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Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often
exploited to obtain insights on reaction mechanisms, biochemical, geochemical and atmospheric
phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because
one needs to perform a thermodynamic integration with respect to the isotope mass, along with
time-consuming path integral calculations. By re-formulating the problem as a particle exchange in
the ring polymer partition function, we derive new estimators giving direct access to the differential
partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration.
We demonstrate the efficiency of these estimators by applying them to investigate the isotope
fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

I. INTRODUCTION

There is little doubt that modelling explicitly the be-
havior of electrons requires a quantum mechanical treat-
ment. The nuclei of atoms, on the other hand, are typi-
cally treated as classical point particles in atomistic sim-
ulations. In many cases – most notably for the lighter
elements – the quantum nature of the nuclei gives rise
to significant physical effects even at room temperature
or above. Examples are the large deviations from the
Dulong-Petit limit of the heat capacity of solids, the large
isotope kinetic effects that are often observed in reac-
tions that involve a hydrogen transfer as the rate-limiting
step [1], and the deviations of the particle momentum
distribution of nuclei from the Maxwell-Boltzmann pre-
dictions [2].

One of the most evident signs of the quantum nature of
light nuclei is the fractionation of two isotopes X and X′

between two environments A and B – where the two en-
vironments could correspond to different thermodynamic
phases, different compounds or inequivalent positions in
the same molecule

XA + X′B
∆G

 XB + X′A. (1)

The isotope fractionation free energy ∆G would be zero if
the nuclei behaved classically[3]. Owing to the quantum
nature of the X nuclei, instead, it takes on a finite and
measurable value which often depends strongly on the
temperature T or the pressure. Isotope fractionation is
usually characterized in terms of the fractionation ratio
αA-B = exp(−β∆GA-B) at the inverse temperature β =
1/kBT . Since αA-B is usually quite close to unity, it is
customary to express the fractionation ratio in the form
1000 ln(αA-B), and we adopt this convention here.

The isotope fractionation ratio can be determined ex-
perimentally with exquisite precision, and is used rou-
tinely to gain insight into reactions and phase trans-
formations in geochemistry, biology, astrophysics, and
atmospheric sciences [4]. For instance, isotope frac-
tionation can be used to trace the origin of water in
clouds [5], to reconstruct paleoclymatic records [6], to
investegate the hypothesis of an extraterrestrial prove-

nance of Earth’s water [? ? ], and even to characterize
the origin of wine [7]. When comparing experimentally-
determined fractionation ratios with simulations, one has
to distinguish between equilibrium isotope fractionation
– the ratio that is reached after the different phases
involved have reached thermodynamic equilibrium, and
which is due exclusively to the quantum nature of the
isotopes involved [8] – and so-called kinetic isotope ef-
fects – that are due to the fact that differences in isotope
mass affect reaction rates both classically and quantum
mechanically, and that can lead to accumulation of one
isotope in a non-equilibrium process [9]. Here we will
focus on the computational determination of equilibrium
isotope fractionation, so our results can be directly com-
pared with experiments only in systems where thermody-
namic equilibrium has been reached. However, accurate
theoretical determination of the equilibrium isotope ratio
is also useful to set an absolute reference for the equilib-
rium ratio, which can help determining the kinetic factors
that contribute to the observed values.

Evaluating fractionation ratios from simulations is far
from trivial, because of the need of modelling accurately
nuclear quantum effects (NQEs). For small gas-phase
molecules, one often computes an approximate quantum
mechanical partition function based on harmonic vibra-
tions and rigid rotations [10]. However, the harmonic
approximations do not allow one to reach an accuracy on
par with the experimental techniques [11, 12], and cannot
be applied to the condensed phase. Molecular dynamics
combined with a path integral formalism [13–15] provides
an accurate but computationally demanding approach to
fully account for the quantum nature of the nuclei.

The conventional approach to compute the exact frac-
tionation ratio in path integral molecular dynamics simu-
lations involves performing a thermodynamic integration
of the mean quantum kinetic energy of the tagged atom
〈T 〉 as a function of the isotope mass [9]

−β ln(αA-B) = ∆GA-B =

∫ m′

m

〈T 〉B,µ
µ

−
〈T 〉A,µ
µ

dµ. (2)

Many improvements have been proposed based on this
scheme, including employing a change of variables to re-
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duce the number of thermodynamic integration points,
using re-weighting to compute the kinetic energy in a
substituted system out of a simulation with only the
most abundant isotope [11], and using correlated-noise
Langevin dynamics [16] or high-order path integral fac-
torizations to accelerate the convergence with the number
of replicas [17, 18].

Here we demonstrate that it is possible to evaluate the
isotope fractionation ratios directly, without the need for
a thermodynamic integration. The corresponding esti-
mators are derived from the ratio of the partition func-
tions of the isotope-substituted systems, which is ob-
tained by a “virtual substitution” of the isotopes of the
tagged atom. This procedure is closely related to the the
free-energy perturbation estimators for the mass-scaled
kinetic energy introduced in Ref. 11. Since it avoids the
mass integration altogether it is more convenient, com-
putationally advantageous, and immune to errors in the
integral for the isotope mass.

The structure of this paper is as follows. We first in-
troduce the theory underlying these direct fractionation
estimators in Section II, then discuss their application to
the Zundel cation in Section III, and to hydrocarbons in
Section IV. Then, we finally draw our conclusions.

II. THEORY AND METHODS

A. The path integral partition function

Consider a system of N distinguishable particles de-
scribed by the Cartesian Hamiltonian

H =

N∑
i=1

p2
i

2mi
+ V (q1, . . . , qN ), (3)

and the corresponding quantum mechanical partition
function

Z = Tr
[
e−βĤ

]
(4)

with β = 1/kBT . The imaginary-time path integral for-
malism [13–15] makes it possible to map the quantum
mechanical partition function (4) onto the classical par-
tition function

Z ' ZP =
1

(2π~)3NP

∫
dp

∫
dq e−βPHP (p,q), (5)

where βP = β/P .
The classical ring polymer Hamiltonian HP (p,q) de-

scribes P copies of the physical system with correspond-
ing particles in adjacent replicas connected by harmonic
springs:

HP (p,q) = KP (p) + VP (q) + SP (q), (6)

where we introduced the classical kinetic energy

KP (p) =

N∑
i=1

P∑
j=1

[p
(j)
i ]2

2mi
, (7)

the sum of the potential energies of every replica

VP (q) =

P∑
j=1

V (q
(j)
1 , . . . , q

(j)
N ), (8)

and the spring energy

SP (q) ≡
N∑
i=1

S(qi,mi) =

N∑
i=1

P∑
j=1

1

2
miω

2
P [q

(j)
i − q

(j−1)
i ]2.

(9)

Here the harmonic spring frequency is ωP = 1/βP~, q
(j)
i

indicates the three dimensional Cartesian coordinates for
the jth replica of the ith particle, and the cyclic bound-

ary conditions q
(0)
i ≡ q(P )

i are implied. The ring-polymer
partition function ZP converges to the correct quantum
mechanical result as P → ∞. Note also that the mo-
menta in Eq. (5) are only sampling devices, and can be
integrated out trivially. In the following we will only con-
sider the configurational ring polymer partition function

Q̄ =

∫
dq e−βP (SP (q)+VP (q)), (10)

where we omitted the P subscript and the constant pref-
actors for convenience of notation.

B. Direct estimators for isotope fractionation
ratios

Assume, without loss of generality, that the Cartesian
coordinates of an X atom are denoted by q1. The parti-
tion function of system A containing the X isotope can
be expressed as

Q̄A =

∫
A

dq e−βPVP,A(q)e−βP

∑NA
i=2 S(qi,mi)e−βPS(q1,m),

(11)
where the integral is meant to extend over the configu-
ration space of system A, and the contribution from the
spring energy of the X atoms is singled out, taking into
account that m1 = m. VP,A is the sum of the potential
energy function VA over the P path integral beads. The
partition function Q̄′A for the system A where isotope
X has been substituted by X′ can be easily obtained by
making the change m ← m′. Q̄B and Q̄′B are the analo-
gous expressions for the system B.

Let us consider the two phases as separated and non-
interacting. This is always the case if one considers iso-
tope substitution between bulk phases for which the in-
terface between the two subsystems can be neglected, and
a more general formulation that can be used when there
is not a clear-cut distinction between the two states is
discussed in Appendix A. Then, the combined partition
function for X in A and X′ in B is just Q̄AQ̄

′
B. The rela-

tive probability of the two isotope configurations – which
is precisely the fractionation ratio – is the ratio of the
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combined partition functions

αA−B =
Q̄′AQ̄B

Q̄AQ̄′B
. (12)

Direct thermodynamic estimator for the isotope frac-
tionation ratio. Now consider Q̄′A/Q̄A, which reads∫

A
dq e−βPVP (q)e−βP

∑N
i=2 S(qi,mi)e−βPS(q1,m

′)∫
A
dq e−βPVP (q)e−βP

∑N
i=2 S(qi,mi)e−βPS(q1,m)

. (13)

By multiplying and dividing the integrand at the numera-
tor by e−βPS(q1,m), one sees that (13) is just the ensemble
average of the direct thermodynamic estimator

ZTD
m,m′ ≡ exp

−1

2
βPω

2
P (m′ −m)

P∑
j=1

[q
(j)
1 − q

(j+1)
1 ]2


(14)

over a simulation of system A containing the isotope X
of mass m, i.e.

Q̄′A
Q̄A

=
〈
ZTD
m,m′

〉
A,m

. (15)

Note that when there are multiple equivalent X atoms in
the system it is possible to improve the statistical conver-
gence of the estimator by averaging the values of ZTD

m,m′

computed separately for each equivalent atom.
In a similar way, one can obtain the ratio Q̄′B/Q̄B, as

an average of ZTD
m,m′ over a simulation of the system B, so

that ultimately the fractionation ratio can be expressed
as

αTD
A−B =

〈
ZTD
m,m′

〉
A,m〈

ZTD
m,m′

〉
B,m

. (16)

In order to evaluate the isotope fractionation ratio be-
tween systems A and B, only two simulations need to be
performed, containing only the naturally abundant iso-
tope. Furthermore, the computation for each value of
ZTD
m,m′ is inexpensive, as it does not involve evaluating

the physical potential but just the harmonic spring en-
ergy.

Connection with the free-energy perturbation estima-
tors of the particle kinetic energy. This direct thermo-
dynamic estimator is closely related to the thermody-
namic free energy perturbed (i.e. re-weighted) (TD-FEP)
kinetic energy estimator introduced in Ref. 11. Consider
a “pure” thermodynamic version (in Ref. 11 the centroid-

virial form TCV(q) = 1
2β + 1

2P

∑P
j=1

(
q(j) − q

)
∂V
∂q(j)

was

used for the kinetic energy term)

〈TTD〉TD
µ =

〈TTD(µ, q) exp [−hTD(µ, q)]〉m
〈exp [−hTD(µ, q)]〉m

, (17)

with

TTD(µ, q) =
1

2βP
− 1

2P
µω2

P

P∑
j=1

(
q(j) − q(j−1)

)2

, (18)

and

hTD(µ, q) =
(µ−m)βPω

2
P

2

P∑
j=1

(
q(j) − q(j−1)

)2

. (19)

Also, recall that in this context the fractionation ratio
is obtained by performing a thermodynamic integration
with respect to mass (Eq. (2)). It is then easy to see
that Eq. (16) is equivalent to performing analytically the
integral with respect to µ in (2) – for instance by notic-

ing that −β ∂
∂m′ ln

〈
ZTD
m,m′

〉
A,m

and 〈TTD〉TD
A,m′ /m′ differ

only by an additive constant that cancels out when one
combines the term for system B in Eq. (2).

In the light of this connection, one sees that the direct
thermodynamic estimator (14) can be regarded as a sim-
pler, more convenient form of the TD-FEP estimator. It
can be used in all the cases in which a free-energy per-
turbation approach is applicable, and avoids altogether
the need of integrating over different values of the scaled
mass µ.

As discussed in Ref. 11, the large fluctuations in the
exponent of the TD-FEP estimator for large changes in
mass (which is effectively the same term appearing in
Eq. (14)) lead to a dramatic degradation of the sampling
performance, which can be recognized by the appearance
of abrupt changes of the cumulative average during the
course of a simulation. Averaging the direct estimator
is not fully equivalent to a re-weighing procedure, so the
results of Ref. 19 do not strictly apply. Still as we will
see, the large fluctuations in the exponential, and their
growth with the number of beads P make the use of
Eq. (14) impractical at low temperature and/or for iso-
tope mass ratios very different from one.

Direct scaled-coordinates estimator for the isotope frac-
tionation ratio. To obtain a more favorable behavior of
the statistical efficiency with large number of beads P
and isotope mass ratio, we derived an alternative scaled-
coordinates estimator ZSC

m,m′ . We consider again the ra-

tio of partition functions Q̄′A/Q̄A as in Eq. (13), and we
apply the change of variables

q
(j)
1 ← q1 +

√
m′

m

(
q

(j)
1 − q1

)
, (20)

to the integral at the numerator. Here q1 =
∑
j q

(j)
1 /P is

the position of the centroid, and the change of variables
corresponds to a scaling of the ring polymer coordinates
relative to the centroid [20]. With this transformation,
the integral in the numerator of Eq. (13) can be written
in the form

|J |
∫
A

dq e−βPVP (q)e−βP

∑N
i=2 S(qi,mi)e−βPS(q1,m)

× e−βP

[∑P
j=1 V (q

′(j)
1 ,...,q

(j)
N )−V (q

(j)
1 ,...,q

(j)
N )

]
(21)

where q
′(j)
1 = q1 +

√
m
m′

(
q

(j)
1 − q1

)
, and the Jacobian

|J | takes a constant value. Performing analogous ma-
nipulations for Q̄′B in Q̄′B/Q̄B , one sees that the isotope
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fractionation ratio can be written as

αSC
A−B =

〈
ZSC
m,m′

〉
A,m〈

ZSC
m,m′

〉
B,m

, (22)

where the Jacobians have cancelled out, and we have in-
troduced a direct scaled-coordinates estimator

ZSC
m,m′ ≡ exp

−βP P∑
j=1

V (q
′(j)
1 , . . . , q

(j)
N )−

V (q
(j)
1 , . . . , q

(j)
N )

 ,
(23)

that can be used in the same way as its ZTD
m,m′ counter-

part. Each evaluation of Eq. (23) requires computing the
inter-atomic potential, so this estimator is not as inex-
pensive as the thermodynamic version. At low temper-
ature or for large isotope mass ratios, however, the gain
in statistical efficiency more than offsets the additional
computational cost.

It is worth mentioning that also this estimator can be
shown to correspond to an exact, analytical mass inte-
gration of the scaled-coordinates free energy perturbed
kinetic energy estimator (i.e. SC-FEP) introduced in
Ref. 11. Contrary to the case of ZTD

m,m′ , performing the
integration analytically is more than a matter of practical
convenience. Each evaluation of the SC-FEP estimator
requires a separate calculation of the potential energy
function, and so avoiding the thermodynamic integra-
tion not only reduces the computational cost, but also
circumvents discretization error even in cases in which
the smoothing of the integrand introduced in Ref. 11 is
not effective. Furthermore, the evaluation of ZSC

m,m′ does
not require computing derivatives of V , which might be
convenient in cases where the forces are not used for sam-
pling, as it is the case in Monte Carlo path integral sim-
ulations.

In the above discussion, ZSC
m,m′ is taken from the sim-

ulations of the most abundant isotope type, which seems
like the obvious choice. However, in some circumstances,
it might be advantageous to perform the backward sub-
stitution, by sampling from a simulation containing one
atom of the rare isotope X′. As we will comment on in
Section III, this is due to the fact that ZSC

m′,m has better

statistical properties for m′ > m.
The functional form of the direct estimators described

above is based on the primitive second-order Trotter
expansion of the Boltzmann operator. The generaliza-
tion to higher-order expansions is straightforward. The
derivation of the direct estimators under the Takahashi–
Imada scheme [21] is discussed in the Appendix B. As we
will see in practical cases, applying the fourth-order cor-
rection may accelerate the convergence with respect to
the number of beads P , but may also impact adversely
the statistical efficiency of the estimators.

Another promising approach to reduce the number of
path integral replicas needed for convergence is that of
using correlated-noise Langevin dynamics [16]. In its
current form, however, the path integral Generalized
Langevin Equation (PIGLET) thermostat does not en-
force the bead-bead correlations that are necessary to
accelerate the convergence of complex estimators such as
those introduced in the present work. In the specific case
of the liquid-vapor fractionation in water, a coincidental
cancellation of errors makes it possible to use free-energy
perturbation estimators together with PIGLET [11, 22].
Unfortunately, in all the examples we tested here results
were not reliable, so using this option should only be con-
sidered after careful testing. It is however worth mention-
ing that, by computing inexpensively the kinetic energy
of isotopes, PIGLET techniques can be very useful when
one prefers to use conventional thermodynamic integra-
tion, or when one simply wants to estimate roughly αA-B

based on the difference in kinetic energy between the two
phases.

III. POSITION-SPECIFIC AND CLUMPED
ISOTOPE RATIOS IN H5O

+
2

The Zundel cation H5O+
2 , together with the Eigen

cation H3O+, is one of the limiting states that are used
to rationalize the behavior of a solvated proton, and
plays a crucial role in our understanding of proton trans-
port [23] and the autoionization of water [24]. Extensive
experimental [25–29] and theoretical [30–38] studies of
an isolated Zundel cation in the gas phase have been
conducted, most notably by means of vibrational spec-
troscopy [39, 40], to probe its structure and the extent
of the coupling between its constituent atoms. In both
experimental and computational studies, the H/D iso-
topic substitution were found to significantly affect the
intensity of infrared peaks of mixed H/D species [41, 42].
One observes a clear preference for H to occupy the cen-
tral position of the singly-deuterated Zundel ion – which
can be qualitatively understood as the configuration that
minimizes the total zero-point energy of the substituted
molecule.

Simulation details We have evaluated quantitatively
the position-dependent H/D fractionation ratio between
the central and peripheral positions in the singly-
deuterated Zundel cation H4DO+

2 , as well as the
clumped-isotope 16O/18O enrichment, which measures
the propensity of rare isotopes to clump together. We
used a high-accuracy potential energy surface fitted from
CCSD(T) data [38], so our results should represent quan-
titative predictions that can be verified by spectroscopic
measurements. We performed path integral molecular
dynamics (PIMD) simulations at 300K, using the imple-
mentation of PIMD and of the direct fractionation esti-
mators which are available in the i-PI code [43]. We used
an efficient local path integral Langevin (PILE) ther-
mostat with targeted optimal sampling on the internal
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Figure 1. The position-specific isotope ratio 1000 lnα of H/D
between a peripheral position and the central position in H2O·
H+ · OH2, as a function of the number of beads. Red, white
and yellow spheres indicate O, H and D, respectively. The top
panel reports the results for the thermodynamic estimator,
the middle panel reports the scaled-coordinates estimators,
and the bottom panel compares the results for forward H→D
and backwards D→H substitution.

ring-polymer normal modes (γk = ωk) and a white-noise
Langevin thermostat applied to the centroid, with a time
constant of 1ps [44]. A time step of 0.25fs was used, and
each simulation was run for 2 × 106 steps including the
equilibration of 20, 000 steps. We computed and output
every four steps the direct estimators (ZTD

m,m′ and ZSC
m,m′)

along with their fourth-order counterparts (ZTD-TI
m,m′ and

ZSC-TI
m,m′ , see Appendix B). In all cases we computed the

estimators every 4 time steps and for a single instance of
each atom kind, so as to be able to compare statistical ef-
ficiency in a straightforward manner. As we will discuss
later, the efficiency of the TD estimator could be im-
proved inexpensively by evaluating it more often and for
all the statistically-equivalent atoms in the simulation.

Convergence and efficiency of the direct estimators for
H5O+

2 Let us examine the convergence of the isotope
fractionation ratios with respect to the number of beads
for the Zundel ion, and compare critically the relative
statistical efficiency of the various estimators that have
been introduced in the present paper. Fig. 1 reports the
isotope fractionation ratio for deuterium to substitute
hydrogen at one of the peripheral positions comparing to
the central “charged” position, with the equilibrium

H2O ·D+ ·OH2
∆G

 DHO ·H+ ·OH2. (24)

-10 -8 -6 -4 -2 0 2 4 6
-βP[VP(q')-VP(q)]

10-4

10-3

10-2

10-1

11

Fr
eq

ue
nc

y

16O→18O
D→H
H→D

Figure 2. The frequency count for the argument of the ex-
ponential term entering the ZSC

m,m′ estimator. The forward
and backward H/D substitutions are compared, as well as
the exchange of the two oxygen isotopes.

The upper panel uses the direct thermodynamic estima-
tor (16), whose fluctuations increase with the number of
beads. For any number of beads greater than 16, the
statistical error on ZTD

m,m′ is huge, making this estima-

tor useless for determining H/D fractionation at room
temperature or below. At P = 64, our best estimate us-
ing the thermodynamic estimator is completely outside
of the range of the figure.

The middle panel reports the results from the direct
scaled-coordinates estimator ZSC

m,m′ . In analogy with

the centroid virial kinetic energy estimator TCV [20] and
the SC-FEP estimator [11], the fluctuations are inde-
pendent on the number of beads. Using the primitive
second-order Trotter formulation, 48 beads are needed
to reduce the systematic error to about 3% in 1000 lnα.
The fourth-order Takahashi–Imada estimator (ZSC-TI

m,m′ ,

Eq. (B4)), accelerates substantially the convergence with
respect to the number of beads, at the expense however of
a larger statistical uncertainty for low numbers of beads
due to the effect of the reweighing procedure [19].

The calculations discussed above were performed by
computing direct estimators in a simulations of the H5O+

2

molecule, effectively performing the virtual substitution
H→ D for the central hydrogen atom, and one of the pe-
ripheral atoms. It is however also possible to evaluate the
same quantities performing simulations of DHO·H+ ·OH2

and H2O ·D+ ·OH2, and computing the direct estimators
for the virtual backward substitution D→ H. The lower
panel of Fig. 1 illustrates such results, which are affected
by a considerably lower statistical error compared with
the forward exchange H→ D.

It is worth investigating in some detail for the rea-
son why the substitution from higher to lower mass
has better statistical properties. Following the discus-
sion about the efficiency of the scaled-coordinates free-
energy perturbation estimator in Ref. 11, the opposite
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Figure 3. The clumped isotope ratio 1000 lnα of 16O/18O
in the deuterated Zundel ion, as a function of the number
of beads. The upper panel refers to the clumped ratio with
DHO · H+ · OH2, while the lower panel considers the case of
H2O · D+ · OH2. 18O is indicated by darker color, and D by
bright yellow.

is expected: the fluctuations of the difference Hamilto-
nian −βP [VP (q′)− VP (q)] are predicted to be larger for
D → H than for H → D substitution. As shown in Fig-
ure 2, the distribution of the weights is indeed broader
for the backward substitution. However, the weight dis-
tribution for D → H has a long non-Gaussian tail for
negative values of −βP [VP (q′)− VP (q)] so that a large
fraction of configurations effectively contributes next to
nothing to the accumulated average. Conversely, the dis-
tribution for the H→ D case has a strongly non-Gaussian
tail for positive values of −βP [VP (q′)− VP (q)]. Outliers
in this direction will yield extremely large contributions
to the average, despite occurring with very low proba-
bility. Each time a new outlier is encountered, it will
dominate and shift dramatically the value of the cumu-
lative average, which shows a characteristic zig-zag pat-
tern and a slowly decaying statistical error. These obser-
vations highlight the importance of using extreme care
when averaging exponentials, or performing re-weighing
averages. While an analysis based on a Gaussian ansatz
for the argument of the exponential allows one to as-
sess qualitatively the “comfort zone” of applicability of
a method [19], deviations from Gaussian statistics can
have a dramatic impact on the quantitative accuracy of
these predictions.

Simulations with the isotope-substituted species also
made it possible to evaluate the clumped-isotope frac-
tionation ratio for 16O/18O. This corresponds to the

enhanced probability of finding a rare isotope 18O in
a molecule that also contains deuterium rather than in
H5O+

2 , corresponding e.g. to the equilibrium

DHO ·H+ ·OH2 + H2(18O) ·H+ ·OH2
∆G



H2O ·H+ ·OH2 + DH(18O) ·H+ ·OH2.
(25)

Fig. 3 shows the clumped isotope fractionation ratio cor-
responding to the equilibrium in Eq. (25), and the one
corresponding to the alternative deuterium-substituted
molecule H2O · D+ · OH2. The ratio converges with
number of beads more rapidly than for H/D, and has
a considerably smaller statistical uncertainly. This can
be easily explained considering the mass ratio associated
m(18O)/m(16O) = 1.1253, which is much closer to unity
than that of the H/D substitution. In the language of the
free energy perturbation theory, the substitution between
atoms with similar masses introduce a smaller perturba-
tion, so that the original and the mutated systems have
a larger overlap in phase space. For this reason, the sta-
tistical error on ZTD

m,m′ is not as unmanageable as in the

case for H/D. Still, ZSC
m,m′ delivers a considerably better

performance. As shown in Fig. 2, the bandwidth of the
exponential term in ZSC

m,m′ is small, and so in the case of
oxygen it is not necessary to resort to a backward sub-
stitution from the less abundant to the abundant isotope
type.

The above analysis highlights the importance of con-
sidering carefully the statistical efficiency of different es-
timators when performing isotope-substitution simula-
tions. For instance, we found that the statistical accu-
racy of thermodynamic estimators is catastrophic in the
case of lighter atoms. The (relatively small) overhead
of computing the scaled-coordinates estimator is more
than compensated by the increase in statistical efficiency
– particularly for small gas-phase molecules where one
cannot exploit horizontal statistics. For the same reason,
in the conditions that we considered in this example, it
is more efficient to perform the backward D → H vir-
tual substitution, while the in the case of heavier nuclei
one should be able to use the more obvious substitution
from the abundant to the rare isotope. For heavy iso-
topes, particularly when multiple equivalent atoms are
present, or at high temperature, the thermodynamic es-
timator could become a more practical option. The dis-
cussion in Ref. 11 can give some guidelines as to whether
one can use the thermodynamic estimator, or the scaled-
coordinate version is to be preferred. Note however that,
as we have shown, that analysis is only qualitative, be-
cause it disregards the non-Gaussian distribution of the
scaled-coordinates difference Hamiltonian.

The Takahashi-Imada estimator ZSC-TI
m,m′ accelerates

considerably the convergence with number of beads,
without significantly affecting the sampling efficiency ex-
cept for P ≤ 16. With this choice, together with the
D→ H substitution, and considering the most converged
simulation with P = 64, we computed the position-
dependent H/D fractionation ratio 1000 lnα to be 821±3
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at 300K. This means that the probability of finding a D
atom at one of the peripheral sites is enhanced quantum-
mechanically by a factor of 2.273 ± 0.006 compared to
the central position. Considering also that there are four
equivalent peripheral sites and just one central site, there
is a more than 90% chance that a DH4O+

2 molecule will
be observed in the DHO · H+ ·OH2 configuration rather
than as H2O · D+ ·OH2. Since we based our calculation
on a very high-accuracy potential energy surface [38], we
believe it should be possible to verify quantitatively this
prediction by measuring experimentally the relative pop-
ulations.

Using ZSC-TI
m,m′ and P = 64, we also predicted

the clumped isotope fractionation ratios 1000 lnα for
16O/18O relative to the pure H5O+

2 to be 8.5 ± 0.3 in
DHO ·H+ ·OH2 and 2.0±0.3 in H2O ·D+ ·OH2. Since the
clumped isotope enrichment can also be determined [45]
by mass spectrometry of isotopologues, these theoretical
predictions are also amenable to experimental verifica-
tion.

IV. ISOTOPE FRACTIONATION RATIOS IN
HYDROCARBONS

The isotopic compositions of gaseous hydrocarbons are
used routinely as indicators of their origin, maturity and
generation mechanism [46, 47]. Isotope ratios for hydro-
carbons are also used as a tool to monitor biodegrada-
tion [48], biosynthesis [49] and photosythesis [50]. Fur-
thermore, they provide evidence for the reconstruction
of the ancient biogeochemical history [51, 52]. In most
cases, the accumulation of different carbon isotopes in
plants is due to kinetic isotope effects, and so the ra-
tios computed here – that only account for the equilib-
rium contribution – cannot be directly compared with
observed ratios, but only provide a reference “baseline”.

To demonstrate the application of direct estimators in
this context, we evaluated the hydrogen and carbon frac-
tionation ratios between a few small gas phase hydrocar-
bon molecules. We used the reactive empirical potential
AIREBO to describe the interaction between the atoms,
since it provides a generally applicable framework that
could be easily extended to other hydrocarbons [53, 54].
The simulation details for our PIMD calculations were
identical to those indicated in Section III.

The convergence of direct estimators for gas-phase hy-
drocarbons. To assess the convergence with respect to
the number of beads, and to determine the optimal strat-
egy to apply the direct estimators to the gas phase hy-
drocarbons, we started by evaluating the differential frac-
tionation of isotopes between methane and ethene at
300K.

The corresponding chemical equilibrium can be written
as, e.g.

CH3D + C2H4
∆G

 CH4 + C2H3D. (26)

16 32 48 64
P
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ZSC

ZSC-TI

ZSC,D→H

Figure 4. The isotope fractionation ratio 1000 lnα for
12C/13C and D/H between CH4 and C2H4 as a function of the
number of beads. Grey, dark grey and white spheres indicate
12C, 13C and H, respectively.

Fig. 4 demonstrates the convergence of fractionation
ratio of carbon and hydrogen as a function of the num-
ber of beads. Result for carbon are already almost con-
verged at P = 16, where the error of ZTD

m,m′ is still man-

ageable, as the mass ratio m(13C)/m(12C) = 1.083 is
very close to one. However, the much smaller error of
ZSC
m,m′ means that in the absence of horizontal statistics

the scaled-coordinate estimator is still the recommended
choice. Convergence of H/D fractionation requires at
least 48 beads when using the primitive second-order
Trotter scheme. As observed in the case of the Zun-
del cation, performing the backward substitution D→ H
reduces noticeably the statistical error compared to the
direct H → D substitution. In this case the the fourth-
order Takahashi–Imada estimator (ZSC-TI

m,m′ ) does not lead
to a significant improvement of convergence. As ex-
plained in Appendix C, this is due to a fortuitous cancel-
lation of errors for the second-order estimators. Note also
the very different scales of Fig. 4 and of Fig. 1: the frac-
tionation ratio in the case of the Zundel cation is so large
that a difference of 20 units of 1000 lnα is a small relative
error, whereas in this case it amounts to 50% of 1000 lnα.
As we will see later, H/D fractionation between hydro-
carbons involves a considerable degree of cancellation be-
tween different molecular directions, leading to an overall
small value and apparently to a pronounced cancellation
of errors when using Trotter estimators.

a. Simulation results and discussion Based on
the convergence tests discussed above, we chose



8

300 400 500 600 700 800
Temperature (K)

0

10

20

30

40

50

12
C
/13

C

500 1000 1500 2000 2500 3000
-200

-150

-100

-50

0
H
/D

C2H4
C6H6

Figure 5. Quantum mechanical component of the H and C
fractionation ratios between C2H4 and CH4, and the ratios
between C6H6 and CH4. Notice the difference in the temper-
ature scale.

to perform calculations with P = 48, using the
scaled-coordinates estimator, and backward substi-
tution to compute H/D fractionation. We per-
formed simulations at different temperatures Ti =
{300K, 350K, 420K, 510K, 650K, 800K}, using a parallel-
tempering strategy to improve the statistical conver-
gence [55].

We performed calculations for methane (CH4), ethene
(C2H4), benzene (C6H6), and will report all the fraction-
ation ratios using methane as a reference. We also com-
puted the clumped-isotope fractionation ratio for H/D
and 12C/13C in methane, and the position-dependent iso-
tope ratio in propane (C3H8).

Fig. 5 shows the fractionation ratio for C2H4 and C6H6

with reference to CH4, corresponding to the chemical
equilibrium in Eq. (26). 13C has a preference for the
molecule with the higher number of C–C bonds: even if
carbon-carbon bonds have a lower content of zero-point
energy than C–H bonds, the carbon atom shares a larger
fraction of the zero-point energy, which qualitatively ex-
plains this trend. As the temperature increases, the
fractionation ratio decreases monotonically to zero. The
trend for H/D fractionation is not as straightforward. On
one hand, deuterium has a strong preference for CH4 rel-
ative to C6H6, that only approaches zero at very large
temperatures. The ethene/methane fractionation ratio
is much smaller, and shows an inversion between a pref-
erence for D to reside in ethene at low temperatures to a
preference for methane at T & 400K.
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H
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Figure 6. Upper and mid panel: position-specific H and C
fractionation ratios in C3H8. Lower panel: clumped-isotopes
C fractionation ratio in CH3D. Notice the difference in the
temperature scale.

Before we comment on this inversion, let us consider
the case of the position-specific ratios between the central
CH2 group and the methyl group in propane, for which
temperature-dependent results are shown in the upper
and middle panels of Fig. 6, and that correspond to the
equilibria

CH3 − CH2 − CH2D
∆G

 CH3 − CHD− CH3 (27)

and

CH3 − 12CH2 − 13CH3
∆G

 CH3 − 13CH2 − 12CH3. (28)

In the lower panel of Fig. 6 we also report the clumped-
isotope fractionation ratio for CH3D, i.e.

13CH4 + CH3D
∆G

 CH4 + 13CH3D. (29)

The fractionation ratios for these reactions were also
discussed in Ref. 12, where a traditional approach based
on path-integral Monte Carlo simulations, and thermo-
dynamic integration using 5 to 10 integration points were
used, with a total of more than 2 × 1010 energy eval-
uations for each isotope substitution. The comparison
is interesting because of the use of a different potential
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energy surface: the calculations for methane in Ref. 12
were based on a a high-quality potential energy surface
computed at the CCSD(T) level of theory [56], whereas
the simulations for propane were based on the empiri-
cal CHARMM PES [57]. Fig. 6 also includes the results
from Webb and Miller to illustrate the comparison.

In the cases involving 12C/13C fractionation, despite
the very different potentials we employed, our results
are both qualitatively and semi-quantitatively consistent
with those of Ref. 12. 13C has a higher affinity for the cen-
tral methylene group in propane, and for the deuterated
methane – both phenomena that can easily be explained
in terms of the partitioning of zero-point energy between
the atoms in different molecules.

In the case of H/D fractionation within propane, in-
stead, our calculations give results that are qualitatively
at odds with those of Ref. 12. Results based on the
CHARMM force field show preference for deuterium to
localize in the methyl groups and a monothonic depen-
dence on temperature, whereas results based on AIREBO
show preference for methylene, and a non-monothonic
dependence that suggests there would probably be an in-
version for T < 300K. Inversion in fractionation ratios as
a function of temperature is observed in the liquid/vapor
equilibra for water [22, 58], and is consistent with com-
peting quantum effects between the changes of quantum
kinetic energy along different molecular axes. For in-
stance, if the change in the frequencies of the stretching
and bending modes between two molecules have different
sign, the isotope preference might change as the tempera-
ture is increased, since the effect from the lower-frequency
mode will become negligible at lower temperature. These
kinds of cancellations are more likely to occur for light
atoms, for which there is larger anisotropy between the
different components of the kinetic energy. It is therefore
much harder to capture the qualitative fractionation be-
havior for light atoms than it is for the heavier isotopes,
which reinforces the idea of using H/D isotope fractiona-
tion as a sensitive benchmark of different potential energy
surfaces [22].

The above results show the differential fractionation
between a number of gas-phase hydrocarbon molecules
under thermodynamic equilibrium, and its strong tem-
perature dependence. For natural gas there is a gen-
eral trend for 13C to be depleted in the lighter hydro-
carbons [47], which is consistent with our calculations.
However, because of the complicated chemical and bio-
logical processes involved during the natural gas produc-
tion, it is not reasonable to make a direct comparison.
Theoretical calculations based on more accurate poten-
tial energy surfaces can set an absolute reference point
under the equilibrium conditions, so that the kinetic iso-
tope effects can be singled out in the complicated natural
gas generation processes.

V. DISCUSSION AND CONCLUSIONS

In this paper we have introduced two direct estimators
of the isotope fractionation ratio, that were obtained by
computing the ratio of the partition functions of the orig-
inal and isotope-substituted systems. These estimators
are closely related to those that have been recently pro-
posed based on a free energy perturbation approach [11],
and therefore their statistical efficiency is largely deter-
mined by the degree of the phase-space overlap between
the original and the substituted systems. Hence, the
sampling efficiency of these direct estimators is more fa-
vorable when the mass ratio between the isotopes ap-
proaches one, or when the system temperature increases
so that the nuclear quantum effects get smaller.

In both benchmark applications considered here – the
Zundel cation at 300K, and gas-phase hydrocarbons at
room temperature and above – the scaled-coordinates
version gave consistently better performance than the
direct thermodynamic estimator, so that the small ad-
ditional cost associated with the (relatively infrequent)
evaluation of ZSC

m,m′ is more than compensated. On the

other hand, ZTD
m,m′ can be evaluated almost for free, and

so it is advisable to calculate it regardless, to provide
cross-validation of results. When there are many equiva-
lent substitution sites in the system, (e.g. a bulk liquid)
it is possible to compute the estimator simultaneously for
each site and exploit the horizontal statistics. In these
cases, particularly for heavy isotopes and temperatures
above 300K, ZTD

m,m′ can be computed for all sites inex-

pensively, whereas ZSC
m,m′ requires a separate potential

energy evaluation for each site, which might tip the bal-
ance in favor of the thermodynamic version of our esti-
mators.

In the case of the H/D substitution, we observed that
for ZSC

m,m′ performing the forward substitution from the
lighter to the heavier isotope resulted in larger statisti-
cal errors than doing the backwards D→H substitution.
The analysis in Ref. 11, which was based on a Gaussian
ansatz for the free-energy perturbation weighing factor,
gives the opposite prediction. We could explain this dis-
crepancy based on the skewed, asymmetric distribution
of the exponent in ZSC

m,m′ (Fig. 2). The implications of
this observation are relevant to a much broader class of
problems than those considered in the present work: sim-
ilar exponential terms also enter other methods based on
statistical reweighing, such as biased molecular dynam-
ics, Jarzynski’s inequality, etc. Considering the shape of
the distribution of the exponential term can help refine
the predictions based on the estimate of its fluctuations,
and increase the range of applicability of reweighing tech-
niques.

When considering methods to accelerate convergence
we found that unfortunately the combination of path
integrals and generalized Langevin dynamics [16], that
is very effective for the evaluation of NQEs on struc-
tural properties and kinetic energies, does not help in
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the efficient evaluations of these estimators, that have
a complex non-linear functional form and therefore de-
pend on several bead-bead correlations that are not cur-
rently included in PIGLET methods. However, we found
that fourth-order direct estimator (ZSC-TI

m,m′ ) based on the
Takahashi–Imada factorization can be computed quite
easily, and they typically lead to improved convergence
– even though in the case of hydrocarbons a fortuitous
cancellation of errors made second-order estimators as
efficient as those including the TI corrections. Since the
evaluation of the terms needed in the TI scheme is com-
pletely inexpensive in case where forces are already com-
puted to integrate the path integral dynamics, one should
always compute them and assess on a case-by-case basis if
the improved convergence compensates for the statistical
errors associated with fourth-order methods.

The applications we have presented also allowed us to
draw some observations about the isotope-fractionation
behavior in the case of the Zundel cation and of gas-
phase hydrocarbons. In H4DO+ one observes a very
strong preference for hydrogen to reside in the central,
shared position. These findings are consistent with prior
experimental and theoretical work, and it would be pos-
sible to verify them quantitatively. Such a strong frac-
tionation ratio also suggests that the temperature de-
pendence of αA-B could be used to assess the temper-
ature of charged water clusters, similarly to what was
recently proposed for neutral ones [59]. Fractionation in
hydrocarbons shows relatively predictable trends in the
case of 12C/13C, with the heavier carbon isotope resid-
ing preferentially in the molecule or position with the
largest number of C-C bonds. Comparison with previous
results showed that this fractionation ratio is not very
sensitive to the choice of inter-atomic potential. On the
contrary, results for H/D fractionation showed qualita-
tive discrepancies with previous work. This discrepancy
can be traced to the fact that light elements often show
a strongly anisotropic kinetic energy tensor, with differ-
ent components that can change in opposite directions
when changing the atom’s environment. Since the value
of αA-B depends on a subtle cancellation between dif-
ferent components, it will then be more sensitive to the
details of the potential, and possibly have a non-trivial
temperature dependence.

The direct estimators we have introduced have been
implemented in the development version of the path-
integral interface i-PI[43], making them available for
use together with a number of empirical forcefields
and electronic structure software packages, including
LAMMPS[60], CP2K[61] and FHI-AIMS[62]. Fourth-
order corrections based on the Takahashi-Imada scheme
can also be easily incorporated, accelerating the conver-
gence with respect to the number of beads. These direct
estimators can be regarded as the final step in the pro-
cess of making the path integral evaluation of isotope
fractionation ratios easily accessible, by eliminating alto-
gether the need of performing a thermodynamic integra-
tion. They will allow a more widespread use of computa-

tional modelling to provide reference equilibrium ratios,
and assist the interpretation of fractionation data in geo-
chemistry, biology and atmospheric sciences.
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Appendix A: Isotope fractionation in a fluxional
setting

In the main text we have discussed the case of fraction-
ation of isotopes between distinct phases, compounds, or
molecular sites. Now, let us consider how the direct es-
timators can be used in a setting in which one cannot
define a clear-cut distinction between the A and B states,
but has just one system described by a potential V , and
the two states are different regions of configuration space,
that are associated to two characteristic functions θA(q)
and θB(q), which are one if the configuration can be as-
cribed to one of the states, and zero otherwise. For in-
stance, the functions could select configurations in which
the tagged atom is at a given distance from an inter-
face [63], or in a specific hydrogen-bonding environment.

The probability of finding the isotope X in state A is
then given by

ρA =
1

PQ̄

∫
dq

∑
j

θA(q
(j)
1 , . . . , q

(j)
N )e−βPVP (q)

e−βP

∑N
i=2 S(qi,mi)e−βPS(q1,m)

 ,
(A1)

and the probability of finding the isotope X′ in state B is

ρ′B =
1

PQ̄′

∫
dq

∑
j

θB(q
(j)
1 , . . . , q

(j)
N )e−βPVP (q)

e−βP

∑N
i=2 S(qi,mi)e−βPS(q1,m

′)

 .
(A2)

One quickly sees that the fractionation ratio can be
written as ρ′AρB/ρAρ

′
B, so one is led to evaluate the ratio

ρ′A/ρA, which can be written as

ρ′A/ρA = 〈θAZm,m′〉m / 〈θA〉m . (A3)

The ratio can be evaluated by performing a simulation of
the abundant isotope X, and averaging Zm,m′ selectively
over the configurations that are identified as A struc-
tures. One can compute ρ′B/ρB in a similar way, finally
obtaining the desired fractionation ratio.
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Appendix B: The fourth order direct estimators
using the Takahashi–Imada factorization

The convergence of path integral simulations with
the number of replicas can be accelerated by using a

high-order factorization of the Boltzmann operator e−βĤ

rather than the simple Trotter factorization that leads
to Eq. (5). Many different high-order schemes have been
proposed, and here we will focus on the Takahashi-Imada
factorization [21], that leads to a partition function with
an error term O(β4

P ), consistent with the Hamiltonian

HTI(p,q) = KP (p) + VP (q) + SP (q) + VTI(q) (B1)

which contains a correction term that depends on the
squared force

VTI(q) =
1

24ω2
P

N∑
i=1

P∑
j=1

1

mi

(
∂V (q

(j)
1 , . . . , q

(j)
N )

∂q
(j)
i

)2

. (B2)

The fourth-order direct estimators can then be obtained
as

ZTD-TI
m,m′ ≡ exp

− βP
24ω2

P

(
1

m′
− 1

m
)

P∑
j=1

(
∂V (q

(j)
1 , . . . , q

(j)
N )

∂q
(j)
1

)2

−1

2
βPω

2
P (m′ −m)

P∑
j=1

[q
(j)
1 − q

(j+1)
1 ]2

 ,
(B3)

and

ZSC-TI
m,m′ ≡ exp

− βP (VTI(q
′
1, . . . , qN )− VTI(q1, . . . , qN ))

−βP
P∑
j=1

V (q
′(j)
1 , . . . , q

(j)
N )− V (q

(j)
1 , . . . , q

(j)
N )

 .
(B4)

Performing PIMD based on the Hamiltonian in
Eq. (B1) would be impractical, as the corresponding
forces contain terms that depend on the second deriva-
tives of the physical potential. In practice, one typ-
ically uses a free-energy perturbation strategy to ob-
tain averages consistent with Eq. (B1), while perform-
ing sampling based on the second-order partition func-
tion in Eq. (5) [18, 19, 64]. This entails treating VTI

as a small pertubation to the Trotter Hamiltonian in
Eq. (6), and later recovering the fourth-order statistics
by re-weighting configurations with the weight

wTI(q) = e−βPVTI(q) (B5)

so that for instance one can compute

αSC-TI
A−B =

〈
ZSC-TI
m,m′ wTI(q)

〉
(2),A,m

/ 〈wTI(q)〉(2),A,m〈
ZSC-TI
m,m′ wTI(q)

〉
(2),B,m

/ 〈wTI(q)〉(2),B,m

.

(B6)

4 8 16 32 48 64
P

-6

-4

-2

0

Δ
T C

V
(H

)[
m

eV
]

80

100

120

140

160

T C
V
(H

)[
m

eV
]

CH4-Trotter
CH4-TI

C2H4-Trotter
C2H4-TI

Trotter
TI

Figure 7. TCV for CH4 and C2H4, and ∆TCV = TCH4
CV −T

C2H4
CV ,

as a function of the number of beads. The lines are provided
only as aids for the eye.

Note that the performance of reweighed high-order
factorizations degrades as the size of the system be-
ing studied increases [19]. However, we noticed that
the Takahashi–Imada factorization yields smaller fluctu-
ations of the logarithm of the reweighing factors com-
pared to the Suzuki-Chin factorization that was used in
the analysis in Ref. [19], which can marginally extend the
range of applicability of this approach.

Appendix C: Convergence of fourth order estimators
for hydrogen isotopes fractionation between

methane and ethene

Contrary to what we observed in the case of H5O+
2 , the

fourth-order Takahashi–Imada estimator (ZSC-TI
m,m′ ) does

not lead to a significant improvement of the convergence
with the number of beads. To understand why, we com-
puted the effect of the Takahashi–Imada correction on
the centroid viral kinetic energy[18] TCV for CH4 and
C2H4, as well as on their difference ∆TCV (Fig. 7) – which
to a first approximation is proportional to the isotope-
substitution free energy [11]. Note that TCV is far from
converged with P < 48, and the TI correction does en-
hance its convergence considerably. However, when it
comes to computing ∆TCV, the errors in the Trotter es-
timate of kinetic energy for the two molecules largely can-
cel out, so that there is little or no improvement when
considering the TI correction to ∆TCV.
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