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Abstract

We investigate a vocoder based on artificial neural networks using a phonological speech repre-
sentation. Speech decomposition is based on the phonological encoders, realised as neural network
classifiers, that are trained for a particular language. The speech reconstruction process involves using a
Deep Neural Network (DNN) to map phonological features posteriors to speech parameters – line spec-
tra and glottal signal parameters – followed by LPC resynthesis. This DNN is trained on a target voice
without transcriptions, in a semi-supervised manner. Both encoder and decoder are based on neural net-
works and thus the vocoding is achieved using a simple fast forward pass. An experiment with French
vocoding and a target male voice trained on 21 hour long audio book is presented. An application of the
phonological vocoder to low bit rate speech coding is shown, where transmitted phonological posteriors
are pruned and quantized. The vocoder with scalar quantization operates at 1 kbps, with potential for
lower bit-rate.

1 Introduction

We are interested in very low bit rate (VLBR) coding of speech. To this end, we have previously presented
work on a phonetic vocoder Cernak et al. (2013a,b, 2014). The vocoder consists of automatic speech
recognition (ASR) feeding into text to speech (TTS) synthesis. As only phonetic symbols need to be
transmitted over a channel, this leads to a bit rate of only a few hundred bits per second (bps). Although
the resulting speech quality is somewhat degraded, it is acceptable.

Recently, deep neural networks (DNNs) in hybrid HMM systems have led to large increases in ASR
accuracy. At the same time, DNNs are also being used for TTS; results are very promising, e.g., Ze
et al. (2013); Qian et al. (2014); Lu et al. (2013); Yin et al. (2014). In each case, much of the acoustic
processing is taken on by the DNN, leaving the HMM to simply impose phonetic sequence constraints.
This raises the question of whether the phonetic vocoder Picone and Doddington (1989) can benefit from
such technology. Of course, the answer should be yes, in that the black-box functionality is the same.
However, given the minimal contribution of the HMM, and that the application is simply vocoding, it also
leads to the possibility of removing the HMM entirely.

The phonetic vocoder uses a phonetic representation of speech. Following the reasoning about using
phonological features in speech processing of King and Taylor (2000), we hypothesise that the phonolog-
ical representation is more suitable than the phonetic representation, because:

• The span of phonological features is wider than the span of phonetic features and thus the frame
shift could be higher, i.e., fewer frames are transmitted yielding lower bit rates.

• The binary nature of phonological features promises to achieve a higher compression ratio.

• Phonological features are inherently multilingual Siniscalchi et al. (2012). This in turn has an at-
tractive advantage in the context of multilingual vocoding without the need for a phonetic decision.

Phonological features can be categorised as distinctive features (primes) grouped into categories es-
tablished from natural classes. There are several phonological systems such as Chomsky’s system with
binary features Chomsky and Halle (1968), multi-valued Ladefoged and Johnson (2014), and Govern-
ment Phonology Harris and Lindsey (1995) feature systems. We followed a promising approach based
on phone attributes (e.g, Yu et al. (2012); Siniscalchi et al. (2012)), and also used pseudo-phonological
features in this work.

Fig. 1 sketches the design of the phonological vocoder. The encoder is based on a bank of phonological
encoders realised as neural network classifiers that output K phonology posterior features zk1 = p(Ck|x

n
1 ),

for k = 1, . . . ,K, where Ck are individual natural classes of the phonological features. The posteriors are
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Figure 1: The phonological vocoder split into (a) encoder and (b) decoder. The encoder runs individual
phonological encoders and merges phonological posteriors. The decoder generates speech spectra lines
LSPs and source parameters and re-synthesise the speech.

optionally pruned (compressed) or manipulated. The decoder is based on a DNN that learns a regression
problem of mapping posteriors zk1 to speech parameters used for re-synthesis.

We demonstrate the performance of the phonological vocoder on an experiment with French phono-
logical encoders and the target voice trained on 20.9 hours male speech downloaded from a free public
domain audiobook. A low bit rate speech coding achieved by pruning and quantizing of the phonological
features is presented.

The structure of the paper is as follows: the next Section 2 introduces the French phonological features
used in this work. Section 3 describes experiments and results on the training of the phonological vocoder,
and applied to the parametric speech coding. Discussion and conclusions follow in section 4.

2 French phonological features

Phonological features can be used for speech sound classification Bauman-Waengler (2011). For example,
a consonant [j] is articulated using the mediodorsal part of the tongue [+Dorsal class], in the motionless,
mediopalatal, part of the vocal tract [+High class], generated with simultaneous vocal fold vibration
[+Voiced class].

For natural classes of French sounds, we started from pseudo-phonological feature classification de-
signed for American English Yu et al. (2012). We deleted the glottal and dental classes consisting of
English phonemes [h, D, T], replaced [+Retroflex] with [+Uvular] consisting of a French rhotic conso-
nant, and replaced the broad classes [+Continuant, +Tense] with:

• Fortis and Lennis, as an alternative to [+Tense] class, to distinguish consonants produced with
greater and lesser energy, or articulation strength.

• Alveolar and Postalveolar, to distinguish between sibilants articulated by anterior portion of the
tongue,

• Dorsal, to group consonants articulated by the central and posterior portions of the tongue,

• Central, to group vowels in the central position of the portion of tongue that is involved in the
articulation and to the tongue’s position relative to the palate Bauman-Waengler (2011),

• Unround, to group vowels with an opposite degree of lip rounding to the [+Round] class.

Tab. 1 shows the map of phonological features used in this study.

3 Experiments and results

3.1 Phonological encoders

The encoder is based on a bank of phonological encoders realised as neural network classifiers, 3-hidden
layer multilayer perceptrons (MLPs), that encode individual phonology features. Each MLP classifies
a binary phonological feature. The French speech database Ester Galliano et al. (2006) of standard
French radio broadcast news was used for training of the encoders. It comprised 120 speakers in various
recording conditions. We hypothesised that the broadcast recordings are more suitable for “live” speech
encoding. In this study, a subset of 112 hours of recordings was used for the training. The phoneme set
comprising 38 phonemes (including “sil”) was defined by the BDLex Perennou (1986) lexicon.
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Table 1: French phonological features and their association to phonemes used in this paper, grouped into an
organ, place and manner of articulation, and the others.

Class Ck Phonemes

organ
Labial b f m p v w 4
Dorsal ñ N j k g K

Coronal d l n s t z S Z

place

Alveolar s z
Postalveolar S Z

High y i S u j g k N
Low ã a œ̃ O o õ
Mid ø ẽ e œ E

Uvular K
Velar g k N ñ

manner

Vowel i y u e ẽ ø o õ @ E œ O a ã œ̃ 5
Fricative f v s S z Z K

Nasal m n ñ N ã õ œ̃ ẽ
Stop b d g p t k

Approximant w l j 4

others

Anterior b d f l m n p s t v z w
Back o õ O u g k

Lennis b d g v z Z
Fortis f t p k s S
Round o O õ u œ œ̃ y ø

Unround a ã i e ẽ E 5
Voiced a ã 5 i y u e ẽ ø o õ O @ E œ œ̃ j l m 4 w b N ñ n v g K d z Z
Central @ 5
Silence sil

First, we trained a HMM/GMM system using PLP features. The three-state, cross-word triphone
models were trained with the HTS variant Zen et al. (2007) of the HTK toolkit on the set of 56,231
utterances. We tied triphone models with decision tree state clustering based on the minimum descrip-
tion length (MDL) criterion Shinoda and Watanabe (1997). The MDL criterion allows an unsupervised
determination of the number of states. In this study, we used 11504 tied models, and modeled each state
with a GMM consisting of 16 Gaussians.

Then, a bootstrapping phoneme alignment was obtained using forced alignment with cross-word
triphones. The bootstrapping alignment was used for the training of 3-hidden layer 2000x500x2000
MLP, using temporal context of 9 successive frames of PLP features, and softmax output function. The
architecture of the MLP was determined empirically. Using a hybrid HMM/MLP speech decoder fed
by the phoneme posteriors, the re-alignment was performed. After two iterations of the MLP trainings
and re-alignments, the best phoneme alignment of the speech data was obtained. This re-alignment
increased the cross-validation accuracy of the MLP training from 75.54% to 80.02%. The mapping of
Tab. 1 was used to map the phonemes of the best alignment for the training of the encoders. Each encoder
was trained from the frame alignment having two output labels, the encoded class present or not. The
encoding MLPs were then trained again with the same settings as the alignment MLP training. Tab. 2
shows classification accuracies of the phonological encoders at a frame level. In Yu et al. (2012), the
Tense class defined for English phonology features achieved the worse classification accuracy 90.6%. Our
alternative Fortis and Lennis classes performed on cross-validation set better, 96.3 and 97.0, respectively.

3.2 Phonological decoder

For the phonological decoder, we employed a DNN that can learn the highly-complex regression problem
of mapping posteriors zk1 to speech parameters for re-synthesis. While phonological encoders are speaker-
independent, the phonological decoder is speaker-dependent because of speaker dependent speech pa-
rameters.

As a target voice, we selected a French audio book “La Comédie Humaine” of Honoré de Balzac1,
1
https://librivox.org/scenes-de-la-vie-privee-tome-1-by-honore-de-balzac-0812
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Table 2: Classification accuracies (%) of the French phonological encoders at a frame level.

Class Accuracy (%) Class Accuracy (%)
train cv train cv

Labial 96.4 96.5 Nasal 98.5 98.5
Dorsal 95.1 95.2 Stop 96.4 96.6
Coronal 93.4 93.5 Approximant 96.7 96.9
Alveolar 98.1 98.1 Anterior 93.0 93.0
Postalveolar 99.4 99.4 Back 96.3 96.3
High 95.0 95.1 Lennis 97.0 97.0
Low 95.6 95.7 Fortis 96.2 96.3
Mid 95.1 95.1 Round 95.7 95.8
Uvular 97.5 97.5 Unround 94.1 94.2
Velar 98.4 98.5 Voiced 93.2 93.3
Vowel 91.7 91.8 Central 97.8 97.9
Fricative 95.4 95.4 Silence 96.9 97.1

around 21 hours long. Recordings were organised into 57 sections, and we used the sections 1–50 as a
training set, 51–55 as a development (cross-validation) set and 56-57 as a testing set. The development
and testing sets were 2.1 hours and 29 minutes long, respectively. The audio book was chunked into 10s
long speech segments for further training and testing.

3.2.1 Training

The speech signals sampled at 16 kHz, framed by 25-ms windows with 16-ms frame shift, were used for
extraction of the following speech parameters:

• static Line Spectral Pairs (LSPs) of 24th order,

• gain log(g), continuous pitch log(F0),

• a Harmonic To Noise (HNR) ratio log(r),

• and two glottal model parameters – angle θ and magnitude log(m) of a glottal pole.

Extraction was done by the Speech Signal Processing (SSP) python toolkit2. Altogether, we used the
speech parametrization of 29th order as DNN output features.

Phonological posteriors zk1 were used as DNN input features. They were extracted with the same
16-ms frame shift, and thus almost perfect frame alignment was obtained. Temporal context of 11 suc-
cessive frames resulted into the input feature vector of 264 dimensions. Cepstral mean and variance
normalisation was applied before the training.

The DNN was initialised using 4x1024 Deep Belief Network pre-training by contrastive divergence
with 1 sampling step (CD1) Hinton et al. (2006). The DNN with a linear output function was then trained
using a mini-batch based stochastic gradient descent algorithm with mean square error cost function of
the KALDI toolkit Povey et al. (2011). The DNN was trained with 3.4 million parameters.

3.2.2 Speech re-synthesis

During the phonological vocoding, the synthesized speech parameters are obtained using a forward pass
on the DNN. We did not use dynamic features as smoothing of synthesized speech parameters using the
pre-computed (global) variances Tokuda et al. (1995) over-smoothed the formant frequencies.

Finally, speech is re-synthesised using LPC re-synthesis with minimum-phase complex cepstrum glottal
model estimation Garner et al. (2015), from synthesized LSPs pi, and source signal θ̂ and magnitude
log(m̂) parameters, as shown by Eq. 1:

x̂n =
∑P

i=1
h(pi|ẑ

k
1 (n))x̂(n− i)︸ ︷︷ ︸

spectra

+h(θn,mn, rn|ẑk1 (n))︸ ︷︷ ︸
source

, (1)

2
https://github.com/idiap/ssp
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where h(.) denotes nonlinear activation function (forward propagation) of the trained phonological de-
coder, and zk1 (n) are phonological posteriors for time n.

3.3 Pruning of the phonology posteriors

Phonological features are composed from primes that categorise a particular phoneme. Each phoneme
is represented by a small number of primes, and this property can be used to compress the features
with a high compression ratio. The compression of transmitted parameters was achieved by (i) setting a
threshold α for pruning the parameters, and (ii) scalar quantization of the parameters. The pruning was
performed using the following rule:

zk =

{
0 if zk 6 α
zk if zk > α

(2)

and a sequence of transmitted parameters was obtained by quantizing zk into discrete values:

ẑk = Q(zk), ẑk = {0, 1, . . . ,M− 1}, (3)

where Q(.) denotes an operation of scalar quantization and M is the number of quantization levels,
linearly spaced from α to 1.0.

3.3.1 Results

We evaluated the vocoder with α in the range of [0.05, 0.35] with a step of 0.05. For scalar quantization
we used the qantization with M = 2q levels ranged of [1, 256], equivalently with the quantization bits
q ranged of [1, 8]. The evaluation did not include F0 transmission, as we found that the DNN did not
model the pitch stream adequately. It may be due to a (sub)phonetic nature of the phonological features,
while F0 modelling requires supra-segmental features as well. Therefore we used in further evaluation
the original F0.
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1-bit quantization

Figure 2: Impact of phonological posteriors pruning and quantization on speech coding degradation.

Mel Cepstral Distortion (MCD) Kubichek (1993) on the test set was used as an objective metric for
evaluating the impact of pruning and quantization of the phonological posteriors on quality of speech
coding. Figure 2 shows MCD scores on mel-cepstral vectors of unpruned and pruned/quantized encoded
speech for different α and q. The degradation is almost linearly dependant on the increasing threshold
α, with relative degradation around 0.3–0.6 dB. The quantization, except the binary case q = 1, where
a phonology posteriors take only binary values 0/1 (so all posterior probabilities were rounded to 0/1 in
respect to α), has smaller impact, around 0.15–0.3 dB.

We estimated also the transmission rates in bps for the evaluated cases. The increasing pruning from
α = 0.05 to 0.35 resulted in decreasing average number of transmitted parameters. For example, the
transmission rate for α = 0.3 and q = 2 was 3.7x2x62.5x5=2.3 kbps, where 3.7 is the average numbers
of parameters, 62.5 is the number of frames per second, and 5 is the number of bits required to transmit
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the indices of the parameters. Fig. 3 shows transmission rates for different pruning and quantization
schemes. The compression ratio of transmitted parameters is almost 10:1 between 8-bit and 1-bit scalar
quantizations, without audible changes in speech quality.
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Figure 3: Estimated transmission rate of different quantization schemes.

We informally subjectively evaluated the degradation of speech quality for different pruning schemas
and as we did not perceive differences, we did not follow with listening tests. Tab. 3 demonstrates
recordings of the vocoder performance and an impact of pruning and quantization on speech quality. It is
interesting that the speech quality degradation comparing to the original recording is audible but similar
even for the highest compression with q = 1. We can conclude that the phonology posteriors form a
robust speech representation, and it is quite tolerant to exact values. We speculate that it might be due to
a binary nature of the distinctive features, where it is more important if a critical feature is present, and
less dependent on its value.

Table 3: Recordings demonstrating vocoder performance of encoded French testing sentence, using different
pruning and quantization schemes.

Pruning/quantization schemes Rate [kbps] Example

Original – (mp3)
α = 0.3, q = 8 10 (mp3)
α = 0.3, q = 4 4.9 (mp3)
α = 0.3, q = 2 2.3 (mp3)
α = 0.3, q = 1 0.9 (mp3)

4 Discussion and conclusions

We have shown that DNN based ASR and TTS can be cascaded to form a vocoder. Instead of full ASR
system we used only phonological posteriors calculation, without a lexicon, a language model and the
search module. The DNN with the open source LPC re-synthesis replaced the incremental HTS syn-
thesis Astrinaki et al. (2012) with licensed STRAIGHT re-synthesis Kawahara et al. (1999) proposed
by our previous work. This work differs from previous attempts by (i) replacing HMMs by DNNs, and
(ii) using the phonological speech representation instead of the phonetic one. In the case of the real-
time incremental vocoding, HMMs impose phonetic sequence constraints that leads to decrease of bit
rates, but according to our experiments with the incremental vocoding, they simultaneously generate
weaker phoneme boundaries that increases speech quality degradation. HMMs-based approach also re-
quires building of a HTS voice that is not more needed in the DNN based vocoding, that is in principle
unsupervised. Further, although the present validation has only been done in French, the approach is
fundamentally multi-lingual. This is in contrast to the phonetic vocoder that requires a-priori knowledge
of phone sets. Although the resulting bit rate of the phonological vocoder is not as low as an equivalent
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phonetic vocoder, the speech quality is the same or better. However, the work is preliminary, and suggests
that further research could lead to comparable bit rates. We used naive approach to encode indices of
parameters, each with 5 bits, and we did not investigate other compression techniques (e.g., how often
consecutive frames are identical), as the paper focused on the vocoder. In addition, using more com-
pact phonological systems such as Chomsky’s or Pöchtrager’s Pöchtrager (2006) ones, only 4 or 3 bits
respectively, would be required.

The work on phonological decoder is related to the DNN training for parametric TTS, described e.g.
by Qian et al. (2014). In our work, we used phonological features inferred from speech signal instead
of rich contextual features inferred from text. Phonology posteriors form a robust speech representation,
highly tolerant to exact values. We showed that even with the highest quantization ratio using q = 1,
i.e., using only binary values for the posteriors, the speech quality is maintained. That implies that the
phonological decoder could also form a basis of a phonological parametric TTS synthesis to generate
speech from the canonical phone representation. A new voice can be built quite easily and without
transcripts.

Presented speech vocoding is based on high quality reconstruction of line spectra and glottal signal
parameters from phonological representation. A recent study Raitio et al. (2014) showed a DNN mod-
elling of a source signal from 47 acoustical features, while we have successfully modelled the source
signal from 24 pseudo-phonological features. It is interesting to further study the impact of the critical
phonological features on the source signal.

An integrated phonology encoder and decoder with transmission parameter pruning can be used as
a low bit rate parametric speech coder based on a phonology representation. Related to the recent work
of Flanagan Flanagan (2010), who proposes a parametric speech coding based on articulatory represen-
tation, the proposed phonological vocoder can be easily exploited if an articulatory phonology Browman
and Goldstein (1986) is used as an alternative speech representation. However, it is beyond the present
study. The approach of Flanagan (2010) is computationally very expensive (around 100 times real-time
only to compute solutions of the Navier-Stokes fluid flow equations). The proposed phonological vocoder
can operate on 1–2 kbps as well, and it is in addition real-time.
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