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A. First-principles calculations of the energies of hydrogen adatom clusters

First-principles calculations of the interaction energies of hydrogen adatoms on graphene have been performed
within the density functional theory (DFT) framework employing the generalized gradient approximation (GGA) to
the exchange-correlation functional [I]. Ultrasoft pseudopotentials [2] for carbon and hydrogen atoms have been used
in combination with a plane-wave basis set with a kinetic energy cutoff of 30 Ry for the wavefunctions. Models of
hydrogen adatom clusters are based on a graphene 6 x 6 supercell with 15 A of vacuum separating the periodic replicas.
We used a 2 x 2 x 1 Monkhorst-Pack k-point mesh for the Brillouin zone integration [3]. All hydrogen adatom cluster
models were relaxed until a maximum force of 0.15 éV/A on individual atoms was reached. We verified that the
chosen parameters provide sufficiently accurate total energies. All calculations have been performed using the PWSCF
code of the QuaANTUM ESPRESSO package [4].

The interaction energy of a cluster of hydrogen adatoms calculated from first principles Eppr is defined as

EDFT = Egr+nH - Egr —-n (Egr+H - Egr) ) (1)

where Egynu, Eg and Egip are the total energies of graphene with a cluster of n hydrogen adatoms, pristine
graphene and graphene with a single hydrogen adatom, respectively.

In the main text of our manuscript we focused on the situation where hydrogen adatoms are deposited on a
single side of graphene. The values of the fitted parameters in expr. (1) of the main text are 3 = —1.182 eV and
v = 0.484 eV. This scenario is relevant to the case of graphene on a substrate, however in the situation of suspended
graphene both sides of graphene are available for binding adatoms. We investigated this situation by studying the
same set of adatom clusters as shown in Fig. 1(b) of the main text, but with adatoms placed on the opposite sides of
graphene sheet when functionalized carbon atoms belong to different sublattices. The fitted interaction parameters
are 73 = —1.461 eV and v, = 0.342 eV. The excellent agreement between the estimated interaction energies E
and the first-principles values Eppr is illustrated in Fig. [SIj(a). This case is characterized by a stronger attractive
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Figure S1: (Color online) (a) Predicted energy E of aggregation of hydrogen adatoms as a function of aggregation energy Eprr
calculated from first principles for the set of small clusters shown in Fig. 1(b) of the main text with adatoms adsorbed on both
sides of graphene. (b) Comparison of the cluster size distributions P(n) for the cases of single-side and both-sides adatom
adsorption at x = 5% concentration and T' = 300 K.



contribution and a weaker repulsion compared to the single-side adsorption, thus reflecting the known tendency of
forming more stable adatom aggregates upon adsorption on both sides [5, [6]. The cluster size distributions P(n)
calculated for single-side and both-sides adsorption at adatom concentration z = 5% and T = 300 K are compared
in Fig. b). While the distributions are qualitatively very similar, one notes that both-sides adsorption exhibits a
somewhat stronger tendency to form larger clusters.

B. Monte-Carlo simulations of the hydrogen adatoms aggregation

We performed Monte-Carlo simulations with an elementary trial move being the displacement of a randomly chosen
adatom to a random carbon atom not populated by another adatom. This move insures the fulfillment of detailed
balance. The Metropolis algorithm has been employed for the acceptance/rejection criterion. Once a move has been
performed, the system is updated from the old configuration Syq to the new one Spen with a probability

P(Soid = Snew) = min(1, e AEGnew) = BSaa)ly (2)

where £ is the inverse temperature 1/(kgT). In all our simulations 7' = 300 K. The number of equilibration steps Neq
disregarded from statistical sampling varied between 10° and 1.6 x 107, depending on adatom concentration (larger
concentrations need more equilibration steps). The total number of steps in our simulations varied between 107 and
3 x 107. The equilibration efficacy of our simulation was tested by comparing certain equilibrium properties such as
the total energy and cluster size distribution. The properties obtained from Monte-Carlo simulations performed with
and without temperature annealing show negligible differences.

C. Landauer-Biittiker electronic transport calculations and scaling analysis of conductivity

In order to investigate the transport properties of graphene with resonant scattering impurities we perform
Landauer-Biittiker calculations in a two-terminal configuration with a scattering region composed of hydrogenated
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Figure S2: (Color online) Schematic drawing of the two-terminal configuration employed for investigating the transport prop-
erties of graphene with hydrogen adatoms. The transport direction is along the x axis while the system is periodic along the y
axis. The periodicity along the y axis is W = 40 nm. The unit cells of the left and right leads composed of pristine graphene
are indicated by blue lines. The scattering region is populated by adatoms either randomly or according to the configurations
produced by Monte-Carlo simulations in the case of correlated adatom distributions. One of the principal layers (PL) in the
scattering region is indicated by means of green dashed lines.



graphene attached to two semi-infinite leads of pristine graphene, as shown in Fig. The overall configuration is
periodic along the transverse direction y. For such a setup, conductance as a function of energy G(F) is given by

G(E) = % z T(E, ky)dk, 3)

where T'(E, k) is the transmission probability and & is the momentum along y [7]. Due to the large width W = 40 nm
of the model employed, transmission is only evaluated at the I' point (k) = 0).

In order to calculate T'(E) we decompose the scattering region into principal layers (PLs), that is, the layers in
which the atoms are coupled at most to those located in the next layer. Since our tight-binding model is limited
to first-nearest-neighbor interactions and the transport direction is oriented along zig-zag direction [see Fig. , the
minimal width of the PL is dpr, = ?dccy where dec = 1.42 A is the carbon-carbon bond length. The Hamiltonian
restricted to the i-th principal layer is H;, while ¢; is the tight-binding hopping matrix connecting ¢-th and ¢ 4+ 1-th
principal layers. We introduce an imaginary cleavage plane between the n-th and n+ 1-th principal layers dividing the
system into two independent parts. We define g~ and g& " 1 as the surface Green’s functions of the two non-interacting
semi-infinite systems located on the left and on the right sides of this cleavage plane, respectively.

Following Ref. [8| the transmission is given by

T(E) = T[T Im(gy) T Im(gp1)]; (4)
where operator T,, is defined as
Tn = tn(l - g}}—&-lt;g}{tn)_l' (5)

The choice of the position of the cleavage plane is immaterial because of current conservation.
Surface Green’s functions g and g& can be related to the preceding (successive) surface Green’s functions g&_;
(g%, 1) by applying the Dyson equations [9]

ng: =(E—-H,— tjzflgr%—ltnfl)_l (6)
and
95 = (E - H, - tng§+1tl)71' (7)

Further iterations of Eqns. @ and reduce the problem to the knowledge of the Green’s functions at the surfaces
separating the scattering region from the left and right leads, g“" and g*", that we calculated according to the analytic
closed form solution described in Ref. [10.

The time complexity of the Green’s function calculation for each lead with respect to the number Nye,q of orbitals
in the lead unit cell is O(NZ,_4) [9]. On the other hand, as follows from Equs. @ and , the complexity of the
addition of the layers required to reach the cleavage plane is O(M x Nl?;yer), where M and Nyayer are the number of
principal layers and the number of orbitals in each layer, respectively. Consequently, the overall complexity of the
method is cubic with respect to the width and linear with respect to the length of the system.

In order to perform our conductance scaling analysis we vary the length of the scattering region in the range
L = 1...60 nm by steps of 8 PLs, which corresponds to AL &~ 1 nm. At each step the right lead is moved rightwards
whereas the left lead is kept fixed [Fig. [S2]. The values of conductance G(E) are averaged over an ensemble of
Nens=9600 disorder realizations for proper statistical sampling.

D. Complete account of the results of calculations of conductivity and localization length

Conductivity g for the entire investigated range of concentrations is presented in Fig. (a,b). The overall enhance-
ment of conductivity upon the aggregation of adatoms is a common feature at all investigated concentrations. This
is particularly visible in the strong localization regime, that is at low energies I and large scattering region lengths
L. Localization length ). can only be determined for the g(L) curves which exhibit a well-defined negative slope in
the large length region. This is the case for £, < 60 nm, which is the maximum scattering region length considered
in our study. This does not imply that the system does not undergo localization, but rather that a longer scattering
region is needed in order to estimate &, correctly. For this reason many values of localization length &, at z < 5%,
especially in the case of correlated impurities, are missing in Fig. c).
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Figure S3: (Color online) Scaling analysis of conductivity ¢g and localization length &ioc for concentrations z = 0.25%...10%.
(a,b) Conductivity g as a function of scattering region length L calculated for graphene with random and correlated adatom
distributions, respectively, at charge-carrier energies 0 eV < E < 1 €V. (¢) Localization length &ioc as a function of charge-carrier
energy F for random and correlated adatom distributions.



E. Effect of the doping of leads in the Landauer-Biittiker calculations

Figure [S4(a,b) shows the conductivity curves g(L) for # = 5% concentration of randomly distributed adatoms
obtained by shifting the charge neutrality point of leads by AEp, = —0.5 ¢V and AFE, = —1.0 eV, respectively.
The effect of the doping of leads is two-fold. Firstly, the DOS of pristine graphene increases away from the charge
neutrality point. Hence, upon doping the number of transport channels increases, which may result in larger values of
conductance g. This is particularly important when the scattering region has an enhanced DOS at zero energy, such
as graphene with resonant impurities. A comparison of Fig. a) and Fig. a) for x = 5% shows that conductivity
is indeed enhanced at low energies with a crossing of the g(L) curves at L = 10 nm. Secondly, doping results in a
mismatch between the Fermi wavelength of the leads and that of the scattering region, which has a detrimental effect
on conductance g. This effect is expected to be more pronounced at higher doping and high energy, where localization
plays a smaller role. Indeed, at higher doping (AE;, = —1.0 €V) and high energy (E = 1.0 €V) the conductivity
is reduced, notably at short distance L < 10 nm [Fig. a,b)]. On the other hand, at large distances a general
increase of the conductance is progressively restored since the conductivity becomes predominantly determined by
the localization of the wavefunction and the increased number of available states. Finally, as shown in Fig. c),
localization length & is practically unaffected by the doping of the leads, since it is an intrinsic property of the
scattering region.
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Figure S4: (Color online) (a,b) Conductivity g as a function of scattering region length L for graphene with randomly distributed
adatoms at z = 5%. The charge neutrality point of the leads has been shifted by (a) AEr, = —0.5 eV and (b) AEL, = —1.0 eV,
respectively. (c) Localization length £, as a function of charge-carrier energy E for the two investigated lead doping levels
compared to undoped leads AEy, =0 eV.

F. Electronic transport calculations within the Kubo-Greenwood formalism using the kernel polynomial
method

The diagonal elements of the real part of the frequency dependent conductivity tensor in linear response theory is
given by the Kubo-Greenwood formula

f(E+ hw)
w

E) —
Re{caa(w)} = %/dEf( ) X Tr{6(E — H)jo0(FE — H + hw)ja}- (8)
Here, f(F) is the Fermi function and H the single-particle tight-binding Hamiltonian of the system under consider-
ation, whereas the vectorial component of the current operator j, is defined later. In the thermodynamic limit for
zero temperature and zero frequency this equation reduces to

Re{oaa(0)} = L‘;LTr{(Y(EF — H)jod(Er — H)jut, (9)

which defines the DC-conductivity studied in this work. The evaluation of this expression is carried out by employing
the kernel polynomial method (KPM), as described in detail in Ref. [Tl In this framework, the following matrix
element density is defined

](E7 El) = % Z<n|ja‘m><m|ja‘n>5(E - hwn)é(El - hwm)v (10)

n,m



which is then expanded up to finite order M within the two-dimensional KPM using the Jackson kernel. For the
studied supercells containing up to Ng ~ 10% carbon atoms, we used M = 1280. The real-part of the frequency
dependent conductivity tensor is then given by a double integration over the matrix density for arbitrary temperature
and Fermi level:

™

Refoua)t = = [ am [~ B8 B) x [1(B) - (8 60— (£ - E)). (1)

As a result, the DC-conductivity can be expressed in terms of the diagonal elements of j(E, E'):
Re{04a(0)} = nhj(Er, Er). (12)

The calculation of transport properties requires the definition of a current operator appropriate to the employed
single-particle tight-binding model. Thus, we approximate the spatial operator r in a diagonal form:

rY o~ ZT?CIQ‘- (13)
i
Consequently, one can derive the following current operator used in this work,

. €
Jy =iy g tij(r] — rNeles, (14)
ij

where indices ¢ and j run over atomic positions and v denotes the vectorial component. For details of a similar
derivation see e.g. Ref.

G. Results for the calculations of conductivity using the kernel polynomial method

Figure a,b) shows conductivity g as a function of charge-carrier energy E calculated using the KPM for random
and correlated impurity distributions at two different adatom concentrations x = 0.5% and z = 5.0%. A scaling
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Figure S5: (Color online) (a,b) Conductivity g as a function of charge-carrier energy E calculated using the kernel polynomial
method (KPM) for the random and correlated impurity distributions at z = 0.5% and = 5.0% adatom concentrations,
respectively. (c,d) Conductivity g as a function of expansion order M for the random and correlated impurity distributions at
x = 0.5% and = = 5.0% adatom concentrations, respectively. The dashed lines indicate the minimum conductivity of graphene.



analysis of the conductivity for three charge carrier energies (E = 1.7x 1072 eV, E = 0.1 eV and E = 1.0 V) based on
the expansion order M is shown in Fig. (c,d) for the same values of adatom concentration z. The order M relates to
a timescale 7(M) [I3]. For E = 1.0 €V and = = 5% the conductivity rises with increasing expansion order M, exhibits
a maximum around M ~ 200 and then decreases slowly again for both correlated (dashed line) and random (solid
line) impurity distributions [Fig. d)] We interpret these maxima as the semiclassical values of conductivity gsc
corresponding to the diffusive regime, followed by quantum corrections which result in the decrease of the conductivity.
For a concentration of z = 0.5% and E = 1.0 eV no conductivity maximum is observed, which indicates that the
results still correspond to the pre-diffusive/ballistic regime for the largest expansion order investigated. A shift of gg.
to larger expansion orders for decreasing x is expected, because fewer scattering centers are present. The situation is,
in general, different for small energies close to the Dirac point (here, E = 1.7 x 1072 V), in both cases of correlated
and random adatom distributions as well as concentrations of x = 0.5% and z = 5%. A distinct maximum for
M > 100 is completely absent, and only a reduction of the conductivity is observed for increasing M. Thus, we relate
this characteristic to the quantum regime with localization effects resulting in a reduced localization length. If the
expansion order is sufficiently large, the curves for E = 1.7 x 1073 eV reach values well below g = 4/7(e?/h), and one
may expect the conductivity to converge asymptotically to zero in the limit of M — oo if the modes are completely
localized.
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