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“A building speaks through the silence of perception orchestrated by light.” [1] 

Most designers would agree that natural light is essential to the experience of any great work of architecture, but as a 

professional discipline, we lack consensus on which characteristics of daylight quantify or qualify the visual performance 

of a space.  Perceptual qualities such as brightness, contrast, and temporal variability influence our experience of physical 

space and while illumination, both natural and artificial, adds depth to complex geometries, daylight infuses otherwise static 

interior spaces with shifting compositions of light and shadow.  Unlike artificial light sources, which can be adjusted to meet 

a desired visual effect regardless of location and time, daylight is sensitive to an array of influences.  The latitude of a given 

location affects the length and intensity of daylight hours throughout the year, while local changes in climate affect its hourly 

strength and variability.  Surrounding site conditions can amplify or diminish the sun’s ability to penetrate an interior space 

and it’s often difficult to predict how these conditions will change over time. Architecture is greatly altered and enriched by 

the dynamic visual qualities of daylight, yet it is most often valued simply for its ability to provide adequate illumination 

and evaluated through surface-based measurements which do not account for the rich diversity of composition within the 

field-of-view.  While there is some agreement on the minimum amount of illumination that is required for the human eye to 

perform visual tasks, there is a lack of consensus on how much contrast or brightness makes a given space visually 

appealing.   

Architects are trained to place value in the concept of spatial experience and yet heightened environmental awareness has 

forced designers to meet both functional, aesthetic, and simultaneously ‘high-performance’ quantitative targets.  We hear a 

lot about the importance of net energy balance, thermal and visual comfort, and carbon neutral design, but as these 

requirements become more pervasive in professional practice and the justification of design quality, we may ask ourselves: 

how do we prioritize these technical criteria and how should they drive the design process?  Somewhere along the line, 

perceptual qualities of illumination became secondary in our dialogue about daylight performance and this schism between 

criteria:  illumination-based (i.e. do we have enough light to perform a visual task?), comfort (i.e. do we feel a lack of 

discomfort in these luminous conditions?), and aesthetic (i.e. do we like the composition of these luminous conditions?), 

causes a dilemma for lighting designers.   Architectural lighting must ‘perform’ to meet both illumination, comfort, and 

aesthetic criteria and we must work to re-establish the role of perceptual indicators in our language about environmental 

performance [2].  

Despite decades of research, we may ask ourselves:  why is it so difficult to establish global performance criteria for daylight 

design?  Through research, we know that humans can reach consensus on thermal and acoustical thresholds for comfort, 

but lighting performance – which is visually perceived – is intricately linked to the form and spatial sequence of a building.  

As a result, existing guidelines for lighting focus on criteria which can be objectively defined, such as illumination thresholds 

and discomfort glare.  While architects know that too little light is undesirable, they also know that when a design meets 

illumination thresholds it does not automatically achieve good lighting quality.  The visual appearance of light is undeniably 

important and yet we lack tools to objectively evaluate daylight composition from a human point-of-view.  Two spaces 

which are dramatically different in lighting ambience can produce equally high 'quality' lighting environments depending 

on programmatic use and design intent.  The difference in lighting composition between two spaces, while difficult to 

evaluate in binary subjective terms (i.e. good or bad), can be assessed for objective daylight-induced visual effects (i.e. 

dramatic or diffuse) and the variability of these effects over time (i.e. dynamic or static).   

Through a comparison of three architectural spaces, we will present a range of daylight design strategies which vary in their 

approach to daylight distribution, yet reinforce a specific spatial experience.  In Norman Foster’s renovation of the Kogod 

Courtyard in Washington, D.C (figure 1), the articulated glass roof above the courtyard creates a dynamic top-lit space with 

direct sunlight penetration casting a contrasted grid-like pattern of light and shadow onto the walls and floor of the interior 

space. Designed for temporary occupation and public gathering, the courtyard does not require a tightly controlled lighting 

strategy.  On the contrary, Foster uses transparency to create a dynamic and visually diverse environment.  
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In Steven Holl’s Church of St. Ignatius in 

Seattle, Washington (figure 2), sunlight is 

composed into a series of carved, indirect 

figures which highlight the intersection between 

different geometries [3].  The light within this 

church could be described as selectively diffuse, 

with small window openings that create an 

indirect wall-wash and fill recessed geometries 

with a smooth gradient of light.  The 

composition of light within this example 

changes less abruptly than that of the Kogod 

Courtyard, but still maintains a dynamic 

relationship to the exterior as shifting sun angles 

cause figural volumes of light to change over 

time [3]. 

In the Dia Beacon Museum in upstate New York 

(figure 3), Robert Irwin and Open Office 

employed a fully-indirect daylighting strategy 

as north-facing monitors on the roof collect and 

distribute diffuse light from the north.   As a 

gallery, the space necessitates an even 

distribution of internal lighting levels, while 

preventing any direct sunlight that may cause 

damage to or distract from the artwork.  As a 

result, the presence of strong compositional 

contrast and temporal instability is minimized 

throughout the space. 

These three examples represent varied site 

conditions, both urban and rural; varied 

latitudes, from Washington D.C. to Seattle; and 

a range of programmatic uses from art gallery to 

public atrium.  They represent dramatically 

different compositions of contrast and temporal 

light stability, and yet they all produce visually 

stimulating environments that enhance the 

architectural expression of interior space.  In 

considering this diversity of architectural 

examples, our goal is to define the perceptual 

characteristics that distinguish them and 

determine what this can tell us about the role of 

contrast and luminous diversity in the visual 

performance of interior space.  While the notion 

of perceptual ‘quality’ is, admittedly, a difficult 

element to quantify due to its subjective nature, 

we believe that there are measures that can 

evaluate the compositional impacts of contrast 

and luminance diversity and help inform 

architects about their varied effects over time.  

Although we have no intention of prescribing 

 

figure 1  Kogod Courtyard by Norman Fosteri 

 

figure 2 Church of St.Ignatius by Steven Hollii 

 

figure 3 Dia Beacon Museum by Steve Irwin and Open Officeiii 



universal recommendations for contrast or luminous diversity, establishing a method for quantifying these compositional 

effects will provide architects a tool for comparing design options and contextualizing those options within a relative scale 

from high to low contrast or dynamic to static.  If we can measure and compare the impacts of contrast and luminous 

diversity over time, we can help architects to communicate their aesthetic objectives more comprehensively and 

choreograph the dynamic visual effects of a space to meet their intended design goals.  

Through ongoing work conducted in the Laboratory for Performance-Integrated Design (LIPID lab) at the Ecole Polytechnic 

Federale de Lausanne, we are developing dynamic metrics for the measure of contrast and daylight composition in 

architecture.  A more complete description of these metrics is published elsewhere [4] [5] but we will briefly introduce 

Spatial Contrast here to illustrate the potential simulation-based application of these measures and their ability to compare 

architectural spaces for relative daylight-driven visual effects. Annual Spatial Contrast (ASC) is an image-based metric that 

assesses the strength of luminous contrast and luminous diversity across the year.  When applied to an annual set of 

renderings, which account for a symmetrical distribution of hourly and monthly instances, we are able to measure where, 

within a given view, contrast is most predominant and how this compositional effect varies under dynamic sky conditions.  

As a result, we can effectively compare spaces that vary in the distribution and choreography of daylight. 

In digital image analysis, there are two types of measures that are commonly used to quantify contrast:  those that rely on 

global measures and those that rely on local measures.  Global measures most often rely on two single points of extreme 

brightness and darkness, taking into account the difference in maximum and minimum values [6].  Other methods account 

for average luminance, or the standard deviation of values [7] [8] and while these global contrast measures provide a single 

comprehensible value, they cannot effectively predict perceived contrast between two images that vary in composition [9]. 

Local contrast values were developed to overcome the limitations associated with global measures by quantifying the effect 

of composition on contrasting areas of brightness and darkness.  Included within this group of measures are methods that 

measure spatial frequencies in the Fourier domain [10], and those that calculate the difference between a single pixel and a 

surrounding region or neighborhood [11] [12] [13].  The authors have developed the term Spatial Contrast (SC) to describe 

the sum of local variations across a rendering.  Spatial contrast draws on a simplified version of two existing neighborhood 

measures [12] [13] and computes the cumulative sum of localized contrast values, or 'boundaries' across an image, which 

represents a single instant of time (figure 4).  Annual Spatial Contrast (ASC) then computes the sum of spatial contrast 

across all annual instances to produce an annual profile of contrast for a given view.  Figure 5 shows seven hourly instances 

for a top-lit space with corresponding spatial contrast plots to illustrate how solar position can dramatically alter perceived 

contrast within the space.  Spatial contrast values can be plotted spatially, to show where contrast is the strongest, and 

temporally, to show when that contrast varies over time.  Temporal plots showing annual variation will be presented in 

figures 7,8, and 9.   

 

figure 4  Spatial contrast is calculated for each pixel on the left to produce the representation of contrast boundaries on the right. 
 



 

figure 5  Spatial contrast for 7 hourly instances, with values normalized from 0 to 1 to show how solar orientation can increase tge 

strength of visual effects over the course of the day. 
 

A full proof-of-concept study can be found elsewhere [4] [5], but we will show three case study spaces here which represent 

opposite and intermediate points in the contrast spectrum (figure 6).  Similar to the Kogod Courtyard, shown in Figure 1, 

case study one was modelled to represent a highly contrasted and variable interior daylight environment with an open roof 

structure that casts dynamic and articulated patterns of light and shadow down onto the walls and floor.  As shown in figure 

7, case study one generates a high degree of spatial contrast throughout the year.  The temporal map in figure 7b shows a 

peak between 10am and 3pm in the summer months when the sun is directly overhead, while the false-color image in figure 

7c, shows thick red lines where spatial contrast is most consistent, highlighting the roof structure as the most redundant 

source, with secondary accumulations on the floor and walls.    

 

Figure 6  Case studies one, two, and three 

Case Study two, shown in figure 8, represents a more traditional side-lit daylight strategy with a clerestory window above 

and louvered screen below which creates varied effects across the year depending on the time of day and position of the 

sun.  The temporal map in figure 8b shows high spatial contrast between October and March, with low-to-moderate levels 

throughout the summer months of the year.  The location of these effects can be seen in the false-color image in figure 8c, 

which shows the accumulation of contrast on the walls and floor closest to the exterior glazed wall.      

Case study three, similar in effect to the Dia Beacon Museum in Figure 3, contains a series of north-facing roof monitors 

that emit diffuse daylight down into the interior space.  Across most of the day and year, case study two achieves uniform 

luminance distribution with discreet moments of increased contrast that occur when direct sunlight penetrates the roof 

monitors in the early morning and late afternoon, as seen through the renderings in Figure 9a.  We can see these low spatial 



contrast values reflected in the temporal map in figure 9b and false-color image in figure 9c, with slight peaks in the 

mornings and afternoons during the summer months.  This shift is due to low solar altitude angles in the morning and late 

afternoon, which allows direct sunlight to penetrate the skylights and cast shadows across the walls and floor.   

 

figure 7  Spatial contrast results from case study one. 

 

figure 8  Spatial contrast results from case study two. 

 

figure 9  Spatial contrast results from case study three. 

This research raises an important set of issues for architects and daylight designers.  How do we leverage perceptual 

performance indicators against those task-based illumination and visual comfort metrics that dominate the field of daylight 

performance analysis?  To further develop and validate these new metrics, we will expand the set of case studies presented 

in the proof-of-concept study [4] [5], three of which were shown here, to include a set of detailed existing architectural 

spaces.  Using this expanded catalog of spaces, we will conduct an experimental study to validate the relationship between 

human perceptions of contrast, existing, and proposed metrics.  After validation, these novel metrics will then be integrated 

into a software package called Lightsolve, created at MIT and currently under development at EPFL, alongside dynamic 

illumination, comfort, and health-based metrics as part of an integrated tool to assess human needs in daylit architecture 



[14].  These new annual metrics will help to communicate information about the spatial and temporal quality of daylight, 

providing architects with a tool for comparing the magnitude of visual effects within architecture.  From a simple analytical 

tool that illustrates the dynamic conditions of daylight, this work challenges the use of existing task-based illumination and 

comfort metrics in a variety of programmatic conditions where contrast-based visual effects are not only accepted, but 

celebrated.     

References 

 

[1]  S. Holl, Luminosity / Porosity, Tokyo: Toto, 2006.  

[2]  M. A. Steane and K. Steemers, Environmental Diversity in Architecture, New York: Spoon Press, 2004.  

[3]  S. Holl, The Chapel of St. Ignatius, Princeton: Princeton Architectural Press, 1999.  

[4]  S. Rockcastke and M. Andersen, "Measuring the dynamics of contrast & daylight variability in architecture: A proof-of-concept 
methodology," Building and Environment, pp. v 81, 320-333, 2014.  

[5]  S. Rockcastle and M. Andersen, Annual Dynamics of Daylight Variability and Contrast: A Simulation Based Approach to 
Quanitfying Visual Effects in Architecture, London: Springer-Verlag, 2013.  

[6]  A. Michelson, Studies in Optics, Chicago: University of Chicago Press, 1927.  

[7]  P. King-Smith and J. Kulikowski, "Pattern and Flicker Detection Analysed by Threshold Summation," Journal of Physiology, vol. 
249, no. 3, pp. 519-548, 1975.  

[8]  A. Calabria and M. Fairchild, "Perceived image contrast and observer preference II. Empirical modelling of perceived image 
contrast and observer preference data," The Journal of Imaging Science and Technology, vol. 47, pp. 494-508 , 2003.  

[9]  G. Simone, M. Pedersen and J. Y. Hardeberg, "Measuring perceptual contrast in digital images," J. Vis. Commun. Image R., vol. 
23, no. 3, pp. 491-506, 2012.  

[10]  R. Hess, A. Bradley and L. Piotrowski, "Contrast-coding in amblyopia. I. Differences in the neural basis of human amblyopia," in 
Proceedings of Royal Society of London Series B (217), London, 1983.  

[11]  Y. Tadmor and D. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," 
Vision Research , vol. 40, no. 22, pp. 3145-3157, 2000.  

[12]  A. Rizzi, G. Algeri, D. Medeghini and A. Marini, "A proposal for contrast measure in digital images," in Second European 
Conference on Color in Graphics, Imaging and Vision, Aachen, 2004.  

[13]  e. a. Matkovic, "Global Contrast Factor - A New Approach to Image Contrast," in Proceedings of the First Eurographics 
conference on Computational Aesthetics in Graphics, Visualization and Imaging, Girona, 2005.  

[14]  M. Andersen, A. Guillemin, M. Amundadottir and S. Rockcastle, "Beyond illumination: An interactive simulation framework for 
non-visual and perceptual aspects of daylighting performance," in In Proceedings of IBPSA 2013, Chambéry, 2013.  

 

 
 

i AgnosticPreackersKid, 'The Kogod Courtyard’ May 29, 2010 via Wikimedia, creative commons license 
ii Joe Mabel, ‘Chapel of St. Ignatius’ November 30, 2007 via Wikimedia, creative commons license 
iii Augie Ray, ‘Imi Knoebel's 24 Colors’ November 9, 2013 via flickr, creative commons license 
 

                                                           


