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Embeddings of maximal tori in orthogonal groups

Eva Bayer–Fluckiger

Abstract : We give necessary and sufficient conditions for an orthogonal group defined
over a global field of characteristic 6= 2 to contain a maximal torus of a given type.

Introduction

Embeddings of maximal tori in orthogonal groups have been studied in several papers,
and occur in various arithmetic questions (see for instance [BCM], [F], [G], [GR], [L], [PR]
and the references therein). The aim of this paper is to give necessary and sufficient
conditions for an orthogonal group defined over a global field of characteristic 6= 2 to
contain a maximal torus of a given type (see Theorem 3.2.1). As we will see, this gives
rise to generalizations of some of the results of [F], [L] and [PR] (see Theorem 3.1.1 and
Corollary 3.1.2).

The case of tori of type CM (that is, tori associated to CM étale algebras, see 1.2. and
§4) is of special interest in some of the applications, and will be used here to illustrate the
results of the paper. The following is proved in §4 :

Theorem. Let (E, σ) be a Q–étale algebra with involution of type CM of rank 2n, and let

q be a quadratic space over Q with dim(q) = rank(E). Then the orthogonal group O(q)
contains a maximal torus of type (E, σ) if and only if disc(q) = disc(E) ∈ k∗/k∗2, the

hyperbolicity condition holds (cf. 2.4), and the signature of q is even.

In particular, a torus of type CM can be embedded as a maximal torus of an orthogonal
group if and only if such an embedding exists everywhere locally.

§1. Definitions, notation and basic facts

Let k be a field of characteristic 6= 2.

1.1. Quadratic spaces

A quadratic space is a symmetric bilinear form of non–zero determinant q : V ×V → k,
where V is a finite dimensional k–vector space. We denote by dim(q) its dimension (that
is, the dimension of the underlying vector space V ), and by O(q) its orthogonal group.
The determinant of q is denoted by det(q); it is an element of k×/k×2. Let m = dim(q).

Then the discriminant of q is by definition disc(q) = (−1)
m(m−1)

2 det(q). Let us denote by
Br(k) the Brauer group of k, considered as an additive abelian group, and let Br2(k) be
the subgroup of elements of order ≤ 2 of Br(k). Any quadratic space can be diagonalized,
in other words there exist a1, . . . , am ∈ k× such that q ≃< a1, . . . , am >. The Hasse

invariant of q is by definition Σi<j(ai, aj) ∈ Br2(k), where (ai, aj) is the class of the
quaternion algebra over k determined by ai, aj, and is denoted by w(q). If q and q′ are
two quadratic spaces over k, then we denote by q ⊕ q′ their orthogonal sum. We have
w(q ⊕ q′) = w(q) + w(q′) + (det(q), det(q′)) (see for instance [Sch, 2.12.6]).
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If q : V × V → k is a quadratic space, let us denote by τq : End(V ) → End(V ) the
adjoint involution of q; recall that we have q(f(x), y) = q(x, τq(f)(y)) for all f ∈ End(V )
and all x, y ∈ V .

1.2. Maximal tori and étale algebras with involution

Recall that an étale algebra is a product of separable field extensions of finite degree
of k. If E is an étale algebra and σ : E → E is a k–linear involution, we denote by Eσ the
subalgebra of E fixed by σ. The unitary group U(E, σ) is by definition the linear algebraic
group over k defined by U(E, σ)(A) = {x ∈ E ⊗k A | xσ(x) = 1} for any commutative
k–algebra A. The following result is well–known (see for instance [BCM, 3.3], or [PR, 2.3]).

Proposition 1.2.1. Let q : V × V → k be a quadratic space with dim(q) = 2n. Then we

have

(i) Let T ⊂ O(q) be a maximal k-torus. Then there is a unique étale algebra E ⊂ End(V )
stable by τq such that T = U(E, τq). Moreover, E has rank 2n and Eτq has rank n.
(ii) Conversely, for any étale algebra E ⊂ End(V ) stable under τq and satisfying the rank

conditions above, the unitary group U(E, τq) is a maximal k–torus of O(q).

If q : V ×V → k is a quadratic space and E an étale algebra with involution σ : E → E,
we say that a maximal torus T of O(q) is of type (E, σ) if the conditions of Proposition
1.2.1 hold for some étale algebra E′ ⊂ End(V ) such that the algebras with involution
(E, σ) and (E′, τq|E′) are isomorphic, in particular T ≃ U(E, σ).

1.3. Realizable pairs

If (A1, τ1) and (A2, τ2) are two k–algebras with involution. An embedding of (A1, τ1)
in (A2, τ2) is by definition an injective homomorphism of algebras A1 → A2 that commutes
with the involutions.

For any étale algebra with involution (E, σ) and any α ∈ Eσ, let qα : E × E → k
be the symmetric bilinear form qα(x, y) = TrE/k(αxσ(y)). The following proposition is
well–known

Proposition 1.3.1. Let (E, σ) be an étale algebra with involution of rank 2n, and assume

that the rank of Eσ is n. Let q : V × V → k be a 2n–dimensional quadratic space. Then

the following are equivalent :

(i) The orthogonal group O(q) contains a maximal torus of type (E, σ).

(ii) The algebra with involution (E, σ) can be embedded in the algebra with involution

(End(V ), τq).

(iii) There exists α ∈ Eσ such that q ≃ qα.

Proof. The equivalence of (i) and (ii) follows from Proposition 1.2.1. For the equivalence
of (ii) and (iii), see for instance [PR, 7.1].

We say that the pair (E, q) is realizable if the equivalent conditions of Proposition 1.2.1
hold. Recall that the discriminant of the étale algebra E is by definition the determinant
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of the quadratic space E × E → k given by (x, y) 7→ TrE/k(xy). It is denoted by disc(E).
The following lemma is well–known, see for instance [F, 3.3.1] :

Lemma 1.3.2. If (E, q) is realizable, then disc(q) = disc(E) ∈ k×/k×2.

Proof. As q is realizable, we have q = qα for some α ∈ Eσ. Let Q = q1 : E × E → k and
Q′ : E×E → k be the quadratic spaces defined by Q(x, y) = TrE/k(xσ(y)) and Q′(x, y) =
TrE/k(xy). We have disc(q) = NE/k(α)disc(Q). As α ∈ Eσ, we have NE/k(α) ∈ k2, hence

disc(q) = disc(Q). Writing E = Eσ(
√
θ) for some θ ∈ Eσ, a straightforward computation

shows that det(Q′) = (−1)ndet(Q). As disc(E) = det(Q′) and disc(Q) = (−1)ndet(Q) by
definition, the result follows.

§2. Local conditions

Suppose that k is a global field, and let us denote by Σk the set of places of k. We
keep the notation of §1. Let n ∈ N, and let (E, σ) be an étale algebra with involution of
rank 2n. Suppose that E = K1 × . . .×Kr, where K1, . . . , Kr are separable extensions of
k, and that the Ki’s are all stable by σ. Let I = {1, . . . , r}, and for all i ∈ I, let us denote
by Fi the fixed field of σ in Ki. Suppose that Ki is a quadratic extension of Fi for all
i ∈ I. Note that Eσ = F1 × . . .× Fr, and that rank(Eσ) = n. Let Σsplit

k (E) be the set of
v ∈ Σk such that all the places of Eσ above v split in E.

We start by giving some local conditions for the embedding question of the previous
section.

2.1. Split places

Recall that a quadratic space (V, q) is hyperbolic if there exists a subspace W of V
such that dim(V ) = 2dim(W ), and q(x, y) = 0 for all x, y ∈ W . It is well–known that
a hyperbolic space is uniquely determined up to isomorphism by its dimension. Let us
denote by h2n the hyperbolic space of dimension 2n.

Lemma 2.1.1. Let v ∈ Σsplit

k (E), and let q be a 2n–dimensional quadratic space over kv.
Then (E, q) is realizable over kv if and only if q is hyperbolic.

Proof. As v ∈ Σsplit

k (E), over kv we have an isomorphism E ≃ E1 × E2 where E1 and
E2 are isomorphic étale kv–algebras, and σ(E1) = E2. Let us show that qα is hyperbolic
for any α ∈ (Eσ

v )
×. Set W = E1 × {0}. Then xσ(y) = 0 for all x, y ∈ W , hence the

restriction of qα to W is identically zero. Since dimk(W ) = 1
2
dimk(E), this proves that

qα is hyperbolic, hence qα ≃ h2n. Therefore (E, h2n) is realizable over kv. Conversely, if
(E, q) is realizable over kv, we have q ≃ qα for some α ∈ (Eσ

v )
×, hence by the previous

argument q ≃ h2n.

2.2. Non–split places

Recall that if v ∈ Σk is a finite place or a real place, then Br2(kv) is a cyclic group of
order 2. We will identify it to {0, 1}. The following results will be used several times in
the sequel.
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Proposition 2.2.1. Let v be a place of k such that v 6∈ Σsplit

k (E). Let ǫ ∈ {0, 1}. Then

there exists α ∈ (Eσ
v )

× such that w(qα) = ǫ.

Proof. Recall that q1 : Ev×Ev → kv is defined by q1(x, y) = TrEv/kv
(xσ(y)). If w(q1) = ǫ,

we can take α = 1. Suppose that w(q) 6= ǫ. As v 6∈ Σsplit

k (E), we have Ev = E′×K, where
K is a field extension of kv stable by σ. Set F = Kσ. Then K is a quadratic extension of
F . Let β ∈ F× such that β 6∈ NK/F (K

×). Let us denote by q′1 the restriction of q1 to K.
Then we have w(qβ) 6= w(q′1); this follows from [M, 2.7] if v is a finite place, and it is clear
if v is an infinite place. Let α = (β, 1) ∈ Eσ

v . Then w(qα) 6= w(q1), hence w(qα) = ǫ.

Lemma 2.2.2. Suppose that there exists a real place u of k such that we have u 6∈ Σsplit

k (Ki)
for all i ∈ I. Then there exists a finite place v of k such that for all i ∈ I, we have

v 6∈ Σsplit

k (Ki).

Proof. Let L be a Galois extension of k containing the fields Ki for all i ∈ I. Let
G = Gal(L/k). Let us denote by c the conjugacy class of the complex conjugation in G
corresponding to an extension of the place u to L. By the Chebotarev density theorem,
there exists a finite place v of k such that the conjugacy class of the Frobenius automor-
phism at v is equal to c. Let v be such a place. Then all the places of Fi above v are inert
in Ki. Therefore we have v 6∈ Σsplit

k (Ki) for all i ∈ I, and the statement is proved.

2.3. Real places

Let v be a real place of k. It is well–known that any quadratic space q over kv is
isomorphic to X2

1 + . . .+X2
r −X2

r+1 − . . .−X2
r+s for some non–negative integers r and s.

These are uniquely determined by q, and we have r+s = dim(q). The couple (r, s) is called
the signature of q at v. We say that the signature of q at v is even if r ≡ s ≡ 0 (mod 2),
and we say that the signatures of q are even if the signature of q at v is even for all real
places v of k.

We say that a place w of Eσ above v is ramified in E if w is a real place that extends
to a complex place of E. Let ρv be the number of places of Eσ above v which are not
ramified in E. The following lemma is well–known

Lemma 2.3.1. Let α ∈ (Eσ)×. Then the signature of qα is equal to (2rα + ρv, 2sα + ρv)
where rα is the number of places of Eσ above v that ramify in E at which α is positive,

and sα is the number places of Eσ that ramify in E at which α is negative.

Proof. This is immediate.

Proposition 2.3.2. Let q be a 2n–dimensional quadratic space over kv. Then (E, q) is

realizable if and only if the signature of q is of the shape (2r′ + ρv, 2s
′ + ρv) for some

non–negative integers r′, s′.

Proof. If (E, q) is realizable, then lemma 2.3.1. shows that the signature of q has the
required shape. Conversely, suppose that the signature of q is equal to (2r′ + ρv, 2s

′ + ρv)
for some r′, s′ ∈ N. Let α ∈ (Eσ)× be such that α is positive at r′ places of Eσ above v and
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negative at s′ places. Then by lemma 2.3.1, the signature of qα is equal to (2r′+ρv, 2s
′+ρv).

This implies that q ≃ qα, hence (E, q) is realizable.

2.4. Combining local criteria

If q is a 2n–dimensional quadratic space over k, we say that the signature condition

holds for E and q if for every real place v of k, the signature of q at v is of the shape
(2r′ + ρv, 2s

′ + ρv) for some non–negative integers r′, s′. For all a ∈ Br(k) and all v ∈ Σk,
let us denote by av the image of a in Br(kv). Recall that h2n is the 2n–dimensional
hyperbolic space. We say that the hyperbolicity condition holds for E and q if for all
v ∈ Σsplit

k (E), we have w(q)v = w(h2n)v.

Proposition 2.4.1. Let q be a 2n–dimensional quadratic space over k. Then (E, q) is

realizable over all the completions of k if and only if disc(q) = disc(E) ∈ k∗/k∗2, and if

the hyperbolicity condition and the signature condition hold for q and E.

Proof. Suppose that disc(q) = disc(E) ∈ k∗/k∗2, and that the hyperbolicity condition
and the signature condition hold. Let us prove that (E, q) is realizable over kv for all
v ∈ Σk. Suppose first that v is an infinite place. If v is complex, then there is nothing to
prove. If v is a real place, then by Proposition 2.3.2 the signature condition implies that
(E, q) is realizable over kv. Suppose now that v is a finite place. If v ∈ Σsplit

k (E), then
the equality disc(q) = disc(E) ∈ k∗/k∗2 and the hyperbolicity condition imply that the
discriminants and the Hasse invariants of q and of h2m coincide over kv. Therefore q ≃ h2n

over kv, and by Lemma 2.1.1 this implies that (E, q) is realizable over kv. Suppose that

v 6∈ Σsplit

k (E). By Proposition 2.2.1, there exists α ∈ (Eσ
v )

× such that w(qα) = w(q)v. By
Lemma 1.3.2, we have disc(qα) = disc(E). As by hypothesis disc(q) = disc(E) ∈ k∗/k∗2,
the discriminants of q and qα are equal in k×v /k×2

v . Therefore q and qα are isomorphic over
kv, and this implies that (E, q) is realizable over kv. The converse follows immediately
from Lemmas 1.3.2 and 2.1.1, and from Proposition 2.3.2.

§3. Embedding criteria and Hasse principle

We keep the notation of the previous sections. In particular, k is a global field of
characteristic 6= 2, and (E, σ) is étale algebra with involution of rank 2n such that E =
K1 × . . .×Kr, where K1, . . . , Kr are separable extensions of k, the Ki’s are all stable by
σ, and Fi is the fixed field of σ in Ki for all i ∈ I = {1, . . . , r}.

Recall that Σk is the set of places of k, and that Σsplit

k (Ki) is the set of v ∈ Σk such

that all the places of Fi above v split in Ki. For all i 6= j, set Σi,j = Σsplit

k (Ki)∪Σsplit

k (Kj).

3.1. Sufficient conditions and some notation

One of the results of this section is the following local–global principle

Theorem 3.1.1. Suppose that there exists i0 ∈ I such that for all i ∈ I, we have Σi0,i 6=
Σk. Let q be a 2n–dimensional quadratic space. Then a torus of type (E, σ) can be embedded
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in the orthogonal group O(q) if and only if such an embedding exists over all the completions

of k.

Note that this implies [PR, 7.3] and [L, 2.20]. As we will see, Theorem 3.1.1 is a
consequence of Theorem 3.2.1 below. We also get the following corollary, which provides
an embedding criterion in terms of invariants of the étale algebra and the quadratic space.

Corollary 3.1.2. Suppose that there exists i0 ∈ I such that for all i ∈ I, we have

Σi0,i 6= Σk. Then O(q) contains a maximal torus of type (E, σ) if and only if disc(q) =
disc(E) ∈ k∗/k∗2 and the signature and hyperbolicity conditions hold.

Proof. This follows from Proposition 2.4.1 and Theorem 3.1.1.

The following results will be needed in the proof of Theorem 3.1.1.

Proposition 3.1.3. Suppose that (E, q) is realizable over all the completions of k. Then

for all places v of k and i ∈ I, there exist quadratic spaces qvi over kv such that

(i) for all i ∈ I and every place v of k, the pair (Kv
i , q

v
i ) is realizable;

(ii) for every place v of k, we have q ≃ qv1 ⊕ . . .⊕ qvr ;

(iii) for all i ∈ I, we have w(qvi ) = 0 for almost all v ∈ Σk.

Proposition 3.1.3 is an immediate consequence of Proposition 3.1.4 below, in which condi-
tion (iii) is replaced by the more precise condition (iii′). Let us start by introducing some
notation, that will be needed several times in the sequel. For all i ∈ I, let ni = [Ki : k],
let di = (−1)nidisc(Ki), and set D = Σi<j(di, dj) ∈ Br2(k). Recall that for all a ∈ Br(k)
and all v ∈ Σk, we denote by av the image of a in Br(kv). Let T be the set of places
v of k such that Dv 6= 0, and let S be the set of places of k at which the Hasse invari-
ant of q is not equal to the Hasse invariant of the hyperbolic form of dimension equal to
dim(q). Let Σ2 be the set of dyadic places and Σ∞ the set of infinite places of k, and set
Σ = S ∪ T ∪ Σ2 ∪ Σ∞. Note that Σ is a finite set.

Proposition 3.1.4. Suppose that (E, q) is realizable over all the completions of k. Then

for all places v of k and i ∈ I, there exist quadratic spaces qvi over kv such that

(i) for all i ∈ I and every place v of k, the pair (Kv
i , q

v
i ) is realizable;

(ii) for every place v of k, we have q ≃ qv1 ⊕ . . .⊕ qvr ;

(iii′) for all i ∈ I, we have w(qvi ) = 0 if v 6∈ Σ.

Proof. Let v be a place of k. By hypothesis, (E, q) is realizable over kv. Hence there
exists α ∈ (Eσ

v )
× such that q ≃ qα over kv, and we have α = (α1, . . . , αr) with αi ∈ (F v

i )
×.

Then the quadratic spaces qvi = qαi
fulfill conditions (i) and (ii). Let us show that we can

change the qvi so that condition (iii′) holds as well.

Let v ∈ Σk be such that v 6∈ Σ, and suppose that there exists i ∈ I with w(qvi ) = 1.
Let us show that there exist quadratic spaces q̃vj for all j ∈ I such that w(q̃vj ) = 0 if
w(qvj ) = 0, and w(q̃vi ) = 0. As v 6∈ S ∪ Σ2, we have w(q)v = 0. Note that w(q)v =
w(qv1) + . . . + w(qvr ) + Dv, and as v 6∈ T , we have Dv = 0. Therefore there exists m ∈ I
with m 6= i such that w(qvm) = 1. As v is not dyadic, this implies that qvi and qvm are not
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hyperbolic, hence by Lemma 2.1.1 we have v 6∈ Σi,m. As v 6∈ Σsplit

k (Ki), by Proposition

2.2.1 there exists βi ∈ F v
i such that w(qβi

) = 0. Similarly, as v 6∈ Σsplit

k (Km), there
exists βm ∈ F v

m such that w(qβm
) = 0. Let q̃vi = qβi

and q̃vm = qβm
, and set q̃vj = qvj

for j 6= i,m. We have w(q̃vj ) = 0 if w(qvj ) = 0, and w(q̃vi ) = 0. By Lemma 1.3.2 we
have det(q̃vj ) = det(qvj ) for all j ∈ I. Moreover, as w(q̃vi ) = 0 and w(q̃vm) = 0, we have
w(q̃v1 ⊕ . . .⊕ q̃vr ) = w(qv1 ⊕ . . .⊕ qvr ), implying that q̃v1 ⊕ . . .⊕ q̃vr ≃ qv1 ⊕ . . .⊕ qvr . Therefore
condition (ii) holds. The pairs (Kv

j , q̃
v
j ) are realizable for all j ∈ I, hence condition (i)

holds as well. Repeating this procedure for all i ∈ I with w(qvi ) = 1 and for all v ∈ Σk

with v 6∈ Σ leads to quadratic spaces over kv satisfying all three conditions. This concludes
the proof of the proposition.

3.2. A necessary and sufficient condition

In order to state a necessary and sufficient condition for the embedding problem of
tori in orthogonal groups (see Theorem 3.2.1 below), we need the following notation and
definition

Notation. Let C(E, q) be the set of collections (qvi ) of quadratic spaces over kv satisfying
conditions (i) - (iii) of Proposition 3.1.3. For C = (qvi ) ∈ C(E, q) and i ∈ I, set

Si(C) = {v ∈ Σ′

k | w(qvi ) = 1}.

By condition (iii) Si(C) is a finite set, and we denote by |Si(C)| its cardinal.
Definition. We say that C = (qvi ) ∈ C(E, q) is connected if for all i ∈ I such that |Si(C)|
is odd, there exist j ∈ I with j 6= i such that |Sj(C)| is odd, and a chain i = i1, . . . , im = j
of elements of I with Σit,it+1

6= Σk for all t = 1, . . . , m−1. We say that C(E, q) is connected
if it contains a connected element.

Theorem 3.2.1. Let q be a 2n–dimensional quadratic space. Then :

(a) The orthogonal group O(q) contains a torus of type (E, σ) over all completions of k if

and only if C(E, q) is not empty.

(b) The orthogonal group O(q) contains a torus of type (E, σ) if and only if C(E, q) is

connected.

Proof. (a) With the terminology of 1.3, we have to show that (E, q) is realizable over all
completions of k if and only if C(E, q) not empty. It is clear that if C(E, q) not empty, then
(E, q) is realizable over kv for all v ∈ Σk, and the converse follows from Proposition 3.1.3.

(b) We have to prove that (E, q) is realizable over k if and only if C(E, q) is connected.
If (E, q) is realizable, then there exist quadratic spaces q1, . . . , qr over k such that q ≃
q1 ⊕ . . .⊕ qr and that (Ki, qi) is realizable over k for all i ∈ I. Set qvi = qi ⊗k kv, and let
C = (qvi ). Then C ∈ C(E, q), and |Si(C)| is even for all i ∈ I. Therefore C is a connected
element of C(E, q), hence C(E, q) is connected.

Conversely, suppose that C(E, q) is connected, and note that by part (a) this implies
that (E, q) is realizable over all the completions of k. Let us show that (E, q) is realizable.

Step 1. If r = 1, then (E, q) is realizable. This can be deduced from [PR, 7.4] or [F, 1.1],
but we give a (different) proof for the convenience of the reader. Let v be a real place of
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k and let (rv, sv) be the signature of q at v. As (E, q) is realizable over kv by hypothesis,
Proposition 2.3.2 implies that (rv, sv) = (2r′v + ρv, 2s

′

v + ρv) for some r′v, s
′

v ∈ N. Let
α ∈ Eσ be such that α is positive at exactly r′v real places of Eσ that become complex in
E. Then α is negative at exactly real s′v places of Eσ that become complex in E, hence by
Lemma 2.3.1 the signature of qα is (rv, sv). Let Sk be the set of places of k at which qα and
q are not isomorphic. Note that Sk consists of finite places of k, and it is a finite set of even
cardinality. If v ∈ Sk, then v 6∈ Σsplit

k (E). Indeed, both (E, q) and (E, qα) are realizable

over kv for all v ∈ Σk. If v ∈ Σsplit

k (E), then by Lemma 2.1.1 this implies that q and qα
are both hyperbolic over kv, hence they are isomorphic over kv, and therefore v 6∈ Sk. For
all v ∈ Sk, let us choose a place w of Eσ that does not split in E – this is possible because
v 6∈ Σsplit

k (E). Let us denote by SE the set of these places w. Then SE is in bijection

with S, hence it is also a finite set of even cardinality. Let us write E = Eσ(
√
θ) for some

θ ∈ (Eσ)×, and let us choose β ∈ (Eσ)× such that (β, θ)w = −1 if w ∈ SE and (β, θ)w = 1
otherwise. This is possible as SE has even cardinality (see for instance [O’M, 71.19], or
[PR, 6.5]). Then by [M, 2.7], the Hasse invariant of qαβ is equal to the Hasse invariant
of q. Since these two quadratic spaces have equal dimension, determinant and signatures,
they are isomorphic by the Hasse–Minkowski theorem. Therefore (E, q) is realizable.

Step 2. Let us show that C(E, q) contains C = (qvi ) such that

(iv) |Si(C)| is even for all i ∈ I.

Let C = (qvi ) ∈ C(E, q) be a connected element. Recall that by hypothesis C satisfies
conditions (i) - (iii) of Proposition 3.1.3. Suppose that for some i ∈ I, the integer |Si(C)|
is odd. Since C is connected, there exist j ∈ I with j 6= i such that |Sj(C)| is odd, and a
chain i = i1, . . . , im = j of elements of I with Σit,it+1

6= Σk for all t = 1, . . . , m − 1. For
all t = 1, . . . , m− 1, let vt 6∈ Σit,it+1

be a finite place (note that this is possible by Lemma
2.2.2). Let α1 ∈ (F v1

1 )× be such that qv1
i ≃ qα1

over kv1
. By Proposition 2.2.1, there exist

αt ∈ (F vt

t )× such that w(qαt
) 6= w(qαt+1

) for all t = 1, . . . , m − 1. Set q̃vt

t = qαt
for all

t = 1, . . . , m − 1, and let q̃us = qus if (u, s) 6= (vt, t). Set C̃ = (q̃vi ). Then C̃ ∈ C(E, q). We
have |Si(C̃)| ≡ 0 (mod 2), |Sj(C̃)| ≡ 0 (mod 2), and |Ss(C̃)| ≡ |Ss(C)| (mod 2) if s 6= i, j.
Repeating this procedure we obtain a family of quadratic spaces safisfying conditions (i) -
(iv).

Step 3. End of proof. Let C = (qvi ) ∈ C(E, q) satisfy conditions (i) - (iv); this is possible
by Step 2. For all i ∈ I, there exists a quadratic space qi over k such that qvi ≃ qi over
kv for all places v of k. This follows from [O’M, 72.1], which applies because of conditions
(iii) and (iv), and the fact that by condition (i) and Lemma 1.3.2 we have disc(qvi ) = di
for all places v of k. By condition (ii) we have q ≃ q1 ⊕ . . .⊕ qr over all the completions of
k, hence by the Hasse–Minkowski theorem q ≃ q1 ⊕ . . .⊕ qr over k as well. Note that by
condition (i), the pair (Ki, qi) is realizable over all the completions of k. By Step 1, this
implies that (Ki, qi) is realizable over k, hence (E, q) is realizable as well. This concludes
the proof of the theorem.

Note that the conditions (a) and (b) of Theorem 3.2.1 are not equivalent, in other
words the local–global principle does not hold in general : this follows from the examples
of Prasad and Rapinchuk, cf. [PR, 7.5].
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In order to deduce Theorem 3.1.1 from Theorem 3.2.1, we need the following lemma

Lemma 3.2.2. Let C = (qvi ) ∈ C(E, q). Then Σi∈I |Si(C)| ≡ 0 (mod 2).

Proof. For all v ∈ Σk, set Sv(C) = {i ∈ I | w(qvi ) = 1}. We have

Σv∈Σ|Sv(C)| = Σi∈I |Si(C)|.

By property (ii), we have |Sv(C)| ≡ w(q)v + Dv (mod 2) for all v ∈ Σk. Therefore
Σv∈Σk

|Sv|(C)| ≡ Σv∈Σk
w(q)v+Σv∈Σk

Dv (mod 2). As w(q) and D are elements of Br2(k),
we have

Σv∈Σ′

k
w(q)v ≡ 0 (mod 2), and Σv∈Σ′

k
Dv ≡ 0 (mod 2).

This implies that Σv∈Σ|Sv(C)| ≡ 0 (mod 2). As Σv∈Σ|Sv(C)| = Σi∈I |Si(C)|, we also have
Σi∈I |Si(C)| ≡ 0 (mod 2).

Proof of Theorem 3.1.1. In order to apply Theorem 3.2.1, we have to show that C(E, q)
is connected. Let C = (qvi ) ∈ C(E, q), and suppose that there exists i ∈ I such that |Si(C)|
is odd. By Lemma 3.2.2, we have Σi∈I |Si(C)| ≡ 0 (mod 2). Therefore there exists j ∈ I
such that j 6= i, and that |Sj(C)| is odd. Since Σi0,i 6= Σk and Σi0,j 6= Σk by hypothesis, C
is connected, and hence C(E, q) is connected. The result now follows from Theorem 3.2.1.

Note that one can give analogs of the results of §3 in the odd dimensional case. These
can be easily deduced from the even dimensional case using the method of [PR, 7.2].

§4. An example - the case of CM étale algebras

Recall that a number field is CM if it is a totally imaginary quadratic extension of a
totally real number field. Note that a number field is CM if and only if it has exactly one
complex conjugation (see for instance [Mi, 1.4.]). We say that E is a CM étale algebra if
it is a product of CM number fields, and the complex conjugation of E is by definition the
product of the complex conjugations of its factors.

Corollary 4.1.1. Suppose that E is a CM étale algebra of rank 2n, and that σ : E → E
is the complex conjugation. Let q be a 2n–dimensional quadratic space over k. Then O(q)
contains a maximal torus of type (E, σ) if and only if disc(q) = disc(E) ∈ k∗/k∗2, the

hyperbolicity condition holds and signature of q is even.

Proof. By Lemma 2.2.2, there exists v ∈ Σk such that for all i ∈ I, we have v 6∈ Σsplit

k (Ki),
Therefore for all i, j ∈ I with i 6= j, we have Σi,j 6= Σk, and we can apply Corollary 3.1.2.
As E is CM and σ is the complex conjugation, we have ρv = 0, hence the signature
condition of Corollary 3.1.2 is equivalent to saying that the signature of q is even.
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