiral... 19	

Figure 2: Validation and verification spiral ... 20	

Figure 3: SEAMCad: The existing tool for creation of BASS models... 21	

Figure 4: Model-to-model transformation tool ... 21	

Figure 5: BASS2Alloy and Alloy2BASS tool.. 22	

Figure 6: BASS2Java transformation tool.. 22	

Figure 7: Information Systems Research Framework .. 23	

Figure 8: Diagrams in UML ([16]) ... 29	

Figure 9: Functional and organizational refinement in SEAM ... 48	

Figure 10: Model transformation process (from [104]) ... 49	

Figure 11: Alloy model of the family example (from [111]) .. 52	

Figure 12: Result of simulation of the family example in Alloy Analyzer tool (from [111]) 53	

Figure 13: Arcimboldo workbench: overview (from [112]) .. 54	

Figure 14: Arcimboldo example (from [112]) .. 55	

Figure 15: Service system modeling in BASS.. 57	

Figure 16: Service implementation with collaboration .. 58	

Figure 17: Service implementation with process ... 58	

Figure 18: Full notation to show service .. 60	

Figure 19: Predefined functional unit: generic template ... 61	

Figure 20: Predefined functional unit: graphical representation (Service design)...................... 62	

Figure 21: Predefined functional unit: Alloy representation (Service simulation)..................... 62	

Figure 22: Predefined functional unit: Arcimboldo representation (Service prototyping) 62	

Figure 23: Full notation to show service multiplicity... 64	

Figure 24: Diagram in Figure 15 with full notation .. 65	

Figure 25: Diagram in Figure 24 with multiplicity simplification ... 66	

Figure 26: Diagram in Figure 24 with service representation simplification 66	

Figure 27: Diagram in Figure 24 with service semantic simplification ... 67	

Figure 28: BASS: Meta-model... 68	

Figure 29: One cycle of BASS service specification spiral.. 76	

Figure 30: Order-to-cash cycle - Adapted from [121] ... 83	

Figure 31: The result of initial model design .. 87	

Figure 32: Step 2: Conceptualize - Identifying provider’s roles... 88	

Figure 33: Step 2: Decide - Allocating properties to roles ... 88	

Figure 34: The result of step 2 ... 89	

Figure 35: Step 3: Conceptualize - Identifying internal collaborations.. 89	

Figure 36: Step 3: Decide - Allocating functional units to collaborations 90	

Figure 37: The result of step 3 ... 90	

Figure 38: Conceptualize - Identifying processes and services .. 91	

Figure 39: Decide - Allocating functional units to services ... 91	

Figure 40: The result of step 4 ... 92	

Figure 41: Step 5: Cutting connecting lines and specifying shared properties 93	

Figure 42: The result of step 5 ... 93	

Figure 43: Anomaly due to Underspecification: “Missing Customer”... 96	

Figure 44: Anomaly due to Underspecification: “Delivery to the Wrong Address” 97	

12

Figure 45: Simulation process overview... 99	

Figure 46: Input and output of simulation for Order Creation at GR... 100	

Figure 47: Alloy meta-model for signatures (from [65]) ... 101	

Figure 48: Order Creation at Générale Ressorts - Example of Model Instance 105	

Figure 49: An example of model instance shown in BASS .. 106	

Figure 50: Overview of BASS to Java transformation ... 107	

Figure 51: Input: Prototypical specification template ... 109	

Figure 52: Output: Page navigation of prototype.. 110	

Figure 53: Input of prototyping for Order Creation at GR .. 111	

Figure 54: Output of prototyping for Order Creation at GR ... 111	

Figure 55: Descriptor file and the main object .. 114	

Figure 56: The main object: roles .. 118	

Figure 57: Role.tpl for generated page for OrderEntryPerson shown in Figure 54 118	

Figure 58: The main object: dataTables... 120	

Figure 59: Expanding template JPA.tpl for generating entity beans (and database tables) .. 120	

Figure 60: The main object: actions .. 121	

Figure 61: Expanding Logic.tpl to Logic.java ... 122	

Figure 62: Service specification at Générale Ressorts with preconditions 123	

Figure 63: State machine for Order Creation business transaction... 124	

Figure 64: Result of conceptualization... 127	

Figure 65: EPFL+: Step 1 Conceptualize .. 127	

Figure 66: EPFL+: Step 1 Decide .. 128	

Figure 67: EPFL+: Result of step 1 ... 128	

Figure 68: EPFL+: Step 2 Conceptualize .. 129	

Figure 69: EPFL+: Step 2 Decide .. 129	

Figure 70: EPFL+: Result of step 2 ... 130	

Figure 71: EPFL+: Step 4 Conceptualize .. 130	

Figure 72: EPFL+: Step 4 Decide .. 131	

Figure 73: EPFL+: Result of step 4 ... 131	

Figure 74: Support organization: Step 2 Conceptualize ... 132	

Figure 75: Support organization: Step 2 Decide ... 132	

Figure 76: Support organization: Result of step 2 .. 133	

Figure 77: Support organization: Step 3 Conceptualize ... 133	

Figure 78: Support organization: Step 3 Decide ... 134	

Figure 79: Support organization: Result of step 3 .. 134	

Figure 80: Support organization: Step 4 Conceptualize ... 135	

Figure 81: Support organization: Step 4 Decide ... 135	

Figure 82: Support organization: Result of step 4 .. 136	

13

List of Tables

Table I: Guidelines for Assessment of Design Science Research - Adapted from [7].............. 23	

Table II: Comparing modeling methods focused on behavior modeling....................................... 37	

Table III: BASS: Meta-model Concepts and Corresponding Business Terms 69	

Table IV: BASS: Visual representation of meta-model concepts and their semantics 71	

Table V: Order Creation: Section Main .. 83	

Table VI: Order Creation: Typical Course of Events ... 84	

Table VII: Order Delivery: Section Main .. 84	

Table VIII: Order Delivery: Typical Course of Events ... 85	

Table IX: Mapping input and output of simulation for Order Creation at GR 100	

Table X: Correspondence between BASS method and Alloy meta-model elements 101	

Table XI: Mapping input and output of prototyping for Order Creation at GR 112	

Table XII: The main object elements and corresponding modeling concepts 115	

Table XIII: Table for capturing Order Creation transactions ... 123	

Table XIV: Comparing service blueprinting and our method .. 138	

14

15

1 Introduction
In this thesis, we propose a visual modeling method, named Business Animated Service

Specification (BASS), for service specification, verification and validation. It is aimed at
helping business and IT analysts to create more precise models for the business cases they are
working on.

To better understand a business case and act more effectively on it, we propose using
visual models for the description, analysis and communication of concepts. While creating a
model, the business/IT analyst observes some aspect of reality, and sees a set of entities,
which is a subset of the total number of entities available in reality. This set of entities is
called the universe of discourse. The analyst builds a set of concepts, which we call his
conceptualization, by interacting with his universe of discourse. This conceptualization is the
basis of his understanding of the business case. He then creates a model in the representation
domain as a set of entities called modeling constructs.

 In our proposed method, models are created using the modeling constructs based on
the Systemic Enterprise Architecture Method (SEAM) [1]. As a systemic method, it is
focused on modeling the systems, with its theoretical foundations in General Systems
Thinking (GST) [2]. According to this theory, a system can be of any nature (IT, human,
company, etc.). Throughout the thesis, whenever the system type is not specified explicitly,
by system we mean IT, human, company, or any other.

With the popularization of services and service science, the authors of [3] propose
service system as an important abstraction for the service revolution. According to [3],
service is defined as the application of resources (including competences, skills, and
knowledge) to make changes that have value for another (system). The BASS model
describes a hierarchy of service systems as a configuration of people, technologies, and other
resources that interact with other service systems in order to create mutual value. Many
systems can be viewed as service systems, including families, cities, and companies, among
many others [3].

The BASS model shows service specifications at any level of abstraction; these
specifications correspond to different viewpoints that the analysts develop to simplify their
understanding of systems. The model can show the main service of one service system, or its
implementation with a collaboration or with a process that involves many service systems.
Collaboration defines how a component’s service systems implement the main service
together, showing only the net effect of their interaction. Process defines the responsibilities
of each of component’s service systems in implementing the main service. In this thesis, by
service specification, we mean the BASS visual model of the service at any level of
abstraction.

Several efforts have been made to introduce service concepts to the existing systemic
method SEAM [4], [5], [6]. In this thesis, we propose BASS, which extends SEAM with the
concepts for service simulation and validation.

The method BASS includes the following:

16

- The set of concepts and the visual formalism for service specification based on
SEAM. We have extended SEAM with concepts for service simulation, such as a
functional unit, event, send and receive properties. Service specifications on different
levels of abstractions are expressed using visual models. This is explained in Chapter
4.

- Two spirals: (1) A service specification spiral that guides analysts on what design
decisions to make in order to provide and implement services that would satisfy the
customer; (2) A validation and verification spiral for checking the models on any
level of abstraction and resolving identified anomalies. This is explained in Chapters
5 and Chapter 6.

- Tools for model creation, transformation, simulation and prototyping. This is
explained in Chapters 7 and Chapter 8.

BASS models can be created by business/IT analysts themselves or during workshops

with different stakeholders. Over-formalizing the models during the workshops can distract
participants from focusing on details of the modeled situations, and make them focus too
much on the modeling rules. Therefore, we use simplified BASS for this purpose. Once the
overall conclusion has been made during the workshop, specific models can be improved by
using the validation and verification spiral. This way, in the first iteration we can focus on the
overall story and in the second, on the finding anomalies, missing business rules and other.

In this chapter, we first clarify the main concepts used in the thesis, such as verification,
validation, simulation and prototyping. Then, we explain our motivation for the work in the
thesis. Next, we give a brief overview of the proposed method. We end the chapter with an
assessment of the research design pursued in this work. For this purpose, we use the seven
guidelines defined in Design Science [7].

1.1 Main Concepts
In the proposed method, service specifications at any level of abstraction can be

simulated and prototyped. By simulation, we mean generating instances of the model that
satisfy the constraints of the model. These instances correspond to the state of the system
before and after service execution. This is achieved using translation to Alloy language and
simulation with the Alloy Analyzer tool.

By prototyping, we mean generating the prototype of a Java application in which the
user can test the behavior of the service system by entering input values and observing
outputs. This is achieved using the Arcimboldo framework for easier prototyping process. As
the goal is only to obtain feedback about the behavior of the service system, and not to
generate the full application, we do not consider the requirements such as scalability,
reliability, availability and security. Therefore, we refer to this process as prototyping and not
execution.

Simulation with Alloy is used for service validation and verification. Prototyping with
Arcimboldo is used for validation. Validation is checking that a service or a system meets the
needs of the customer or other stakeholders. Therefore, it includes the acceptance from
customers and stakeholders. Both with simulation and prototyping, we use instances and
prototypes of the model to obtain feedback from customers and other stakeholders.

17

Verification is checking that a service or a system conforms to the specifications,
regulations or imposed conditions. It is often an internal process and does not include
stakeholders. In our case, we use simulations to verify that the model conforms to the meta-
model, well-formdness rules and other constraints.

1.2 Motivation
”Modeling is much more fun when you get instant, visual feedback. When you

simulate a partial model, you see examples immediately that suggest new constraints to be
added.” [2] We agree with Daniel Jackson, the founder of the Alloy specification language: It
is very effective to use simulation to get instant, visual feedback on how design decisions
influence the design. Examples of the partial specification can help us to realize what
constraints in the model are missing. This way, model simulations can help us to involve the
customer and other stakeholders in the design, by including their feedback already at the
early stages.

Traditionally, high-level service specifications are used only for communication among
different participants, to catalyze the discussions between them, but only the specifications
modeling IT systems have enough details to be simulated and executed. As a consequence, it
becomes difficult to create precise business models and to make sure that the implemented
services are those that correspond to business needs, potentially leading to severe project
problems. Therefore, the challenge is how to help business and IT analysts to create abstract,
yet precise service specifications, keeping the relation between specifications on different
levels of abstraction.

Services have been applied in different domains, including business and IT

specifications. Throughout the history, IT specification and implementation have changed. IT
experts have always sought to improve productivity by using more abstract specifications,
thus also closer to the business specification and design. The new level of abstraction has
automatically been transformed to the earlier ones. After the first (1GL) and second (2GL)
generation programming languages, moving to the third generation languages (3GL) has
improved productivity significantly. Several lines of 2GL code have been replaced with only
one in 3GL. At first, functionality was specified directly in code. Then models, as the next
level of abstraction, were introduced. They facilitate the communication among different
users. For a very long time, the de-facto standard for modeling was the Unified Modeling
Language (UML) [8]. However, the UML models are mostly maintained separately from
code, so inconsistency was one of the main issues of such a specification. Also, the
vocabulary used in UML is too technical and not easily understandable by domain experts.
The final level of abstraction was introduced with domain-specific modeling (DSM) [9]: it
abstracts the vocabulary relevant to a specific domain. This vocabulary is understandable to
domain experts. Also, the models in DSMs are used as primary artifacts in the development
process: there are source models instead of source code. Hence, there is no problem with
inconsistency between models and code. Also, it is possible to execute partial models with
DSMs, which helps us to find errors in the models and check their validity [9].

On the other side, business experts have sought to improve productivity by being more
precise and concrete. Business specification was first given in plain language, such as

18

English. Then, for better communication, business experts started using sketches and visual
methods. Finally, they use more concrete and precise business models that can be executed,
such as business process model and notation (BPMN) [10].

However, with existing business specification methods it is not possible to simulate
partial and high-level business models. Usage of models for business specification that can be
directly simulated and prototyped, for partial and complete models, could increase
productivity, validate models and detect possible errors at early stages of the design and in
this way decrease costs. Therefore, the challenge is to provide a way to simulate high-level
service specifications in order to validate and verify them.

The nature of business models suggests the use of methods that provide rich

representations that appeal to non-technical stakeholders as well. However, such created
models are difficult to verify and validate automatically. Formal methods and code
generation techniques can be used to provide more formal models. This requires the
formalization specialist as a support to the stakeholder who provides information and makes
decisions. The degree of formality for a support framework therefore needs to reflect this
relationship. Formalization can facilitate reasoning; however, overformalizing can be
harmful.

So far, formal methods and code generation techniques have been applied in visual
modeling for IT-focused models, in which the goal is to specify the details of IT
implementation. They are not applied for high-level service models, in which the goal is to
show the overall perspective of the system and abstract the behavior for the customer. Thus,
the challenge is to apply formal methods and code generation techniques to simulate and
prototype service specifications at any level of abstraction, including high-level models. This
would enable their validation and verification and help business and IT analysts to create
more precise models.

1.3 Business Animated Service Specification (BASS)
We propose the method named Business Animated Service Specification (BASS). It is

intended for service specification and validation based on SEAM. We extend SEAM notation
with the elements necessary to model the services and simulate and prototype their behavior.
As we have mentioned, simulation results with the snapshots of the system at the given
moment in time, for example before and after the service execution. The simulation is used to
verify the model against the meta-model, to discover hidden business rules and to resolve
possible anomalies by observing the behavior of the system. Prototyping results with the
application prototype in the given target language. This way the designer can interactively, by
entering the input parameters, check how the system behaves and together with the
stakeholders validate if the behavior corresponds to the business needs.

The BASS method includes: the concepts and visual formalism necessary to specify

services; service specification spiral and validation and verification spiral; tools for model
transformation, simulation and prototyping.

19

The BASS concepts and visual formalism are based on SEAM and are explained more
in Chapter 4. The two spirals are based on a spiral model proposed by Boehm. The service
specification spiral (Figure 1) includes four main activities in each cycle of the spiral,
represented with four quadrants of the spiral. These activities correspond to the main steps
used to transform the initial model (created in the conceptualization phase of the spiral) to the
more detailed models, reflecting the main principles of the services and service science. The
result of each step is shown as a dot on a dashed line is the new model. One iteration of the
spiral contains two models showing the modeled organization with its environment (for
instance, customer), two models showing the internal organization required to implement the
necessary services, and one model showing the responsibilities of each of internal
organizations in implementing the services.

 Figure 1: Service specification spiral

The initial model contains the company or organization in its environment and the
external service, i.e., the service relevant to the environment, such as a customer. Following
the steps of the spiral, we add details necessary for providing this service to the customer.
Once we finish with one cycle in the spiral, we can continue to refine one of the sub-
organizations by following the steps of the spiral. We continue the process until we reach the
level of details required for the analyzed project. This refinement process is described in [11].
This spiral process is the core of the method and it is always used for service specification
either by the business and IT analysts themselves, or for facilitating the workshops with
stakeholders. The detailed explanation of the steps of the spiral can be found in Chapter 5.1
and the illustration with an example in Chapter 6.2.

In addition to the service specification spiral, for each model in the process we can

optionally use simulation and prototyping for validation and verification of the model. The
application prototypes and model instances generated with simulation can be used to receive
feedback from stakeholders; and in this way, to validate the model. The spiral for creating the

20

models that include service validation and verification is shown in Figure 2. This spiral has
four main activities that are combined in one cycle. Initially, the first model is created in
Alloy and then it is validated and verified by following the steps of the spiral. The Alloy
specification of model in Alloy can be created manually or automatically using the tool. A
detailed explanation of the steps of the spiral can be found in Chapter 5.2 and the illustration
with an example in Chapter 6.3. The initial idea of spiral with the example of application is
described in [12].

Figure 2: Validation and verification spiral

Finally, BASS contains the tools for service specification, validation and verification.

To specify services, we use tools for model creation and transformation. The tool used for
model creation is SEAMCad (Figure 3). SEAMCad is the existing tool also used for creation
of SEAM models. Using the stereotypes, we add special modeling concepts used for BASS
models. The initial model is always created in SEAMCad.

21

Figure 3: SEAMCad: The existing tool for creation of BASS models

 We developed a tool for model transformation (Figure 4) to refine the initial model to

more detailed models, following the steps of the service specification spiral. For the BASS
model as input, and design decisions captured in the tool, the tool generates the refined BASS
model as output. Transformation from input to output corresponds to one step in the service
specification spiral described in Chapter 5.1 and Chapter 6.2.

Figure 4: Model-to-model transformation tool

For model simulation, we developed the tool that transforms the BASS model to an

Alloy specification with the possibility of running the Alloy specification and observe the
generated instances. This tool also has the possibility of transforming the generated Alloy
instance back to BASS thus making it more readable to people already familiar with BASS
notation. The tool is shown in Figure 5. The details of transformation are captured in Chapter
7.

22

Figure 5: BASS2Alloy and Alloy2BASS tool

For model prototyping, we have developed a tool that transforms BASS model to

Arcimboldo project and Java prototype as shown in Figure 6. The details of transformation
are captured in Chapter 8.

Figure 6: BASS2Java transformation tool

1.4 Assessment of Research Project Design
The research approach used in this work is the Design Science research methodology,

more specifically the research framework proposed by Hevner [7], illustrated in Figure 7.

23

Figure 7: Information Systems Research Framework

As opposed to the natural sciences, e.g. physics and biology, which focus on
explaining the phenomena studied, the design sciences, which include all forms of
engineering, medicine, aspects of law, architecture and business, focus on usefulness. Design
science research requires creation of an innovative, purposeful artifact for a special problem
domain. The main artifact of this work is the method for service design, simulation and
prototyping. Its goal is to help business and IT analysts in their projects by modeling precise
business specification and keeping the relation with lower level specifications and finally
with IT specification. Overview of this research framework represented in SEAM is shown in
Appendix I.

In [7] Hevner presents a set of seven guidelines for conducting, evaluating and

presenting design science research. In Table I, we list these guidelines along with their
description and discuss how the work presented in this thesis meets these guidelines.

Table I: Guidelines for Assessment of Design Science Research - Adapted from [7]

Guideline Description Discussion

“Design as an
Artifact”

“Design Science research
must produce a viable
artifact in the form of a
construct (vocabulary &
symbols), a model

The main artifact produced through this work is
a method for service specification, validation
and verification, which includes:
- The visual formalism for service
specification

24

(abstractions &
representations), a method
(algorithms & practices),
or an instantiation
(implemented & prototype
systems).”

- The service specification spiral including the
steps on how to transform high-level
specification to the more detailed one, to make
sure we provide the required services to the
customer
- The validation and verification spiral
including the steps on how to validate and
verify model corresponding to the ervice
specification at any level of abstraction
- The tools for modeling, simulation and
prototyping of service specification.

“Problem
Relevance”

“The objective of Design
Science research is to
develop technology-based
solutions to important and
relevant business
problems.”

This work is addressing the following
questions:

1. How to help business and IT analysts to
validate the models and create more
precise models even on business level?

2. How to help business and IT analysts to
use customer-oriented approach for
modeling business cases, which puts all
people relevant for providing the
service on the same page, enabling them
to see their role in customer
satisfaction?

“Design
Evaluation”

“The utility, quality, and
efficacy of a design
artifact must be rigorously
demonstrated via well
executed evaluation
methods.”

The design evaluation method used belongs to
the observational class. We have conducted a
case study and demonstrated the benefits of the
proposed method on it. Also, we have
conducted a survey with practitioners to
evaluate if this work helps the business and IT
analysts in modeling business cases.

“Research
Contributions”

“Effective Design Science
research must provide
clear and verifiable
contributions in the areas
of the design artifact,
design foundations, and/or
design methodologies.”

This work contributes to the service
specification by providing a way to simulate
service specifications already at early stages.
Also, it contributes to the service specification
with the process containing the design
decisions to be made to model all the details
necessary to provide required service.
In addition, it shows how formal methods and
code generation techniques can be applied in
business domain as well.

“Research
Rigor”

“Design Science research
relies upon the application
of rigorous methods in
both the construction and

From a rigor perspective, the proposal made
in this research is based on general systems
thinking theory, model verification and
validation, and service science.

25

evaluation of the design
artifact.”

“Design as
Search
Process”

“The search for an
effective artifact requires
utilizing available means
to reach desired ends while
satisfying laws in the
problem environment.”

We developed our search for an effective
artifact within these constraints:
- abstract, yet precise business model
- service specification method providing visual
feedback.

“Communicati
on
of Research”

“Design Science research
must be presented
effectively both to
technology oriented as
well as management-
oriented audiences.”

To facilitate the communication of research
results to a wider community, including both
the technology-oriented and management-
oriented audiences, we developed a set of
service specification guidelines as well as a
modeling and simulation tools to facilitate the
use of proposed method.
These guidelines were found to be effective in
conveying the research results to the diverse
participants of survey that was conducted using
these guidelines as well as to the participants of
different conferences and workshops.

1.5 Thesis Organization
This document is organized to capture all the research elements as explained by Hevner

research framework in Figure 7. We first explain the business needs that motivated this
research and explain why the research is relevant for real-world problems in Chapter 1. Then,
we describe the used knowledge base that gives rigor to the research in Chapter 2 and
Chapter 3. We explain the proposed method BASS in Chapter 4, Chapter 5, Chapter 7 and
Chapter 8. We evaluate the work in Chapter 9 using case studies and the survey with
practitioners. Finally, we explain the contributions and limitations of the thesis and give
directions for future research in Chapter 10.

In Chapter 2 of this document, we analyze the state of the art. As the research question

is how to create more precise models, we first give overview of modeling methods and
comparison between them. Then, we describe how formal methods and code generation
techniques are used in this modeling.

In Chapter 3, we describe the theories used to develop the proposed method. The

proposed method is an extension of the existing Systemic Enterprise Architecture Method
(SEAM). Therefore, we first explain General Systems Thinking (GST) and SEAM. Then, we
give overview of service science with explanations of service-related concepts. Next, we
explain model verification techniques and Alloy [13], declarative language used for
simulation in this thesis. Finally, we explain model validation techniques and Arcimboldo,
approach for generating various kinds of application, used to create application prototype in
this thesis.

26

In Chapter 4, we describe the main concepts and visual formalism of proposed method.
We first describe SEAM advancements that were necessary in order to model, simulate and
prototype services. Then, we give an overview of the used visual notation and meta-model of
the proposed method.

Chapter 5 describes the main processes of the proposed method: service specification

spiral process and validation and verification spiral process. It describes the process of
modeling services and validating them using simulation and prototyping.

Chapter 6 illustrates the processes explained in Chapter 5 on the working example. The

working example is based on the consulting project we have conducted in the company
Générale Ressorts. It is described in plain English and with UML use cases as proposed in
[14]. After the description of the working example, we illustrate the application of the two
processes on this example.

Chapter 7 describes how BASS models are transformed to Alloy specification. This is

illustrated on the working example described in Chapter 6.

Chapter 8 describes how BASS models are transformed to Arcimboldo project and then

to application prototype in the given target language. This is illustrated on the working
example described in Chapter 6.

Chapter 9 describes how the method has been evaluated. Used evaluation method

belongs to the category of the observational methods. We illustrate the benefits of the method
with the case study based on the project we have conducted. Next, we give comparison with
other methods. Finally, we explain the survey we have conducted with practitioners and give
the feedback we have received from them about the usefulness of the proposed method in
practice.

Finally, Chapter 10 summarizes the work done. It describes the contributions of this

thesis as well as the limitations of the proposed method. It also gives the possible
continuation of this work and possible future directions of research.

At the beginning of each chapter, we give an overview of the chapter’s content.

For the reader interested in service design, we recommend focusing on Chapters 5.1,

6.1 and 6.2.
For the reader interested in simulation and prototyping we recommend focusing on

Chapters 5.2, 6.1 and 6.3. For the reader interested in details of transformation to Alloy and
Arcimboldo we recommend focusing on Chapter 7 and Chaper 8, respectively.

For practitioners working with business and/or IT specification, we recommend reading
Chapter 2 for related work in these fields and Chapter 6 explaining specification with the
proposed method, as well as 9.3 for the feedback we got from practitioners.

27

2 The State of the Art
In this chapter, we give an overview of the literature and methods related to the work

presented. We propose method for visual modeling, validation and verification of services.
Therefore, we analyze the related work in two fields: visual modeling methods including
service specification methods; and application of formal methods and code generation
techniques to model validation and verification.

We first present the visual modeling methods used in general in business and IT, as well

as methods intended for service specification. We explain the set of related methods and the
table comparing all of them. Then, we discuss the work related to the application of formal
methods and code generation techniques to modeling, i.e. model validation and verification.
We discuss different examples of formal methods and code generation techniques applied to
modeling methods and more specifically application of Alloy to different domains.

2.1 Modeling Methods
In this chapter, we explain various modeling methods and languages used in business

and IT in general, as well as methods intended for service specification. We also give the
table comparing the methods by several criteria.

The Catalysis approach [15] is a component-oriented development method that

analyzes and designs in three levels: business (problem domain terminology, business
process, roles, collaborations), component specification (component and/or system interface)
and component implementation (internal architecture and insides of the system and/or
component). It uses its own notation inspired from UML. It uses the same notation on all
levels of design. The basic concepts in Catalysis are the object and the action. The object
represents a cluster of information and functionality; the action represents anything that
happens: an event, task, job, message, change of state, interaction, or activity. Catalysis
places the action on an equal footing with the object, because good decoupled design requires
careful thought about what actions occur and what they achieve [15].

Models of objects and actions in Catalysis have 3 parts: static, dynamic and interactive.
The static part of the model represents the state of an object at any given time. The main
purpose of this part is to provide a vocabulary in which actions are described. The interactive
part of the model deals with interactions between objects. It shows how the responsibility for
achieving a goal is divided among collaborating objects and how object interactions can be
abstractly described. The dynamic part deals with the changes that happen to the state as
events occur. It specifies objects’ behavior (a list of actions it can take part in and the way it
responds to them). At any level of design, we use the models containing static, dynamic and
interactive part.

An object’s behavior can be described with a type specification. A type specification is
a set of action specifications that share a static model that provides a vocabulary about the
state of any member of the type. It is possible to define subtypes of other types that inherit all
specification of the supertype and may add further specification.

28

An action specification gives information only about the effects of the action without
any information about what occurs inside. It is represented with pre- and postcondition. A
postcondition is a read-only Boolean function that specifies the outcome of the action. It
defines a relationship between the states before and after an action has happened. Its focus is
on the effect of an action on an object’s internal state. It can also specify results of an action
that are returned to the invoker. A precondition is a read-only Boolean function that defines
when the associated postcondition is applicable. If the precondition is not true when the
action starts, we cannot tell what the outcome will be. There may exist some other action
specification for that precondition. Precondition and postcondition can be written in any
language. In Catalysis they are written using OCL. This way, actions are specified
declaratively with pre- and post- conditions, without specifying explicitly the sequence of
steps.

An action specification generalizes all occurrences of the action. However, it is very
different from an action implementation. A specification is a Boolean expression (a relation
between the inputs, initial state, final state and outputs). An implementation chooses a
particular algorithmic sequence of steps, selects a data representation, etc. One action
specification can have many implementations. Similarly, there are specification types used to
write specifications that describe how a client can use a component and design type that will
be implemented.

An alternative view of an action specification is a state chart. It shows state transitions.
A state is represented by a Boolean attribute: an object either is or is not in that state at any
time.

Another major theme of Catalysis besides behavior modeling is precise abstraction: the
ability to look at a design or a model in only as much detail as necessary and without loss of
precision. Both actions and objects can be shown from different views, on different levels of
details. The zoomed-in detailed views and zoomed-out abstract views must be clearly related.
This way, it is possible to show hierarchical representations of actions and objects.

The Unified Modeling Language (UML) [8], an Object Management Group (OMG)

standard for modeling software, is a general-purpose modeling language in the field
of software engineering, which is designed to provide a standard way to visualize the design
of a system. Much academic and industrial research has been put into the development
success of UML since its inception. Hence, UML is the de facto international standard
notation for software design.

The latest version of UML is 2.5 [8], which includes 14 diagrams grouped into 2
categories: structure and behavior, as shown in Figure 8. Structure diagrams emphasize the
things that must be present in the system being modeled. Behavior diagrams emphasize what
must happen in the system being modeled. Behavior category includes a few diagrams that
represent different aspects of interaction. Interaction diagrams relate a system structure
defined in the structure diagrams with its behavior, specified in behavior diagram.

29

Figure 8: Diagrams in UML ([16])

Some of the diagrams can have a hierarchical structure, such as: activity diagram,
state machine diagram, use case diagram and package diagram. For example, a state machine
diagram defines state machines and submachines; activities are composed of activity nodes
that can be also activities, etc.

There is a semantic relationship between the UML diagrams of different types, i.e.
they are complementary. However, these relationships have to be maintained mostly
manually by the designer. Traceability in UML can be expressed using traceability
relationships, in form of diagrams and table views of related model elements, broken
relationships and dependencies between model elements. UML 2.5 specification [8] does not
address explicitly the traceability issue.

Traditionally, the UML has been associated more with software engineering and
systems design than with analysis and modeling of business processes. However, standard
UML 2.x provides a rich set of behavioral models, which are very useful in modeling the
processes, activities, people and information critical to every business.

Designers and practitioners worldwide have developed integrated development
environments (IDEs) and other tools that allow UML designers to: draw diagrams easily
(drag & drop), generate code automatically, apply design patterns, understand and represent
requirements, reverse engineer a design problem or perform impact analysis, to name only a
few.

Systems Modeling Language (SysML) [17] was developed by OMG as an extension

of a subset of the UML for systems engineering using UML's profile mechanism, modeling
wide range of systems, which may include hardware, software, information, processes,
personnel, and facilities. It removes many of UML's software-centric constructs, creating the
language smaller both in diagram types and total constructs. SysML reuses seven of UML
2.x's fourteen diagrams, and adds two diagrams (requirement and parametric diagrams) for a
total of nine diagram types.

SysML defines blocks as modular units of system description. Blocks group both
structural and behavioral features (properties, states, operations) to describe a system of

30

interest. The Block Definition Diagram in SysML defines features of a block and
relationships between blocks. The Internal Block Diagram in SysML captures the internal
structure of a block. Blocks can be decomposed into parts that are also blocks. Relations
between the blocks can be used for traceability. SysML models can be translated to
Matlab/Simulink [18] and other simulation packages [19].

Archimate [20], an Open Group Standard, is an enterprise modeling language that

enables enterprise architect to describe, analyze and visualize the relationships between
business domains in an unambiguous way. It is supported by different tool vendors and
consulting firms. The current standard is Archimate 2.1. It is focused on coherence and
overview of an enterprise rather than specificity and details. It provides a common language
for describing different aspects of an enterprise, such as business processes, information
flows, products, applications and infrastructures. This facilitates the design, assessment and
discussion of consequences of changes within and between these business domains.

Archimate provides integrated view of organization’s architecture, structured in three
main layers [21]:

• Business layer – products and services offered to external customers and
corresponding business processes performed by business actors and roles

• Application layer – supports the business layer with application services that are
realized by software components

• Technology layer – supports the application layer with infrastructure services needed
to run applications realized by hardware and software.

Although the concepts used in layers are similar, each layer introduces several more

concrete concepts specific for that layer or renames some of the existing concepts. Each of
the layers can be further divided into sub-layers.

The relation between layers is formed by use and realization relations. Use relation shows
how the higher layers make use of the services in lower layers. Realization relation shows
how the elements of the lower layers realize the comparable elements of the higher layers.

The Zachmann framework (framework for information system architecture) [22] is an

enterprise architecture framework that provides formal and structured way of defining an
enterprise. It is created based on analogy between traditional building architecture and IT
systems architecture. It suggests to use two-dimensional classification matrix whose rows
describe different perspectives of the system and columns describe different types of
description, i.e. the kind of questions that can be asked about a given view. Initial framework
is proposed in [22] and suggests a six by three matrix. It has been extended with three more
questions introduced in [23] to a six by six matrix. The framework has evolved throughout
the years [24] and has several versions; all of them capture enterprise’s aspects with the use
of a structured matrix. The rows of the matrix correspond to the following perspectives:

• Planner (scope) – the big picture of organization with the scope of the project;
corresponds to the executive summary for a planner or investor.

31

• Owner (business model) – business entities and processes related to the daily running
of business and how IT system supports that; corresponds to the business model that
constitutes the design of business.

• Designer (system model) – the design of the IT system that fulfills owner’s business
needs; corresponds to the system model designed by system analyst who must
determine the data and functions that represent business entities and processes.

• Builder (technology model) – the construction of the IT system specified by the
designer; corresponds to the technology model including the details related to the
programming languages, I/O devices, or other technology.

• Sub-contractor (detailed implementation) – the construction of IT system’s
components; corresponds to the detailed specification given to the programmers who
are not concerned with the overall structure of the system.

• Functioning enterprise – actual data, processes, departments, employees, IT systems,
applications, etc. of the organization; corresponds to the instances of the concepts that
are separated in one row whereas the other five contain the abstractions.

Each row represents a distinct, unique perspective. All cell models of one row build a
complete model for that perspective. For each view, it is possible to ask several questions to
analyze different aspects of the organization from certain perspective. These questions,
shown in the columns of the matrix, are:

• What entities are involved? - data and information relevant to the perspective.
• How are they processed? - processes relevant to the perspective.
• Where are they located? – networks (from organizations to the communication

networks) relevant to the perspective.
• Who works with the system? – people relevant to the perspective.
• When does event occur? – time information relevant to the perspective.
• Why are these activities taking place? – motivational aspects relevant to the

perspective.

In addition to the main matrix, Zachman proposes to fill the intra-row matrices as well.
They document the relation between different cells in a row (data-to-process, process-to-
network, etc.). They are important in the design process for checking the dependence
between different aspects, such as data, process, network, etc. In [25] it is described how
additional inter-row matrices can be used to relate the corresponding elements of different
perspectives. These relations are important for refining one perspective to the other and are
not captured in Zachman framework originally. It provides the relations between different
elements of one perspective, but not the relation between the corresponding elements of
different perspectives.

There are several proposals of processes for using the Zachman framework. However,
only a few deal with the conceptualization of the Zachman framework, such as [25].

Object-Process Methodology (OPM) [26] is a holistic approach for study and

development of information systems. It integrates the object-oriented and process-oriented
paradigms, putting the two main aspects of the system: structure and behavior of equal

32

footing. The main elements of OPM ontology are entities (stateful objects and processes) and
links (structural and procedural). Objects are things that exist. Processes are things that
transform objects. Structural links express static relation between entities. Procedural links
express the connection between entities that describe the behavior of the system.

OPM model is a set of inter-related Object-Process Diagrams (OPDs). Each set of
OPDs has its semantically equivalent English-like textual description represented using
Object-Process Language (OPL), constrained subset of English readable by both human and
machine. OPM has only one diagram type, showing both the structure and the behavior
(objects with states and processes). It does not deal with multiplicity of objects and processes.

To deal with complexity, OPM offers three refinement/abstraction mechanisms [27]:
• Unfolding/folding – for refining/abstracting the structural hierarchy of the thing
• In-zooming/out-zooming – exposes/hides the inner details of a thing
• State expressing/suppressing – exposes/hides the states of an object.

Using these mechanisms, it is possible to design the system on any level of details

without losing comprehension of resulting specification.
Using OPCAT [27], the tool for modeling OPM, it is possible to generate the code in the

given target language (such as Java) from the formal model description represented with
OPL. It is also possible to animate the model showing the existing objects, generated objects,
currently performed process, etc. In addition, it is possible to generate UML diagrams and
documentation from the OPM specification.

Business Process Modeling Notation (BPMN) [10], an OMG business process modeling

standard, provides a graphical notation for specifying business processes. Its goal is to
support business process modeling by providing a standard notation that is comprehensible to
business users yet represents complex process semantics for technical users. BPMN notation
is mostly focused on the representation of a system’s behavior and proposes a variety of
model elements for the behavior specification. It models the processes as predefined
sequence of activities. This is effective for predefined, fully specified, repeatable business
processes.

BPMN specifies one diagram type called business process diagram (BPD). In a BPD, two
hierarchies can be captured: by using combinations of swim lanes, a hierarchical structure of
organizations can be modeled; and by using combinations of BPMN processes, sub-
processes, and tasks, organization behavior can be modeled with different levels of details.
The former corresponds to the organizational refinement, the latter to the functional
refinement. Traceability between tasks and activities in BPD is explicit and maintained by the
sequence and message flows (connections).

There are many tools for modeling using BPMN and executing BPDs. The full list of
tools is available in http://www.bpmn.org/. Currently, there are 74 BPMN implementers,
showing that BPMN is becoming the de-facto standard for business process modeling.

Van der Aalst did a lot of work in the field of declarative process modeling. He has

introduced case handling – new paradigm for supporting flexible business processes [28]. He
illustrates case handling with the use of FLOWer software tool, developed by Pallas Athena,

33

which fully supports this paradigm [29]. He also proposes a ConDec [30] language for
declarative, flexible modeling of business processes based on temporal logic. ConDec can
also be executed as described in [31]. All this work together with the work and interest of
other researchers and practitioners in declarative process modeling has led to the creation of
another OMG standard: CMMN.

Case Management Model and Notation (CMMN) [32] is another OMG specification for

modeling activities, whose first version has been published in 2014. It uses the notation
whose goal is to be comprehensible by both business and technical users. It models the
activities that are not predefined and repeatable, but depends on the current situation and the
ad hoc decisions by the knowledge workers regarding a particular situation, a case [32].
Some examples where this kind of business process modeling is effective are: patient care
and medical diagnosis, application and claim processes in insurance, maintenance and repair
of machines and equipment, etc.

CMMN provides the notation for depiction of behavioral elements of one case, such as
Stage (episodes of one case), Tasks, Milestones and Event Listeners. It does not provide
visual modeling of the information model elements of the case [32]. Only information model
elements involved in the behavior of the case are in CaseFileItems.

CMMN has one diagram type modeling the case. Case instance is composed of
information represented by caseFileModel, behavior represented by casePlanModel and roles
corresponding to the humans expected to participate in the case represented by caseRoles.
The diagram contains the case with possibly many stages (fragments of case logic), tasks,
milestones and event listeners. Stages can be expanded and contain other stages, tasks,
milestones, and event listeners, similar to sub-process expansion in BPMN. This corresponds
to the functional refinement. Assignment of roles to participants, such as individuals or
teams, is not included in the scope of CMMN [32]. Therefore, there is no organizational
hierarchy included in CMMN.

There are several tools for case management modeling following different standards.
Some of them are listed in http://www.businessprocessincubator.com/tools/case-
management.html. Currently, there are 27 of them. Recently, the vendors started also
merging business process modeling with case management modeling, such as IBM BPM tool
in the newest version 8.5.5 from June 2014.

Design & Engineering Methodology for Organizations (DEMO) [33] is a methodology

for modeling, (re)designing and (re)engineering organizations. It provides a theory about
construction and operation of organization. It proposes set of elements for modeling business
processes and information systems based on four main concepts: communication,
information, action and organization. DEMO shows organizations in two different ways: as
black-box, showing input and output variables and the relation between them (called transfer
function); and as white-box, replacing the system with a structure of subystems which
transfer functions are more understandable (called functional decomposition). System can
also be decomposed with constructional decomposition into several subsystems not
necessarilly related to their transfer functions, but to the subsystems that are components of
the bigger system.

34

DEMO defines organization as a set of three aspect-organizations: the B-organization
(business), the I-organization (information) and the D-organization (document). I-
organization supports B-organization and D-organization supports I-organization.

DEMO has five diagram types describing these layers: actor - transaction diagram,
actor - bank diagram, process - structure diagram, objects - fact diagram, action - rule
specification. The construction model specifies the construction of the organization in terms
of transactions, actors, information banks, and information links between them. The process
model and the state model are considered as the next detailing level of the construction model
– they describe each transaction as a set of states and transitions. The action model specifies
the action rules and can be seen as the second detailing level of the construction model.
Traceability between modeled aspects is captured in DEMO using cross-model tables.

Service blueprinting is a customer-focused approach for service innovation and

service improvement. The approach was first described by Linn Shostack in the Harvard
Business review in 1982 [34]. Since then, the approach has evolved significantly to the
customer-focused approach for visualizing the service processes, points of customer contact
and underlying support processes in organization that drive and support customer-focused
service execution. It is used for service innovation, quality improvement, customer
experience design, and a strategic change with focus on customers. It depicts services on
multiple levels of analysis. This way, it facilitates creation of integrated view of the entire
service process and creates a common ground to different members of organization.
Employees and internal units can relate better to what their contribution to the integrated
service system is. It also enforces customer-orientation among members of organization.

Typical service blueprint has five components [35]:
• Customer Actions – all the steps that customer takes in the process of service

delivery. They are the central part of service blueprint.
• Onstage/Visible Contact Employee Actions – actions that are performed by onstage

contact employee in face-to-face contact with the customer; they are separated from
the customer by the line of interaction.

• Backstage/Invisible Contact Employee Actions – actions performed by backstage
contact employee in face-to-face contact with the customer (such as telephone calls);
they are separated from onstage actions by the line of visibility.

• Support Processes - actions of employees and units who are not contact employees
required for the service to be delivered; they are separated from contact employees by
the internal line of interaction.

• Physical Evidence – tangibles that the customer comes in contact with that could
influence his perception of the quality of service.

The process of building a service blueprint always starts by identifying the service
process, customer segment for which the service is modeled and the goal of blueprinting
(designing a desired service process for the new service, analysis of how the service is being
offered for the existing service). Once the service is captured from customer’s perspective,
necessary actions of onstage and backstage contact employees are modeled. Next, these

35

actions are mapped to the required support processes. Finally, the physical evidences for
every customer action step are modeled.

Some of the main characteristics and benefits of service blueprinting are:
• It is customer-focused.
• It provides a common platform for customers, employees and managers.
• It provides a common point of discussion for new service development or service

improvement.
• It gives employees an overview of the entire service process.
• It puts everyone involved in service design on the same page, improving the

communication and precision in the initial phases of service design.
• Can be used for any level of analysis, from micro-processes to macro-processes.
• Easy to share and update.
• Facilitates the comparison of actual and desired service and comparison with the

competitor’s processes.
• Forces people to take cross-disciplinary and cross-functional view of a service.

Technology, supply chain and other people can see how their work contributes to the
customer’s experience. Management staff can see underlying technology, employee
interactions and details needed to create customer’s experience.

• It needs to be updated whenever there is a change in the service process.

There are several other methods for service design or application of other modeling
methods to the services [36], [37]. We have explained the details of the most used service
design method. To the best of our knowledge, there is no service design method that can
simulate the models and provide the prototypes of the service behavior that could be used to
promptly evolve the specification in response to a feedback received from a business
specialist.

There are many other modeling methods and languages that we do not show in the

comparison table. We give brief overview of these methods here. e3Value [38] provides an
ontology to conceptualize and visualize eBusiness idea and to be able to do an analysis and
profitability assessment of the eBusiness model for all parties involved. The i* framework
[39] focuses on modeling properties such as goals, beliefs, abilities, commitments; and on
modeling strategic relationships. Enterprise Knowledge Development (EKD) [40] is a multi-
model, participatory enterprise modeling approach that involves a model for conceptual
structures, and interlinked sub-models for goals, actors, business rules, business processes
and requirements to be stated. Business Motivation Model (BMM) [41] models several
concepts from goals, down to processes and technologies.

Table II compares the main modeling methods based on a set of criteria that are relevant

for this work. As we compare modeling methods from different domains, we define first
several general criteria for distinguishing the main differences, such as which development
phase it is used in (early, late); is it focused on an integrated view of the organization or on
details; is it service focused, meaning two things: is it customer-oriented, i.e. does it start the
analysis from the customer’s needs and is the internal organization defined based on the

36

participation of people and organizations in the service design and implementation, instead of
on traditional hierarchical organization. We also categorize the methods based on the fact
whether they are IT focused. By this, we mean that the method is mainly intended for
modeling IT systems needed for the business, i.e. it is usually not used for high-level analysis
of business cases, but is focused on details of an IT system. This also changes the spirit of the
method. Once we categorize the methods, we define if they have support for model
verification, refinement verification and simulation of the models. Finally, we describe if the
methods use declarative or imperative process modeling and if the static part and behavior
are modeled in the same diagram. The criteria for which we were not able to find more
information in documentation to confirm our assumptions, we add “?” in the corresponding
table field.

We present in more details explanations of model verification, simulation and refinement

verification in the next sub-chapter, where we explain how formal methods and code
generation techniques are being applied for model verification, refinement verification and
model simulation.

From the table we can conclude that simulation, model and refinement verification are

applied mostly for the methods that are IT focused, show detailed view, and are used in late
design phase. There are not many methods in which it is possible to simulate high-level
models. SysML and OPM are the only ones providing that possibility. However, SysML is
intended mostly for the specialized domains, such as aerospace, automotive, health care, etc.
OPM can be applied to modeling organizations in general, but it is not intended for services,
i.e. it does not start with modeling customer’s needs and does not include service template in
which it is proposed how to identify internal structure based on the services that need to be
delivered.

37

Table II: Comparing modeling methods focused on behavior modeling

 Early/late
requireme
nts

Integrated/
detailed
view

Service
focused

IT
focused

Model
verification

Simulation Refinement
verification

Imperative/
declarative
process

Static and
behavior in 1
diagram

Catalysis Early Integrated No Yes No? No No? Both? Yes
UML Late Detailed No Yes Yes Yes Yes Imperative No
SysML Late Detailed No No Yes Yes No? Imperative No
Archimate Early Integrated No? No No No No? Imperative Yes
Zachman Early Integrated No No No No No / /
OPM Early Integrated No No Yes Yes No? Imperative Yes
BPMN Late Detailed No Yes Yes? Yes No? Imperative No?
CMMN Late Detailed No Yes Yes? Yes No? Declarative No?
ConDec Late Detailed No Yes No? Yes No? Declarative No
DEMO Late Integrated No Yes Yes? Yes? No? Imperative Yes?
Service
blueprinting

Early Integrated Yes No No No No Imperative No?

	
 38	

2.2 Use of Formal Methods and Code Generation Techniques in
Modeling
We categorize application of formal methods and code generation techniques in

modeling in: application for model verification, application for model simulation and
application for refinement verification. Code generation techniques are used only for
the model simulation. We first give general background and then list different
applications in the domain of modeling. Finally, we describe application of Alloy that
is used in our method in different domains and how it is used in our method.

Formal methods are mathematically rigorous techniques for specification,

design and verification of systems. They provide a means to examine the entire state
space of a system design and establish a correctness of safety property that is true for
all possible inputs [42]. This is achieved by use of model checking tools, such as
Alloy [43], [44], NuSMV [45] or theorem provers, such as Isabelle [46], [47]. Model
checking is used to build a finite state system and check satisfiability of a formula in
the given domain. It is possible to detect if the formula does not hold. However, if it
holds, it means that it holds in the given domain, i.e. in that finite state space, which is
not a guarantee that it holds in general. Theorem provers describe a system with a set
of mathematical formulas, and use theorems to prove mechanically that certain
properties hold.

Application of formal methods to hardware and software system design can

contribute to reliability and robustness of design. Therefore, they are mainly applied
to specification and verification of safety-critical systems, in which the rigorous
quality is extremely important. For example, they are used to develop software for
nuclear power plant’s reactor protection system [48], the traffic alert and collision
avoidance system [49], the safety automatism for the various railway systems
installed by Alstom and Siemens [50], etc. In addition to the safety-critical systems
development, formal methods are used in different areas, including routers, Ethernet
switches, routing protocols, security protocols, for functional verification of
microprocessors, for development of processors, by companies such as Intel, AMD,
IBM and many others.

Despite the fact that the formal methods are very powerful in providing formal

specification that can be rigorously validated and verified, there were hesitations on
applying them to domains different than safety-critical systems. Some practitioners
believe that the role of full formalization has been overemphasized [51], [52]. In
practice, the modeled systems are too complex, the notation appears complex, and the
output is too difficult for domain expert to understand and to extract meaningful
information [48]. Therefore, benefits of the formal methods are often gained at a
heavy price. This is especially true for the specification of requirements and high-
level designs whose purpose is to be simple and easily understandable, so
overformalizing them can be harmful. Hence, many lightweight formal methods that

	
 39	

emphasize partial specification and focused application have been proposed. One of
the most well-known lightweight approaches to formal methods is Alloy [43], [44],
the language that is used in this thesis as well. With lightweight formal methods,
application of formal methods to high-level modeling became more common [53],
[54].

High-level modeling methods provide different levels of precision. They
usually provide rich representation that non-technical stakeholders find appealing, but
are often difficult to check automatically. To achieve automated analysis of models,
formal methods can be useful. However, the nature of the early-phase analysis
suggests that formality should be used carefully. Formal methods can be difficult to
construct and overformalizing can be harmful [55]. When used for higher-level
design, formal methods are used for: model formalization (formal specification),
analysis and verification; model simulation and validation; proving the refinement
between models. We give examples of each of these uses. In model simulation
section, we also give the examples of code generation techniques used to simulate and
execute the models. Finally, we explain Alloy language that we use in this thesis and
its application in different domains.

2.2.1 Model Formalization, Analysis and Verification
UML includes a formal constraint notation Object Constraint Language (OCL)

[56]. It is precise text language for defining constraints and object query expressions
on any Meta-Object Facility (MOF) [57] model or meta-model, including UML. It
abstracts the formal mathematical expressions, making the language understandable
to practitioners. It enables the designer to express additional constraints on the model
that cannot be expressed using the diagram notation, making it more precise. It can be
used to express constraints on variable values within the model and since UML2.0 it
also provides fully defined action notation. However, it cannot be used to analyze the
model and prove the correctness of certain properties. Also, OCL has been criticized
by some formal methods users for being cumbersome compared to traditional set
based modeling notations [58]. Therefore, there are a lot of approaches for
formalizing UML for the purpose of analysis, which propose to use Z, B, Object-Z or
Alloy as underlying semantics for UML or for analysis of UML models. One of them
is UML-B.

The UML-B [59] is a profile of the UML, which defines a subset and

specialization of UML that can be translated into B [60] language. It is created to
provide more precise semantics to UML models, so that it can be used for modeling
critical systems as well. It enables modeling of various types of problems at different
levels of abstraction. It enables verification of UML-B models, as well as verification
of the refinement relations between models at different level of abstraction.

It enriches UML notation with use of stereotypes to specialize the meaning of
UML entities and use of details, such as invariants and guards as constraints of
operations. UML-B provides diagrammatic formal modeling notation. It hides the

	
 40	

complexity of B and packages mathematical constraints and action specifications into
small sections in the context of its owning UML entity. This way, for the modeling
information that cannot be expressed diagrammatically it uses UML-B clauses, which
correspond to the packaged B clauses, as tagged values that can be attached to
relevant entities.

It provides the tool to automatically translate UML-B model to the B
specification. The B specification can then be used to verify the correctness of UML-
B model and detect errors at early stages of design. UML-B contributes to UML with
the notion of a refinement relation between abstract and concrete models and the
ability to verify this relationship, based on B refinement.

Another approach to UML formalization [61] uses Z notation as a supplement

to UML models to express syntax and semantics of the models. The authors chose to
use Z instead of OCL, because it provides better facilities for proofs. Their goal is to
make UML models more precise and analyzable. In order to prove a property for a
given UML model, the authors apply a set of transformation rules until the desired
conclusion is reached. Then they use Z representation to prove that whenever the
transformation is applied to the diagram, the resulting diagram is a valid deduction of
the original diagram.

The authors of [62] describe the translation of UML specifications with OCL

constraints into B. The authors of [63] describe the mapping of class diagram features
into B machines. They combine UML with B method to provide formal specification
of database applications, which are data-centric [64]. UML2Alloy [65] is a tool that
transforms UML class diagrams with OCL constraints to Alloy specification, which
can be automatically analyzed by Alloy Analyzer tool [13] to identify the design
faults in specification. It is also possible to transform the fault instances back to UML
showing the examples that illustrate the identified faults in specification.

Another category of tools for analysis of UML models relies on theorem

provers. The KeY tool [66] formalizes OCL and enables analysis of models with an
interactive theorem prover. HOL–OCL [67] is another tool that transforms OCL to
Higher Order Logic (HOL) formulas that can be analyzed by the Isabelle [46], [47]
theorem prover. All these methods require guidance and special expertise to operate
the theorem prover environment.

Authors of [68] have extended SysML by introduction of basic concepts of

goal model from KAOS method. Model created with extended SysML can be
translated to B. Using B specification and the tools, it can be verified if the model
satisfies all the requirements.

Formal Tropos [69] is a part of the Tropos project to develop an agent-

oriented software development methodology for specifying early and late
requirements using actors, goals and the dependencies between them. It is based on i*

	
 41	

and extended with a temporal specification language inspired by KAOS [70] to
provide a precise description of dynamic aspects. Once the model is created in
Eclipse, it is translated to the intermediate language from which the finite state model
is built in NuSMV. NuSMV checks the generated model and shows counter-examples
and errors in graphical form. It checks if the specification is self-contradictory, that
the types in the model are correct, that the requirements are not overspecified or
underspecified and that all necessary states can be reached from initial state. This
approach is focused on the agent properties such as goals, beliefs and abilities.

The Stimulus Response Requirements Specification (SRRS) notation [71] is

the formalized version of the Thread Capability (TC) notation developed in-house by
Raytheon of Canada for specifying their complex commercial and military air traffic
control systems. TC and SRRS are designed for the specification of large, software
intensive systems with complex data requirements [72]. SRRS extends TC notation so
that it can be analyzed by the tools, which helps modelers develop and verify
specification. All the required pieces of information are entered into the templates,
that are then translated to S [73], the mathematical notation based on Z [74]. A
dedicated validator of the type checker tool is used to find hundreds of different kinds
of semantical errors present in S specification.

KAOS [70] is a software development methodology that supports the whole

process of requirements elaboration – from high-level goals that should be achieved
by the composite system to the operations, objects and constraints to be implemented
by the software part of it. It provides a multi-paradigm specification language and a
goal-directed elaboration method. The language combines semantic nets for the
conceptual modeling of goals, constraints, agents, objects and operations in the
system; temporal logic for the specification of goals, constraints and objects; and
state-based specification for the specification of operations [75]. Each construct in the
KAOS language has an outer semantic net layer for declaring a concept, its attributes
and its links to other concepts; and inner formal assertion layer for formally defining
the concept. Formal assertions are written in a real-time temporal logic. Formal
representation enables one to create precise specification and to precisely refine the
goals into sub-goals, as explained in the refinement section.

2.2.2 Model Simulation
USE tool (UML Specification Environment) [76] provides a way to animate

UML models and generate instances that can be used to evaluate the model. It
generates the snapshots that correspond to the rules expressed in the model. It
provides a way to check if a specific instance of the model conforms to the
constraints.

The authors of [77] plan to use formal methods for simulation of business

transactions in the existing method and toolset “Efficient” [78], which will enable

	
 42	

business experts to validate the defined business services and models through an
animator tool. The toolset will allow business experts to “play” the model as if those
were already implemented.

Code generation techniques are also used to simulate and execute different

models. BPMN specification includes mapping to the Business Process Execution
Language (BPEL). Therefore, BPMN models have their corresponding BPEL
representation and can be executed generating the application using the user forms
and roles in the BPMN model corresponding to the poles and lanes. A lot of tools
implementing BPMN and CMMN have option to execute the models represented with
these two notations.

OPM can also execute its models using the tool OPCAT [27], and generate the

code in the given target language (such as Java) from the formal model description
represented with OPL. It is also possible to animate the model showing the existing
objects, generated objects, currently performed process, etc.

Domain specific modeling uses models as a source for code generation. There
are a lot of environments for creating and using domain-specific modeling languages:
commercial tools MetaEdit+ and Actifsource, open source tools such as GEMS,
academic such as GME. Domain-specific languages frameworks have also been
added to the existing IDEs, such as Eclipse and Microsoft’s DSL Tools. They all
provide a way to create domain-specific modeling language and to use it for code
generation.

2.2.3 Refinement
In addition to the analysis of a model, formal methods have been applied to

prove the refinement between different models. Authors of [79] propose a way to
validate the refinement between the state machines using pi-calculus. They propose
six kinds of UML state diagram’s assembly mechanisms, with the corresponding pi-
calculus formal semantics. They use pi-calculus semantics to validate if the UML
state diagrams are observation equivalent.

As we have mentioned, UML-B is also using the corresponding B

specification to verify the relation between abstract and concrete models based on B
refinement.

One of the steps of KAOS methodology is to refine goals into sub-goals. Goal

decomposition done by hand is usually incomplete and sometimes inconsistent. Also,
interesting alternatives may be overlooked. In order to provide formal support for
building goal refinements that are complete, proved correct and integrate alternatives,
the authors of [75] propose usage of a set of refinement patterns. These patterns are
generic and propose different ways to decompose the goal into sub-goals. Once they
are proved as correct and complete, they can be used to refine the goals, by keeping

	
 43	

the model correct and complete without a need to show tedious mathematics involved
in proofs. They are proved to be correct by use of formal representation of the
concepts in KAOS.

2.2.4 Alloy Applications
Our approach is based on Alloy, a lightweight formal specification language

developed at MIT. The area of Alloy application is very large: it has been used for
model analysis [65], verification [4], [80], constraint checking [81], automatic model
completion [82], enterprise modeling [83], software architecture [84], service testing
[85], and others.

To the best of our knowledge, all current Alloy applications in the domain of
service design are targeting software architects, developers and other technical
specialists. The examples include measuring QoS of a composite orchestration [85],
[86], verification and specification of IT services [4], [85], and others.

As we can conclude, formal methods provide a good way to create precise

models by formalizing otherwise soft representations used in high-level designs, such
as for business and service models. However, overformalization can be harmful and
difficult to apply in practice. Therefore, different modeling methods have applied
different approaches to solve this problem: by using formal languages as a
supplement to the diagrams, by abstracting elements of formal languages, by applying
lightweight formal methods, and others. As a result, formal methods have been used a
lot in modeling for model verification, model simulation and refinement verification.
All of them are mostly applied for the methods that are IT focused, such as UML.
They are not applied for the business models on high-level of analysis.

To sum up, model verification and simulation are applied mostly on the IT
focused modeling methods or for a specific domain. We propose a method that
provides a way to create precise models on high-level of analysis, which can be
verified and simulated. In addition, our method is also service focused, meaning we
always start by modeling customer’s needs and provide a service template that
includes organizing people, technology and organizations based on the service that
should be provided.

	
 44	

3 Knowledge Base
In this chapter, we explain the knowledge base including theories,

methodologies, and languages forming the base for this work. We first explain
SEAM, the method upon which the proposed method is based. Its theory is based in
systemic modeling paradigm. Therefore, we explain systemic modeling paradigm and
SEAM.

The main service specification of BASS is based on model transformations. They
are also used to simulate and prototype the models. Therefore, we explain the model
transformation and what categories of transformations are used in BASS.

BASS uses formal methods with model verification and code generation
techniques to animate the models. Therefore, we explain model verification and the
Alloy language that is used to simulate the models. Alloy enables to use formal
methods and model checking, as well as to visually show the instances of the model.
Therefore, it is useful to create precise specification that can be validated by the
business and IT analysts, thanks to the visual representation of the results. Also, as a
declarative language it is useful to discover missing business rules in the model.

Finally, we explain code generation and Arcimboldo approach, used to prototype
the models. As it is based on templates, it enables adding another level of abstraction
before going directly to code.

3.1 Systemic Modeling Paradigm and SEAM
The service specification method we propose is based on SEAM, a modeling

technique developed at EPFL. SEAM is a method that is based on General Systems
Thinking (GST).

Banathy and Jenlink [87], seeking to provide a comprehensive description of
GST, explain it as the interlinked association of three domains of inquiry: systems
theory, systems philosophy (which further contains epistemology, ontology and
axiology) and systems methodology. They call this set Systems Inquiry.

The systemic modeling paradigm was proposed by Wegmann in [1]. It
combines Systems Inquiry and Kühn’s notion of paradigm change. A paradigm is
defined as “a philosophical and theoretical framework of a scientific school or
discipline within which theories, laws, and generalizations and the experiments
performed in support of them are formulated” [88]. The systemic modeling paradigm
also extends Systems Inquiry with discipline specific theories.

Systems Theory

Systems theory, as described by Banathy and Jenlink [87] espouses the view
that modern science and industry have locked themselves in a pursuit of an “ever-
increasing specialization.” This specialization results in specialists’ inability, and
often unwillingness to engage with, or even understand, other specialists.

The early system thinkers have observed that as each specialized discipline
creates its own specialized vocabulary, it nevertheless uses concepts that are similar to
other disciplines. It is often the vocabulary that is different but the underlying

	
 45	

principles are the same. The same phenomena studied by a biologist can be observed
in enterprises, for example. GST was therefore designed as a lingua franca that would
enable specialists from different disciplines to collaborate (e.g. a biologist with an
economist) and understand each other. GST seeks to define general principles that can
be applied to any phenomena across established disciplines, thereby complementing
the specialist’ view.

 SEAM is a method built on a systemic grounding. Much like GST is
interested in federating scientific disciplines, when intervening in organizations, there
is a need to understand and transcend the specialist’s view of the stakeholders (often
called “silos” today) that compose the organization. While doing so, the designer
should be careful not to alter too much the stakeholders’ way of working because
their effective action depends on them remaining specialists.

Systems Philosophy

As noted by Banathy and Jenlink [87], interest of GST with general principles
that transcend disciplines implies a close link with philosophy. They define systems’
philosophy as consisting of three components: Ontology, Epistemology and Axiology
(Ethics). Ontology describes what things are, e.g. what a person is, what an
organization is, what a society is. Epistemology is oriented towards questioning of
ontology, e.g. how we know what a person, an organization, or a society is? Banathy
and Jenlink contend that these two aspects are intimately linked because it is often
impossible to completely separate what we know from how we know it. Finally,
axiology is concerned with the notions of value, ethics and aesthetics. It underlines
the choices made by systems thinkers when they select some aspects of reality for
attention, rather than others. Are these choices good, bad, beautiful, ugly, moral or not
that constitutes the questions that axiology aims to reply to.

Parting from Banathy and Jenlink’s explanation we explain the SEAM
philosophy starting from epistemology rather than ontology.

The SEAM epistemology is interpretative [89] or interpretive [90]. This means
that we believe that each stakeholder creates his specialized knowledge of his work by
interacting with the work artifacts and through his relationships with other specialists
in his domain. We call universe of discourse this set of entities that the stakeholder
sees, which is a subset of the total number of entities available in reality. Each
stakeholder builds a set of concepts, which we call his conceptualization, by
interacting with his universe of discourse. This conceptualization is the basis of his
understanding of the world.

Other terms that convey a similar meaning to the universe of discourse and
conceptualization can be found in Vickers’s appreciative system [91], [92]. Vickers
explains that people and organizations develop readiness to see some aspects of
reality. This readiness is necessary for effective action, but is also a barrier to
collaboration with others because it makes it difficult to see things from a distinct
point of view.

What we call the SEAM ontology, in-line with the standard use of the term
ontology in computer and information sciences, are the model elements with which an

	
 46	

enterprise architect describes the stakeholders’ conceptualizations and the shared
model that the stakeholders should agree about.

In the SEAM ontology we use the term working object to designate a system
in the conceptualization. For example, a working object named “EPFL School” in the
model maps to a system that the modeler understands as being a school in
conceptualization. The name EPFL helps mapping to the specific school “EPFL” in
the universe of discourse. This explains how the model element in the model relates to
entities in the universe of discourse.

The ontology in the form of the working object allows benefitting from the
domain specific theories proper to SEAM (e.g., refinement, model checking). A
working object refers to a service system [92], [93] in the sense that it shows the way
value is co-created rather than an organizational entity, such as a company. The
working object “EPFL School” may therefore contain other working objects that map
to organizations that most stakeholders will think of as external to EPFL, for example,
an IT supplier. Having the “IT supplier” working object within the “EPFL School”
working object shows that the service provided by the EPFL School includes the
service provided by the IT supplier.

The SEAM axiology refers to the choices the specialists make about what to
include in their model. These choices can have two aspects: aesthetics and ethics.
Aesthetics include practicality and simplicity. The modeler needs to decide to model
what is useful and practical in order to show the problems and possible solutions. The
goal is not to make an exhaustive universal list of what exists in a company, but rather
to analyze a concrete challenge. The modeler needs also to find a way to attain
simplicity. The modeler should use the abstraction mechanisms of SEAM to illustrate
the situation concisely. Even if it is concise, the model should keep the important
systemic model elements (such as service system boundaries in the “to-be” model), so
that the stakeholder can understand what is represented. Ethics – the model also
captures the ethical choices of the modeled enterprise. For example, is the shareholder
the primary “customer” of the company or should it be the “normal” customer.
Axiology is useful to explain these two kinds of choices. It is associated with
heuristics, such as, for example, that it is usually beneficial to first understand the
“real” customer rather than the shareholder.

Systems Methodology

Systems methodology is the study and creation of methods for intervention.
Banathy and Jenlink [87] divide systems methodology into two domains of inquiry:
the study of methods (their creation and improvement) and the practical use of these
methods. The methods are used for the analysis of systems and systems problems, the
design, development and implementation of systems and the management of systems
in general. The method depends on the problem context and content as well as the
type of systems in which the problem is situated. A specific methodology needs to be
chosen from the wide range of available frameworks using a solid justification and
analysis of the investigated problem.

	
 47	

The SEAM methodology prescribes the way a designer uses the SEAM theory
and philosophy to produce results. The methodology is a collection of techniques,
some of which are well-known to enterprise architects (such as the as-is and to-be
modeling). Others were imported from other disciplines, e.g. contextual inquiry [94].
Because it is often costly and time consuming to do contextual inquiry in practice, we
use an alternative technique of using concrete names of people and organizations
(e.g., EPFL School rather than simply School) as well as anecdotes in workshops.
This helps stakeholders to remember the context they were in when facing some
problems. Without this context, they may often forget to give many details about their
work. A related technique encouraged in SEAM is to collect supporting evidence
about concrete situations in the form of e.g., pictures, letters, and emails. We also
recommend developing a model bottom-up and top-down at the same time. We obtain
the best results when the modeling sessions are short and iterative.

The first paper about SEAM was published in 2003. SEAM is used in

consulting for business-IT alignment [95], [96], enterprise architecture [97] and
business strategy [98]. It is used for teaching enterprise architecture, service-oriented
architecture, requirements engineering [99], [100] and business strategy for IT
services.

SEAM provides a consistent set of modeling principles and constructs to model
an enterprise at different abstraction levels both from organizational (company,
department, IT infrastructure, etc.) and behavioral standpoints (services and processes
at different granularity) [1].

SEAM is inspired by the Catalysis approach [15] and by the Unified Modeling
Language (UML) [8], [101]. The Catalysis approach is a component-oriented
development method based on the two main concepts: object and action. Some of the
main principles overtaken from Catalysis and adapted in SEAM are: hierarchical
model structure, functional and organizational refinement, localized and distributed
action [15]. SEAM proposes a concrete implementation of Catalysis and extends
Catalysis to business modeling. Moreover, SEAM notation takes the UML notation
and proposes one kind of diagram that includes a subset of the element kinds found in
the 14 UML diagrams (UML 2.4.1). A SEAM diagram is a combination of the UML
deployment diagram, use case diagram and class diagram.

SEAM is used in early design phases for early requirements gathering. It can be
seen as a method for a system pre-design and used as a complement to the UML or
the Business Process Modeling Notation (BPMN) languages. Its purpose is not to
show the low-level design, but to delimit the problem, analyze and discuss the
stakeholder’s viewpoints, show their objectives and the processes in which they are
involved, without showing all the details. In practice, the method is used with pen,
paper, post-its, flip-charts, etc.

SEAM provides three representations to model both the business and IT context:
• Goal-Belief model - Describing the motivation of the business and of the IT

stakeholders;

	
 48	

• Behavior model - Describing the services, processes implementing the
services and responsibilities of the business and of the IT stakeholders

• Supplier Adopter Relationship model – Describing the features supported by
the system, and what benefits these features provide to the different entities
constituting the situation being modeled.

An example of how all of them can be used during the case analysis in explained

in [102]. In this thesis, we deal with the behavior model only. Therefore, we focus on
explaining the theory relevant to that part of SEAM. SEAM has an explicit systemic
paradigm, as explained in [1], which sets it apart from most other enterprise
architecture methods.

A SEAM model represents systems that people perceive in their reality. These are

represented as modeling elements that we call working objects. We can represent the
externally visible behavior. For this we represent the working object as a whole (black
box). The externally visible behavior is represented as a working object’s service. We
can also represent the systems construction (i.e. the component working objects). In
this case, we show the working object as a composite (or white box, transparent box).
The process of going from working object as a whole to working object as a
composite is named organizational refinement, as we refine the organization structure.
Similarly, we can refine the service as a whole to an service as a composite, showing
its constituting sub-services. We refer to this as functional refinement, as we refine
the functional part of the system (Figure 9).

The working objects in our models appear with the appropriate business term,
e.g., markets, segments, value networks (group of companies), companies,
departments, people, IT system, IT infrastructure, etc. We can represent any kind of
systems with a working object. The same modeling rules apply regardless of the
nature of the modeled system.

Figure 9: Functional and organizational refinement in SEAM

	
 49	

3.2 Model Transformation
A model transformation, in Model-Driven Engineering (MDE) is used to save

effort and reduce errors in a model evolvement from abstract specifications to
concrete specifications and potentially to their implementations. By [103] model
transformation is defined as: “A transformation is the automatic generation of a target
model from a source model, according to a transformation definition. A
transformation definition is a set of transformation rules that together describe how a
model in the source language can be transformed into a model in the target language.
A transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.” The
transformation process is illustrated in Figure 10.

Figure 10: Model transformation process (from [104])

Based on the language of the source and target model and on their abstraction
level, [105] the following categories of transformations are proposed:
endogenous/exogenous and horizontal/vertical.

A transformation is endogenous if the source and the target models conform to
the same meta-model (are expressed in the same language). Endogenous
transformations are also called rephrasing. A transformation is exogenous if the
source and the target models conform to different meta-models (are expressed in
different languages). Exogenous transformations are also called translations from one
language into another.

Typical examples of translation are:

- Synthesis of a higher-level, more abstract, specification (e.g., design model)
into a lower-level, more concrete one (e.g., a model of a Java program).

- Reverse engineering – extracting a higher-level specification from a lower-
level one.

- Migration from a model (visual specification or program) written in one
language to another, by keeping the same level of abstraction.

Some examples of rephrasing are:
- Optimization – improving certain qualities, while preserving the semantics
- Refactoring – change of internal structure, while keeping the same level of

abstraction.

	
 50	

A transformation is horizontal if the source and the target model reside at the
same abstraction level. A transformation is vertical if the source and the target model
reside in different abstraction levels.

Typical examples of horizontal transformations are refactoring and migration.
Typical example of vertical transformation is refinement, where a specification is
gradually refined.

In context of visual modeling, we distinguish the transformations of visual
specifications to executable program specifications (exogenous), and the
transformations of visual specifications to visual specifications. Latter transformations
can be endogenous (if both models are expressed in the same visual modeling
language) or exogenous (if a language of the target model is different from the
language of the source model). [106]

In this thesis, we use transformation from one BASS model to another BASS
model. By the given categorization, this belongs to the vertical, endogenous
transformation, more precisely to refinement. We also use the simulation and
prototyping of BASS models. They correspond to vertical exogenous transformations,
more precisely synthesis.

3.3 Model Verification and Alloy
Model verification is the process of checking whether a certain property holds

for the modeled system. This can be done by formal verification, the act of proving or
disapproving the correctness of a specification (in this case a model), using formal
methods and mathematics. The model of a system is specified with a set of logical
formulas. There are two main approaches to formal verification: model checking
[107] and theorem proving based on logical inference [108].

Model checking is an approach based on exhaustive exploration of the model of
the system, which can be considered as a finite state machine, with nodes representing
system states, and vertices presenting transition between their states. In order to check
if a model satisfies some property, the state space of the model is exhaustively
explored.

The major drawback of the model checking is a state explosion problem, which
originates from the fact that for real systems the size of the state space grows
exponentially with the number of processes [109]. To avoid the state explosion,
model checkers use different techniques, such as counterexample-based algorithms.
To prove that the property of a system holds, the algorithm looks for the case, for
which the property does not hold (called counterexample). In case the counterexample
is found, the property does not hold. However, if there are no counterexamples, that
does not prove the validity of the formula. It proves only that it is valid in the given
domain.

The second approach is an automated theorem proving based on logical
inference. This approach uses a set of axioms for the underlying logic and hypothesis
about the system to deduct the proof for validity of the formula. [106]

	
 51	

Unlike model checking, this approach is not limited by the state explosion
problem and if the proof is found, it implies that the formula is valid. The major
drawback of this approach is that is requires the designer to understand in detail why
the system works correctly, and to express this in the verification tool, by entering the
sequence of theorems to be proved.

In this thesis, we use only model checking to verify and validate the models.

More concretely, we use Alloy declarative language to represent the model formally
and the Alloy Analyzer tool to verify the constraints and the results of simulation to
validate the model with the stakeholders. Therefore, we explain Alloy in more details.

The models created with BASS can be simulated with Alloy to observe the

behavior and verify and validate the models. Alloy [13] is a declarative specification
language developed by the Software Design Group at MIT. Alloy is a language for
expressing complex structural constraints and behavior based on first-order logic.

The Alloy Analyzer [43] is a tool for the automated analysis of models written
in the Alloy specification language. Given a logical formula and a data structure that
defines the value domain for this formula, the Alloy Analyzer decides whether this
formula is satisfiable. Mechanically, the Alloy Analyzer attempts to find a model
instance - a binding of variables to values - that makes the formula true.

The syntax of Alloy is similar to the syntax of OCL (the Object Constraint
Language) for UML [110]. In the following lines, the Alloy keywords are marked in
bold. Data structures are represented with signatures (sig) and fields. Alloy reusable
expressions (i.e. functions) and constraints (i.e. facts, predicates and assertions) [44]
can be used to reason about data structures and to define the relationships between
them.

There are three types of constraints specified in Alloy: Fact (fact) is a model
constraint that permanently holds; Predicate (pred) is a constraint that holds in
specific context or for a specific part of the model only; Assertion (assert) is a
property that the designer believes should be implied from the model and can check
(command check) if it can be deduced from the other (permanent or contextual)
constraints. Assertion can be presented in a shorter form assertionName: check.

Logic of Alloy language combines the quantifiers of first-order logic (holds
for every element (all), holds for some element (some), holds for no element (no),
holds for at most one element (lone), holds for exactly one element (one)) with the
arithmetic operators (+, −. =, etc.), set operators (union (+), difference (-), intersection
(&), subset (in), equality (=)), relational (arrow(->), dot(.), transitive closure (), etc.)
and logical operators (negation (not/!), conjunction (and/&&), disjunction (or/||),
implication (implies/=>), alternative (else/,), biimplication (iff/<=>)).

In Alloy, the model is written with Alloy language and can be simulated in the

Alloy Analyzer tool. The result of the simulation is a set of instances that satisfy the
constraints given in the model. It is shown in a graphical form.

	
 52	

We show an example of such a model in Figure 11 and Figure 12, found in
[103]. Alloy code in Figure 11 models the example of the family relationships. The
first line defines the module in which the family example is modeled. Then, the data
structure is defined with signatures (sig) and fields. They are similar to Java classes.
We define the signature name, their fields with cardinalities (lone-0 or 1, one-1, set-
many, etc.) and types (Man, Woman, etc.). Signatures can also be abstract, meaning
like in Java that it can be inherited (sig Man extends Person) and cannot be
instantiated, i.e. in the resulting model we won’t see instances of Person.

Once we have defined data structure, we add the constraints on the data
structure. In this example, we use the fact that claims that there is no person who can
be its own ancestor. We also express that husband and wife are symmetrical relation,
i.e. if person A is a husband of person B, then person B is a wife of person A. We
express this using quantifiers, set and relation operators. Unlike predicate, the fact
applies globally on the whole model, so everywhere in the model, this constraint will
hold.

In the right column, we use the assertion noSelfFather to check if some
properties hold in the model. We use check command to check if this assertion is
valid. As a result, we will get either counterexample showing the instances in which
this assertion does not hold, or the result that the assertion is valid.

At the end, we define the function grandpas, which as Java method is reusable
part of a code. It takes one Person as a parameter, and returns all its grandfathers. This
function is used in a predicate ownGrandpa, which checks if one person can be its
own grandfather. Unlike the fact, expression in predicate is valid only in that context,
i.e. this constraint won’t influence any other part of the code, unless the predicate is
executed.

We run the predicate ownGrandpa with the command run and as a result get
all the instances of the model that satisfy the constraints in the model.

Figure 11: Alloy model of the family example (from [111])	

	

	
 53	

The result of simulation of the model in Figure 11 is shown in Figure 12. In
fact, the result is actually the set of instances that satisfy the constraints in the model.
Figure 12 depicts one of the instances. There are 4 persons shown in trapezoid forms,
2 women: Woman0 and Woman1, and 2 men: Man0 and Man1. The relation between
them is shown with the names on lines connecting them. For example, Woman1 is
mother of Woman0. Man0 is marked with ownGrandpa, meaning that it is the
example of the person that is its own grandfather. As we can see, Man1 is his father,
meaning that Woman0 is his mother and Woman1 is his grandmother. This implies
that her husband, Man0, is his grandfather. Therefore, Man0 is his own grandfather. If
we would like not to get instances like this, we would need to add additional
constraints to our model. With this example, we have covered the main syntax of
Alloy language and explained how the simulations in Alloy work.

Figure 12: Result of simulation of the family example in Alloy Analyzer tool (from

[111])

3.4 Code Generation and Arcimboldo
Code generation in the Model-Driven Architecture (MDA) means the user

abstractly models solutions, and the automated tool derives from the model or its part,
the source code. MDA was launched by OMG in 2001. Based on OMG’s standards,
MDA separates business and application logic from underlying platform technology.
Platform-independent models (PIM) capture the business functionality and behavior
of an application separately from technology that implements it. These models specify
business and application logic, independent from the technologies that are used.
Platform-specific model (PSM) contains the logic expressed with the concepts related
to the technology used. In addition to traditional MDA tools used for code generation,
in which models are mostly specified using general-purpose UML, Domain Specific
Modeling (DSM) became very popular. DSM uses the modeling concepts coming
directly from the application domain.

In this thesis, we use BASS models as platform-independent models to specify
the services that are needed and then translate them to Arcimboldo project, containing
templates in the given target language (in this case Java), corresponding to the

	
 54	

platform-specific model. We then use Arcimboldo framework for code generation.
Therefore, we explain Arcimboldo in more details.

Arcimboldo [112] is an approach that allows developers to devise various kinds
of applications with the help of templates. It includes a workbench that supports the
full development process from the creation of the templates, through code generation,
up to the (automatic) generation of a DSL (Domain Specific Language) that can be
used to develop applications that use similar operations.

The components it manages grow bottom up with the application and provide
more and more sophisticated support as the work progresses. When the project is
mature enough for domain specialists to take it over, a DSL can be generated quasi-
automatically. The resulting DSL can be used to extend the application, as well as to
develop other applications that require similar operations. [113]

The generation of an application is based on the expansion of templates
(Javascript object syntax (JSON) templates [114]). Application is created from three
main types of file: the main object, templates and the descriptor file.

The main object contains JSON object with data, which when combined with
the template produces the given page, class or another part of application. The syntax
of this object corresponds to Javascript's. It is similar to the data dictionary in JSON
templates. It enriches the standard syntax with several features, like use of predefined
or user defined methods. In addition, the computations can be specified with a
specific algebraic language Aloq [112]. It appears in the project with extensions .jao.

The templates correspond to the JSON templates, with some particularities.
They can be used to write templates for pages, classes or other parts of the
application. They can be written in any target language, depending on the
requirements for the application. They appear in the project with an extension .tpl.

The descriptor file contains the list of all the files that must be created, and for
each file the information on which template and what part of the main object it is
created from. It appears in the project with extension .fls.

Arcimboldo comes with a workbench that includes Arcimboldo editor and
Arcimboldo generator (Figure 13). In addition, there is also Arcimboldo generator for
DSL. Arcimboldo editor enables user to independently edit templates, the main object
and description file. Combining these files, Arcimboldo generator creates the
application. Once the application is mature enough, Arcimboldo DSL generator can
be used to create DSL that can be used for development of similar applications.

Figure 13: Arcimboldo workbench: overview (from [112])

	
 55	

The workbench also offers the possibility to understand where the generated
parts come from. This feature extends the ability of Eclipse to open the declarations
and the references of the methods, variables and classes to all types of files, by using
the description object as a relay between the symbols.

We illustrate how Arcimboldo works with the example in Figure 14. On the
left side, there is a template that contains an attribute {title}, a section {.section
subtitle} and a repeated section, {.repeated section list}. Inside the section subtitle
there is a category defined with the attribute {categ_id}. This attribute belongs to the
special kind of attributes, as it ends with _id. This means its name can be used also as
an uppercase and the element can be searched by its value when the predefined
method in the main objects is used. Repeated section contains the text with the
attributes {animal} and {sound}. The attributes in the template correspond to the
attributes in the object, the section to a sub-object and the repeated section to an array.

Figure 14: Arcimboldo example (from [112])

In the center of the Figure 14 is the main object from which the attribute

names in the template come from. As we can see, repeated section list corresponds to
the array list in the main object. Section subtitle in the template corresponds to the
sub-object in the main object. The attributes in the template correspond to the
attributes in the main object.

Once the template is combined with the main object, we obtain the resulting file
shown on the right side of the Figure 14. When the attribute title in the template is
combined with the attribute title in the main object, we get the first line: Sounds of
animals. Then, section subtitle is expanded using the sub-object subtitle in the main
object. Therefore, we get the line (category: Walking animals). Finally, repeated
section list is combined with the array list. For each element of that array, the new
line of text is obtained. So for two elements of the list, we get two lines: the cat
meows; and the dog barks.

	
 56	

4 BASS: Concepts and Visual Formalism
In this chapter, we explain the main concepts used in the proposed method and

their graphical representation. Reading this chapter is required for understanding the
explanations of the method in Chapters 6, 7 and 8, as well as evaluation in Chapter 9.
The proposed method is based on an existing method SEAM explained in Chapter
3.1. We first explain the main concepts and principles used in BASS. Then we explain
the meta-model of the proposed method (abstract syntax) including the main concepts
used in the method and their mapping to business terminology. Finally, we explain the
visual formalism to model these concepts (concrete syntax) and its semantics. In this
chapter, we explain the meaning of all the concepts used in BASS model. The full
formal semantics of BASS is based on SEAM formal semantics explained in [106].
Additionally, we have abstracted some of the formal concepts, such as postcondition
of a service using functional units, which can be represented graphically in the BASS
model.

4.1 BASS: Concepts and Principles
In this chapter, we explain the main principles and concepts used to model and

simulate service systems.

4.1.1 Service and Service System Modeling
SEAM as a systemic method is focused on modeling systems, which are

represented with working objects. SEAM’s theoretical foundations are in GST. The
same modeling rules and principles apply regardless of the nature of the modeled
system (IT, human, company, etc.).

With popularization of services and service science, the authors of [3] have
proposed service system as an important abstraction for the service revolution. By [3],
service is the application of resources (including competences, skills, and knowledge)
to make changes that have value for another (system), such as customer’s system.
Value is improvement in a system, as judged by the system or by the system’s ability
to fit the environment. The service-system abstraction can be used to understand how
value is created unifying the concepts from different disciplines. The service system is
a configuration of people, technologies, and other resources that interact with other
service systems to create mutual value [3]. Many systems can be viewed as service
systems, including families, cities, and companies, among many others [3]. Therefore,
service concept became a very important concept for understanding how the value is
created and for unifying concepts from various disciplines.

Several efforts have been done to introduce service concepts to the existing
systemic method SEAM [4], [5], [6]. In this thesis, we have extended SEAM with
concepts needed to model and simulate services, such as functional unit, events, send
and receive properties. Based on the best practices defined in the Information
Technology Infrastructure Library (ITIL) [115], we propose to start modeling using
the template shown in Figure 15.

	
 57	

Figure 15: Service system modeling in BASS

By convention, we show the names from the model in italics. The main
template for modeling services contains different service systems collaborating
together to create the value. These service systems are shown as components of
Service system A as a composite (white box), which correspond to the context in
which we model the service systems participating in implementing the service. The
component working objects (the component service systems): Service system B1,
Service system B2, Service system B3 and Service system B4 correspond to the main
roles in modeling services: service provider (providing the service), service consumer
(using the service), service customer (paying for the service), regulator (implying the
constraints on how to operate the service). Service provider and service consumer are
always part of the service system, whereas the other roles are optionally there. Also,
sometimes one service system can correspond to many roles. For instance, service
consumer and service customer can be often the same service system.

These service systems collaborate together in the Process A with their

corresponding services Service B1, Service B2, Service B3 and Service B4. Each
service has its properties. These properties can be of various kinds, such as quality of
service, data properties, etc. In this thesis, we will consider only data properties.

Each of the component service systems can be further analyzed to model the

implementation of their services. There are two ways to model service
implementation: using collaboration (Figure 16) or a process (Figure 17).

	
 58	

Figure 16: Service implementation with collaboration

Figure 16 shows Service system B1 as a composite (white box) revealing its
internal structure: Service system C1, Service system C2 and Service system C3.
Service B1 is implemented with the Collaboration B1. Collaboration B1 represents
the way Service system C1, Service system C2 and Service system C3 collaborate to
implement the Service B1. Collaboration corresponds to the joint action of Catalysis
[15]. This means it does not state what the role of each of the systems in
implementing Service B1 is - it just gives the overall effect.

Figure 17: Service implementation with process

Figure 17 shows Service system B1 as a composite (white box) revealing its

internal structure: Service system C1, Service system C2 and Service system C3.

	
 59	

Service B1 is implemented with the Process B1. Process B1 represents the way
Service system C1, Service system C2 and Service system C3 work together to
implement the Service B1. Unlike collaboration, process states what the
responsibilities of each of the service systems that participate in service
implementation are. This is stated with the services of service systems: Service C1,
Service C2 and Service C3 that the process is using for implementation. Using the
process for service implementation, the logic of the implementation is stated in the
services, and the process holds an invariant that states what the relations between
different elements of participating service systems are, such as properties (in this
thesis data).

To sum up, a working object (representing service system) as a whole
provides a service. A working object as a composite implements a process that
combines the services offered by the component working objects as wholes. It can
also implement collaboration that shows how the component working objects
collaborate to implement a service. The service, collaboration and the process are
related by a refinement relationship: collaboration is a refinement of a service; a
process is a refinement of a service. The process uses services of the component
working objects as wholes to implement the main service. We will use this template
(Figure 15) for modeling the services and processes throughout this thesis.

4.1.2 Declarative Behavior Modeling
In this thesis, we use the declarative behavior modeling based on pre-

conditions and the effects expressed with functional units as shown in Figure 18. Each
service is defined with precondition stating the condition that should hold before the
service can be executed and body of the service, expressing the effect of the service
shown with parameterized functional units. For each service, if the system is in a
certain state defined with precondition, service affects the system in a way that is
expressed with functional units. Precondition expresses the constraints on the system
properties, for example that the amount on the bank account is greater than 0, when
the customer wants to make the payment. Preconditions are formulas expressed with
Alloy language that combine properties with logical and arithmetic operators. Effects
are expressed in the diagram with functional units and their relation to the system
properties. This way, it is possible to design high-level model using services, while
being precise in using functional units. In case we do not need the model simulation
and prototyping, we do not need to use functional units for analysis; we can only
show the necessary services.

	
 60	

Figure 18: Full notation to show service

As explained, in our method we have three different ways to model behavior:
service, collaboration and process. Service and collaboration contain the logic of
behavior and are modeled as shown in Figure 18 with preconditions and effects.
Process does not contain the logic expressed with functional units of behavior it just
uses the services of component service systems, and holds an invariant that state the
relation between elements of component service systems. This way, the behavior is
modeled declaratively. This means we do not show the service implementation as a
sequence of steps. Instead, we show all the services for each role in the service system
with additional constraints on when they can be performed. This way, we do not
restrict the behavior to only one possible path. Instead, we start with all possible
scenarios and define the additional constraints on top of them. Therefore, in all
examples we show there won’t be a sequence of steps, like in Business Process
Modeling Notation (BPMN) [10], visible in the diagram.

Besides the benefits of declarative modeling already expressed in [30], the

reasons why we have chosen to use declarative modeling with precondition and
service effect expressed with functional units are:

- It lets the business and IT analysts focus on high-level services, not the
details of its implementation. This helps in involving the business expert in IT
specification.

- Very often in the project, it is not possible to define the exact sequence of the
steps in service implementation.

- There is no need to over-specify the service implementation in the initial
stages of the project, which would require a lot of frequent changes during the project.

For the early design phase for which BASS method is mostly used, we believe

that declarative process modeling can be effective, because it does not overspecify the
model.

4.1.3 Expressing Semantics of Services: Functional Units
In order to simulate and prototype the models, it was necessary to add the

concept to model the semantics of the service. In order to do that, we have introduced
the functional unit. Functional unit is the predefined parameterized atomic unit of

	
 61	

logic. The main idea is to define library, which contains the set of generic
parameterized functional units and their semantics. These units can then be combined
in one service to represent its logic. In case there is no need to do simulation and
prototyping of the models for the project, there is no need to show functional units.

For each functional unit, we need to define its generic template, stating its
name and parameters; we also need to define its semantics expressed in different
forms for service design, service simulation and service prototyping. For service
design, we define how the generic functional unit in the diagram is used. For service
simulation, we express the logic of generic functional unit in Alloy library (module).
Finally, for service prototyping, we express the logic of generic functional unit using
Arcimboldo templates in a given target language. In this thesis, we show all
prototyping examples in Java.

Figure 19, Figure 20, Figure 21 and Figure 22 show the example of the find
functional unit representing the search of an element in the set. Figure 19 shows the
generic template of this functional unit. In the center is find functional unit shown in
blue, surrounded with parameters that are necessary for this functional unit:

• In which set?: Representing the set in which we do the search.
• By what criteria? (Attribute): The attribute of the element in the set by which

we do the search.
• Input: The value by which we do the search.
• Output: The result of the search, the element of the set in which set? whose

attribute by what criteria? is equal to the value input.

Figure 19: Predefined functional unit: generic template

	

Figure 20 shows how the functional unit find from Figure 19 is being used in

the service design. Functional unit, marked with fu, is shown inside the service whose
logic it defines. It is connected with the lines to the corresponding values for each of
the generic parameters. Stereotypes on the lines define the parameters that are
defined. For example, input parameter of find is the attribute Name of OrderInitial.
The output is the data Customer inside the service OrderProcessing. Finally, criteria
and set are in this case shown with one line, as by the attribute Name to which it is
connected we can conclude also the set in which we do search, in this case
CustomerSet.

	
 62	

Figure 20: Predefined functional unit: graphical representation (Service design)

Figure 21 shows how the generic functional unit from Figure 19 is used in

Alloy language. It is represented with the function with parameters as in generic
template. The body of the function expresses the logic of the functional unit –
searching for the element with given criteria in the given set.

Figure 21: Predefined functional unit: Alloy representation (Service simulation)

Figure 22 shows how the generic functional unit from Figure 19 is used in

Arcimboldo template for prototyping. The main logic of find functional unit is
expressed with SQL query. The parameters are the same as from generic functional
unit. And the result of research is returned as the value.

Figure 22: Predefined functional unit: Arcimboldo representation (Service

prototyping)

	
 63	

4.1.4 Use of Invariant
Invariants express the properties that must hold in certain context (during the

execution of a service, inside IT system in general, etc.). From the business
perspective, invariants can be used to model (business) requirements of an enterprise.

Invariants have been used both in the business and technical world: to
represent and check constraints [81], to model business rules [116], process invariants
related to beliefs [117] etc. In requirements engineering, KAOS methodology uses
invariants for object specification, domain properties specification, and indirectly for
goal specification [118]. In this thesis, we use invariants to express the constraints that
must hold in the system and as a pivotal concept in improving business/IT alignment
and in supporting the co-evolution of technical and business specifications.

We define the role of invariants in this thesis as follows: First, they implement
the constraints required by business specification that should always hold. For
example, “The order can be placed for the existing parts only”; second, they enable
the designer to efficiently manage the model complexity by assuming that some of its
properties always hold during an execution. They can be used to assume something
that is not necessarily required or consistent with the business needs, but can help at
the current stage of analysis to simplify the model. For example, “To simplify the
model, let’s consider that the part’s id provided by a customer is always correct” (i.e.,
exists in the database); third, they are used to state the relation between the service
systems collaborating together. For example, “Order in the customer company is the
same as the order in the service provider company”.

We use Alloy expressions to write an invariant. Graphically, they are shown in
the rectangle Invariants (Figure 15). The common practice is to show them in the
upper right corner of the service system. Invariants inside one service system contain
all constraints related to process or collaboration connecting many service systems or
to the constraints between properties.

4.1.5 Modeling Service Multiplicity
As the proposed method is based on SEAM, the model contains instances, not

the classes of the concepts in reality. We model concrete projects, people, services,
etc. For example, we do not model type of organization, but the concrete company.
The same applies for services, for which we show one instance of a service.

To show service multiplicity, we use different concepts to model atomic

transactions and long-running transactions (business transactions). By atomic
transaction, we mean as in database transaction, that this work of unit must either
complete in its entirely or have no effects. We model this with service as a whole that
contains functional units to express the semantics. Once the service is performed,
either all the logic is performed or nothing is done at all. Long-running transactions
contain smaller atomic transactions that do not necessarily need to be completed all at
once. They correspond to multi-step business transaction. We model long-running
transactions with service as a composite, containing many services as wholes, which
correspond to the atomic transactions.

	
 64	

We illustrate the service multiplicity with an example of Order Creation at
Générale Ressorts. The full notation is given in Figure 23. Every system has its own
lifecycle. This is shown with the line connecting IT system [w] and Lifecycle [w].
Inside a lifecycle as a composite we model services, in this case Order Creation [c].
By default, we assume that there can be many executions of service Order Creation
[c]. This is shown with the line connecting Lifecycle [c] and Order Creation [c]
showing multiple transactions of Order Creation [c] with *.

Figure 23: Full notation to show service multiplicity

Inside service as a composite, in this case Order Creation [c], we have three
main parts: start – containing one Start [w] service; middle part – containing many
services, in this case Find Customer [w], Find Part [w] and Create Order Confirmed
[w]; end part – containing one End [w] service. Start and end services are services
that are performed only once to start and end the long-running transactions, and they
are related to the start and end state of the corresponding state machine. The middle
part contains all the other services that are performed during the long-running
transaction. They can be performed many times. This is shown with the lines
connecting Order Creation [c] and Find Customer [w], Find Part [w] and Create
Order Confirmed [w]. This way, we model every system with its lifecycle containing
long-running transactions that further contain atomic transactions. Every long-
transaction has its start, living part and end. This corresponds to the systemic
principle.

4.1.6 Properties and Data
As we have mentioned, each service can have its properties. These properties

correspond to quality of service properties, such as business continuity, 3 days
delivery guaranteed, etc.; or, they can correspond to the data used by the service, such
as inputs and outputs to the service, like Order, Delivery, etc. In this thesis, we
consider only the data.

For each data element in the diagram, we need to define context in which data

is defined and available. It is defined by the boundary around data. For example, is it
in the IT system of the company, or is it defined in the context of engineer, etc.
Context determines the visibility and accessibility of data. It also determines how long

	
 65	

the data is available, depending on the boundary, i.e. the lifecycle in which it lives.
For example, data in IT system are persistent and will be available whenever we run
the application. Data inside the service will be used temporary until the (long-
running) transaction is finished, for example to transfer output from one service to the
other.

4.1.7 Simplified and Full Notation
We have explained the main concepts used in this method to model services

and service systems using the full notation. The main template for modeling services
that we propose in Figure 15 shows the simplified representation. This is the
representation that is used in practice and that we use in other chapters of this thesis.
The full version of this diagram is shown in Figure 24.

Figure 24: Diagram in Figure 15 with full notation

In practice, we do not draw all the multiplicity lines and the lifecycle. We
assume that they are by default always present, i.e. that each system has its own
lifecycle with the services in the middle part being performed many times, and start
and end service once only. The semantically equivalent simplified version with
preconditions is shown in Figure 25. As we can notice, lifecycle, start and end
services and multiplicity lines are not shown in the diagram. We assume that these
conditions are always by default there.

	
 66	

Figure 25: Diagram in Figure 24 with multiplicity simplification

	

In practice, we also do not show the two parts of the service stressing the

precondition and effect separately. Instead, we show only the service with its
functional units. Precondition is visible only as a field of the service, not in the
diagram as shown in Figure 26.

Figure 26: Diagram in Figure 24 with service representation simplification

In case there is no need to simulate and prototype the models we do not need
to show the functional units. Their main purpose is to describe the semantics of the
service and in that way create more precise models. In case we need to model on
high-level of analysis and do not need to simulate or prototype the models, we can
model without functional units as shown in Figure 27.

	
 67	

Figure 27: Diagram in Figure 24 with service semantic simplification

Once we apply the three principles to this diagram, we get the simplified

representation shown in Figure 15.

4.2 BASS: Meta-model (Abstract Syntax)
In order to model and simulate service systems, we have extended SEAM with

several concepts and principles, as explained. In this chapter, we give the meta-model
of the proposed method containing all the necessary concepts. We first give the
technical meta-model with the well-formedness rules and then the mapping to the
corresponding business terms.

Figure 28 depicts the meta-model of the proposed method. As the method is
focused on modeling service systems, the main concepts are service system as a
whole and service system as a composite. Service system as a whole represents the
organization of any kind (business organization, IT organization, human organization,
etc.) without revealing its internal structure. The service system as a whole provides a
service. The semantics of this service is expressed with functional units and their
relation to the properties of the service system. These properties are modified once the
service has been performed.

	
 68	

Figure 28: BASS: Meta-model

We always start with modeling service system as a composite with a process.
Therefore, the root element is shown to point to this. Service systems as a whole
represent components of service system as a composite. They can represent the
internal structure of the service system as a composite. Service system as a composite
defines how its component service systems as a whole work together to create a value.
Therefore, service system as a composite provides a process or a collaboration that
connects its component service systems as a whole.

Service, collaboration and process are related with the refinement relationship.
Service is implemented by collaboration, and collaboration is the refinement of
service. Collaboration is implemented by process, and process is the refinement of
collaboration. One process uses many services from component service systems as a
whole to implement a service.

Additional well-formedness rules are:
1. The process P can use the services S1, S2, .., Sn, iff they are on the same

abstraction level, i.e. the same distance from the root element.
2. Invariant between the process as a whole and the properties of the service as a

whole can exist only for the properties that are of receive/send type, i.e. that
are shared between the service systems.

3. Exactly one service as a whole among all the services used by process as a
whole has event element. This means that only one service system can be
responsible for the execution of the service that the process is implementing.

4. There is exactly one root element-service system as a composite.
5. There is no service system that can be its own ancestor. This means there are

no cycles in service system hierarchy.

	
 69	

6. There is no service that can be its own ancestor. This means there are no
cycles in service hierarchy.

7. There is no collaboration that can be its own ancestor. This means there are no
cycles in collaboration hierarchy.

8. There is no process that can be its own ancestor. This means there are no
cycles in process hierarchy.

9. There is no property that can be its own ancestor. This means there are no
cycles in property hierarchy.

10. Service can relate to the properties iff they are in the same service system as
the service.

11. Collaboration can relate to the properties iff they are in the same service
system as the collaboration.

The meta-model in Figure 28 is expressed with the service terminology. Table III
summarizes the corresponding business terms of the concepts defined in the meta-
model.

Table III: BASS: Meta-model Concepts and Corresponding Business Terms

Meta-model term Business term
Service system Market segment, company, organization,

company departments, humans, etc.

Service Externally visible behavior of the market
segment, company, organization, etc.

Collaboration Internal behavior of the market segment,

company, organization, etc. without the
responsibilities on who is doing what

Process Internal behavior of the market segment,

company, organization, etc. with the
responsibilities on who is doing what

Functional units Detailed description of the behavior of

the market segment, company,
department, etc.

Properties Internal information relevant to the

behavior of the market segment,
company, organization, etc.

Invariant Constraint set between different

companies, organizations, departments,
etc. or between their properties.

	
 70	

Service systems can correspond to the market segment, company, organization,
department, humans, etc. Service is an externally visible behavior of the company,
department, human, etc. Collaboration and process are internal behaviors of the
company, department, human, etc. with a difference that process defines how the
responsibilities are split in the company, organization, etc.

Functional units are details of the behavior of the company, department, etc.

Properties are externally and internally visible information of the company,
department, etc., respectively. The way they are shared between systems is expressed
in an invariant of the process connecting the services of these systems.

4.3 BASS: Visual Notation (Concrete Syntax) and Semantics
In this chapter, we show the visual notation and semantics of the proposed

method. We also show how this notation is mapped to the concepts explained in the
meta-model. Table IV summarizes the visual notation elements used in the proposed
method with their visual representation, name and description. Description contains
information (marked in bold) of the meta-model element which this visual element
models. Elements 1-5 are used to model service systems, 6-10 their behavior, 10-11
their static part, and 12-14 relationships between elements.

	
 71	

Table IV: BASS: Visual representation of meta-model concepts and their

semantics

 Visual

Representation
Name Description

Business
working
object

This element is used to model the
market segment, company, department,
or some other business organization. It
models one type of the service system:
business organization. As any other
system, it can be modeled as a whole
and as a composite. Inside the system,
we can model the structure with any
other type of system and properties and
the behavior of the business
organization with business services and
processes.

Human
working
object

This element is used to model the
human, as an engineer or manager. It
models one type of the service system:
human organization. As any other
system, it can be modeled as a whole
and as a composite. Inside the system,
we can model the structure with other
human organizations and properties and
the behavior of the human organization
with business services and processes.

IT working
object

This element is used to model IT
infrastructure. It models one type of the
service system: IT organization. As any
other system, it can be modeled as a
whole and as a composite. Inside the
system, we can model the structure
showing other IT infrastructures,
software components and storage and
the behavior of the IT organization with
IT services and processes.

Software
component

This element is used to model software
component. It models one type of the
service system: software organization.
As any other system, it can be modeled
as a whole and as a composite. Inside
the system, we can model the structure
showing other software components, IT
infrastructures and storage and the
behavior of the IT organization with IT
services and processes.

S	

	
 	
 	
 E
	
 	
 	
 	

R	

	
 	
 	
 V
	
 	
 	
 	

I	
 	

	
 	
 C
	
 	
 	
 	

E	

	
 	
 	
 	

	
 	
 	
 	

	
 	
 	
 	

S	

	
 	
 	
 Y
	
 	
 	
 	

S	

	
 	
 	
 T
	
 	
 	
 	

E	

	
 	
 	
 M

	
 	
 	
 	

S	

	
 72	

Storage This element is used to model storage. It
models one type of the service system:
storage organization. As any other
system, it can be modeled as a whole
and as a composite. Inside the system,
we can model the structure showing
other software components, IT
infrastructures and storage and the
behavior of the IT organization with IT
services and processes.

Service This element is used to model service or
collaboration, both on business and IT
level. When used inside service system
as a whole it is called service, and when
modeled inside service as a composite it
is called collaboration. It can be
modeled as a whole and as a composite.
We can show its structure with other
services and its behavior with the
functional units.

Process This element is used to model process,
both on business and IT level. It can be
modeled inside any service system as a
composite or any other process as a
composite. It can be modeled as a whole
and as a composite. We can show its
structure with other processes and the
behavior with the relation to other
services.

Functional
unit

This element is used to model
functional unit. It is modeled inside
any service and its main purpose is to
show the semantics of that service, i.e.
the effect of that service on the state of
the system. It is connected to other
properties to show the parameters of the
functional unit.

Event This element is used to model the event
in any service system as a whole. It is
always related to the service as a whole.
It means that this service system is
responsible to provide the results of the
related service. For all services used in
one process, there should be exactly one
related to the event, which is in charge
of operating this process.

B	

	
 	
 	
 	

	
 	
 	
 	

E	

	
 	
 	
 	

	
 H
	
 	
 	
 	

	
 	
 A
	
 	
 	
 	

	
 	
 V
	
 	
 	
 	

	
 	
 I
	
 	
 	
 	

	
 	
 O
	
 	
 	
 	

	
 	
 R
	

	
 	
 	

	
 73	

Property This element is used to model the
property of any service. It is related
directly to the collaboration or
indirectly to the service, via functional
unit. It is modeled inside any service
system as a whole.

Association
relation

This element is used to model the
relation between any structure or
behavior element of the method. It
shows the association relationships
between these elements.

 Relationship
relation

This element is used to model the
relation between two properties. It can
also contain the cardinalities, such as
0..1, 0..*, 1..*, *, etc.

Refinement
relation

This element is used to model the
refinement relations between system as
a whole and system as a composite,
service as a whole and service as a
composite, collaboration as a whole and
collaboration as a composite, or
between processes as a whole and
process as a composite.

The proposed method inherits some of the principles for representing a

diagram used in SEAM: explicit context, explicit hierarchy, explicit roles and explicit
mapping to reality.

Explicit context: The context is always made explicit in a diagram. In many

notations, such as UML, the context is implicit. For example, in the UML use case
diagram [15], it is possible to hide the IT system boundary [14]. The underlying
principle that explains why UML allows hiding the IT system boundary is called the
Occam-razor principle. This principle expresses that a succinct theory is better than a
verbose one. The boundary is not considered as an important concept, so it can be
hidden. In a systemic model, the boundary is probably one of the most important
concepts, so it has to be visible.

Explicit hierarchy: The organizational hierarchy captures systems’

construction. The functional hierarchy captures behaviors’ structure (services or
processes). We represent hierarchies as boxes inside boxes. We do not have, as in
UML, composition relationships. With this we put an emphasis on which concepts are
hierarchical and which ones are not. The hierarchy also makes the context in which
the element is defined explicit.

R	

	
 E
	
 	
 L
	
 	
 A
	
 	
 T
	
 	
 I
	
 	
 O
	
 	
 N
	
 	
 S
	
 	
 	

S	

T	

A	

T	

I	
 C
	
 	
 	

	
 74	

Explicit roles: The key actors are represented with their explicit roles. It is
possible to have the “same” actor with different roles (in different systems). This is
extremely useful to analyze conflicts of interests and resource issues.

Explicit mapping to reality: We show concrete projects, people, services,

departments, etc. Very often, in workshops, if possible, we use the picture of the real
people, companies, products, etc. This helps make the model concrete. If we make a
business model, we analyze one representative customer with a name.

	
 75	

5 BASS Service Design Spirals: Theory

In this chapter, we describe BASS spirals: service specification spiral and
validation and verification spiral. The spirals are the result of several attempts to
define the service design process. We were improving the process based on our
understanding of the requirements and goals of the process, feedback we got from
practitioners and different projects on which we have applied it. This has resulted in
defining two spirals for service design: service specification spiral and validation and
verification spiral.

Service specification spiral is the main spiral used in any project done with
BASS. Following the steps of the spiral, a business/IT analyst defines an overview of
the whole business case, from definition of services that the customer needs to
analysis of internal organization and responsibilities needed to implement the
services. In each step, the design decisions are captured and the model is refined into
a more detailed one. As a result, the business/IT analyst creates the set of BASS
models corresponding to different viewpoints of the modeled business case. For each
of these models, validation and verification spiral can be applied to create more
precise models when needed. Following the steps of validation and verification spiral,
business/IT analysts together with the formal specialists can simulate the model,
detect and resolve anomalies or find missing business rules. The initial ideas for the
work in this chapter are described in [119].

5.1 Service Specification Spiral: Theory
Figure 29 shows an overview of one cycle of the service specification spiral

(Figure 1). It shows 6 different models: 1 model as a result of the initial phase, 5
models as results of steps of the spiral (and fifth optional step). In each step we refine
the model by capturing the design decisions and possibly adding the concepts to the
model. The result of each step is a new model. Once we do one cycle of the spiral in
which we analyze the responsibilities inside one organization, we can apply the same
steps on any of its internal organizations, until we reach the needed level of
abstraction. In steps 1-4, we use the “identify and allocate” (or conceptualize and
design) pattern, i.e. in each step we identify the new elements and then allocate the
existing elements to the newly identified one. Sometimes, it can happen that when we
identify new elements, they can lead to the creation of additional elements, too. For
instance, when we define the structure of one service system, we might observe some
new properties that we did not have a chance to observe before. The last step is used
to split the service systems, i.e. to create systems that can be observed independently,
containing all the necessary information about the other service systems. The whole
service specification spiral is focused on the service identified in the
conceptualization phase. At the beginning the external services needed by the
customer are identified and then the details of its implementation are defined.
Therefore, it corresponds to the service provider perspective. We explain the steps of

	
 76	

the spiral: what is done in each step, what is the value of that step and viewpoint to
which it corresponds. By convention, the elements that are crucial for each step, such
as the newly identified elements, we mark in bold.

Figure 29: One cycle of BASS service specification spiral	

5.1.1 Initial Model Design
The first phase of the process is to create initial model by building a set of

concepts from universe of discourse. In this phase, we identify the main service
systems participating in creating the value (stakeholders), based on the template in
Figure 15. We identify service provider, service consumer and potentially other
participants, such as service customer and service regulator. As in the further phases
of the spiral we will refine service provider more, we refer to service consumer,
service customer and service regulator, as the external service systems. We also
identify the main process involving the main external service of service provider
and services of other stakeholders. Then, we identify the services of each service
system that are used to implement the identified process. These services can be
identified with or without functional units, depending on the fact whether simulation
is relevant for the project. Finally, we identify service properties in each of the
service systems based on the requirements coming from external service systems. The
result of conceptualization matches the template shown in Figure 15 for service
specification, showing only the core services and service systems.

The value of this phase is in capturing the main stakeholders participating in
core service implementation and the service properties relevant for them. This way, it
frees the business and IT analysts of thinking about the implementation details.
Instead, it enforces them to think about the high-level requirements, which, when
jumped directly to implementation, are very often misunderstood or omitted.

The resulting diagram corresponds to the management’s perspective of the
service provider organization, as it analyzes the service provider organization and its

	
 77	

environment. It captures the core service and the main requirements in form of service
properties that come from external stakeholders. In this thesis we deal with the data
properties, in this case meaning the inputs and outputs of the service exchanged with
the external stakeholders.

5.1.2 Step 1: External services
In the initial phase, we have identified the core service and the service systems

participating in its implementation and captured main requirements in form of service
properties. In order to be sure that the service implementation will match the needs of
the external stakeholders, besides the requirements captured in form of properties, we
need to identify externally observable services of the service provider who is in
charge of service implementation. This means, we need to identify the sub-services of
the service in service provider. These services are identified based on the business
events relevant to the external stakeholders, such as consumer. They can be related to
the deliverables the external service systems would expect to have, or to the main
functions they would expect to observe. Once we have identified the externally visible
services, we need to allocate the logic of the service in form of functional units to the
newly defined services. In case we model without functional units, we need to
allocate the properties, as they are related to the service directly in this case.

The value of this step is to show an integrated view for the external service
systems, such as consumers. By identifying externally visible services, it
complements conceptualization phase with service properties, and creates the diagram
with fully identified requirements for the service to be implemented. Again, it
enforces the business and IT analysts to think about the externally visible services,
instead of jumping immediately to the implementation process.

The resulting diagram corresponds to the management’s perspective. It
captures the business needs based on the interactions with the external service
systems, such as consumer. It creates an integrated view for the external service
systems, which captures the externally visible services and their properties.

5.1.3 Step 2: Internal organization
In step 1, we have analyzed the external service systems and identified the

services that need to be provided to them, and their properties. In step 2, we need to
decide on how the service provider is going to implement the identified services.
Therefore, we need to identify the service systems inside the service provider
participating in the service implementation. This means, we need to identify
provider’s roles, which correspond to the teams with certain roles in providing the
service. They do not necessarily need to correspond to organizational chart and to
correspond to organization’s departments. Instead, it is possible to have people from
different departments in the same team, if they have the same role in providing the
service, such as supporting the service. Also, it is possible to have external
organizations as a part of the provider, if they are involved in providing the service.
Once we have identified who participates in implementing the service, we need to

	
 78	

decide who is in charge of what property. Therefore, we allocate the properties to
the provider’s roles. Note that once we have shown the internal organization of the
service provider, there might be some new properties as well that are visible now, and
that were not visible when we were thinking about the service provider generally
without its internal structure. Therefore, it is also possible to define the new properties
in this step and allocate them to one of the provider’s roles.

The value of this step is to think about the internal structure of the service
provider, based on the service they are implementing. It enforces thinking about the
service provider organization from the service perspective, instead of in a traditional
way, in terms of organizational hierarchy. It enforces finding the new way of internal
structure, based on the service the organization wants to provide.

The resulting diagram corresponds to the service provider’s perspective, as it
captures the internal structure of service provider organization.

5.1.4 Step 3: Internal services
In step 2, we have identified who participates in service implementation. We

also need to identify what services are to be implemented. These services can be
different that the one identified in step 1, as in step 1 we have identified externally
visible service, and now we want to identify internally visible services as well. They
may include some new internal services that were not observable from the external
systems. Once we have identified the new internal services, we need to define their
semantics. This means we need to allocate the service logic in form of functional
units to the newly defined services. Note that we model the internal services in form
of collaboration, i.e. without explicitly stating which provider role is responsible for
what internal service. We will do this in the next step.

The value of this step is to enforce thinking about the internal services needed
to provide externally visible services. It enforces to make distinction between the
internally and externally visible services. When we analyze the service provider and
its environment, we think about the externally visible services and their requirements,
and do not bother with the details of implementation. When we analyze the service
provider internal organization and service implementation, we think about the
internally relevant services.

The resulting diagram corresponds to the service provider’s perspective, as it
captures the internal services of service provider organization.

5.1.5 Step 4: Internal responsibilities
In step 3, we have identified who participates in service implementation and

what the internal services necessary to provide externally visible services in form of
collaboration are. In this step, we need to identify the responsibilities of each provider
role in implementing the service that is provided. In order to do that, we identify the
process with its services in the corresponding provider’s roles. For each service
identified in step 3, we decide who is in charge of it and based on that create the

	
 79	

services and their relations to the process. We also need to allocate the logic of the
internal services to the newly defined services of provider’s roles.

The value of this step is to enforce thinking about the responsibilities of each
of the provider’s roles in the service implementation based on the internal services
that should be implemented. This way, we distinguish between different abstractions
of services, depending on the analyzed perspective: services relevant for external
systems, such as consumer (step 1), services relevant for service provider (step 3) and
services relevant for provider role’s (step 4). Each of these services is relevant for
different perspectives. Therefore, it is useful to enforce clear distinction between
them, as it frees the business and IT analysts of thinking about the other aspects of the
service system at the same time and they can bring full attention to the currently
analyzed service.

The resulting diagram corresponds to the provider role’s perspective, as it
captures the responsibilities of service provider role’s organization.

5.1.6 Step 5: Independent service systems (optional)
In step 4, we have defined the full structure and the behavior of the service

provider and its roles that defines how the service should be implemented. Therefore,
in the last, optional step, we can split the provider’s roles to make independent service
systems. This way, we can observe the systems independently of each other, because
one system will contain all the necessary information about the other systems, i.e. the
simulation of all the surrounding systems. In order to do that we cut the provider’s
roles connections and specify the interfaces for each system that contains properties
that are shared with the other systems. Note that in the current method, we simulate
only the static part of the surrounding systems with the interfaces representing the
exchanged properties, i.e. each system knows where the properties come from. As a
part of the future work, it could be extended with simulation of the behavior of the
surrounding systems.

This step is important if we want to be able to observe one service system
without its environment and still have all the necessary information.

The resulting diagram corresponds to the provider role’s perspective, as it
defines the independent provider role’s service system.

Once we finish one cycle of the spiral, we have defined the internal

organization and their responsibilities for the modeled service system. In the next
cycle, we can apply the same steps on any of internal organizations to define
organization and responsibilities needed to provide necessary services. Once we have
reached the necessary level of details for the given project, we have finished the
service specification spiral.

5.2 Validation and Verification Spiral: Theory
Validation and verification spiral is used optionally when the analysts require

more precision in the model and would like to validate it by observing instances of its

	
 80	

behavior. Following the steps of the spiral, business/IT analysts together with the
formal specialists can simulate the model, get a visual feedback about the behavior of
the modeled system, detect and resolve possible anomalies. We explain the three steps
of the spiral.

5.2.1 Initial Model Design
We create initial model specified in Alloy. It can be created manually or

automatically, using the tool BASS2Alloy that transforms BASS model to Alloy
specification. Initial model includes the service system of interest: the main
stakeholders, properties and services with initial assumptions about our model based
on the business needs. This model can be any model of the service specification
spiral, but it is mostly used in the first step, to detect anomalies at early stages.

5.2.2 Step 1: Generate Samples
We simulate our initial model by using the Alloy Analyzer tool. Technically, a

model written in Alloy represents a logical formula; model simulation means
searching for a model instance that satisfies this formula. If it exists, it indicates that
the formula is consistent (i.e., no contradictory constraints are specified). In our spiral,
we validate with stakeholders if the model corresponds to the business needs and if
there are some anomalies by studying the random set of model instances generated by
Alloy Analyzer. Model instances reveal the issues in the system behavior, possible
issues with the existing business rules and indicate the missing or implicit rules. Once
a new business rule is discovered, the business analyst specifies this rule in a natural
language. Then this rule is added to the Alloy model for further simulations. An
example of business rule discovery process is explained in [122].

We test if the model corresponds to the business needs and if there are some
anomalies by studying the behavior of the service system observing the generated
samples. In addition, we can verify if the model conforms to the meta-model.

There are two types of anomalies that can be observed: anomalies due to
underspecification and anomalies due to overspecification.

Underspecification means that some behavior prohibited by the specification
still appears during the simulation. Overspecification means the opposite: some
expected behavior is not observed during the simulation.

5.2.3 Step 2: Correct Model Based on Samples
In case of underspecification anomaly, we restrict the model by adding new

constraints. In case of overspecification anomaly, we need to relax the constraint.
Business/IT analysts do this with the help of a formal specialist. We can add the
changes to the generated simulation code available in the simulation tool, or to the
model and then re-generate the code. In case of making the changes in code, we need
to make sure that all the additional constraints that we detected in this cycle are also
added to the model, so that they are not lost.

	
 81	

5.2.4 Step 3: Check Assertions
We verify if all desirable properties and business rules hold using assertions.

This way, we check if there are any counterexamples that would show that the
assertion does not hold.

5.2.5 Step 4: Correct Model Based on Assertions
In case we detect that the assertions are not valid, we correct model as

explained in step 2.

Once we have finished one cycle of the spiral, we can continue to check the

model to make sure that with the changes we did not introduce some new errors in the
model. Once we do not detect any anomalies by observing samples (validation with
stakeholder) and check that all business rules and constraints are valid (verification),
we have finished the validation and verification spiral.

In addition to validation using Alloy simulations, as explained in this loop, we
use the prototyping for validation. The result of prototyping is executable application
in the given target language, in this case Java, reflecting the behavior of modeled
services. Application prototypes are then used to obtain feedback from the
business/IT analysts, customers and other stakeholders and in this way to validate the
models.

Simulation-based validation is useful for static validation, to verify the
constraints of the model. For example, it can be used to verify the model against the
meta-model, to detect the inconsistences in the model or to validate business rules and
discover hidden ones. Prototyping-based validation is useful for dynamic validation,
in which the user can interact with the system, observe the system from different
roles’ perspectives, analyze the services of each role, their semantics and the effect on
the service system, as well as simultaneous service executions.

	
 82	

6 BASS Service Design Spirals: Case of Order Creation at
Générale Ressorts

In this chapter, we illustrate BASS spirals with the working example. We first

describe the working example. This example is based on the consulting project we
have conducted in the company Générale Ressorts. Générale Ressorts SA is the
market leader in watch barrel springs and a first-class manufacturer of tension springs,
coil springs, shaped springs and industry components [120]. Générale Ressorts SA
works with thousands of customers and strives to ensure the highest quality both for
its products and for its customer services.

All models in this chapter are created using the simple notation explained in
Chapter 4. We use the same notation for all models in the spiral. The advantage of
this is much easier and quicker understanding of the used concepts by both business
and IT analysts. We have tested this on participants of workshops who were able to
create their models using given notation after just a short introduction of the method.
Although the notation is the same on different levels of abstraction, the service
systems and properties itself are different depending on which level of abstraction we
model.

6.1 Working Example: The Case of Order Processing at Générale
Ressorts
We illustrate the method applying it to the design of the “Order Creation”

service for Générale Ressorts SA (GR). “Order Creation” is a part of an “Order
Processing”: it is followed by “Order Delivery” and “Accounting”. The whole
process, from the moment the customer makes an order to the delivery and the
accounting is known as order-to-cash cycle. It can vary from company to company. A
typical one is shown in Figure 30 [121]. To illustrate the method, we show the
simplified “Order Creation” service that covers the process from the moment the
company receives the order to the moment the order is booked. It is then followed by
the delivery and payment of the ordered product.

	
 83	

Figure 30: Order-to-cash cycle - Adapted from [121]

The use cases for ”Order Creation” and ”Order Delivery” are formalized
following the recommendations from [14] and presented in Table V, Table VI and
Table VII, Table VIII respectively. By convention, information in italics represents
the corresponding names of the elements in the model.

Table V: Order Creation: Section Main

Use Case: Order Creation
Purpose: Capture the customer’s orders for parts.
Actors: Customer, OrderEntryPerson
Type: Primary and real
Overview:

The company gets a request from a customer
(OrderRequest1) for manufacturing of a specific watch
component identified by its ID (partID). The resulting
OrderRequest contains a customer name, address, partID
and partInfo. A company agent (OrderEntryPerson)
identifies the customer and the part to manufacture by
entering the customer’s name and the partID to the
enterprise information system (EIS). The process
terminates with a creation and confirmation of a customer
order (OrderConfirmed) in the enterprise information
system.

Cross References:

Business rules: BR1, BR2 and BR3.

	
 84	

Table VI: Order Creation: Typical Course of Events

Actor Action IT System Response
1. This use case begins when the
company (GR) gets a request
(OrderRequest) for manufacturing a
specific watch component identified by
its ID (partID).

2. A company agent (OrderEntryPerson)
receives the OrderRequest from the
Customer containing all the necessary
information for order processing:
customer’s name, customer’s address,
partID and partInfo.

3. OrderEntryPerson enters the
customer’s name and the partID to the
enterprise information system (EIS).

4. Finds the customer and the part by
name and partID, respectively.

5. OrderEntryPerson identifies the
customer and the part to manufacture.

6. Using the identified customer and part
to manufacture, OrderEntryPerson
creates Order- Confirmed in EIS.

7. Adds OrderConfirmed to the database
and present it.

8. OrderEntryPerson confirms the order
to the Customer and prepares the delivery
of the given part to the given customer.

Extensions:
5a. In case the customer is not found, OrderEntryPerson enters necessary data for
creating the customer in the system.

Table VII: Order Delivery: Section Main

Use Case: Order Delivery
Purpose: Capture the order delivery to the customer.
Actors: Customer, DeliveryPerson, Engineer, Clerk
Type: Primary and real
Overview:

Based on the confirmed order (OrderConfirmed),
containing information about the customer and the part, a
DeliveryPerson requests the part to be prepared. An
Engineer prepares the part to be delivered. The process
terminates with a Clerk delivering the part to the customer,
based on information in OrderConfirmed.

Cross References: Business rules: BR4.

	
 85	

Table VIII: Order Delivery: Typical Course of Events

Actor Action IT System Response
1. This use case begins when the
customer’s order is confirmed, i.e.
booked. All information is stored in
OrderConfirmed (what part should be
delivered to which customer).

2. Based on information in
OrderConfirmed, a person in charge of
delivery (DeliveryPerson) requests the
part to be prepared.

3. Receives the request for part and sends
notification to the Engineer.

4. An Engineer prepares the package with
the part, based on partID and partInfo.
He enters in the system that the part is
ready to be delivered.

5. Sends notification to the
DeliveryPerson that the part is ready to
be delivered.

6. DeliveryPerson checks the package
and confirms that the part is ready to be
delivered.

7. Clerk delivers the package with the
part to the customer, based on
information in OrderConfirmed
(customer’s name and address).

We specify the following business rules for our process:

• BR1: The created order must include the complete part specification (to be
used for the order fulfillment) and the complete customer details (to be used
for product delivery);

• BR2: The order can be confirmed only when the customer exists in the
system;

• BR3: The order can be placed for the existing parts only;
• BR4: The company has to guarantee “no faulty delivery”.

The working example of the Order Creation and Order Delivery will be used

to illustrate the proposed method. First we use the example to model service
specification for the Order Creation in company Générale Ressorts following the steps
of service specification spiral. Then, we illustrate how these models for Order
Creation can be simulated to detect and resolve anomalies following the steps of
validation and verification spiral.

	
 86	

6.2 Service Specification Spiral: Case of Order Creation at Générale
Ressorts

We illustrate the service specification spiral on the working example of
company Générale Ressorts, as explained in the previous chapter. To illustrate the
spiral, we do not consider business rules and Order Delivery service. Instead, we
focus on Order Creation service only. By convention, information from the diagram is
shown in italics.

6.2.1 Initial Model Design
In the initial phase, the analyst builds a set of concepts by interacting with his

universe of discourse. He conceptualizes the service systems (stakeholders), main
process and services (with functional units and events), and properties relevant for
this level of abstraction. In this case, we have only two relevant service systems:
Générale Ressorts[w] as the service providers and Customer Company[w] as the
service customer and consumer. The main process we model is Order Creation[w]
with the services it uses: Make Order[w] in Customer Company[w] and Create
Order[w] in Générale Ressorts[w]. He defines the semantics of the services with
functional units, as well as the properties relevant for the modeled level of abstraction.

The result of the initial phase is shown in Figure 31. We model Segment
Ressorts[c] with the two identified stakeholders: Générale Ressorts[w] and Customer
Company[w]. The core service that is modeled is Order Creation. In this diagram, we
have already shown the implementation of that service with the Order Creation[w]
process and the services it uses Make Order[w] and Create Order[w]. As we also use
this example to simulate and prototype the models, we show the semantics of services
with functional units. In this case, Customer Company only sends OrderRequest and
receives OrderConfirmed as the confirmation, which is captured by the system
interfaces in form of data with stereotypes send and receive. Therefore, service Make
Order[w] in Customer Company[w] has no functional units. In service Create
Order[w] we model functional units representing the semantics of this service:
finding the customer in CustomerSet based on the CustomerName in OrderRequest,
finding the part in PartSet based on the PartId in OrderRequest, creating the
OrderConfirmed and adding OrderConfirmed to the OrderConfirmedSet. This service
also has the event in Générale Ressorts[w] related to it, meaning that the company
Générale Ressorts is in charge of operating this service. In addition to that, the model
contains invariant stating that the customer with the given name is always in a
customer set and the part with the given part ID is always in a part set. With this
constraint we model only the successful scenario. If we would like to model what
happens in case the customer or the part are not found, we would remove the invariant
and add functional units for creating the customer and/or part. Finally, we define the
properties in each of the service systems. We show the properties shared between the
service systems: OrderRequest and OrderConfirmed; we also show the properties
necessary to parameterize functional units: CustomerSet, PartSet,
OrderConfirmedSet.

	
 87	

To sum up, as the result of initial phase, we have modeled Générale Ressorts
as the service provider and its environment: Customer Company as the service
customer and consumer. We have modeled the core services Make Order and Create
Order participating in the process Order Creation. Based on the Customer Company
needs, we have modeled the relevant service properties. In this phase, we enforce
thinking about the customer’s needs and their requirements, without thinking about
the details of implementation.

Figure 31: The result of initial model design

6.2.2 Step 1: External Services
In this step, we add detailed external services of Générale Ressorts to

accommodate expected interactions with the customer. In the case of simplified order
creation, this service is the same as already modeled service Create Order[w]. In case
there would be some other externally visible services except Create Order, we would
need to allocate functional units to them. As there are none, we can continue with step
2.

6.2.3 Step 2: Internal organization
Once we have identified the service systems participating in service

implementation and the externally visible services of the Générale Ressorts as the
service provider, we need to decide on the details on how Générale Ressorts will
implement the service Create Order[w]. First, we need to decide on internal structure
of the service provider, in this case Générale Ressorts. We define the internal
structure based on the service they provide. Therefore, we do not use the traditional
organization structure, showing the hierarchy of departments. Instead, we define all

	
 88	

the organizations and persons participating in providing the service. One organization
can include people from different departments. In the case of simplified order creation
at Générale Ressorts, we identify two participating service systems: Enterprise
Resource Planning system (ERP[w]) and the person in charge for processing the order
(OrderEntryPerson[w]). Then, we need to allocate existing properties of Générale
Ressorts to the new identified service systems. This allocation is done based on the
fact who knows what properties, i.e. for whom those given properties are important.
Note that, as we reveal the internal structure of Générale Ressorts, it is possible to add
new properties that were not visible when we have discussed Générale Ressorts as a
whole, in its environment. In this case, we have no such properties. The identification
of new service systems and allocation of the properties to them is shown in the Figure
32 and Figure 33.

Figure 32: Step 2: Conceptualize - Identifying provider’s roles

	

	

Figure 33: Step 2: Decide - Allocating properties to roles

	

The result of the step 2 is shown in Figure 34. Segment Ressorts[c] and
Customer company[w] keep the same structure, only Générale Ressorts is refined to
define the necessary details needed for the implementation of the service Process
Order[w]. Now, we show Générale Ressorts as a composite, revealing its internal
structure with the service systems: ERP[w] and OrderEntryPerson[w]. The properties
that were in Générale Ressorts[w] are now distributed to the new service systems
ERP[w] and OrderEntryPerson[w] based on the decisions captured in the matrices.

	
 89	

Figure 34: The result of step 2

6.2.4 Step 3: Internal services	

Once we have identified the internal organization of Générale Ressorts that

participates in the implementation of the service Create Order[w], we need to define
what internal services needed in Générale Ressorts are in order to provide externally
visible services, in this case Create Order[w] only. Therefore, business and IT
analysts need to identify those internal services. Also, they need to distribute the
semantics of the service Create Order[w] in a form of functional units to the newly
defined services. Similarly with refining the service systems, when we refine the
service, it can be possible that some new functional units are added, which were not
visible when we modeled only the service as a whole. In this case, they remain the
same and are allocated to the newly identified internal services as shown in Figure 35
and Figure 36.

Figure 35: Step 3: Conceptualize - Identifying internal collaborations

	
 90	

Figure 36: Step 3: Decide - Allocating functional units to collaborations

	

Figure 37 shows the result of step 3. As we can notice the service Create
Order[w] is refined, and the rest of the diagram remains unchanged. We show new
identified services: FindCustomer[w], FindPart[w] and CreateOrderConfirmed[w]
with their events, meaning that ERP[w] and OrderEntryPerson[w] are in charge
together to collaborate and provide the identified services. Existing functional units
are distributed to the new services according to the decision captured in the matrices.

Figure 37: The result of step 3

6.2.5 Step 4: Internal responsibilities
So far, we have identified the internal organization of Générale Ressorts that

participates in implementing the service Create Order[w] and internal services that
should be provided to implement the service Create Order[w] for the Customer
Company[w]. Now, we need to define the responsibility of each of organizations in
Générale Ressorts in providing the internal services. Therefore, for each internal

	
 91	

service, we define the process and the participating provider’s roles based on the
RACI (responsible, accountable, consulted, informed) matrix, in this case some of
ERP[w] and OrderEntryPerson[w] as well as their responsibility (who is in charge of
operating the service). For each process, we have exactly one responsible
organization. In the diagram this organization will have the service with the event,
meaning that that person is responsible for initiating the service. This way, we define
who exactly participates in providing certain service and in which role. We also need
to distribute the functional units of the service to the services of the roles participating
in implementing it. These decisions are captured in Figure 38 and Figure 39.

Figure 38: Conceptualize - Identifying processes and services	

	

Figure 39: Decide - Allocating functional units to services

Figure 40 shows the result of step 4. As we can see, the changes in the

diagram are in Générale Ressorts[c]. For each service in Figure 37, the new process
is defined and is related to the services of the roles participating in it. These services
contain functional units, based on the decision captured in matrices in Figure 39.

	
 92	

Figure 40: The result of step 4

6.2.6 Step 5: Independent service systems (optional)	

After step 4, we have the necessary information for the service

implementation. In some other projects, we might need to refine the organization
further to reach the level of abstraction needed for that project. In the case of order
creation in Générale Ressorts we have all the necessary information: what externally
visible services that should be provided are, what internal services required to provide
the externally visible services are, what is the internal organization of Générale
Ressorts needed to implement the services, and what are the responsibilities of each
internal organization in Générale Ressorts in implementing the identified services.

In step 5, we can optionally split the internal organization in Générale Ressorts
to create independent systems, such that every system has all the information it needs
for implementing its services. This can be useful, for example for prototyping, where
we can extract IT system only and map it to the application prototype. In order to do
this, we need to cut the lines connecting different systems and specify send and
receive properties and information about where they come from. This way, we replace
external systems with the properties coming from them. The decisions are captured in
Figure 41. We can say the interfaces of the service systems are defined, by stating
what properties are sent or received from/by the service system.

	
 93	

Figure 41: Step 5: Cutting connecting lines and specifying shared properties

	

Figure 42 shows the result of step 5. It shows the organizations in Générale
Ressorts without their relations. It shows also their properties shared with the other
system and the information on where they come from. Received and sent stereotypes
are used for properties coming from external system and internal properties shared
with the external systems, respectively. This way, it makes ERP[w] and
OrderEntryPerson[w] independent of each other. For example, ERP[w] has all the
information that it needs for implementation of its services and information on where
they come from.

Figure 42: The result of step 5

	
 94	

As we can notice, in this spiral, we start with modeling very few elements of
the service system. Traditionally, this is not done in the projects. We believe this can
bring a lot of value, as it enforces thinking about high-level concepts and consumer
needs. In the beginning of the process, business and IT analysts are enforced to think
in terms of external stakeholders needs. Once that is defined, analysts decide the
details of service implementation including service-based internal organization and
their responsibilities. By service-based internal organization we mean that traditional
organizational hierarchy is not used, but the teams are defined based on their role in
providing the service. This means we can have people from different departments in
the same team, or external organizations as well. This way, the process enforces
business and IT analysts to think about the “big picture” and therefore involves more
business experts in the service specification. The idea is that business and IT analysts
can work together using this spiral to create service specification.

6.3 Validation and Verification Spiral: Case of Order Creation at
Générale Ressorts

We illustrate the service validation approach with the example of Order

Creation at Générale Ressorts. To illustrate the validation approach, we include as
well the order delivery and order payment, as described in Chapter 6.1.

6.3.1 Initial Model Design
We define a model of a service system in Alloy: we specify its data structures,

the initial predicate, business rules and make initial assumptions about our model
defining model invariants. These invariants replace the properties required by the
business specification and are used to control the model complexity. The model can
be written manually in Alloy, or can be automatically generated from the model using
our transformation tool. Here, we give an example of manually created code, which is
easier to read.

For business rule specification, we use the following procedure: The business
analyst specifies the BR in a natural language; the designer classifies the BR
according to their scope and nature (see Section 3.2) and translates them to Alloy
specification language. Together with the whole system of interest (a process, an
activity, etc.) in Alloy, he can detect how the business rule influences the system
behavior.

The data structure for the “Order Creation” service is modeled using Alloy signatures:

abstract sig GR {
 orderConfirmedSet: set Order,
 orderDeliveredSet: set Order,
 orderPaidSet: set Order,
 partSet: set Part,
 customerSet: set Customer
}

	
 95	

one sig GR_pre extends GR {
 orderRequest: one OrderRequest
}

one sig GR_post extends GR {}

Alloy signatures (sig) can be abstract or concrete, can have explicit
cardinalities (e.g., only one OrderRequest object can be treated by the service at a
time), and can contain one or multiple fields (as classes and attributes in object-
oriented (OO) languages). We can also define additional constraints on the initial data
structure with the invariants.

We express behavior in terms of a state transition: we define a pre-state that
describes the state of a system before the service has been performed and the post-
state that describes the condition that must hold for the system upon the service
termination - the service result. Note that following the declarative modeling
paradigm, we do not specify how the service will change the system’s state. We
model the “Order Creation” service as a corresponding predicate in Alloy.

1.pred orderCreation(aGR_pre: one GR_pre, aGR_post: one GR_post){
2. one aCustomer: Customer| one aPart: Part | one aOrderConfirmed: OrderConfirmed|
3.
4.aPart=findPartByPartID[aGR_pre.orderRequest.requestedPartID,aGR_pre.partSet] and
5. aCustomer=findCustomerByName[aGR_pre.orderRequest.name,aGR_pre.customerSet] and
6. aOrderConfirmed=createOrderConfirmed[apart,aCustomer] and
7. aGR_post.orderConfirmed=aOrderConfirmed and
8. aGR_post.orderConfirmedSet=aOrderConfirmed + aGR_pre.orderConfrimedSet}

This predicate shows a transition between Générale Ressorts (GR) pre and GR

post states; these states are indicated as predicate parameters (line 1). In this predicate,
the variables are declared (line 2), the customer and the part are found in the set (lines
4-5) and the order is created (line 6), returned as outcome (line 7) and added to the set
(line 8), as described in the case study.

6.3.2 Step 1: Generate Samples
We use the Alloy Analyzer tool to run the predicate and generate the samples

that satisfy all the constraints of the model. By analyzing the samples, we detect
“Missing Customer” anomaly. Figure 43 illustrates this anomaly: in a pre-state we
have Customer0, in a post-state we have Customer1. As we show exactly one
execution of the service “Order Creation”, we expect both the customerSet and the
partSet to remain the same in pre- and post-state. However, the generated instance
suggests the opposite.

NOTE: the inputs and outputs in our diagrams (e.g., OrderRequest and
OrderConfirmed in Figure 43) are depicted with black rectangles; customer data
(Customer, Name, Address) and part data (Part, PartID, PartInfo) are depicted with
parallelograms and diamonds, respectively. We depict the pre-state (prior to the order
creation service execution) and post-state (upon the service termination) of the GR
company with “houses” and the corresponding labels: GR pre, GR post.

	
 96	

Figure 43: Anomaly due to Underspecification: “Missing Customer”

This anomaly indicates that some constraints, which should prevent the
customer set and the part set from changing during the service execution, have to be
specified. Thus, it is an anomaly due to the underspecified model.

6.3.3 Step 2: Correct Model Based on Samples
In fact, the declarative specification principles oblige us to explicitly state the

elements that must remain “unchanged” during the state transition. Therefore, we
need to add an invariant that states that the customerSet in post-state is the same as
the customerSet in pre-state. The same applies to part set.

fact customerSetSame {
 GR_post.customerSet = GR_pre.customerSet
}

In order to validate that we have resolved the “Missing Customer” anomaly,

we create an Alloy assertion that claims that for all Order Creation executions (i.e.,
model instances), the customer set will remain the same in pre- and post- states of
GR.

customerPrePostSame: check{
 all aGR_pre: GR_pre, aGR_post: GR_post |
 orderCreation[aGR_pre,aGR_post] =>
 aGR_post.customerSet=aGR_pre.customerSet
}

Checking this assertion, we find no counterexamples.

This confirms the assertion validity.

	
 97	

6.3.4 Step 3: Check Assertions
We make assertions about our model in order to test some desirable properties

and business rules. Alloy Analyzer validates our assertion by searching for a
counterexample: a model instance for which our assertion does not hold. If no such
counterexample is found, then our assertion is valid within a given value domain. In
the opposite case, the model has to be revised.

We check the validity of each of the business rules from Chapter 6.1, using
Alloy assertions. We show an example of BR4 validation (”no faulty delivery”).

To ensure “no faulty deliveries” (BR4), we check that the customer and part
data in the confirmed order are exactly the same as in the requested order. The
assertion “orderConfirmedCorrect” is defined to validate this BR:

orderConfirmedCorrect: check{
 all aGR_pre:GR_pre, aGR_post:GR_post, oReq:OrderRequest,
 oCurrent: CurrentOrderConfirmed |

orderCreation[aGR_pre,aGR_post]=>
(oCurrent.ocCustomer.name=oReq.name and

 oCurrent.ocCustomer.address=oReq.address and
 oCurrent.ocPart.partID=oReq.requestedPartID and
 oCurrent.ocPart.partInfo=oReq.partInfo)
}

When we run the assertion, we obtain counterexamples. Figure 44 shows an

example of an incorrect delivery: the order is created on the correct customer’s name,
but the delivery address associated with this name does not correspond to the address
provided in the OrderRequest. Therefore, the part can be delivered to the wrong
address. The anomaly observed is due to model underspecification.

Figure 44: Anomaly due to Underspecification: “Delivery to the Wrong Address”

	
 98	

6.3.5 Step 4: Correct Model Based on Assertions
In order to resolve the detected anomaly, we add a new invariant

”noOldAddress” that states that we cannot have a customer in the system with the
name given in the requested order, but with an old/invalid address and vice versa:

fact noOldAddress{
 all c:Customer |
 c.address=OrderRequest.address<=>c.name=OrderRequest.name
}

If we check now the assertion “orderConfirmedCorrect”, we get the result “No

counterexample found. Assertion may be valid”, meaning that this assertion holds in a
given domain, and all orders will be delivered to the correct customers at the correct
addresses.

We continue “debugging” the model by running the simulations, checking if

we have introduced some new unwilling behavior. We repeat the process for other
BRs. After validating all BRs and finding no anomalies, we conclude that the
designed model meets its business needs at a given level of details.

	
 99	

7 BASS2Alloy and Back: Transforming BASS Service Model
to Alloy and Back

In this chapter, we explain how BASS service models are transformed to

Alloy for the purpose of validation and verification. Then, we explain the
transformation from Alloy back to BASS, making the results of simulation more
understandable to people already familiar with BASS notation.

There are two steps to be done in a simulation process as shown in Figure 45:

1. Transforming model to the Alloy code.
2. Generating model instances and counterexamples to show when the properties

do not hold.
The second step is done automatically using features of the Alloy Analyzer

tool. Alloy Analyzer is a solver that takes Alloy model constraints as input and finds
structures that satisfy them. It can be used both to explore the model by generating
sample structures, and to check properties of the model by generating
counterexamples. Structures are displayed graphically and can be customized. In this
chapter, we explain how step one of this process is done.

Figure 45: Simulation process overview

First we explain the input and output of the simulation. Then, we explain the
transformation of BASS model to Alloy specification. Next, we explain how Alloy is
used to simulate the behavior of the model. Finally, we describe how Alloy instances
are transformed back to BASS, to make the results of simulation more understandable
for those already familiar with BASS notation. The work in this chapter is described
in [123].

7.1 Input and Output of Simulation
Input of the simulation is any model described with the meta-model in Figure

28. The output of simulation is one instance of the model satisfying the constraints of
the model or the counterexample showing when checked property does not hold. The
output is shown graphically with boxes and arrows showing the state of the system
before and after the service execution. An example of simulation input and output for
Order Creation at GR is shown in Figure 46.

	
 100	

Figure 46: Input and output of simulation for Order Creation at GR

The simulated system, in this Générale Ressorts is mapped to its pre- and post-
service execution state. The simulated system is marked with grey houses. Instances
of the properties with their attributes are shown with other boxes. The relation
between elements is shown with lines. Based on the lines, it is possible to see what
elements are contained in the pre-state and what in post-state of the system and to
check if this corresponds to expected behavior. Mapping between input and output
elements is given in Table IX.

Table IX: Mapping input and output of simulation for Order Creation at GR

Input (model) Output (model instance)
Simulated service system with simulated
action (in this case Générale Ressorts)

Two boxes (in this case grey houses)
showing the state of the system before
(pre) and after (post) service execution

Properties and its attributes Instances of the properties shown with
boxes with names PropertyName1,
PropertyName2, etc.

Relation between systems, properties and
its attributes

Lines between the boxes

Behavior with its functional units Logic of the service that affects the
system and makes it change from its pre-
state to post-state

Now that we have explained the input and output of the simulation, we are

going to explain how this model is transformed to Alloy specification and how the
simulation is done.

7.2 Transforming BASS Model to Alloy Specification
In order to transform a BASS model to the Alloy specification, we define the

correspondence between the proposed method and Alloy meta-model elements. Then,
we explain how functional units are used to represent service semantics in Alloy. We
illustrate the transformation with the example of Order Creation at Générale Ressorts.
We explain only the first model from the GR service specification spiral (Figure 31).

	
 101	

The full Alloy specification for all models can be found in Appendix III: Case of
Order Creation at Générale Ressorts in Alloy.

One part of Alloy meta-model showing the concepts related to modeling the

signatures is shown in Figure 47 (from [65]). Besides these signature-related
concepts, we also use the concepts such as predicate, function, etc. to map the
concepts from our meta-model. We map the elements from the BASS meta-model
(Figure 28) to the Alloy meta-model elements. The correspondence between the meta-
modeling elements is shown in Table X.

Figure 47: Alloy meta-model for signatures (from [65])

Table X: Correspondence between BASS method and Alloy meta-model elements

BASS meta-model elements Alloy meta-model elements
Model Name ModuleHeader

Service System ExtendsSigDecl
Service Predicate

Collaboration Predicate
Process Predicate

Functional Unit Function
Predefined Functional Units Module (library) with parameterized

functions
FU Parameter Decl

Property ExtendsSigDecl
Property Value Decl
Property Type ExtendsSigDecl
Multiplicity Expr

Invariant Predicate/Function, depending on the
context

	
 102	

As we can notice, service systems and properties are mapped to the
corresponding elements of signature-related concepts in Alloy. Invariants and
functional units are mapped to the predicated and functions depending on the context
in which they are applied. If the constraint holds in the whole system, then an
invariant becomes the fact. Otherwise, it is a contextual invariant, and holds only in a
certain context. Therefore, it is expressed as predicate. Functional units are expressed
with predefined functions in Alloy library (module). Whenever the new customized
functional unit is added to the environment, we also need to define Alloy function
representing its semantics for it. Then, we can use any of the functional units defined
in the functional unit library for any other project as well.

Based on the mapping and functional unit’s library, we can transform our
model to the Alloy specification. The pseudocode for such transformation is:

for one BASS model (.json file)
 load node set and edge set

transform systems and properties with corresponding edges to Alloy
signatures

 transform services to Alloy predicates using the library of predefined
 functional units

 transform collaborations to Alloy predicates using the library of
 predefined functional units

 transform invariants to Alloy facts and predicates

The result of such transformation applied to the Order Creation at Générale

Ressorts (Figure 31) looks like this:

Transformation of service systems and properties
sig Segment_ressort {
 Segment_ressort__Generale_Ressorts: one Generale_Ressorts
}

sig Generale_Ressorts {
 Generale_Ressorts__OrderConfirmed: one OrderConfirmed ,
 Generale_Ressorts__OrderConfirmedSetset: one OrderConfirmedSet ,
 Generale_Ressorts__OrderRequest: one OrderRequest ,
 Generale_Ressorts__PartSetset: one PartSet ,
 Generale_Ressorts__CustomerSetset: one CustomerSet
}

sig OrderConfirmed {
 OrderConfirmed__Customer: one Customer,
 OrderConfirmed__Part: one Part
}

sig OrderConfirmedSet {
 OrderConfirmedSet__OrderConfirmed: set OrderConfirmed
}

sig OrderRequest {
 OrderRequest__Name: one Name ,
 OrderRequest__PartId: one PartId
}

	
 103	

sig PartSet {
 PartSet__Part: set Part
}

sig Part {
 Part__PartId: one PartId,
 Part__PartInfo: one PartInfo
}

sig CustomerSet {
 CustomerSet__Customer: set Customer
}

sig Customer {
 Customer__Name: one Name,
 Customer__Address: one Address
}

sig PartId { }
sig PartInfo { }

sig Name { }
sig Address { }

Transformation of behavior (in this model Order Creation service)

pred simulate(Segment_ressort_pre, Segment_ressort_post: one
Segment_ressort, Part1: one Part, Customer2: one Customer, OrderConfirmed3:
one OrderConfirmed, OrderConfirmedset4: set OrderConfirmed)
{
//find part by partId, with the value OrderRequest.partId in partSet
Part1 = find[Part__PartId,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__Or
derRequest.OrderRequest__PartId,

Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__PartSetset.PartSet__Part,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Resso
rts__PartSetset.PartSet__Part]

//find customer by name, with the value OrderRequest.name in customerSet
and Customer2 = find[Customer__Name,

Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__OrderRequest.OrderRequest__Name,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__CustomerSetset.CustomerSet__Customer,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Resso
rts__CustomerSetset.CustomerSet__Customer]

//create orderConfrimed with the found part and set
and OrderConfirmed3 = create[Part1, Customer2, OrderConfirmed__Part,
OrderConfirmed__Customer]

//add orderConfirmed to the orderConfirmedSet
and OrderConfirmedset4 = add1[OrderConfirmed3,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__Or
derConfirmedSetset.OrderConfirmedSet__OrderConfirmed]
And
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
rderConfirmedSetset.OrderConfirmedSet__OrderConfirmed
= OrderConfirmedset4

	
 104	

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
rderConfirmed
= OrderConfirmed3
and Segment_ressort_pre not= Segment_ressort_post
}

This represents only one part of the generated Alloy specification. The first

part with signatures corresponds to the mapping of the service systems and properties.
The predicate corresponds to the Order Creation service in Générale Ressorts. The
full Alloy code for this example and for other GR models in the service specification
spiral is in Appendix III: Case of Order Creation at Générale Ressorts in Alloy.

In addition to transforming model elements to the Alloy code, we need to add

additional constraints to get clearer, more visually appealing results. As Alloy is
declarative language, everything that is not explicitly stated, even if it appears as
obvious, is possible to happen. For example, if we model only finding the element in
the set, and do not state that the set remains unchanged, it is possible that as a result
we get instance where the set has more or less elements after finding the element that
before. In order to avoid such unexpected behaviors, and to get clean models, without
elements not related to any other element, we need to add the following model
cleaning and consistency rules:

1. If element E1 contains the element E2, then the parent of element E2 is
element E1. Element can be service system, service, collaboration, process,
property or any other element of the meta-model that has the aggregation
relation with the other elements. For example, if service system as a composite
E1 contains service system as a whole E2, then the parent of service system
E1 is service system E1. Similarly, the rule applies to the relation between
service system as a composite and another service system as a composite,
service as a composite and its component services, service and its functional
units, and all other elements related with aggregation relationship.

2. There is exactly one element that does not have a parent, and it is the root
element of the model. This means, that there are no “floating” elements that
are not related to the rest of the model.

3. Property P remains the same before and after the service execution, unless
stated differently. This ensures that the constraints we assume to hold when
we model in an imperative environment do hold, such as already mentioned
example of finding element in the set.

We can also use Alloy to verify if the model conforms to the meta-model and

follows the well-formedness rules. For that purpose, we have transformed our meta-
model with the well-formedness rules to the Alloy specification. When this
specification is included in the Alloy specification of the model, we can check if the
model follows the constraints given in the meta-model specification. In case there are
some contradictions, Alloy generates the message informing us about it.

	
 105	

To sum up, there are 4 parts to be transformed during the transformation
process:

1. Model elements
2. Consistency and cleaning rules
3. Meta-model
4. Well-formedness rules.

Once we transform all of them, we can verify if the model satisfies the meta-
model and well-formedness rules and validate if the generated instances correspond to
the expected behavior of the service system.

7.3 Service Simulation
Once we have transformed the model into Alloy specification, it can be

simulated using the features of the Alloy Analyzer tool. The Alloy Analyzer tool is
using its SAT solvers to find all the instances of the model that satisfy all the
constraints given in the Alloy specification. An example of such instance for the
model in Figure 31 is shown in Figure 48. Note that when the model is automatically
generated, the shapes and colors are not customized. For the purpose of explanation of
the meaning of Alloy diagram, we show already customized model.

Figure 48: Order Creation at Générale Ressorts - Example of Model Instance

The result of simulation shows the state of the company before and after the
Order Creation. The elements of the company can be found following the lines from
GR_pre and GR_post. We can notice that the CustomerSet and PartSet remain
unchanged, but the CurrentOrderConfirmed has been created in post-state referring to
the customer and part that corresponds to the customer name and part ID from
OrderRequest. This way we can always analyze the state of the system before and
after the service has been performed and detect possible anomalies. In this case, we
can see that the OrderConfirmed is created for the customer with the name Name
from OrderRequest, and address Address0 that does not correspond to the address
from OrderRequest Address1. This might lead to wrong address delivery.

	
 106	

7.4 Transforming Alloy Instance to BASS Model
The model instances generated by the Alloy Analyzer tool are shown not to be

easily readable by the business experts who are not that familiar with the Alloy
language and visual notation. Therefore, to facilitate understanding of the results of
simulation, we have created the tool to transform these model instances back to BASS
models. The pseudo code for this transformation is:

for one Alloy model instance
 load instances and relations to tree
 traverse tree and generate json file
 write file

An example of BASS instance generated with Alloy2BASS is shown in Figure

49.

Figure 49: An example of model instance shown in BASS

	
 107	

8 BASS2Java: Transforming BASS Service Model to
Application Prototype

In this chapter, we explain how service specification modeled in BASS can be

transformed to application prototype using Arcimboldo approach [112]. We choose
Arcimboldo for prototyping, because it is based on templates that enable adding
another level of abstraction before going directly to code, making the transformation
from model to code simpler.

Figure 50 shows an overview of BASS to Java transformation. It works in two

steps:
1. Transforming service specification in an intermediate project containing

Arcimboldo files in the given target language: one main object, one descriptor
file, many templates and many other files that need to be copied. We refer to
this project as Arcimboldo project. The whole transformation is split in three
main parts that correspond to different parts of application: for generating
Graphical User Interface (GUI), data-related elements and logic of application.

2. Combining templates, the main object and descriptor file and generating
application in the given target language. In this thesis, we generate Java
Enterprise Edition (JEE) application using Java Server Faces (JSF) for
interface, MySQL database with Hibernate for data and Java files for
expressing the logic.

Figure 50: Overview of BASS to Java transformation

The second step is done automatically by Arcimboldo environment assuming that
the necessary files are available as explained in Chapter 3.4. In this chapter, we first
explain input (structure of service specification that can be prototyped) and output

	
 108	

(the result) of prototyping. Then, we focus on explaining the details of step one. We
explain overall structure of generated Arcimboldo project explaining what files it
contains and what their relation to service specification is. Next, we explain
generation of GUI. Then, we explain transformation from static elements of the
service specification (data) to the Arcimboldo project files. Finally, we explain
transformation of dynamic elements of service specification (logic). Here, we also
explain how we deal with simultaneous execution of services. We illustrate all
transformations with the example of Order Creation at Générale Ressorts (Chapter
6.1).

8.1 Input (Service Specification Template) and Output (Java
Application) of Prototyping

In Chapter 4.2 we show the meta-model for the proposed method. In order to
prototype service specification, we need to know the responsibilities of service
systems participating in providing the service. Therefore, only models at the certain
level of abstraction, in specific format can be prototyped. Thus, first we explain what
kind of models it is possible to do prototyping for. We show one model representing
the template for prototypical specification.

Input of the prototyping is the model based on the meta-model described in Figure

28 with the following constraints: Prototyped service system is always service system
as a composite (white box) containing exactly one executable service system and
many non-executable service systems related with a process; all of them can be
human, IT or organization service systems. Executable service system is the one that
we want to prototype, i.e. the one whose services and properties we transform. In the
diagram it is the service system annotated with the stereotype <<executable>>. Non-
executable service systems are all other service systems interacting with the
executable service system with the aim to provide the modeled service. From those
systems we use only information about the events corresponding to the
responsibilities for each service execution and shared data (send/receive properties)
corresponding to the GUI fields for the given service. Note that instead of executing
IT system only, like it is the case with code generation methods, we execute any
service systems annotated with <<executable>>. This follows the systemic
paradigm, on which the method is based, which treats all systems the same way,
independent of their nature. Therefore, we execute equally human, organization and
IT systems.

Model representing the prototypical specification template is shown in Figure 51. It

contains the main segment with service provider, service consumer and other
stakeholders as described in the template in Chapter 4.1.1. Prototyped service system
is either service provider or one of the sub-systems of service provider that we want to
prototype. It contains exactly one executable system, in this case IT system, and many
non-executable systems, all as a whole. It is not possible to prototype the service

	
 109	

system that contains other service systems as a composite, i.e. we allow only one level
of hierarchy for the prototyped service system.

Figure 51: Input: Prototypical specification template

Component service systems of prototyped service system all contain services and
properties. There are several types of properties:

• Simple property – data representing one object, such as Property 1 and
Property 3. Their persistence and duration depends on the context in which
they are defined. Properties that are defined in executable system, such as
Property 1, last as long as the system lasts, and are stored permanently, for
instance in database. Properties defined in service as a composite, such as
Property 3, last as long as one transaction of service and therefore are not
stored permanently in IT system, but in the table capturing all transactions
of Service 3.

• Set property – data representing set of objects, such as Property 2. It is
marked with stereotype <<set>>. Their persistence and duration depends
as well on the context in which they are defined.

• Send/receive property – data shared with other systems, such as Property 4
and Property 5. They are marked with stereotypes <<receive>> and
<<send>>. The relation between them is captured in invariant of the
process connecting services of different service systems shown in the upper
right corner of the diagram.

In addition to properties, service systems contain service as a composite

corresponding to the long-running business transaction. They can contain services as

	
 110	

a whole or properties needed to communicate between them. Services as a whole
contain functional units describing logic of the service. They are related to the events,
showing who is in charge of initiating the service. For one process connecting many
services, there is exactly one event related to one of the used services. The model
following this template can be then used for prototyping. We use all elements of
executable system and only events and shared data (send/receive properties) from
non-executable systems for prototyping. This way, we replace the non-executable
system only with the data that are coming from them. As a part of future work,
simulation of the behavior of the other systems can also be done.

Output of the prototyping is the application in the given target language. In

this thesis, we generate JEE application using JSF for interface, MySQL database
with Hibernate for data and Java files for expressing the logic. As a result, we get the
web application where different roles corresponding to the non-executable service
systems can access different services via jsp pages. The navigation between the pages
for the template given in Figure 51 is shown in Figure 52. The first page is always the
main page, in which the users corresponding to different non-executable service
systems can login. Then, there are pages for each user containing the list of
transactions with possibility to choose which one to modify. The table containing all
service transactions is used to capture simultaneous executions of the service. Finally,
from these pages, there is a navigation link to the service page in which the user can
enter the fields in GUI and execute the service.

Figure 52: Output: Page navigation of prototype

	
 111	

Prototyped service specification and the result of prototyping for Order
Creation at Générale Ressorts are shown in Figure 53. The output contains only the
role page, in this case OrderEntryPerson.jsp. For each of the services as a whole in
OrderEntryPerson, it contains the table of OrderCreation transactions containing
transactions that satisfy the precondition for that service. In addition to that, it
contains the default buttons, for creating the new OrderCreation transaction and for
going back to the main page.

Figure 53: Input of prototyping for Order Creation at GR

	

Figure 54: Output of prototyping for Order Creation at GR

	
 112	

The mapping between model elements and application elements is shown in
Table XI. Events are mapped to buttons of the service pages. Service as a composite
Create Order ERP with intermediate data of executable system ERP is mapped to the
table OrderCreation with columns Customer, Part and OrderConfirmed. Receive
properties of executable system correspond to the GUI fields, as they are the
properties coming from external systems, i.e. are entered through the interface. Set
and non-set properties of executable system are stored as database tables. Service as a
whole is mapped to the logic of the service on the corresponding button click.

Table XI: Mapping input and output of prototyping for Order Creation at GR

Input (IT specification) Output (Java prototype)
Event (Create Order Creation, Find
Customer, Find Part, Create Order

Confirmed)

Button

Functional Unit Logic of service on corresponding button
clicks

Service as a whole from executable
system (Find Customer, Find Part, Create

OrderConfirmed)

Form

Service as a composite from executable
system (Create Order)

Tab with a list of transaction tables for
each service it contains as a whole. List

of transactions for one service as a whole
contains all transactions for which the

precondition of that service holds.
Receive properties of executable system

(Name, PartId)
GUI fields

Intermediate data in service as a
composite (Customer, Part,

OrderConfirmed)

Table OrderCreation for capturing all
transactions of Order Creation with ID,
customer, part and orderConfirmed field

Properties of executable system Database tables

Once we have explained the input and output of prototyping, in the following

chapters we explain how the transformation process is done, i.e. the step 1
transforming the model to the Arcimboldo project.

8.2 Mapping Prototypical Specification to Arcimboldo Project
We explain the overall structure of generated Arcimboldo project for the

prototypical specification template explained in previous chapter and explain the
mapping between prototypical specification elements and Arcimboldo files.

The main files required for Arcimboldo project are: the main object, descriptor

file and templates. The main object contains JSON object with data, which when

	
 113	

combined with the template produces the given page, class or another part of
application. It appears in the project with extensions .jao.

The templates correspond to the JSON templates, with some particularities.

They can be used to write templates for pages, classes or other parts of application.
They appear in the project with extension .tpl.

The descriptor file contains the list of all the files that must be created, and for

each file the information which template and what part of the main object it is created
from. It appears in the project with extension .fls.

Arcimboldo project that we generate from BASS service model contains one

main object (.jao file), one descriptor file (.fls file) and many templates for describing
pages, classes, logic of application, and others. In addition, it can contain files that
just need to be copied and can be created without templates. There are several files to
be generated:

• The main object (GR.jao) – containing data that when combined with
descriptor file and templates generate pages, classes and other application
elements.

• Descriptor file (GR.fls) – list of files to be generated by Arcimboldo
explaining how the templates are combined and expanded to the pages, classes
and other application elements.

• Other files – platform-related files that need to be copied (log4j.xml,
Manager.java, folder libs) – files needed for the given platform and
environment in which the application is generated. In this case, it is Java
platform, enterprise edition (JEE) with MySql database and Hibernate and JSF
libraries. Therefore, we need files such as log4j.xml, folder libs containing all
libraries necessary for the given project and Manager.java for EntityManager
used for entity beans.

• Templates for generating graphical user interface (GUI)
o ERP.tpl – template for generating home page where different roles can

login.
o Role.tpl – template for generating pages for different roles (all service

systems except IT system) with the behavior and data related to them.
o Navigation.tpl – template containing navigation between the pages.
o Web.tpl – template for generating web.xml containing servlet

mappings for JSF.
• Templates for generating data-related elements

o JPA.tpl – template for generating entity beans that are then mapped to
database tables.

o Persistence.tpl – template for generating persistence file needed for
Hibernate to map entity beans to database tables.

o ApplicationBean.tpl – template for generating application bean
containing the global data for the whole application.

	
 114	

• Templates for generating logic of application
o RoleBean.tpl – template for generating logic for different roles, such as

login and logout methods.
o ActionBean.tpl – template for generating session beans containing the

logic and data related to services.
o Logic.tpl – template for generating global logic for the application,

such as loading database, etc.

In this chapter we explain the main object and descriptor file. In next chapters,
we explain the other files necessary for generation of GUI, data and logic. They
include templates and the parts of the main object that need to be generated.
Therefore, we show the details of the main object parts relevant for generating
interface, data and logic in further chapters. Figure 55 shows the descriptor file (left)
and the main object (right).

Figure 55: Descriptor file and the main object

The main object contains of several parts:
• Application – containing main data about application, such as database

schema name, username and password and name of the application that will be
generated by Arcimboldo.

• DataTables – contains all information about database tables, their fields, types
and relations. This corresponds to the properties defined in the context of
executable system that need to be stored permanently.

• ApplicationData – contains all global data, defined in the scope of whole
application and stored in the application bean. This corresponds to the
properties defined in the context of executable system’s environment.

	
 115	

• RoleData – contains data necessary for roles, such as their login name and
password.

• Actions – contains list of services inside modeled service system with their
fields, preconditions and effect of the action expressed with functional units.

• Roles – defines list of roles for the application with the list of services they
can view and list of services they can perform. This corresponds to the
services of non-executable service systems. If the service is in the given role
with event than it is in the list of services that can be performed. If the service
is in the given role without the event, then it is in the list of service that can be
viewed only.

The main object is organized based on the main modeling concepts that are

used to generate different parts of application: related to GUI, data and logic. Table
XII shows the parts of the main object, the corresponding modeling concepts and the
part of application to which it is related (GUI, data, logic). In addition, we give the
explanation of the parts of the main object that do not come from the model and
model elements that are not visible in the main object.

As we can see, non-executable systems are mapped to the roles in the main
object with the corresponding attributes. Executable system contains different
concepts that are mapped to the parts of the main object. Services as a whole are
mapped to the actions, properties to the dataTables, environment properties to the
applicationData. Services as a composite are not represented in the main object, but
are used for mapping to the corresponding database table for simulating state machine
together with the properties inside the service. This will be explained later in Chapter
8.5.

Table XII: The main object elements and corresponding modeling concepts

Modeling Method Concepts Main Object
Elements

Application
Part

Non-executable systems
• service system name
• services without event (in which

the service system is participating)
• services with event (that performs

the service system)

Roles
• role name
• roleViewList

• roleActionList

GUI

Services as a whole in executable system
• service system name
• receive properties for service
• functional units

Actions
• action name
• gui
• units

Logic

Properties in executable system dataTables Data
Properties in executable system’s

environment
applicaionData Data

	
 116	

In addition, application and roleData are used in the main object for showing
execution-related data connected with the database schema and login for different
roles. Functional units are mapped to the library of predefined functional units used to
express the semantics of the service.

In further chapters, we show how each part of the main object looks like. For

GUI description, we show how roles and roleData look like. For transforming static
elements (data), we show application, dataTables and applicationData. Finally, for
transforming dynamic elements (logic), we show actions.

On the left side of Figure 55 we see description file. It shows how the

templates are expanded using elements from the main object to generate the
application. First line shows the directory in which the application will be generated.
Lines 3-5 describe generation of entity beans. For each database table described in the
main object in dataTables, the template JPA.tpl is expanded to the file Dt_id.java.
Dt_id is the element from the main object, corresponding to the name of the database
table. Lines 7-9 describe generation of the file persistence.xml. This file is generated
only once for the whole application. Therefore, we use expression for whole with the
expression expand of the template persistence.tpl. Similarly, we describe expansion of
all the other templates. For example, for each action described in the main object, we
expand the ActionBean.tpl to the corresponding java class. For each role described in
the main object, we expand Role.tpl to the corresponding jsp page. At the end, we
copy the necessary files to the generated applications, such as folder libs containing
necessary libraries and files log4j.xml and Manager.java. In the expand expression we
give the name of the generated file, as well as the path in the generated project in
which it will be stored. The structure of the generated application corresponds to the
typical structure of the JEE application.

In this chapter we have explained the overall structure of the intermediate

Arcimboldo project generated from the prototypical specification, as well as the
structure of the main object and descriptor. In the following chapters we explain the
other files for generating interface, data and logic. For each of them, we need to
generate corresponding templates and parts of the main object. For each of these
sections, we give pseudo code for transforming prototypical specification to
intermediate Arcimboldo files. Then, we describe the related parts of the main object,
related templates and how from these files Arcimboldo generates necessary classes
and pages.

8.3 Generating GUI
In this chapter, we explain how GUI is generated from prototypical service

specification. We need to generate roles and roleData part of main object and
templates ERP.tpl, Role.tpl, Navigation.tpl and web.tpl. First we give pseudo code for

	
 117	

generating the parts of the main object and templates and then give examples of how
the resulting main object’s parts and templates look like.

Prototypical Service Specification to Arcimboldo files: The main object

To generate roles and roleData in the main object from prototypical
specification, we do the following:

for each non-executable service system
 create an object role in roles in the main object containing role name and list of
 services that can be viewed only (without event) and that can be
 performed (with event)
 create an object roleData in roleData containing username and password for
 login for that role

We map non-executable service systems to the roles and services inside them

to the corresponding roleViewList and roleActionList.

Prototypical Service Specification to Arcimboldo files: Templates
There are several templates we need to generate for GUI of the application.

The pseudo code for this generation is:

for whole
 create template Role.tpl for generating pages for each role containing all
 the services it can perform and view
 create template ERP.tpl for generating home page with a list of all roles that
 can then login with their credentials
 create template Navigation.tpl for generating navigation between pages that is
 by default set between the home page and the role’s pages
 create template web.tpl for generating web.xml file containing default
 information about servlet mapping needed for JSF

We generate the files using necessary languages and frameworks, such as JSF

for generating pages, XML files for generating faces-config.xml containing
navigation between the pages and web.xml for defining servlet mappings. The
templates have the default format independent of the model that is being prototyped.
Their format depends only on the used technologies. We use the default navigation
between the pages, containing the home page (generated from ERP.tpl) and one page
for each role. On each of the role pages there are tables that role can view and the list
of actions that are activated when the certain precondition holds. Therefore, the
navigation as well is generated by default.

Arcimboldo files to Java application

An example of the generated element for the roles is given in Figure 56. Role
contains information about the name of the role coming from the name of the

	
 118	

corresponding non-executable service system. It also contains the list of actions
roleActionList corresponding to the services of that service system. In addition, it
contains the roleViewList containing the data the role is viewing, corresponding to the
properties of that service system.

Figure 56: The main object: roles

An example of the template is given in Figure 57. It shows one part of the
Role.tpl that corresponds to the JSF page for one role (non-executable system). Using
JSF tags we represent the table containing the data of the corresponding database
tables of the roleViewList. This template is expanded based on the elements from the
main object (roles and roleViewList in this case) to the files such as
OrderEntryPerson.jsp. This is done by Arcimboldo as explained in Chapter 3.4. The
resulting page is shown on the right of the Figure 57.

Figure 57: Role.tpl for generated page for OrderEntryPerson shown in Figure 54

8.4 Transforming Static Elements (Data)
In this chapter, we show how the data-related elements of the application are

generated. We need to generate dataTables and applicationData part of the main
object and then generate templates JPA.tpl, peristence.tpl and ApplicationBean.tpl.
First we give pseudo code for generating the parts of the main object and templates

	
 119	

and then give examples of how the resulting main objects’ parts and templates look
like.

Prototypical Service Specification to Arcimboldo files: The main object

To generate dataTables and applicationData of the main object we do the
following:
for all properties in executable system
 create an object in dataTables in the main object
for all properties in executable system’s environment
 create an object in applicationData in the main object

We map the properties to the parts of the main object: properties of executable

system to the dataTables and properties of executable system’s environment to the
applicationData.

Prototypical Service Specification to Arcimboldo files: Templates
There are several templates to be generated, as described below.

for whole
create template JPA.tpl for generating entity beans for each dataTable element in
 the main object
create template persistence.tpl for generating persistence.xml file needed by Hibernate
 for mapping entity beans to database tables
create template ApplicationBean.tpl for generating application bean containing global
 data relevant for the whole application

As explained for the other templates, these templates are generated

independent of the model transformed. They depend on the used technologies only.
Note that in addition to the templates and changes in the main object, file

Manager.java is copied that is used as EntityManager for entity beans.

Arcimboldo files to Java application
An example of the dataTables element is given in Figure 58. Element

dataTable contains the name of the database table corresponding to the name of the
set property and attributes corresponding to the attributes of the property in the model
with their name and type. Attributes referring to the other properties are shown in the
separate section relationship.

	
 120	

Figure 58: The main object: dataTables

An example of the template is shown in Figure 59. We show the template
JPA.tpl representing the template for generating the entity beans. The template is
expanded into the corresponding java file, such as Customer.java shown on the right
side of the figure. The template is expanded by Arcimboldo based on the elements of
the main object as explained in Chapter 3.4.

Figure 59: Expanding template JPA.tpl for generating entity beans (and database

tables)

8.5 Transforming Dynamic Elements (Logic)
In this chapter, we show how the logic-related elements of the application are

generated. We need to generate action parts of the main object and then to generate

	
 121	

templates RoleBean.tpl and ActionBean.tpl. First we give pseudo code for generating
the parts of the main object and templates and then give examples of how the
resulting main objects’ parts and templates look like.

Prototypical Service Specification to Arcimboldo files: The main object

To generate actions in the main object, we need to do the following:
for all services as whole in executable system
 create an object in actions in the main object containing service name
 name of the role in charge for it (where the event in the model is)
 for each value coming from external system GUI field with its name
 and type
 for each functional unit with its type and parameters

We map the functional units and services with their related receive properties to the
parts of the main object.

Prototypical Service Specification to Arcimboldo files: Templates
There are three templates that need to be generated:

for whole

create template RoleBean.tpl
create template ActionBean.tpl
create template Logic.tpl
RoleBean.tpl contains the logic related to the roles, such as login and logout.

ActionBean.tpl contains the data and logic related to the services of the roles.
Logic.tpl contains the logic of the application used on the global level, such as
loading database, and others.

Arcimboldo files to Java application

An example of the actions element of the main object is shown in Figure 58.
Elements’ actions contain the name of the corresponding service, GUI parameters
corresponding to the suitable receive properties values, units corresponding to the
functional units describing the logic of the service and precondition describing the
condition that must hold for the service to be performed.

Figure 60: The main object: actions

	
 122	

An example of the template is shown in Figure 61. It shows one part of the
template Logic.tpl showing how general logic is used in the application. The right
side of the figure shows the file that is the result of the expansion of the template
containing the necessary data and methods.

Figure 61: Expanding Logic.tpl to Logic.java

Synchronisous services: state machine simulation

We illustrate how we simulate service multiplicity. Figure 60 shows the
specification of Order Creation at GR with preconditions. Order Creation
corresponds to the long running transaction that include several atomic transactions
for finding the customer that created the order in the system, finding the part the
customer ordered and creating order confirmed with these two parameters. Therefore,
we model the service Order Creation with its sub-services Find Customer, Find Part,
Create Order Confirmed. Data that are created during the execution of this transaction
and are therefore shown as intermediate data in the context of Order Creation are:
Customer, Part and OrderConfirmed. Every service has its pre-condition, i.e. the
condition that should hold for the service to have the certain effect on the system
expressed with functional units. In this example, all service preconditions contain the
expression that the output element is null (for example for find customer, that
customer=null). This is the way to differentiate between the services that can be
performed multiple times and only once. When we set this precondition, it means that
the service can be performed only once, and then the customer value for example will

	
 123	

be set to the value different than null. Therefore, based on precondition it is not
possible to perform that service once more. Create Order Confirmed precondition
contains in addition the condition that customer!=null and part!=null. This
corresponds to the fact that customer and part as input values related to the
intermediate data customer and part of Order Creation service have to be initiated
before the creation of order is confirmed. If we would show the inputs and functional
units, we would see the relation between Create Order Confirmed functional units
and customer and part intermediate data.

Find Customer precondition
customer=null

Find Part precondition
part=null

Create Order Confirmed
precondition
customer!=null and part!=null and
orderConfirmed=null

Figure 62: Service specification at Générale Ressorts with preconditions

The diagram shows one instance of the Order Creation. To execute the model,
we need to include multiple transactions of Order Creation. In order to achieve that,
we use one persistent table to store all transactions of Order Creation, which is used
to simulate the state machine. Transition from one state to the other is possible
depending on the preconditions of the services, i.e. the conditions set on top of data.
Data outside Order Creation live already in their own context, either as GUI data, or
data in the IT system. Therefore, the table contains intermediate data related to the
sub-services: Customer, Part and OrderConfirmed as shown in Table XIII. The table
also contains Order Creation ID for each transaction of Order Creation. This field is
created automatically for each long-running transaction as id of one transaction.
Based on preconditions that combine constraints on data, each of services can or
cannot be performed. This way, state transitions are modeled based on Order
Creation table and the conditions relating data.

Table XIII: Table for capturing Order Creation transactions

Order Creation
ID

Customer Part OrderConfirmed

1 … … …

	
 124	

The state machine for the specification of service Order Creation in Figure 42
is shown in Figure 63.

Figure 63: State machine for Order Creation business transaction

Each state is marked with 3 numbers 0 or 1, corresponding to the availability
of customer, part and orderConfirmed respectively. The initial state is 000, i.e. when
customer, part and orderConfrimed are null. From that state, it is possible to do find
customer or find part, which leads to the states 100 or 010 respectively. In these states
we can again do find customer or find part, leading to the corresponding states and
finally leading to 110, meaning that both the customer and part are available. Create
order confirmed can then be performed, leading to the state 111, meaning that the one
transaction of Order Creation is finished.

This chapter has illustrated how we prototype service specification. The
prototypes are then used to validate whether the service specification corresponds to
business needs.

	
 125	

9 The Practical Impact: Evaluation of the Developed Theory in
Practice

In this chapter, we show the evaluation of the proposed method. The
evaluation method we use belongs to the group of observational design evaluation
methods. We show how the method is applied on a case study of research project
management we conducted at EPFL. In addition to that, we have conducted a survey
with a group of practitioners to get their feedback on how much BASS is useful in
practice.

In chapter 9.1 we describe the case of research project management based on
the consulting project we have conducted at EPFL and show the benefits of the use of
BASS for this case study. For this project, it was not relevant to create simulate and
prototype the model. Therefore, we illustrate the service specification spiral only
(Chapter 5.1).

In chapter 9.2 we position our method among other modeling methods and
explain similarities, differences, and what our method brings as new. It is based on the
related work described in Chapter 2.

Chapter 9.3 includes the feedback we have received from practitioners about
the usefulness of the method in practice. The results of the feedback are used to
describe the contributions, practical recommendations and limitations of the method
(Chapter 10).

9.1 Case Study: The Case of Research Project Management at EPFL
In order to propagate research, EPFL is doing many research projects. Once

the professors and researchers of EPFL define a project, they need to find funding for
it and apply for it. The following actors take part in the application process for
research funding:

• Funding Organization (FO) is an external source of funding. It can be a

foundation, government department, corporation, company, private donor, etc.
The reasons for funding vary from the desire for advancement in knowledge to
obtaining profit. In both cases, the organization maintains close contact with
its partners, because its image is very important. As different organizations
have different regulations for granting funds, researchers have to adapt
administration of their project (non-scientific part) to comply with the
requirements of the FO. The FO makes research project acceptance decisions
based on an internal competitiveness.

• Researcher (Tom) is a person at EPFL who is passionate about progress and
wants to respond to society’s concerns. With his laboratory, or together with
partner laboratories, he has the competencies and ideas to carry out a research
project. He applies for funds for his research project, but he does not want to

	
 126	

spend much time on administrative procedures for preparing the funding
application. The funds he might get have certain policies and regulations to
which the research project must comply.

• EPFL Support Organization (SO) is an organization within EPFL that
promotes the quality and image of research conducted. For this purpose, the
SO provides researchers with all fund-related information, assists them with
finances and offers them administrative support for their application process
for research funding. SO also manages the intellectual property resulting from
research through evaluating new inventions, negotiating and approving
research contracts with industrial partners.

• Administration fédérale des finances (AFF) is an external organization that
audits University X to check if the financing of the projects is compliant with
the financial standards, like International Public Sector Accounting Standards
(IPSAS).

• Research community is consisted of everyone that benefits and is interested
in the results of the funded project. Often, the results of the research project
are published in conferences or journals, and these publications are available
to the research community.

To model this case study, we start with conceptualizing the main process Propagate
Research and the main service systems collaborating to propagate research using the
template from Figure 15. Then we refine the implementation of the service in service
provider, in two cycles of the service specification spiral explained in Chapter 5
(Figure 29), using the steps 1-4. In the first cycle we model implementation of the
service Propagate research inside EPFL with its partners as the service provider. In
the second cycle, we refine further the support organization of EPFL+ to show how it
implements the supporting services. We explain all the steps of all cycles and the
resulting diagrams. Finally, we explain the benefits of using BASS in this project. By
convention, information in italics corresponds to the names in the diagram.

9.1.1 Initial Model Design
In this phase we identify the core process we model: Propagate research [w]

with the main external service of the service provider and services of other
stakeholders it uses: Do research project[w], Fund research[w], Access research
publications[w] and Check compliance with accounting standards[w] of the
corresponding service systems in which the service is creating value: EPFL+[w],
SNF[w], Research community[w], AFF[w]. We also define the service properties.
Based on identified elements, we get the resulting diagram in Figure 64.

Figure 64 shows the result of initial model design. Service systems
EPFL+[w], SNF [w], Research community [w], AFF [w] are shown in the context

	
 127	

Research segment[c]. They participate in the process Propagate research [w] with
services Do research projects [w] of EPFL+[w], Fund research [w] of SNF [w],
Access research publications [w] of Research community [w] and Check compliance
with accounting standards [w] of AFF [w]. Responsibilities of each of the
stakeholders in implementing the service Propagate research [w] are shown with
their services.

Figure 64: Result of conceptualization

We can continue with the first cycle, where we analyze how the service

provider EPFL+[w] is organized to implement service Do research projects [w].

9.1.2 Cycle 1: EPFL+
In previous iteration, we have identified the main external service Do research

projects [w] that service provider EPFL+ needs to provide. In this cycle, we refine
EPFL+[w] to analyze the details of implementation of the service Do research
projects [w]. Following the step 1-4 of the service specification spiral, we analyze the
specification of service Do research projects [w].

Step 1: External services

In this step, we add detailed external services to accommodate expected
interactions with customers and consumers. Once they are identified, properties are
distributed to them. The decisions are captured in Figure 65 and Figure 66.

Figure 65: EPFL+: Step 1 Conceptualize

	
 128	

	

Figure 66: EPFL+: Step 1 Decide

The result of this step is shown in Figure 67. As we can see the difference is
visible in EPFL+[w]. Service Do research projects [w] is refined into Do research
projects [c], so that new sub-services: Research project definition [w], Research
project funding [w] and Research project execution [w] are shown. Properties of
EPFL+[w] are now related to the new sub-services, based on the fact which service is
using what resources, as captured in Figure 66.

Figure 67: EPFL+: Result of step 1

Step 2: Internal structure

So far, we have identified what external services EPFL+[w] needs to provide
in order to ensure customer’s satisfaction. Now, we can decide the details necessary
for implementation of this service inside EPFL+[w]. First, we identify service
systems participating in its implementation. As mentioned, we group people,
technologies and other resources based on their participation in the implementation of
service Do research projects, i.e. based on the implementation of its sub-services.
Therefore, this structure does not need to reflect the typical hierarchical organizations
of companies. Instead, it reflects the organizations needed to implement the given

	
 129	

service. Then we allocate all the properties that were in EPFL+[w] to the newly
identified service systems. These decisions are captured in matrices in Figure 68 and
Figure 69.

Figure 68: EPFL+: Step 2 Conceptualize

	

Figure 69: EPFL+: Step 2 Decide

The result of this step is shown in Figure 70. As we can see, all the changes

are inside EPFL+. It is now refined into EPFL+[c], revealing its internal structure
with: UNIL [w], Faculty [w], EPFL management [w], Support organization [w] and
Laboratory [w]. As we can see, it does not contain the typical departments we would
see inside the company or organization. Instead it contains people and technologies
grouped into organizations. Therefore, for example, the partner university UNIL is
inside this service system as well. Also, as we will see, support organization can
include some people hired in the laboratories or faculties. The resources are allocated
to the newly identified service systems based on who is responsible and who uses and
knows what resources.

	
 130	

Figure 70: EPFL+: Result of step 2

Step 3: Internal services

So far, we have identified what external services should be provided by
EPFL+, with what properties, how is EPFL+ organized to provide them and what
properties each of internal organizations is using. Now, we should decide what
internal services EPFL+ needs to provide to implement the needed external services.
In this case, the services remain the same, i.e. there are no sub-services of the external
visible services. Therefore, the diagram remains the same as it was. In case there
would be new internal services, as the sub-services of external services, we would
need to allocate the properties they use to them as well.

Step 4: Internal responsibilities

Final step of analyzing the details of implementation is to define the
responsibilities of each of service systems inside EPFL+[c]. For each of sub-service
of Do research projects[c], we identify the process that implements it with the
services inside the service systems this process is using. The decision is captured in
Figure 71 and Figure 72. Next to service’s name is one of the letters representing the
role of that service system in the implementation of the service, corresponding to the
RACI matrix. For each service, we also allocate service properties to the services that
its implementing process is using.

Figure 71: EPFL+: Step 4 Conceptualize

	
 131	

Figure 72: EPFL+: Step 4 Decide

The result of this step is shown in Figure 73. We can see the organization

EPFL+[c] with its internal service systems and the services for which they are
responsible, as well as the resources these services are using and the properties they
should satisfy. These services are then used by the process that implements the
higher-level services, such as: Research project definition, Research project funding
and Research project execution.

Figure 73: EPFL+: Result of step 4

Now, we have all the details of service implementation inside EPFL+. For the
purpose of this project, it was important to analyze service implementation and
responsibilities inside the support organization as well. Therefore, we do one more
cycle of the design process.

9.1.3 Cycle 2: Support organization

Step 1: External services
The first step would be to analyze what the external services are that Support

organization [w] should provide. In this case, they are the same services as already
identified in support organization, so there is no need for this step, and the resulting
diagram remains the same as it was.

Step 2: Internal structure

In this step, we analyze the details of implementation in Support organization
[w]. We first decide the internal structure of support organization. This decision is
captured in Figure 74. Based on the decision, Support organization[c] contains
service systems: human Lab secretary [w], software component GrantsDB [w],

	
 132	

software component SAP [w], organization HR [w] and organization Financial
services [w]. As we can notice, laboratory secretary belongs to the support
organization, even though it is hired by the laboratory that is different service system.
This reflects the service-based organization, i.e. the fact that people are structured into
organizations based on their role in service implementation, not the organization that
is hiring them. We also allocate the properties of Support organization [w] to the
newly identified service systems. All the decisions are captured in Figure 74 and
Figure 75.

Figure 74: Support organization: Step 2 Conceptualize

	

	

Figure 75: Support organization: Step 2 Decide

The result of this step is shown in Figure 76. Support organization [w] is
refined in Service organization[c], revealing its internal structure. The properties are
allocated to the newly identified service systems based on the decisions in Figure 74.
They reflect the fact which service system knows about what properties.

	
 133	

Figure 76: Support organization: Result of step 2

Step 3: Internal services

In this step, we need to identify the internal services of support organization
needed to provide external services. Therefore, the external services are refined into
many internal services. Also, the properties used by external services are allocated to
the newly identified services. These decisions are captured in Figure 77 and Figure
78.

Figure 77: Support organization: Step 3 Conceptualize

	
 134	

Figure 78: Support organization: Step 3 Decide

The result of this step is shown in Figure 79. We can see that support

organization contains all the internal services and their relation to the properties,
based on the decisions in Figure 77. The relations show which service uses what
properties.

Figure 79: Support organization: Result of step 3

	
 135	

Step 4: Internal responsibilities
Finally, we need to define the responsibilities of all organization inside

Support organization[c]. For each internal service, we identify the process and the
services it uses to implement the higher-level service. We also allocate the service
properties. The decisions are captured in Figure 80 and Figure 81.

Figure 80: Support organization: Step 4 Conceptualize

	

	

Figure 81: Support organization: Step 4 Decide

Figure 82 shows the result of this step. Support organization now contains all

the details of service implementation: external services, internal organization, internal
services and internal responsibilities of each of the service systems inside support
organization. For the purpose of this project this was the level of abstraction that was
enough. We started with the service Propagate research and analyzed its
implementation on different levels: Research segment, EPFL+ and Support
organization. In case we would like to do simulation and prototyping of the models,
we would need to use functional units to describe the semantics of services. In this
case, there was no need for that, so we did not model it.

	
 136	

Figure 82: Support organization: Result of step 4

9.1.4 Benefits of Using Proposed Method
BASS has contributed to the project with its three main characteristics: being

customer-focused, defining internal organization based on services and providing an
overview of the whole process needed to provide and implement the service.

As a customer-focused method, BASS has contributed to the better match
between customer’s needs and provided services. Following the steps of BASS
service specification spiral, we start always by analysis of customer’s needs. In this
project, it helped to understand better the needs and define implementation
organization based on them. In other projects on which we have applied BASS, such
as the case of computer data storage described in the evaluation document, we have
concluded that there is a mismatch between customer’s needs and provided services
in the existing system. Therefore, we have proposed to use surveys, contextual
inquiries and workshops to gather the customer’s requirements for the new system.

As a service-based method, BASS has contributed to defining internal
organization of storage providers based on the services that can be provided. This
means that we do not use traditional organizational charts. Instead, we group people
and technology based on their role in providing the service. People from different
departments can be a part of the same organization if their role in providing the
service is the same. For example, laboratory secretary is modeled as a part of the
support organization and not laboratory, because her role is to provide support for
research projects. Also, external partners, such as UNIL, are also parts of the service
provider, because they participate together with other organizations inside EPFL in
doing research projects. This way, BASS puts together all people and organizations

	
 137	

relevant for service design and implementation and group them based on their role in
providing the service.

As a holistic method, BASS has contributed to defining an overview of the
whole process needed to provide and implement services, starting from customer’s
needs to definition of responsibilities of organizations needed to implement the
required services. This way, we always first analyze customer’s needs and then define
internal organizations and their responsibilities based on services needed by customer.
This helped to analyze the overall situation and agree about the responsibilities of all
organizations participating in service delivery. It provided a common platform for
customers, managers and employees and improved a common understanding of
modeled services. It helped people and organizations to appreciate their role in the
success of the service, by making them aware of their contributions to the final
service and customer’s satisfaction.

9.2 Comparison with Other Methods
In this chapter, we synthesize the comparison between different modeling

methods explained in Chapter 2 (Table II), and position BASS in relation to these
methods. Then, we focus on comparing the only modeling method intended for
service design, service blueprinting and BASS.

From the table, we can conclude that simulation, model and refinement
verification are applied mostly for the methods that are IT focused, show detailed
view, and are used in late design phase. There are not many methods in which it is
possible to simulate high-level models focusing on macro concepts. SysML and OPM
are the only one providing that possibility. However, SysML is intended mostly for
the specialized domains, such as aerospace, automotive, health care, and other. OPM
can be applied to modeling organizations in general, but it is not intended for service
design. Formal methods for model verification and simulation are applied mostly on
the IT focused modeling methods, such as UML or for a specific domain.

BASS is a method used for early requirements that provides an integrated view of
the process needed to define the services that need to be provided and organizations
necessary for implementation. It is service focused and can be used for simulation and
verification. Unlike many other methods, like for instance UML with 14 diagram
types, this method uses one diagram type only including both the service system
structure and its behavior. The benefits of having one diagram type are:

• Easier and quicker understanding of the method by the users
• Possibility to see the “big picture” showing both the structure and behavior of

one service system
• Possibility to see the relation between the service system structure and its

behavior.
For the later stages of design and for projects that include a lot low-level technical

details, this can lead to cluttered and complex models. However, for the initial stages
of the projects, these characteristics force people to focus on macro concepts, and that
makes them very useful. BASS provides a way to create precise models on high-level
of analysis, which can be simulated. In addition, BASS is also service focused,

	
 138	

meaning we always start by modeling customer’s needs and define organizations
necessary for service implementation based on their role in providing the service.

As BASS is intended for service design, we compare it in more details with
service blueprinting. BASS shares many of the characteristics with service
blueprinting. They both start with modeling customer’s perspective of the service,
continue with modeling points of interaction with the customer and support services
necessary for delivering the services to the customer. They put all people involved in
service design, delivery and support on the same page and force people to take cross-
disciplinary and cross-functional view of a service. Customers, employees and
managers all get the overview of the entire process and their role in it. Both methods
always start with the customer’s perspective and are therefore customer-oriented.
However, there are several differences. Comparison between service blueprinting and
our method is given in Table XIV. The text in right column in italics represents the
differences of our method compared to service blueprinting.

Table XIV: Comparing service blueprinting and our method

Service Blueprinting BASS
Customer-focused Customer-focused

Common platform for customers,
employees, managers

Common platform for customers,
employees, managers

Provides overview of the entire process Provides overview of the entire process
Puts everyone involved in the service

design on the same page
Puts everyone involved in the service

design on the same page
+ enforces identification of different

teams relevant for customer’s experience:
service design, service delivery, service

support and service promotion team
Suitable for any level of analysis Suitable for any level of analysis

Forces people to take cross-disciplinary
and cross-functional view of a service

Forces people to take cross-disciplinary
and cross-functional view of a service

Used for modeling new service and
improving existing ones

Used for modeling new service and
improving existing ones

Standard BPMN-like notation Richer notation capturing organizations,
data, boundaries, IT system components,

etc.
Imperative process modeling (process

oriented)
Declarative process modeling (data

oriented)
Models classes of organizations and

people
Models instances of organizations and

people
No simulation possible Simulate the models to obtain feedback

even at the early stage of design

	
 139	

We explain the differences and when one can benefit from these different
approaches. Service blueprinting is focused on modeling the service process itself. It
uses the standard notation with boxes and arrows and sequence representation of the
steps of the service process. It can use BPMN to represent more detailed
representation of the process. BASS focuses not only on the service process modeled,
but also on the organizations, sub-organizations, data and boundaries that define the
context and life cycle for organizations, actions and data. Therefore, we use richer
notation to represent this, such as visual representation for the IT systems and
components.

Next, service blueprinting uses imperative and BASS declarative process modeling.
Unlike imperative process modeling that uses predefined sequence of steps and
restricts the user to perform the action in exactly given sequence of steps, declarative
process modeling defines what should be done to achieve the goal without specifying
the exact sequence of steps, leaving the user freedom to realize the action in the way
he finds it appropriate. This can be useful for certain projects, such as for the
workflows in hospital, where the doctor decides what to do based on the current
situation, but still has to follow certain rules in performing it. Also, it can be very
useful for initial stages of the projects, because it forces people to focus more on
macro concepts, rather than on details of implementation. Depending on the nature
and the project, and stage of analysis, imperative or declarative process modeling can
be useful.

Unlike service blueprinting, with BASS we model only the instances of
organizations, people and services. This means that we always model the specific
customer, use the names of the people in the project, etc. This could lead to outdated
models, when people are not in organizations any more. However, the main purpose
of the models in BASS is to do analysis using the resources available at the current
moment of time and to create common understanding of the situation. The process of
creating the model brings new knowledge and conclusions and is therefore very
important. The main purpose is not to update the model to reflect the current situation,
but to analyze the existing situation or model the desired services in the given
moment. Using actual names and instances helps people find their roles in the
provisioning service.

Like with service blueprinting, with BASS we also put everyone involved in
service design, delivery and support on the same page, helping them understand their
role in the customer’s experience. In addition, in one of the steps of the process for
identifying service systems inside organization that participate in providing the
service, we enforce identifying the main roles from service perspective, such as
service design, service delivery, service support, and service promotion team. This
enforces people to identify themselves as a part of the process delivering the given
services, and not just as a part of traditional organization view, such as departments.

Finally, with the proposed method it is possible to simulate the models to obtain
feedback on the instances of the service behavior even at early stages of design.

	
 140	

9.3 Conducted Survey: Practical Feedback
 BASS is aiming at helping practitioners to create abstract, yet precise models.
To evaluate if it is applicable in different businesses, we have conducted a survey
with practitioners. We have conducted series of interviews with the practitioners
having experience in different domains: management consulting, IT, healthcare and
pharmacy, government, telecommunication, and others. The interview contained
30min explanation of BASS method illustrated on the case study of computer data
storage we conducted at EPFL. Afterwards, the practitioners were asked to answer 12
questions related to their previous experiences with business case modeling and their
opinion about applicability of BASS in their projects and companies. The evaluation
document used to conduct an interview is available in Appendix IV: Survey
Questionnaire. Note that during the interview protocol director was giving further
information about the content of the document. Below, we summarize the results of
the survey. Based on the answers we got, we discuss several topics: modeling
methods used in practice, simulation methods used in practice, usefulness of BASS
design process, usefulness of BASS simulation, main advantages and disadvantages
of BASS, and suggested improvements. For each of them, we first give a synthesis of
answers and then the excerpts from the questionnaire in italics.

Modeling methods and tools used in practice

House of Quality, Lean-Six Sigma, SEAM, Merise, Mega, Information
Engineering (Navigator, IEM), RUP, RAD, ASAP, BPM, their own (or the one of the
clients) methods and tools, created for specific problems.

- “I usually use “House of Quality” – some of its parts or as a whole. Besides,
the Lean-Six Sigma business process modeling, that I am a passionate
advocate of, is all about customer centric tools and approaches.”

- “Given the consulting role of the work we do, we typically adapt to client
practices in this regard. Internally, there is not a consistent set of practices we
employ, but we do come up with structures/methods that serve the purpose of
a particular task at hand.”

- “SEAM”
- “Yes, Merise, Mega, Information Engineering (Navigator, IEM), RUP, RAD,

ASAP, SEAM, …”
- “Yes, BPM or specific client methods”.

Simulation methods and tools used in practice

Most of the interviewed practitioners do not use the simulation tools and
methods. The only mentioned one was Oracle BPM. This confirms that usage of
simulation tools for modeling business cases is not that common.

- “I have never used any simulation, to be fair, due to my position that sits
between business and IT.”

- “I have personally not performed a simulation of this nature before, but was
often engaged in reviewing the outputs and proposing actions to be taken
based on them. I am not familiar with specific approaches/methods, as these
tend to be client-specific in the context of my work.”

	
 141	

- “I’ve never used model simulation but I saw it in some BPM tools (Oracle
BPM).”

- “I have never used any simulation.”

The usefulness of BASS design process
All interviewed practitioners have agreed that BASS can be useful. What they

have stressed the most is use of BASS for facilitating workshops and introducing
structure to the design process, matching the business needs and technical
requirements. Most of them stress the fact that it is useful for early stages of design.

- “Definitely BASS can bring some new perspectives to my projects. I like the
way of the presented structured way of thinking, and customer-centric
approach – making sure that customer gets what customer wants. All the rest,
(the back-office operations and organisation) is joining up to support the
customer expectations.”

- “BASS can definitely help to facilitate workshops with stakeholders.
Depending on the stakeholders involved in the workshops, form my
experience, it might be hard to keep technical people focused on the topic of
“customer needs” and “capabilities” customer wants. Broadly generalising,
technical people usually tend to steer the topics directly to the technical
specification. However, with the good facilitation skills, I guess that this
hurdle can be overcome.”

- “In regards with the proposed approach, I think it would definitely drive some
efficiencies and effectiveness during the workshop facilitation and bridging
the gap between business needs and technical requirements. In regards with
the simulation approach, I guess it could bring more clarity than Alloy
diagrams.”

- “I believe that the proposed method could be very valuable in the process of
soliciting input and working out the optimal solution to underpin / adapt the
business case. I think the method itself is supporting co-creation and is
conducive to securing buy-in from the respective stakeholders.”

- “As per above, I see facilitating workshops with BASS as one of the core
strengths of the approach in this domain.”

- “I believe that with practical improvements mentioned above, BASS could be
a useful tool to bring what is otherwise a complex outcome closer to the
understanding of stakeholders that are part of the process, but not necessarily
versed in process design / notation, etc.”

- “I believe that BASS, complete with the workshop approach built around the
afore-mentioned visual modeling method, could be built into a close-ended
solution/offering that could be ‘deployed’ in client situations, in particular
those where new functionality/product/service/process design is the topic.”

- “Yes, BASS can bring some new perspectives to my projects, to me it defines a
framework for moving from business requirements to detailed software
design.”

- “BASS can be useful for facilitating workshops, because it gives some
structure to the workshops.”

- “BASS doesn’t looks like huge and having many constraints, thus it has
chances to be adopted. “

	
 142	

- “Common sense would say that yes, BASS could help EPFL because it defines
a framework, it looks like light and easily manageable.”

The usefulness of BASS simulation

Most of the practitioners agree that BASS simulations can be useful for testing
and improving a proposed solution. However, the suitability of visual representation
is one of the biggest drawbacks. All practitioners found very difficult to interpret the
results of simulation shown using Alloy diagrams. Transformation back to BASS has
significantly improved their understanding of the simulation results. However, there
are still suggestions for improvement.

- “In regards with the usefulness, in line with my previous answer, I think it is
applicable for the technically demanding projects. BASS instances are
definitely more readable than the previous method (Alloy) that was presented
to me. “

- “I guess it would be a useful simulation method that puts a structure around
the approach.”

- “I believe simulating the model is relevant for testing and improving a
proposed solution. I find the BASS simulation to be useful in the
aforementioned context.”

- “Useful to detail futher / validate requirements. Simulation and prototyping
are always a source of confusion for business people. It still require the
presence of business analyst or IT engineer to read/validate the results of
simulation. Simulation is not needed always, but only when the further
analysis is required to understand the “real” problem.”

Advantages

Some of the biggest advantages of BASS that were mentioned are: structured
way of thinking that BASS brings, customer-focused analysis, having a complete
overview of a process, including external organizations as a part of service provider,
including people from different departments, usage of declarative process modeling in
initial stages of the project.

- “I like the way of the presented structured way of thinking, and customer-
centric approach – making sure that customer gets what customer wants. All
the rest, (the back-office operations and organisation) is joining up to support
the customer expectations.”

- “In my opinion, including people from different departments is one of the
crucial steps in ensuring the successful closure of an initiative. More and
more organisations are moving from silos-based operations that are
organised around different operations departments are delivering (horizontal
approach) to opposite approach that links together different, usually not
connected teams on a project-to-project bases (vertical approach). This type
of organisation supposes to drive a delivery time decrease and productivity
increase. “

- “Including external organisations as a part of service provider is a common
approach in large international companies. Externals can be managed
differently depending on the expected outcome. The 3rd party companies can
be involved as contingency workers, consultants, out-sources, smart-sources,

	
 143	

or considered equally as permanent employees. Therefore, including those
employees is of a high value to the project.”

- “I find it insightful and, at times, even critical, to have a complete overview of
the inputs (which can be both data and behavior of the modeled organization)
when conducting an analysis or designing a process. The more one is able to
consider at a time (without cluttering the picture), the better.”

- “I believe refocusing attention away from the sequence of steps can be useful,
especially in the (early) design stages of new process creation or existing
process modification. This in particular applies for the segments where key
requirements are being defined by potential process users/beneficiaries.”

- “Declarative process modeling is definitely useful in brainstorming phase or
an initial stage of the project planning when all aspects of the project should
be covered. “

- “Being aware of the transversality of a process, involved external
organizations, support, promotion and service’s delivery is always useful and
can avoid surprises in the process implementation.”

Disadvantages/Concerns

One of the main drawbacks of BASS is the suitability of the visual
representation used in simulation. Another concern is how the models would look like
for a more complex project. Despite liking the idea of using actual names in the
models, interviewees have also stressed possible problems, such as problems with
outdated models, drawing an inference that the setup is not working because a
concrete person is not doing his job. Also, they have stressed that compatibility of
BASS and Hermes would be very important and that this should be checked.

- “I found the notation of the simulation results a bit challenging to interpret.”
- “However, I am not sure how cluttered the graph could look like if a more

complex project is managed. In that case, I would still keep the approach, but
organise the graphics a bit differently maybe. I can see using this approach in
projects initiation phases, as well as during the problem solving and route-
cause analysis sessions.”

- “However, in this particular case, if you want to keep the graphs for later on-
boarding or training purposes, there might be some problems with them being
outdated. (E.g. if an employee moves on, an administrator should go through
every single chart and update it with new names.) “

- “Depending on the setting (e.g., workshop), one would need to be careful that
the effort to put actual names does not backfire (e.g., drawing an inference
that the setup is not working because listed John Doe is just not doing what
they are supposed to be doing).”

- “I think that BASS simulation can be useful but I wonder how it can be
managed for complex systems.”

- “I also wonder if BASS is compliant with Hermès; I would say yes, but this
has to be showed. If not, this could be a great disadvantage.”

- “Another important question is if BASS is compliant with agile methods,
which tend to use as less methodology as possible.”

	
 144	

- “For high level diagrams, it is definitely useful to have one diagram type. For
more details diagrams (and requirements) this can lead to messy and
unreadable diagrams.”

Suggested Improvements

Most of the suggested improvements are related to the results of simulation.
Most practitioners have agreed that more user-friendly results of simulation are
necessary. Transforming Alloy diagrams back to BASS has improved their readability
significantly, but there is still place for improvement. Some of the suggestions are to
highlight the key differences between the two states in simulation, simulating the time
needed for services, detecting bottlenecks, etc. In addition to suggestions related to
the results of simulation, interviewees have also suggested that leaving the possibility
to use imperative process modeling is very important. Despite their appreciation of
declarative process modeling, they believe that for certain stages of the project and for
certain situations, it is useful to have also the possibility to model sequence of steps.

- “I would probably prefer to see, as a result of simulation, more actionable
information (all possible scenarios, bottlenecks and potential hazards) in a
more user-friendly representation. “

- “In terms of practical improvements, I believe highlighting the key differences
between the two states would go a long way. Separately, in more complex
simulations, I believe it would be important to be able to trace-back/see
interim steps.”

- “I would like to see the relationships between different types of requirements
(functional, non-functional, security, data, business rules, etc.).”

- “If developed into a design that would be more ‘user-friendly’ for the broader
set of stakeholders that (management) consultants typically interact with,
BASS would be very useful.”

- “It could be interesting to see if the output can be graphically improved for
more readability. Optimal readability is often a key success factor when
humans are involved.”

- “If you could specify the approx. time needed for each step and the statistical
law followed by events generation, you could simulate if the system will have
bottlenecks, …”

- “However, once when all operational items have been worked out, I strongly
suggest placing every single activity, responsible person, clear deliverable
and deadline in a sequence of steps.”

- “The main issue with declarative process modeling (excluding sequence) is
that people are used to think with sequence instead of pre- and post-
conditions. I think the better is not to exclude them in order to avoid people’s
reluctance.”

The feedback we got from practitioners is very valuable for this work and helps us
to prioritize the directions of this research for the future.

	
 145	

10 Conclusion and Future Research Directions
In this thesis, we propose a visual modeling method BASS for service specification,
verification and validation. It enables business/IT analysts to create abstract, yet
precise models for business cases they are working on. Abstraction (from the
Latin abs, meaning away from and trahere, meaning to draw) is the process of taking
away or removing characteristics from something in order to reduce it to a set of
essential characteristics. Therefore, abstract models enable us to focus on macro
concepts, which is necessary in the initial stages of the projects for which BASS is
intended. To make sure that the models are abstract, but not vague, we add semantics
to the modeling concepts that enable us to translate models to formal specifications,
such as Alloy, or to Java language. We can then simulate and prototype the models.
This way, we can validate the models with stakeholders, including their feedback
even at early stages of design. Validation enables to detect and resolve anomalies
making the model more precise. BASS can be used by business/IT analysts to create
models of business cases or to facilitate workshops with different stakeholders. The
research has been conducted following the guidelines of Design Science. Therefore,
in a summary, we explain the theoretical contribution and practical recommendations
for the professionals in the field of service design. We also explain limitations and
drawbacks of the proposed method.

10.1 Theoretical Contribution
The contributions of our work are threefold. First, we provide the visual

formalism for service specification and simulation, by adding the necessary concepts,
such as functional unit, event, send and receive property, to the existing method
SEAM. Second, we define a set of spirals: for service specification and service
validation and verification. The service specification spiral enables us to keep the
relation between several service specifications. It includes the steps with explicit
design decisions on how to refine high-level specifications to include all details
necessary for providing the identified services. The validation and verification spiral
is used to validate and verify specifications on any level of abstraction. Finally, it
provides an environment that enables simulation and prototyping of service
specifications that are then used for their own validation and verification.

10.2 Practical Recommendations
In addition to the theoretical contribution to the knowledge base of service design

and to SEAM, we also provide the tools and guidelines that help business and IT
analysts to create and validate a service model, as confirmed by a survey conducted
with practitioners.

We have conducted two consulting projects at EPFL using BASS method:
Research project management and Computer data storage. In addition to the projects
we conducted, we organized a series of interviews with practitioners from different
fields to evaluate the applicability of the method in practice. An evaluation confirmed

	
 146	

that BASS could be useful in practice for facilitating workshops with stakeholders
and in initial stages of the projects. It also made us aware of some limitations and
possible problems with applying the method in practice. Based on the work presented
in this thesis, in case studies we conducted and the data collected from practitioners in
a survey, the following recommendations are proposed to professionals engaged in
service specification:

• Following the steps of the spiral, create a complete view of the service,
from analysis of customer’s needs to the organizations needed to
implement service and their responsibilities
In the service design process, follow the steps of the service specification
spiral:
0) Initial model design
1) Add detailed external services to accommodate interactions with

customers
2) Add internal organization and collaboration that implements external

services together
3) Add internal collaborations necessary for internal processes
4) Define internal services and responsibilities of each internal

organization.
In each step, make explicit the design decisions that need to be made by
identifying the new concepts and allocating the existing ones to them. The
same steps can be repeated inside each of internal organization. This way,
we always first analyze the customer’s needs and then define internal
organizations and their responsibilities, based on services needed by the
customer. This can help us to analyze the overall situation and agree about
the responsibilities of all the organizations participating in service
delivery. It provides a common platform for customers, managers and
employees, and improves a common understanding of modeled services. It
helps people and organizations to appreciate their role in service’s
succcess, by making them aware of their contributions to the final service
and the customer’s satisfaction.

• Use service-based definition of internal organizations needed to
implement the service
When defining organizations needed to provide the necessary services, do
not necessarily use an organizational chart. Instead, define organizations
based on their role in providing the service. This means, people from
different departments can be part of the same organization. External
organizations can also be modeled as a part of the service provider. This
way, we put together all the people and organizations relevant for
providing and implementing services together. When defining
organizations needed to provide the necessary services, always keep in
mind the delivery, support and promotion of a service.

	
 147	

• Use simulation to validate the models with stakeholders and create
abstract, yet precise models
Once the overall structure and responsibilities are defined in the models,
use the simulation and prototyping tools to detect possible anomalies in the
models, discover missing business rules, and others. This can help to
obtain feedback from stakeholders about the behavior of modeled services.
This way, we create abstract, yet precise models.

10.3 Limitations and Drawbacks
BASS is intended for the initial stages of the analysis of business cases.

Therefore, it has certain characteristics that are very useful for high-level analysis, but
are not efficient when applied to the low-level implementation models. One of them is
the fact that BASS has one diagram type that captures both behavior and data of the
modeled system. For very technical models showing all the details and data needed
for implementation, this could lead to complex and cluttered models. However, this is
very powerful for high-level analysis as it forces people to think about high-level
concepts and not go too much into details that drag their attention from the main
goals.

Similarly, declarative process modeling can be useful both for early and later
stages of design. The conducted survey has shown that practitioners prefer to use
sequential modeling in the later stages of the project, but that declarative process
modeling can be powerful in the initial phases. Also, as BASS is intended for high-
level analysis, the prototyping tool does not include requirements such as security.
However, for full code generation, it would be useful to include this as well.

There are several limitations of the simulation tool. As it is based on Alloy,
which is a model checker and not a theorem prover, if we do not find the
counterexample for the statement we want to prove it holds, it does not mean that the
statement is valid; it just proves that it holds in the given domain. Next, it is possible
to model only the constraints including simple arithmetic operations. Alloy is based
on relations and generates the instances of the model by analyzing all possible
variable bindings in the given domain. Therefore, it uses only a limited number of
integers, to avoid the state explosion.

Based on the survey conducted with practitioners, one of the main drawbacks of
BASS is the suitability of the current visual representation used for simulation. Alloy
diagrams are shown to be unreadable to business experts. Readability is significantly
improved by the transformation of Alloy instances to BASS models. However, this
can be still improved by marking explicitly possible problems in the generated BASS
models, simulation of the time needed for services to be performed, detecting the
bottlenecks, and others.

10.4 Future Work
Based on the current work, the following research directions will be useful for

an improved adaption of BASS method:

	
 148	

• Visual representation of Alloy expressions
To formalize BASS models, we use the semantics that can be mapped to Alloy
specification. For example, service is expressed with its precondition (Alloy
expression) and the effect (Alloy expression). To simplify usage of Alloy
expressions in modeling, we have introduced functional units, as atomic units
of logic that have their visual representation. Therefore, it is possible to show
the effect of the service using visual representation and the logic defined in the
library of functional units, which once defined can be used in any project.
Currently, preconditions still need to be expressed using Alloy expressions in
the model. Therefore, it would be useful to create an environment in which it
would be possible to define these constraints in a more user-friendly form,
such as when defining special conditions in BPMN diagrams. They could be
expressed as a combination of data in the diagram and arithmetical and logical
operations.

• Combining declarative and imperative process modeling
Currently, we use declarative process modeling in BASS. This means, we do
not define the sequence of steps in which the process is being executed.
Instead, we define just the overall responsibilities. As confirmed by the survey
conducted with practitioners, this is very useful at the beginning of analysis.
However, practitioners prefer to use as well sequential modeling for
organizing their projects better. Therefore, it would be useful to do deeper
analysis of what would be useful for practitioners and, based on that, to make
possible to use both imperative and declarative way of process modeling. For
instance, to create a language that could be a combination of declarative and
imperative modeling concepts.

• Synthesis of Java code from Alloy expressions
To simulate models with BASS, we use functional units as the main units of
logic to express the effect of the service. During modeling, it is possible to use
functional units defined in the special library of the functional units. Once it is
defined in the library, it can be used in any other project. Currently, when the
designer wants to add new functional unit in BASS environment, he needs to
define its semantics both in Alloy and Java. This could be improved by
creating the tool that would transform Alloy predicates and functions to Java
methods. The designer would need to define the semantics only in one of the
languages.

• Translating business rules from natural language to Alloy specification
In order to simplify the translation of business rules to formal methods
expressions, such as Alloy, it would be useful to create a knowledge base for
the business rules that could be used and translated to the formal expressions.

	
 149	

• Make explicit the problems detected with simulation
Currently, with BASS simulation we can observe the state of the system
before and after the service execution. Sometimes, it can be difficult to detect
potential problem by just observing these two states, as confirmed by the
survey with practitioners. It would be useful to improve simulation by
showing the errors explicitly. This could be done, for example, by checking
the specific rules that are common to many projects and that could be kept in
the library of rules.

	
 150	

	
 151	

Appendix I: SEAM Representation of Hevner Research
Framework

	
 152	

Appendix III: Case of Order Creation at Générale
Ressorts in Alloy

Model 1: GR[w], Order Creation[w]

open predefined_find [Part,CustomerPartId]
open predefined_find [Customer,Name]
open predefined_create [Part,Customer, OrderConfirmed]
open predefined_add [OrderConfirmed]

sig Segment_ressort {
 Segment_ressort__Generale_Ressorts: one Generale_Ressorts
}

sig Generale_Ressorts {
 Generale_Ressorts__OrderConfirmedwoOut: one OrderConfirmed ,
 Generale_Ressorts__OrderConfirmedSetset: one OrderConfirmedSet ,
 Generale_Ressorts__OrderInitialwoIn: one OrderInitial ,
 Generale_Ressorts__PartSetset: one PartSet ,
 Generale_Ressorts__CustomerSetset: one CustomerSet
}

sig OrderConfirmed {
 OrderConfirmed__Customer: one Customer,
 OrderConfirmed__Part: one Part
}

sig OrderConfirmedSet {
 OrderConfirmedSet__OrderConfirmed: set OrderConfirmed
}

sig OrderInitial {
 OrderInitial__Name: one Name ,
 OrderInitial__CustomerPartId: one CustomerPartId
}

sig PartSet {
 PartSet__Part: set Part
}

sig Part {
 Part__CustomerPartId: one CustomerPartId,
 Part__GRPartId: one GRPartId
}

sig CustomerSet {
 CustomerSet__Customer: set Customer
}

sig Customer {
 Customer__Name: one Name,
 Customer__Address: one Address
}

	
 153	

sig GRPartId { }

sig Name { }
sig Address { }

sig CustomerPartId { }

pred simulate(Segment_ressort_pre, Segment_ressort_post: one
Segment_ressort, Part1: one Part, Customer2: one Customer, OrderConfirmed3:
one OrderConfirmed, OrderConfirmedset4: set OrderConfirmed)
{

Part1 = find[Part__CustomerPartId,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__Or
derInitialwoIn.OrderInitial__CustomerPartId,

Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__PartSetset.PartSet__Part,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Resso
rts__PartSetset.PartSet__Part]

and one Part1

and Customer2 = find[Customer__Name,

Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__OrderInitialwoIn.OrderInitial__Name,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__CustomerSetset.CustomerSet__Customer,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Resso
rts__CustomerSetset.CustomerSet__Customer]

and one Customer2

and OrderConfirmed3 = create[Part1, Customer2, OrderConfirmed__Part,
OrderConfirmed__Customer]

and one OrderConfirmed3

and OrderConfirmedset4 = add1[OrderConfirmed3,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__Or
derConfirmedSetset.OrderConfirmedSet__OrderConfirmed]

and one OrderConfirmedset4

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Resso
rts__OrderConfirmedSetset.OrderConfirmedSet__OrderConfirmed

= OrderConfirmedset4

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
rderConfirmedwoOut
= OrderConfirmed3
and Segment_ressort_pre not= Segment_ressort_post
}

assert CustomerAssertion{
Customer in CustomerSet.CustomerSet__Customer
}

check CustomerAssertion
run simulate for 2

	
 154	

Model 2: GR[c], Order Creation[w]

open predefined_find [Part,CustomerPartId]
open predefined_find [Customer,Name]
open predefined_create [Part,Customer, OrderConfirmed]
open predefined_add [OrderConfirmed]

sig Segment_ressort {
 Segment_ressort__Generale_Ressorts : one Generale_Ressorts
}

sig Generale_Ressorts {
 Generale_Ressorts__OEP : one OEP ,
 Generale_Ressorts__ERP : one ERP
}

sig OEP {
 OEP__OrderInitialwoIn : one OrderInitial ,
 OEP__OrderConfirmedwoOut : one OrderConfirmed
}

sig OrderInitial {
 OrderInitial__CustomerPartId : one CustomerPartId ,
 OrderInitial__Name : one Name
}

sig OrderConfirmed {
 OrderConfirmed__Customer : one Customer ,
 OrderConfirmed__Part : one Part
}

sig ERP {
 ERP__OrderConfirmedSetset : one OrderConfirmedSet ,
 ERP__CustomerSetset : one CustomerSet ,
 ERP__PartSetset : one PartSet
}

sig OrderConfirmedSet {
 OrderConfirmedSet__OrderConfirmed : set OrderConfirmed
}

sig CustomerSet {
 CustomerSet__Customer : set Customer
}

sig Customer {
 Customer__Address : one Address ,
 Customer__Name : one Name
}

sig PartSet {
 PartSet__Part : set Part
}

sig Part {
 Part__CustomerPartId : one CustomerPartId ,
 Part__GRPartId : one GRPartId
}

	
 155	

sig Address { }
sig CustomerPartId { }

sig Name { }

sig GRPartId { }

pred simulate(Segment_ressort_pre, Segment_ressort_post : one
Segment_ressort, Part1 : one Part, Customer2 : one Customer, OrderConfirmed3
: one OrderConfirmed, OrderConfirmedset4 : set OrderConfirmed) {

Part1 = find[Part__CustomerPartId,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__OE
P.OEP__OrderInitialwoIn.OrderInitial__CustomerPartId,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__PartSetset.PartSet__Part,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__PartSetset.PartSet__Part]

and one Part1

and Customer2 = find[Customer__Name,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__OE
P.OEP__OrderInitialwoIn.OrderInitial__Name,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__CustomerSetset.CustomerSet__Customer,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__CustomerSetset.CustomerSet__Customer]

and one Customer2

and OrderConfirmed3 = create[Part1, Customer2, OrderConfirmed__Part,
OrderConfirmed__Customer]

and one OrderConfirmed3

and OrderConfirmedset4 = add1[OrderConfirmed3,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__OrderConfirmedSetset.OrderConfirmedSet__OrderConfirmed]

and one OrderConfirmedset4

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__OrderConfirmedSetset.OrderConfirmedSet__OrderConfirmed =
OrderConfirmedset4

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
EP.OEP__OrderConfirmedwoOut = OrderConfirmed3

and Segment_ressort_pre not= Segment_ressort_post
 }
run simulate for 2

	
 156	

Model 3: GR[c], Order Creation Process[w]

open predefined_add [Name]
open predefined_find [Customer,Name]
open predefined_add [CustomerPartId]
open predefined_find [Part,CustomerPartId]
open predefined_create [Customer,Part, OrderConfirmed]
open predefined_add [OrderConfirmed]
open predefined_add [OrderConfirmed]

sig Segment_ressort {
 Segment_ressort__Generale_Ressorts : one Generale_Ressorts
}

sig Generale_Ressorts {
 Generale_Ressorts__OEP : one OEP ,
 Generale_Ressorts__ERP : one ERP
}

sig OEP {
 OEP__OrderInitialwoIn : one OrderInitial ,
 OEP__OrderConfirmedwoOut : one OrderConfirmed
}

sig OrderInitial {
 OrderInitial__CustomerPartId : one CustomerPartId ,
 OrderInitial__Name : one Name
}

sig OrderConfirmed {
 OrderConfirmed__Customer : one Customer ,
 OrderConfirmed__Part : one Part
}

sig ERP {
 ERP__OrderConfirmedSetset : one OrderConfirmedSet ,
 ERP__CustomerSetset : one CustomerSet ,
 ERP__PartSetset : one PartSet
}

sig OrderConfirmedSet {
 OrderConfirmedSet__OrderConfirmed : set OrderConfirmed
}

sig CustomerSet {
 CustomerSet__Customer : set Customer
}

sig Customer {
 Customer__Address : one Address ,
 Customer__Name : one Name
}

sig PartSet {
 PartSet__Part : set Part
}

sig Part {
 Part__CustomerPartId : one CustomerPartId ,

	
 157	

 Part__GRPartId : one GRPartId
}

sig Address { }

sig CustomerPartId { }

sig Name { }

sig GRPartId { }

pred simulate(Segment_ressort_pre, Segment_ressort_post : one
Segment_ressort, Name1 : Name, Customer2 : one Customer, CustomerPartId3 :
CustomerPartId, Part4 : one Part, OrderConfirmed5 : one OrderConfirmed,
OrderConfirmedset6 : set OrderConfirmed, OrderConfirmed7 : OrderConfirmed)
{
Name1 =
enter[Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__OEP.OEP__OrderInitialwoIn.OrderInitial__Name]

and one Name1

and Customer2 = find[Customer__Name, Name1,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__CustomerSetset.CustomerSet__Customer,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__CustomerSetset.CustomerSet__Customer]

and one Customer2

and CustomerPartId3 =
enter[Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__OEP.OEP__OrderInitialwoIn.OrderInitial__CustomerPartId]

and one CustomerPartId3

and Part4 = find[Part__CustomerPartId, CustomerPartId3,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__PartSetset.PartSet__Part,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__PartSetset.PartSet__Part]

and one Part4

and OrderConfirmed5 = create[Customer2, Part4, OrderConfirmed__Customer,
OrderConfirmed__Part]

and one OrderConfirmed5

and OrderConfirmedset6 = add1[OrderConfirmed5,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__OrderConfirmedSetset.OrderConfirmedSet__OrderConfirmed]

and one OrderConfirmedset6

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__OrderConfirmedSetset.OrderConfirmedSet__OrderConfirmed =
OrderConfirmedset6

and OrderConfirmed7 = get[OrderConfirmed5]

	
 158	

and one OrderConfirmed7

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
EP.OEP__OrderConfirmedwoOut = OrderConfirmed7

and Segment_ressort_pre not= Segment_ressort_post
}

run simulate for 2

	
 159	

Model 4: GR[c], Order Creation Process[c]

open predefined_add [CustomerPartId]
open predefined_add [Name]
open predefined_add [OrderConfirmed]
open predefined_find [Customer,Name]
open predefined_find [Part,CustomerPartId]
open predefined_create [Customer,Part, OrderConfirmed]
open predefined_add [OrderConfirmed]

sig Segment_ressort {
 Segment_ressort__Generale_Ressorts : one Generale_Ressorts
}

sig Generale_Ressorts {
 Generale_Ressorts__ERP : one ERP ,
 Generale_Ressorts__OEP : one OEP
}

sig ERP {
 ERP__PartSetset : one PartSet ,
 ERP__OrderConfirmedwoOut : one OrderConfirmed ,
 ERP__OrderConfirmedSetset : one OrderConfirmedSet ,
 ERP__CustomerSetset : one CustomerSet ,
 ERP__CustomerPartIdwoIn : one CustomerPartId ,
 ERP__NamewoIn : one Name
}

sig PartSet {
 PartSet__Part : set Part
}

sig Part {
 Part__CustomerPartId : one CustomerPartId ,
 Part__GRPartId : one GRPartId
}

sig OrderConfirmedSet {
 OrderConfirmedSet__OrderConfirmed : set OrderConfirmed
}

sig CustomerSet {
 CustomerSet__Customer : set Customer
}

sig Customer {
 Customer__Address : one Address ,
 Customer__Name : one Name
}

sig OEP {
 OEP__OrderInitialwoIn : one OrderInitial ,
 OEP__CustomerPartIdwoOut : one CustomerPartId ,
 OEP__OrderConfirmedwoOut : one OrderConfirmed ,
 OEP__OrderConfirmedwoIn : one OrderConfirmed ,
 OEP__NamewoOut : one Name
}

sig OrderInitial {

	
 160	

 OrderInitial__CustomerPartId : one CustomerPartId ,
 OrderInitial__Name : one Name
}

sig OrderConfirmed {
 OrderConfirmed__Customer : one Customer ,
 OrderConfirmed__Part : one Part
}

sig Address { }

sig Name { }

sig CustomerPartId { }

sig GRPartId { }

pred OEPAction(Segment_ressort_pre, Segment_ressort_post : one
Segment_ressort, CustomerPartId1 : CustomerPartId, Name2 : Name,
OrderConfirmed3 : OrderConfirmed)
{
CustomerPartId1 =
enter[Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__OEP.OEP__OrderInitialwoIn.OrderInitial__CustomerPartId]

and one CustomerPartId1

and Name2 =
enter[Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressor
ts__OEP.OEP__OrderInitialwoIn.OrderInitial__Name]

and one Name2

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
EP.OEP__CustomerPartIdwoOut = CustomerPartId1

and OrderConfirmed3 =
get[Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts
__OEP.OEP__OrderConfirmedwoIn]

and one OrderConfirmed3

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
EP.OEP__NamewoOut = Name2

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
EP.OEP__OrderConfirmedwoOut = OrderConfirmed3

and Segment_ressort_pre not= Segment_ressort_post
}
pred ERPAction(Segment_ressort_pre, Segment_ressort_post : one
Segment_ressort, Customer4 : one Customer, Part5 : one Part, OrderConfirmed6
: one OrderConfirmed, OrderConfirmedset7 : set OrderConfirmed)
{
Customer4 = find[Customer__Name,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__NamewoIn,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER

	
 161	

P.ERP__CustomerSetset.CustomerSet__Customer,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__CustomerSetset.CustomerSet__Customer]

and one Customer4

and Part5 = find[Part__CustomerPartId,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__CustomerPartIdwoIn,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__PartSetset.PartSet__Part,
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__PartSetset.PartSet__Part]

and one Part5

and OrderConfirmed6 = create[Customer4, Part5, OrderConfirmed__Customer,
OrderConfirmed__Part]

and one OrderConfirmed6

and OrderConfirmedset7 = add1[OrderConfirmed6,
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__OrderConfirmedSetset.OrderConfirmedSet__OrderConfirmed]

and one OrderConfirmedset7

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__OrderConfirmedSetset.OrderConfirmedSet__OrderConfirmed =
OrderConfirmedset7

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__OrderConfirmedwoOut = OrderConfirmed6

and Segment_ressort_pre not= Segment_ressort_post
}

pred simulate(Segment_ressort_pre, Segment_ressort_post : one
Segment_ressort, CustomerPartId1 : CustomerPartId, Name2 : Name,
OrderConfirmed3 : OrderConfirmed, Customer4 : one Customer, Part5 : one
Part, OrderConfirmed6 : one OrderConfirmed, OrderConfirmedset7 : set
OrderConfirmed)
{
OEPAction [Segment_ressort_pre, Segment_ressort_post, CustomerPartId1,
Name2, OrderConfirmed3]

and ERPAction [Segment_ressort_pre, Segment_ressort_post, Customer4, Part5,
OrderConfirmed6, OrderConfirmedset7]

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
EP.OEP__NamewoOut =
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__NamewoIn

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__E
RP.ERP__OrderConfirmedwoOut =

	
 162	

Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__OE
P.OEP__OrderConfirmedwoIn

and
Segment_ressort_post.Segment_ressort__Generale_Ressorts.Generale_Ressorts__O
EP.OEP__CustomerPartIdwoOut =
Segment_ressort_pre.Segment_ressort__Generale_Ressorts.Generale_Ressorts__ER
P.ERP__CustomerPartIdwoIn
Segment_ressort_pre not = Segment_ressort_post
}

run simulate for 2

	
 163	

Appendix IV: Survey Questionnaire

STUDY TITLE: Evaluation of the Method Business Animated Service Specification
(BASS)

Protocol Director: Biljana Bajić-Bizumić <biljana.bajic@epfl.ch>

DESCRIPTION: You are invited to participate in a research study “Evaluation of the
Method Business Animated Service Specification (BASS)”. The purpose of this study is to
evaluate the method named BASS used for business case modeling. The results of evaluation
will be included in the PhD Thesis “Animation-Based Service Specification, Validation and
Verification” done at EPFL by Biljana Bajić-Bizumić. Your cooperation will consist of
participation in an interview. No preparation is required.

TIME INVOLVEMENT: Your participation will consist of 1-1.5h interview in which the
protocol director will illustrate the method with a case study of computer data storage at
EPFL and then ask you several questions regarding your usage of modeling methods for
business cases and usefulness of BASS in practice.

RISKS AND BENEFITS: The risk associated with this study is non-existing. The benefit,
which may reasonably be expected, is the gradual improvement of the BASS method to
accommodate the needs of practitioners more.

SUBJECT'S RIGHTS: If you have read this form and have decided to participate in this
project, please understand your participation is voluntary and you have the right to
withdraw your consent or discontinue participation at any time without penalty. The
alternative is not to participate. You have the right to refuse to answer particular questions.
If you refuse to participate, please note it on this form and sign.

CONTACT INFORMATION:
Questions: If you have any questions, concerns or complaints about this research, its
procedures, risks and benefits, contact the Protocol Director (the person who’s conducting the
test).

Independent Contact: If you are not satisfied with how this study is being conducted, or if
you have any concerns, complaints, or general questions about the research or your rights as a
participant, please contact the management of LAMS Lab at EPFL to speak to the supervisor
of the project Alain Wegmann <alain.wegmann@epfl.ch>.

I give consent to use the data gathered from my input and to process them for research
purposes.
(please check only one) ___Yes ___No

The extra copy of this consent form is for you to keep.

SIGNATURE _____________________________ DATE ____________

Your feedback is extremely valuable for the purpose of research and BASS applications.
Thank you very much for taking the time to participate in this interview!

	
 164	

Computer Data Storage at EPFL

EPFL is university based in Lausanne, Switzerland, providing education to 6300
students employing 6800 teaching, scientific and administrative staff. All students
and employees are using data storage services provided by EPFL to store their
documents, multimedia files, scientific data and others. The contract for current
storage system ends and EPFL needs to decide what storage system to buy as an
upgrade of the existing one.

The main goal of this project is to propose the specification for the new technical
solution for storage service. The expected outcomes of the project are:

• Requirements needed for the Request for Proposal (RFP) for the new
storage system, such as volume of storage, technical characteristics and
other.

• Definition of internal EPFL organization and responsibilities of each of
the teams in providing required storage services to its students and
employees.

In order to derive necessary requirements, we use BASS to model the new
solution for storage services at EPFL, starting with the customer’s needs through
organization needed to implement the required services.

We also illustrate simulation and prototyping possibility of BASS to discover new
business rules and identify possible problems with the stakeholders.

	
 165	

Computer Data Storage at EPFL: BASS Models

BASS can be used either to model a business case or to facilitate a workshop
with stakeholders. In this project it was used for both. Here, we illustrate how we
have used BASS to create a model for the new storage solution. We show only the
final models, illustrating the final solution for the specific scenario. The models are
results of several discussions with stakeholders through which we built our
understanding of the project by improving the models. The models were used as a
means of communication with necessary stakeholders.

	
 166	

We model the new storage system for EPFL following five steps of BASS
method.

CUSTOMER
Step 1: Define external service with a customer

Step 2: Add detailed external services to accommodate the expected

interactions with the customer

CUSTOMER-FOCUSED
Always start by analysis of service provider, customer and possibly other external
stakeholders, such as regulator. The focus of modeling the case is on providing a
value to the customer.

	
 167	

INTERNAL ORGANIZATION
Step 3: Add internal organization and collaboration that implements external

services together

Step 4: Add internal collaborations necessary to implement external services

SERVICE-BASED INTERNAL ORGANIZATION
People from different departments can be members of the same team.
Organizations/people from outside the company, such as suppliers, can be
modeled as a part of the company providing the service.
Always keep in mind delivery, support and promotion of the service.

	
 168	

RESPONSIBILITIES
Step 5: Define internal services of each internal organization

Each internal organization can now apply the same steps to identify necessary

resources and define responsibilities among teams in order to deliver the required
services.

RESPONSIBILITIES	

In	
 addition	
 to	
 analyzing	
 customer	
 needs,	
 we	
 model	
 the	
 internal	
 organization	
 and	

their	
 responsibilities	
 in	
 providing	
 the	
 services	
 and	
 providing	
 the	
 value	
 to	
 the	

customer.	

GENERAL CHARACTERISTICS
All teams and people are aware of their contribution to the final service and
customer’s satisfaction.
Provides an overview of the entire process.
Puts everyone involved in service design on the same page.
Provides common platform for customers, managers, and employees.
Provides cross-functional and cross-organizational view of services.

RESPONSIBILITIES
In addition to analyzing customer needs, we model the internal organization and
their responsibilities in providing the services and providing the value to the
customer.

Simulation Demonstration: Alloy instances, BASS instances, Java prototype

Questionnaire

Please, answer the following questions.

First name: Family name:
Name of the organization where you work:
Position:
Name of organization(s) in which you have worked on projects related to business and/or IT:

1. Do you use some visual modeling methods to represent business cases? If yes, which?
2. Do you believe that the proposed method could bring some new perspective for your

projects?
3. Do you believe that the proposed method could help you facilitate the workshops with

stakeholders?
4. Do you think that using one diagram type containing both data and behavior of

modeled organization can be useful for some kind of projects and analysis? Please,
explain your answer.

5. Do you think that showing the real names of people in the model can be useful? What
do you see as advantages and disadvantages of such approach? Would you use it in
some projects?

6. Do you think that modeling services and processes without showing sequence of steps
(declaratively) can be useful? If yes, when would you use it? Please, explain your
answer.

7. What do you think about service-based internal organization explained in step 3 of the
process? Have you already used something similar in your projects? Would you use
it? As a reminder, this includes:
- Putting people from different departments in the same team based on their role in
providing the service
- Putting external organizations as a part of service provider
- Always having in mind support, promotion and delivery of service?

8. Do you think that possibility to simulate the model is useful? Have you already used
it? With which approaches/methods?

9. Do you find BASS simulation to be useful? Are the results of simulation readable?
10. What else would you like to see as a result of simulation?
11. What do you think about usefulness of BASS for practitioners? Please, explain your

answer.
12. Do you think the proposed method can help you (your company)? If yes, how?

Please, explain advantages and disadvantages you can expect.
 Thank you very much for your cooperation and for taking the time to participate in this

study!

	
 170	

	
 171	

Glossary

System - a way of looking at the world (G. Weinberg). System can be of any nature (IT,
human, company, and others).

Service - the application of resources (including competences, skills, and knowledge) to
make changes that have value for another (system) (J. Sphorer). It consists of service offering
and service implementation.

Service offerings – definition of what service is provided to the customer, without going into
details of implementation. They are the starting point for configuring Service Portfolio
Management. It is expressed with precondition and the effect. The precondition is expressed
using properties and arithmetic and logical operations. The effect is expressed using
functional units and properties.

Collaboration – one way of service implementation, which defines how component’s service
systems implement the main service together, showing only the net effect of their interaction.

Process – one way of service implementation, which defines the responsibilities of each of
component’s service systems in implementing the main service.

Service system - a configuration of people, technologies, and other resources that interact
with other service systems in order to create mutual value. Many systems can be viewed as
service systems, including families, cities, and companies, among many others. It can be
represented as a whole showing the service offering, or as a composite showing the service
implementation with a collaboration or a process.

Functional unit – atomic unit of logic used to describe the effect of a service offering or
collaboration.

Property – data defined in a certain context used to parameterize functional units. The
context of the property determines the visibility and how long the data is available, i.e. its
lifecycle.

Precondition – a logical assertion, which when met, guarantees that the postcondition will
hold if the command (effect) is executed.

Invariant – a logical assertion that is held to always be true in a certain context (during the
execution of a service, inside IT system in general, etc.). From business perspective,
invariants can be used to model (business) requirements of an enterprise.

Business rule - a rule that defines or constrains some aspect of business and always resolves
to either true or false.

Service specification – a description of a service offering or service implementation within
the service system. It is shown with a visual model of the service on any level of abstraction.

	
 172	

Simulation – generation of instances of the service system that satisfies the constraints of the
model. They correspond to the state of the system before and after service execution. This is
achieved using translation to Alloy language and simulation with the Alloy Analyzer tool.

Prototyping - generation of the prototype of Java application in which the user can test the
behavior of the service system by entering input values and observing outputs. This is
achieved using Arcimboldo framework.

Validation - checking that a service or system meets the needs of the customer or other
stakeholders. It includes acceptance with customers and stakeholders. We use both Alloy
simulation and Java prototyping to validate the models with stakeholders.

Verification - checking that a service or system conforms to the specification, regulation or
imposed condition. It is often an internal process and does not include stakeholders. We use
simulation to verify that the model conforms to the meta-model, well-formdness rules and
other constraints.

	
 173	

Bibliography

[1] P. A. Wegmann, “On the Systemic Enterprise Architecture Methodology (SEAM,” in
SEAM). Published at the International Conference on Enterprise Information Systems
2003 (ICEIS 2003, 2003, pp. 483–490.

[2] G. M. Weinberg, An Introduction to general systems thinking. Wiley New York, 1975.
[3] J. Spohrer, S. L. Vargo, N. Caswell, and P. P. Maglio, “The Service System Is the Basic

Abstraction of Service Science,” in Hawaii International Conference on System Sciences,
Proceedings of the 41st Annual, 2008, pp. 104–104.

[4] I. Rychkova, G. Regev, and A. Wegmann, “Declarative Specification and Alignment
Verification of Services in ITIL,” in Enterprise Distributed Object Computing
Conference Workshops, 2008 12th, 2008, pp. 127–134.

[5] A. B. Saxena, “A Situated and Embodied Approach to Service-oriented Modeling,”
EPFL, 2014.

[6] A. Golnam, “Problem Structuring with the Systemic Enterprise Architecture Method,”
2013.

[7] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information Systems
Research,” MIS Q., vol. 28, no. 1, pp. 75–105, Mar. 2004.

[8] “OMG: Unified Modeling Language - Version 2.5, OMG Document Number: ptc/2013-
09-05.” 2013.

[9] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full Code Generation.
John Wiley & Sons, 2008.

[10] “OMG: Business Process Model and Notation -Version 2.0.2, OMG Document
Number: formal/2013-12-09.” 2014.

[11] B. Bajić-Bizumić, C. Petitpierre, H. C. Huynh, and A. Wegmann, “A Model-Driven
Environment for Service Design, Simulation and Prototyping,” in Exploring Services
Science, Springer, 2013, pp. 200–214.

[12] B. Bajic-Bizumic, I. Rychkova, and A. Wegmann, “The Role of Invariants in the Co-
evolution of Business and Technical Service Specification of an Enterprise,” POEM
Latv., pp. 183–192, 2013.

[13] D. Jackson, I. Schechter, and I. Shlyakhter, “ALCOA: The Alloy constraint analyzer,”
in Software Engineering, 2000. Proceedings of the 2000 International Conference on,
2000, pp. 730–733.

[14] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, 2nd ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2001.

[15] D. D’Souza and A. Wills, Objects, Components and Frameworks with UML: The
Catalysis Approach. Addison-Wesley, 2001.

[16] “OMG: Unified Modeling Language - Version 2.4.1 Superstructure, OMG Document
Number: formal/2011-08-06.” 2011.

[17] “OMG: Systems Modeling Language (SysML) -Version 1.3, OMG Document
Number: formal/2012-06-01.” 2012.

[18] Y. Vanderperren and W. Dehaene, “From UML/SysML to Matlab/Simulink: Current
State and Future Perspectives,” in Proceedings of the Conference on Design, Automation
and Test in Europe: Proceedings, 3001 Leuven, Belgium, Belgium, 2006, pp. 93–93.

[19] E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and Simulation Modeling
Using SysML,” in Proceedings of the 39th Conference on Winter Simulation: 40 Years!
The Best is Yet to Come, Piscataway, NJ, USA, 2007, pp. 796–803.

	
 174	

[20] “The Open Group: ArchiMate 2.1 Specification.” Van Haren Publishing, 2014.
[21] M. M. Lankhorst, H. A. Proper, and H. Jonkers, “The Architecture of the ArchiMate

Language,” in Enterprise, Business-Process and Information Systems Modeling, T.
Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer, and R. Ukor, Eds.
Springer Berlin Heidelberg, 2009, pp. 367–380.

[22] J. A. Zachman, “A framework for information systems architecture,” IBM Syst. J.,
vol. 26, no. 3, pp. 276–292, 1987.

[23] J. F. Sowa and J. A. Zachman, “Extending and formalizing the framework for
information systems architecture,” IBM Syst. J., vol. 31, no. 3, pp. 590–616, 1992.

[24] J. P. Zachman, “The Zachman framework evolution,” EA Artic. Page Intentionally
Left Blank, 2009.

[25] A. Wegmann, A. Kotsalainen, L. Matthey, G. Regev, and A. Giannattasio,
“Augmenting the Zachman Enterprise Architecture Framework with a Systemic
Conceptualization,” in 12th International IEEE Enterprise Distributed Object Computing
Conference, 2008. EDOC ’08, 2008, pp. 3–13.

[26] Object-Process Methodology: A Holistic Systems Paradigm  ; with CD-ROM. Springer
Science & Business Media, 2002.

[27] D. Dori, I. Reinhartz-Berger, and A. Sturm, “Developing Complex Systems with
Object-Process Methodology Using OPCAT,” in Conceptual Modeling - ER 2003, I.-Y.
Song, S. W. Liddle, T.-W. Ling, and P. Scheuermann, Eds. Springer Berlin Heidelberg,
2003, pp. 570–572.

[28] W. M. P. van der Aalst, M. Weske, and D. Grünbauer, “Case handling: a new
paradigm for business process support,” Data Knowl. Eng., vol. 53, no. 2, pp. 129–162,
May 2005.

[29] P. Athena, “Case handling with flower: Beyond workflow,” Pallas Athena BV
Apeldoorn Neth., vol. 11, 2002.

[30] M. Pesic and W. M. P. van der Aalst, “A Declarative Approach for Flexible Business
Processes Management,” in Business Process Management Workshops, J. Eder and S.
Dustdar, Eds. Springer Berlin Heidelberg, 2006, pp. 169–180.

[31] W. M. van der Aalst and M. Pesic, “Specifying, discovering, and monitoring service
flows: Making web services process-aware,” BPM Cent. Rep. BPM-06-09 BPMcenter
Org, 2006.

[32] “OMG: Case Management Model and Notation (CMMN) -Version 1.0, OMG
Document Number: formal/2014-05-05.” 2014.

[33] J. L. G. Dietz, “Understanding and Modeling Business Processes with DEMO,” in
Conceptual Modeling — ER ’99, J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and E.
Métais, Eds. Springer Berlin Heidelberg, 1999, pp. 188–202.

[34] G. L. Shostack, “Designing Services That Deliver,” Harv. Bus. Rev., 1984.
[35] M. J. Bitner, A. L. Ostrom, and F. N. Morgan, “Service blueprinting: a practical

technique for service innovation,” Calif. Manage. Rev., vol. 50, no. 3, p. 66, 2008.
[36] L. Patrício, R. P. Fisk, J. F. e Cunha, and L. Constantine, “Multilevel Service Design:

From Customer Value Constellation to Service Experience Blueprinting,” J. Serv. Res., p.
1094670511401901, Mar. 2011.

[37] J. Gordijn, Yu, Eric, and B. van der Raadt, “e-Service Design Using i* and e3value
Modeling,” IEEE Softw., vol. 23, no. 3, pp. 26–33, 2006.

[38] J. Gordijn, “E3value in a Nutshell,” in International workshop on e-business
modeling, HEC Business School, Lausanne, 2002.

[39] E. S. K. Yu, “Towards modeling and reasoning support for early-phase requirements
engineering,” in , Proceedings of the Third IEEE International Symposium on
Requirements Engineering, 1997, 1997, pp. 226–235.

	
 175	

[40] C. Rolland, S. Nurcan, and G. Grosz, “Enterprise knowledge development: the
process view,” Inf. Manage., vol. 36, no. 3, pp. 165–184, Sep. 1999.

[41] J. Montilva C and J. Barrios A, “BMM: A Business Modeling Method For
Information Systems Development,” CLEI Electron. J., vol. 7, 2004.

[42] R. W. Butler, “What is Formal Methods?” 2014.
[43] “Alloy site - http://alloy.mit.edu/alloy/.” 2014.
[44] D. Jackson, Software Abstractions: Logic, Language, and Analysis. MIT Press, 2012.
[45] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.

Sebastiani, and A. Tacchella, “NuSMV 2: An OpenSource Tool for Symbolic Model
Checking,” in Computer Aided Verification, E. Brinksma and K. G. Larsen, Eds. Springer
Berlin Heidelberg, 2002, pp. 359–364.

[46] L. C. Paulson, Isabelle: A Generic Theorem Prover. Springer Science & Business
Media, 1994.

[47] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer Science & Business Media, 2002.

[48] J. Yoo, E. Jee, and S. Cha, “Formal Modeling and Verification of Safety-Critical
Software,” IEEE Softw., vol. 26, no. 3, pp. 42–49, May 2009.

[49] J. Kuchar and A. C. Drumm, “The traffic alert and collision avoidance system,” Linc.
Lab. J., vol. 16, no. 2, p. 277, 2007.

[50] T. Lecomte, T. Servat, and G. Pouzancre, “Formal methods in safety-critical railway
systems,” in Proc. Brazilian Symposium on Formal Methods: SMBF, 2007.

[51] V. George and R. Vaughn, “Application of lightweight formal methods in
requirement engineering,” CrossTALK- J. Def. Softw. Eng. Jan 2003, 2003.

[52] D. Jackson, “Lightweight Formal Methods,” in FME 2001: Formal Methods for
Increasing Software Productivity, J. N. Oliveira and P. Zave, Eds. Springer Berlin
Heidelberg, 2001, pp. 1–1.

[53] S. Agerholm and P. G. Larsen, “A Lightweight Approach to Formal Methods,” in
Applied Formal Methods — FM-Trends 98, D. Hutter, W. Stephan, P. Traverso, and M.
Ullmann, Eds. Springer Berlin Heidelberg, 1999, pp. 168–183.

[54] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton,
“Experiences using lightweight formal methods for requirements modeling,” IEEE Trans.
Softw. Eng., vol. 24, no. 1, pp. 4–14, Jan. 1998.

[55] F. M. S. Iii and C. C. Marshall, “Formality Considered Harmful: Experiences,
Emerging Themes, and Directions on the Use of Formal Representations in Interactive
Systems,” Comput. Support. Coop. Work CSCW, vol. 8, no. 4, pp. 333–352, Dec. 1999.

[56] “OMG: Object Constraint Language-Version 2.2, OMG Document Number:
formal/2010-02-01.” 2010.

[57] “OMG: Meta Object Facility (MOF) -Version 2.4.1, OMG Document Number:
formal/2013-06-01.” 2013.

[58] M. Vaziri and D. Jackson, “Some Shortcomings of OCL, the Object Constraint
Language of UML (Response to Object Management Group’s Request for Information
on UML 2.0).” MIT, 1999.

[59] C. Snook and M. Butler, “UML-B: Formal Modeling and Design Aided by UML,”
ACM Trans Softw Eng Methodol, vol. 15, no. 1, pp. 92–122, Jan. 2006.

[60] J. R. Abrial and J.-R. Abrial, The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 2005.

[61] A. Evans, R. France, K. Lano, and B. Rumpe, “The UML as a Formal Modeling
Notation,” in The Unified Modeling Language. «UML»’98: Beyond the Notation, J.
Bézivin and P.-A. Muller, Eds. Springer Berlin Heidelberg, 1999, pp. 336–348.

	
 176	

[62] K. Lano, D. Clark, and K. Androutsopoulos, “UML to B: Formal Verification of
Object-Oriented Models,” in Integrated Formal Methods, E. A. Boiten, J. Derrick, and G.
Smith, Eds. Springer Berlin Heidelberg, 2004, pp. 187–206.

[63] P. Facon, R. Laleau, and H. P. Nguyen, “Mapping Object Diagrams into B
Specifications,” in Proceedings of the 1996 International Conference on Methods
Integration, Swinton, UK, UK, 1996, pp. 6–6.

[64] P. Facon, R. Laleau, H. P. Nguyen, and A. Mammar, “Combining UML with the B
formal method for the specification of database applications,” CEDRIC Laboratory,
CNAM, Paris, 1999.

[65] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A Challenging
Model Transformation,” in Model Driven Engineering Languages and Systems, G.
Engels, B. Opdyke, D. C. Schmidt, and F. Weil, Eds. Springer Berlin Heidelberg, 2007,
pp. 436–450.

[66] B. Beckert, R. Hähnle, and P. H. Schmitt, Verification of Object-oriented Software:
The KeY Approach. Berlin, Heidelberg: Springer-Verlag, 2007.

[67] A. D. Brucker and B. Wolff, “HOL-OCL: A Formal Proof Environment for uml/ocl,”
in Fundamental Approaches to Software Engineering, J. L. Fiadeiro and P. Inverardi,
Eds. Springer Berlin Heidelberg, 2008, pp. 97–100.

[68] R. Laleau, F. Semmak, A. Matoussi, D. Petit, A. Hammad, and B. Tatibouet, “A first
attempt to combine SysML requirements diagrams and B,” Innov. Syst. Softw. Eng., vol.
6, no. 1–2, pp. 47–54, Mar. 2010.

[69] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso, “Model checking early
requirements specifications in Tropos,” in Fifth IEEE International Symposium on
Requirements Engineering, 2001. Proceedings, 2001, pp. 174–181.

[70] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed requirements
acquisition,” Sci. Comput. Program., vol. 20, no. 1–2, pp. 3–50, Apr. 1993.

[71] K. M. Cooper, “Stimulus response requirements specification notation: an empirically
evaluated requirements specification notation,” University of British Columbia, 2001.

[72] P. Ogilvie, “Formal Methods in Requirements Engineering.” 2013.
[73] R. Yates, J. Andrews, and P. Gray, “Practical experience applying formal methods to

air traffic management software,” in Proceedings of the 8th Annual International
Symposium of the International Council on Systems Engineering, 1998.

[74] J. P. Bowen, “Z: A Formal Specification Notation,” in Software Specification
Methods, M. Frappier and H. Habrias, Eds. Springer London, 2001, pp. 3–19.

[75] R. Darimont and A. van Lamsweerde, “Formal Refinement Patterns for Goal-driven
Requirements Elaboration,” in Proceedings of the 4th ACM SIGSOFT Symposium on
Foundations of Software Engineering, New York, NY, USA, 1996, pp. 179–190.

[76] M. Richters, “A precise approach to validating UML models and OCL constraints,”
Universitat Bremen, 2002.

[77] D. Zignale, S. Kubicki, S. Ramel, and G. Halin, “A Model-Based Method for the
Design of Services in Collaborative Business Environments,” in Exploring Services
Science, M. Snene, J. Ralyté, and J.-H. Morin, Eds. Springer Berlin Heidelberg, 2011, pp.
68–82.

[78] A. Mammar, S. Ramel, B. Grégoire, M. Schmitt, and N. Guelfi, “Efficient: A Toolset
for Building Trusted B2B Transactions,” in Advanced Information Systems Engineering,
O. Pastor and J. F. e Cunha, Eds. Springer Berlin Heidelberg, 2005, pp. 430–445.

[79] Y. Zhao, Y. Zong-yuan, and J. Xie, “Pi-calculus Based Assembly Mechanism of
UML State Diagram and Validation of Model Refinement,” in 2009 International
Conference on Electronic Computer Technology, 2009, pp. 604–609.

	
 177	

[80] P. O. Ating’a and A. Krishna, “Verification of i* Models Using Alloy,” in
Information Systems Development, J. Pokorny, V. Repa, K. Richta, W. Wojtkowski, H.
Linger, C. Barry, and M. Lang, Eds. Springer New York, 2011, pp. 63–74.

[81] M. C. Reynolds, “Lightweight Modeling of Java Virtual Machine Security
Constraints,” in Abstract State Machines, Alloy, B and Z, M. Frappier, U. Glässer, S.
Khurshid, R. Laleau, and S. Reeves, Eds. Springer Berlin Heidelberg, 2010, pp. 146–159.

[82] S. Sen, B. Baudry, and H. Vangheluwe, “Towards Domain-specific Model Editors
with Automatic Model Completion,” SIMULATION, Oct. 2009.

[83] A. Wegmann, L.-S. Le, I. Rychkova, and G. Regev, “An Example of a Hierarchical
System Model Using SEAM and its Formalization in Alloy,” in Eleventh International
IEEE EDOC Conference Workshop, 2007. EDOC ’07, 2007, pp. 260–268.

[84] H. Bagheri and K. Sullivan, “Monarch: Model-Based Development of Software
Architectures,” in Model Driven Engineering Languages and Systems, D. C. Petriu, N.
Rouquette, and Ø. Haugen, Eds. Springer Berlin Heidelberg, 2010, pp. 376–390.

[85] A. Kattepur, S. Sen, B. Baudry, A. Benveniste, and C. Jard, “Pairwise Testing of
Dynamic Composite Services,” in Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, New York, NY, USA,
2011, pp. 138–147.

[86] A. Kattepur, S. Sen, B. Baudry, A. Benveniste, and C. Jard, “Variability Modeling
and QoS Analysis of Web Services Orchestrations,” in 2010 IEEE International
Conference on Web Services (ICWS), 2010, pp. 99–106.

[87] B. H. Banathy and P. M. Jenlink, “Systems inquiry and its application in education,”
Handb. Res. Educ. Commun. Technol., pp. 37–58, 2003.

[88] “Merriam-Webster - http://www.merriam-webster.com/.” 2014.
[89] H. Mintzberg, B. Ahlstrand, and J. Lampel, “Strategy Safary – The complete guide

through the wilds of strategic management.,” 1998.
[90] P. Checkland and S. Holwell, “Information, Systems and Information Systems:

Making Sense of the Field,” 1998.
[91] G. Vickers, Value Systems and Social Process. Routledge, 2013.
[92] G. Regev, O. Hayard, and A. Wegmann, “Service Systems and Value Modeling from

an Appreciative System Perspective,” in Exploring Services Science, M. Snene, J. Ralyté,
and J.-H. Morin, Eds. Springer Berlin Heidelberg, 2011, pp. 146–157.

[93] S. L. Vargo, P. P. Maglio, and M. A. Akaka, “On value and value co-creation: A
service systems and service logic perspective,” Eur. Manag. J., vol. 26, no. 3, pp. 145–
152, Jun. 2008.

[94] H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer-Centered
Systems. Elsevier, 1997.

[95] A. Wegmann, P. Julia, G. Regev, O. Perroud, and I. Rychkova, “Early Requirements
and Business-IT Alignment with SEAM for Business,” in Requirements Engineering
Conference, 2007. RE ’07. 15th IEEE International, 2007, pp. 111–114.

[96] A. Wegmann, P. Balabko, L.-S. Le, G. Regev, and I. Rychkova, “A Method and Tool
for Business-IT Alignment in Enterprise Architecture,” in Proceedings of the CAiSE
Forum, vol. 5, Porto, Portugal, 2005, pp. 113–118.

[97] A. Wegmann, G. Regev, I. Rychkova, L.-S. Le, J. de la Cruz, and P. Julia, “Business
and IT alignment with SEAM for enterprise architecture,” Fac. Inform. - Pap. Arch., Jan.
2007.

[98] A. Golnam, G. Regev, J. Ramboz, P. Laprade, and A. Wegmann, “Systemic Service
Design: Aligning Value and Implementation,” in Exploring Services Science, Springer,
2010, pp. 150–164.

	
 178	

[99] A. Wegmann, G. Regev, D. L. Cruz, J. Diego, L.-S. Lê, and I. Rychkova, “Teaching
Enterprise and Service-Oriented Architecture in Practice,” J. Enterp. Archit., vol. 4, no.
3, pp. 15 – 24, 2007.

[100] G. Regev, D. C. Gause, and A. Wegmann, “Experiential learning approach for
requirements engineering education,” Requir. Eng., vol. 14, no. 4, pp. 269–287, Dec.
2009.

[101] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Professional, 2004.

[102] A. Wegmann, B. Bajic-Bizumic, A. Golnam, G. Popescu, G. Tapandjieva, A. B.
Saxena, M. Yassaee, and G. Regev, “Requirements modeling in SEAM: The example of
a car crash management system,” in Comparing Requirements Modeling Approaches
Workshop (CMA@RE), 2013 International, 2013, pp. 25–30.

[103] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained: the model driven
architecture: practice and promise. Addison-Wesley Professional, 2003.

[104] J. den Haan, “Model Transformation -
http://www.theenterprisearchitect.eu/blog/2008/02/18/mda-and-model-transformation/.”
2014.

[105] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electron. Notes
Theor. Comput. Sci., vol. 152, pp. 125–142, Mar. 2006.

[106] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic Specifications,” ACM Trans Program Lang
Syst, vol. 8, no. 2, pp. 244–263, Apr. 1986.

[107] M. J. C. Gordon and T. F. Melham, Eds., Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. New York, NY, USA: Cambridge University
Press, 1993.

[108] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Progress on the State
Explosion Problem in Model Checking,” in Informatics, R. Wilhelm, Ed. Springer Berlin
Heidelberg, 2001, pp. 176–194.

[109] I. Rychkova, “Formal semantics for refinement verification of entreprise models,”
EPFL, 2008.

[110] J. B. Warmer and A. G. Kleppe, The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley Professional, 2003.

[111] G. Dennis and R. Seater, “Alloy Analyzer 4 Tutorial. Session 2: Language and
Analysis.” 2014.

[112] “Arcimboldo site - http://ltiwww.epfl.ch/Arcimboldo/.” 2014.
[113] C. Petitpierre, “Bottom up creation of a DSL using templates and JSON,” in

Proceedings of the compilation of the co-located workshops on DSM’11, TMC’11,
AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11, 2011, pp. 47–52.

[114] “JSON Template - http://json-template.googlecode.com/svn/trunk/doc/Introducing-
JSON-Template.html.” 2014.

[115] “Information Technology Infrastructure Library (ITIL) - http://www.itil-
officialsite.com/.” 2014.

[116] H. Kilov and I. Simmonds, “Business rules: from business specification to design,” in
Object-Oriented Technologys, J. Bosch and S. Mitchell, Eds. Springer Berlin Heidelberg,
1998, pp. 188–194.

[117] G. Regev, I. Bider, and A. Wegmann, “Defining business process flexibility with the
help of invariants,” Softw. Process Improv. Pract., vol. 12, no. 1, pp. 65–79, Jan. 2007.

[118] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-oriented requirements
engineering,” IEEE Trans. Softw. Eng., vol. 26, no. 10, pp. 978–1005, Oct. 2000.

	
 179	

[119] B. Bajic, C. Petitpierre, D. Quang Tri, and A. Wegmann, “From Business Services to
IT Services by Capturing Design Decisions,” BMSD Geneva, pp. 94–104, 2012.

[120] “Generale Ressorts site - http://www.generaleressorts.com/.” 2014.
[121] “Order-to-cash cycle - http://www.three2tango.com/general/business/order-to-

cashotc.html/.” 2014.
[122] B. Bajic-Bizumic, I. Rychkova, and A. Wegmann, “Simulation-Driven Approach for

Business Rule Discovery,” in CAiSE International Workshops, Advanced Information
Systems Engineering Workshops, Springer, 2013, pp. 111–123.

[123] H. C. Huynh, B. Bajic-Bizumic, and A. Wegmann, “A SEAM-based Environment for
System Design and Validation,” ACOMP Ho Chi Minh City, 2013.

	
 180	

Biljana Bajić-Bizumić
Rütistrasse 12
8072 Zollikon
Date of birth: 27th December 1985
Phone: +41 79 8334414
e-mail: biljana.bajic@epfl.ch

Synthesis
• EPFL Phd in Computer Science (in progress)
• Professional experience in international

companies
• Board member and vice-president of

EESTEC LC Novi Sad (2006-2008)
• State champion of Serbia in Maths (2000)
• ITIL V3 Foundation Certificate

Education
2010 –
current:

PhD in Computer Science, Ecole Polytechnique Fédérale de Lausanne (EPFL)
Research topic: Animation-Based Service Specification, Validation and Verification

2004-2009: Master in Computer Science, Faculty of Technical Sciences, University of Novi Sad
(GPA 9,9/10)

2000-2004: Gymnasium “J. J. Zmaj", Novi Sad, Class for talented mathematicians (GPA 5/5)

Professional experience

January-June
2013:

Business Analyst at EPFL, Lausanne, Switzerland
• Specifying a new solution for computer data storage services at EPFL.
• Organizing a workshop with stakeholders.

2010 – now: Doctoral Assistant at EPFL, Lausanne, Switzerland

• Research in the field of business/IT alignment: developing a method that enables
business and IT analysts to create more precise models. The method includes visual
formalism for modeling business cases and simulation tools for validation of the
models with stakeholders.

• Presenting at various conferences.
• Teaching the course “Enterprise Service Oriented Architecture (ESOA)”, where

students learn the basics of business, business/IT, and IT issues and the relations
between these three areas through running their own company.

• Teaching engineering courses, such as “Information Technology Project (ITP)”
including Java development and “Real-time Systems”.

• Supervising student semester projects and bachelor and master thesis in a field of
business/IT alignment, service design, business process modeling, and others.

2008-2010: Software Engineer/Team Leader at Schneider Electric DMS NS, Novi Sad, Serbia
• Developer and leader at Schneider Electric DMS NS, an IT company for research,

development and engineering in the field of the electrical power engineering
management working on projects with Siemens and Telvent.

• Developing a tool in C++ and C# for the project Electrical Power System Modeling
in ArcGIS and Integration with DMS Object Model.

• Team leading, designing, developing and deploying the web based Release
Management Tool in Java, JSF and MySQL for managing software releases inside
the company.

September-
December
2008:

Internship at SAP, Vienna, Austria
• Developing the Global Shift Planning Tool in ASP.NET, C# and SQL Server,

working with SCRUM methodology.

	
 181	

Extracurricular activities

2004-2008: Junior Research Assistant at Petnica Research Center, Petnica, Serbia

• Organizing seminars, teaching talented high school students advanced mathematics
and supervising their projects in the oldest and largest independent nonprofit
organization for extracurricular informal science education in South Eastern Europe.

2006-2008: Board Member and Vice-President of EESTEC (Electrical Engineering STudents’

European assoCiation), Novi Sad, Serbia
• Organizing student workshops and job fairs, fundraising and managing relationships

with companies.
• Participating in international student workshops.
• Initiating and organizing the first job fair “KONTEH” at the Faculty of Technical

Sciences in December 2006. Currently, it is the job fair that collects the greatest
amount of CVs in the region and provides jobs and internships to hundreds of
students.

Languages

Serbian: Native language, English: Fluent, German: Intermediate (B2), French: Intermediate (B1/B2).

Awards and Certifications
2013: ITIL V3 Foundation Certificate
2004-2013: Scholarship of Ministry of Science for talented students of Serbia
2009: 100 Best Students and Young Leaders of Serbia award by EFG Eurobank
2008: 40 Serbian Young Professionals award by the Foundation Zoran Djindjic and WUS Austria
2006-2007: Top 10 students of University of Novi Sad scholarship
2006: DAAD (Deutscher Akademischer Austausch Dienst) scholarship for summer school of

German in Münich, Germany
2005: Representative of Serbia in international summer science camp, XLAB, Göttingen, Germany
2003-2008: Fellow of Schneider Electric DMS NS company
1998-2004: Winning awards on mathematical competitions, from the first place in the city to gold medal

at the national competition of Serbia
Interests: Traveling, swimming (silver and bronze medals at regional competitions), biking, playing the
piano

	
 182	

Publications

B. Bajić-Bizumić, C. Petitpierre, H. C. Huynh, and A. Wegmann, “A Model-Driven
Environment for Service Design, Simulation and Prototyping,” in Exploring Services
Science, Springer, 2013, pp. 200–214.

B. Bajic-Bizumic, I. Rychkova, and A. Wegmann, “The Role of Invariants in the Co-
evolution of Business and Technical Service Specification of an Enterprise,” POEM 2013

B. Bajic-Bizumic, I. Rychkova, and A. Wegmann, “Simulation-Driven Approach for
Business Rule Discovery,” in CAiSE International Workshops, Advanced Information
Systems Engineering Workshops, Springer, 2013, pp. 111–123.

A. Wegmann, B. Bajic-Bizumic, A. Golnam, G. Popescu, G. Tapandjieva, A. B. Saxena, M.
Yassaee, and G. Regev, “Requirements modeling in SEAM: The example of a car crash
management system,” in Comparing Requirements Modeling Approaches Workshop
(CMA@RE), 2013 International, 2013, pp. 25–30.

G. Regev, B. Bajic-Bizumic, A. Golnam, G. Popescu, G. Tapandjieva, A. B. Saxena, and A.
Wegmann, “A Philosophical Foundation for Business and IT Alignment in Enterprise
Architecture with the Example of SEAM,” BMSD Noordwijkerhout, 2013.

H. C. Huynh, B. Bajic-Bizumic, and A. Wegmann, “A SEAM-based Environment for System
Design and Validation,” ACOMP Ho Chi Minh City, 2013.

B. Bajic, C. Petitpierre, D. Quang Tri, and A. Wegmann, “From Business Services to IT
Services by Capturing Design Decisions,” BMSD Geneva, pp. 94–104, 2012.

B. Bajic, “Electrical Power System Modeling in ArcGIS and Integration with DMS Object
Model,” FTN Zbornik radova, 2010.

B.Bajic, V. Bojkovic, A. Ilic, and M. Kosanovic, “Banach Tarski Paradox in 4 Dimensions,”
Petnica Papers, 2004.

