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Abstract. Objective: A major difficulty of brain-computer interface (BCI)

technology is dealing with the noise of EEG and its signal variations. Previous works

studied time-dependent non-stationarities for BCIs in which the user’s mental task

was independent of the device operation (e.g., the mental task was motor imagery

and the operational task was a speller). However, there are some BCIs, such as

those based on error-related potentials, where the mental and operational tasks are

dependent (e.g., the mental task is to assess the device action and the operational

task is the device action itself). The dependency between the mental task and the

device operation introduces a new source of signal variations when the operational task

changes, which has not been studied yet. The aim of this study is to determine the

existence of task-dependent signal variations when using EEG error-related potentials.

Approach: The work analyzes the signal variations on the three design steps of BCIs:

an electrophysiology study to characterize the existence of these variations; a feature

distributions analysis; and a single-trial classification analysis to measure the impact on

the final BCI performance. Results and significance: The results demonstrate that

a change in the operational task produces variations in the potentials, even when EEG

activity exclusively originated in brain areas related to error processing is considered.

Consequently, the extracted features from the signals vary, and a classifier trained with

one operational task presents a significant loss of performance for other tasks, requiring

calibration or adaptation for each new task. In addition, a new calibration for each of

the studied tasks rapidly outperforms adaptive techniques designed in the literature

to mitigate the EEG time-dependent non-stationarities.
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1. Introduction

EEG brain-computer interfacing (BCI) is an emergent technology developed to provide

a communication channel between human and device using only brain activity, with

proved utility in a wide range of clinical and non-clinical applications (see [1, 2] for

reviews). BCI always relies on the fact that the user performs a mental task, which

presents associated brain patterns that are measured on the EEG and decoded to obtain

the intention of the user. Subsequently, these intentions are used to operate a device

performing given operational tasks, which can be related or not to the decoded mental

task. A major difficulty of BCIs is to deal with the non-stationary behaviour and noise

of the EEG [3, 4]. Most of efforts in this context have been devoted to those BCIs where

the mental task and the operational task are not related [5, 6, 7, 8, 9, 10]. This study

moves in a different direction, focusing on BCIs where the mental and operational tasks

are related, and thus there could exist task-dependent signal variations.

A great portion of the existing BCIs rely on mental tasks whose associated brain

patterns are independent of operational tasks. For instance, many BCIs have used:

(i) self-regulation of rhythms’ amplitudes in the temporal domain (e.g., slow cortical

potentials [11]); (ii) changes in frequency power spectrum (such as µ and β-rhythms

[12], motor imagery of body limbs [13], or performance of cognitive mental tasks [14]);

or (iii) attendance to visual stimuli (e.g., visual P300 potentials [15], or steady-state

visual evoked potentials [16]). In the aforementioned BCIs, the mental task is decoupled

from the operational task and the signal variations are assumed to be independent of the

device operation [10]. Consequently, these BCIs generalize among different operational

tasks. For instance, slow cortical potentials have been used for spelling devices or

controlling 2D cursors, [17, 11]; motor-imagery BCIs have been used to operate 2D

cursors, wheelchairs or mobile robots [13, 12, 18]; and P300 BCIs have been used

to operate spelling devices, wheelchairs or mobile robots, among others [15, 19, 20].

However, even though the signal variations are independent of the operational task,

the time-dependent non-stationarities of the EEG lead to changes in the features

distributions and thus on the performance of the BCI [10]. The difficulty is to achieve

a robust classification from the calibration phase to the feedback phase, along the

feedback phase, and/or between different sessions. The techniques developed to date

focus on the feature extraction or the classification process: either relying on finding

time-invariant features of the EEG to control the BCI [5, 6]; or adapting the classifier

with supervised techniques incorporating labeled examples of subsequent sessions [7, 8]

or with unsupervised techniques [10, 9].

However, in other types of BCIs the mental task is coupled with the operational

task, such as those based on the error-related negativity (ERN) ERP component [21]; or

the associated error-related potentials [22]. The principle of these BCIs is to detect in the

brain patterns the occurrence of an error during the device operation. Although these

BCIs are rather insensitive to time-dependent non-stationarities [23, 24], the operational

task-dependent signal variations are natural in this context, as the monitoring of
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different devices or processes leads to different error-related potentials (e.g., user’s

own errors [21], interaction errors [22], feedback errors [25, 24], or observation errors

committed either by another person [26] or by virtual or real devices [27, 28, 23], namely

the observation error-related potentials). In previous studies, the latter potentials

have been studied by their difference average, and characterized by three main ERP

components (an N2, a P3 and an N4) [22]. Mainly, these potentials have been used

for the correction of incorrect commands delivered by the BCI [29, 30], or as feedback

for virtual devices performing learning tasks [27, 23]. These BCIs always require re-

calibration as, depending on the size of the variation of the error-related potentials,

they might not generalize between small variations of the task or among different tasks.

This is a large drawback for the practical deployment of these BCIs as calibration is a

boring, tedious and tiring process that could last approximately 30-45 minutes before

using the BCI [27, 28, 23].

This paper studies the presence of signal variations in observation error-related

potentials, where the mental task is coupled with the operational task. The analysis

spanned the three design steps of BCIs: an electrophysiology study to characterize the

existence of these variations; a feature analysis that showed how these variations affect

the features distributions; and a classification analysis to measure the impact on the

final BCI performance.

2. Methods

2.1. Data recording

The EEG signals were recorded with a gTec system (2 synchronized gUSBamp

amplifiers) with 32 electrodes distributed according to an extended 10/20 international

system (FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7, P8, P3, P4, O1, O2, AF3, AF4,

FC5, FC6, FC1, FC2, CP5, CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz), with the

ground on FPz and the reference on the left earlobe. The EEG signals were digitized with

a sampling frequency of 256Hz, power-line notch-filtered, common-average-reference

(CAR) filtered and band-pass filtered at [0.5, 10] Hz. The data acquisition was developed

under the BCI2000 platform [31].

2.2. Experimental design

Ten subjects (eight males and two females, mean age 27.20 ± 4.08 years) participated

in the experiments. The participants were comfortably seated one meter away of

a computer screen displaying all the information related to the experiments. Two

experimental protocols were designed. In each protocol the subject monitored the

execution of a task where a virtual device had to reach a given goal. The motion

of the device could be correct (towards the goal) or erroneous (away from the goal).

Each task (denoted operational task, OT) consisted of a set of subtasks where the goal

location changed but the device movements were fixed (see figure 1). The subjects were
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asked to assess the device movements as erroneous or non-erroneous. The participants

were allowed to freely move their eyes, while blinking and muscular movements were

constrained to the resting periods. Each experiment took place in one session, and the

time period between sessions was 3± 6 days.

2.2.1. Operational Task 1 (OT1, figure 1a) The screen displayed the virtual device as a

blue circle in the centre of the screen (rest position), and also three rectangles indicating

possible destinations, arranged in a triangle-like shape equidistant to the rest position.

The goal was marked with a green rectangle. The device could perform three possible

actions: move over one of the three rectangles. After the motion, the device returned to

the rest position. The users were instructed to assess the actions as non-erroneous when

it moved to the goal (green rectangle), or as erroneous otherwise. The three subtasks

corresponded to the three possible goal locations (denoted subtasks OT1.Up, OT1.Left

and OT1.Right). The session was recorded in 36 runs. Each run consisted of 50 actions

with the goal fixed at one position, with a 20% probability of not moving to the goal.

For each subtask 120 error and 480 non-error potentials were acquired, i.e., a total of

360 errors and 1440 non-error potentials for the operational task. This session lasted 3

hours.

2.2.2. Operational Task 2 (OT2, figure 1b) The screen displayed the virtual device

as a blue square and the goal location as a green square, located on a horizontal or

vertical grid composed of 20 positions. The device could perform two possible actions:

move one position left or right in the horizontal grid, or up or down in the vertical grid.

The users were instructed to assess the actions as non-erroneous when the device moved

towards the green square and as erroneous when it moved in the opposite direction.

When the device reached the goal, the goal was moved three positions away along the

grid (randomly left or right for the horizontal grid, or up or down for the vertical grid).

The four subtasks corresponded to the relative position of the goal location with respect

to the virtual device: OT2.Left, OT2.Right, OT2.Up and OT2.Down. The session was

recorded in 24 runs. Each run consisted of 50 actions with a fixed grid (either the

horizontal or the vertical grid), with a 20% probability of not moving towards the goal.

For each subtask, 60 error and 240 non-error potentials were acquired, i.e., a total of

240 errors and 960 non-error potentials for the operational task. The session lasted 2

hours. The protocol was based on [22].

2.3. Analysis of error-related potentials and their task-dependent variations

The definition of the observation error-related potentials encompasses the appearance

of three main and distinct components on the difference (error minus correct) average:

an N2, a P3, and an N4 component [22]. Regarding the N2 and P3 components, several

studies suggest that they may actually be the error-related negativity (ERN or Ne)

and the following positivity (Pe) [21], but there is still an open discussion about it
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OPERATIONAL TASK 1 (OT1)

OT1.UP

OT1.LEFT OT1.RIGHT

OPERATIONAL TASK 2 (OT2)

OT2.LEFT OT2.RIGHT

OT2.UP

OT2.DOWN

Erroneous actionNon-erroneous action Non-erroneous action Erroneous action

Figure 1. Schematic illustration of the operational tasks (OTs). Each operational

task consisted of a virtual device (blue circle or blue square) that had to move to the

goal location (marked in green). For each operational task, subtasks were defined by

changing the goal location. Examples of non-error and error movements are shown for

each task.

[32]. Regarding the N4 component, previous studies have suggested that its generation

could be due to a visual semantic mismatch [33]. Nonetheless, for the observation error-

related potentials, the three components are originated in the anterior cingulate cortex

(ACC, Brodmann Areas 24 and 32) and the pre-supplementary motor area (pre-SMA,

Brodmann area 6) [22], suggesting an activation of an error-processing system on the

brain [25].

The electrophysiology of the error-related potentials and their associated variations

were studied through the analysis of the raw EEG, and with a filtered EEG where

those components not originated in the brain sources involved in the error-related

potentials were removed. The filter eliminated several types of artefacts, including

electromyographic activity (such as that provoked by scalp and neck muscles), ocular

activity (such as eye movements and blinks) and brain activity not originated within

the error processing brain sources [34] (such as spatial attention components [35]).

The filter is constituted by two main steps: (i) application of independent component

analysis (ICA) [36]; and (ii) isolation of the independent brain components related to

error processing, with a posterior re-projection of this information to the sensor space.

Note that while ICA techniques have been widely used for the characterization of brain

sources [37, 38, 39] and the removal of artefacts [40], the filter proposed herein focused

on the isolation of the brain process of interest (see [41] for a similar approach for P300

classification).

The ICA spatial filter is a statistical model defined as x = As, where x are the

input data, and A and s are the mixing matrix and independent components estimated

by maximizing the temporal independence among the components. Each column vector

ai of A is the spatial pattern associated with the component si. While there are many

ways to compute the ICA model [36], its computation has two difficulties in the EEG

context: the number of independent components to estimate [39] and the non-reliable
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nature of the estimation process [42]. The number of components d was estimated using

m-fold cross-validation principal component analysis (PCA) in the sensor space [43] (the

number of folds was fixed to m = 5 in the experiments, leading to d ≃ 15 dimensions

retained from the original 32 channels). The ICASSO technique was used to address

the non-reliability of ICA [42]. ICASSO estimates N ICA filters using the FastICA

algorithm [36] under changes of the initial conditions, and then performs clustering on

the obtained estimations (N was fixed empirically to 100). Once the ICA model was

computed, the DipFit source localization [39] was used to estimate the neural source of

each component. Those independent components whose brain source was in the ACC

or the pre-SMA were selected, as these areas are believed to be the main generators

of error-processing brain activity [21, 25, 38]. For each subject and task/subtask, the

number of components selected was between one and four, which were re-projected back

to the sensor space to obtain the filtered data.

The analysis of the shape and timing of the potentials (with and without the filter)

for each task and subtask was carried out through the computation of time-locked

averaged potentials for the error and non-error potentials in channel FCz, through the

difference average (error minus non-error averages) [22, 28] and by an r2 discriminability

test [1]. A topographic interpolation of the potentials was obtained at the time of the

main peaks of the difference average. A source localization analysis was also performed

with sLoreta [44] at the N4 component of the error averages of each operational task

[22]. Additionally, the peak amplitudes and latencies of the most prominent negativity

were extracted from single-trial signals as the minimum value within the time window

[320, 600] ms in channel FCz. The latency-sorted single-trial potentials were plotted as

a colour-encoded image with a smoothing window of 50 trials.

Finally, to assess the statistical differences among tasks/subtasks of the error-

related potentials, one-way within-subjects ANOVAs (factor: tasks or subtasks) were

conducted over the latencies and amplitudes of each component (N2, P3 and N4) of the

difference average, averaged from channels Fz, FCz and Cz [45, 46]. When needed, the

Geisser-Greenhouse correction was applied to the data to assure sphericity.

2.4. Analysis of the impact of task-dependent signal variations

Once the existence of signal variations was studied, its impact on BCI performance was

analyzed at two levels: (i) changes in the features distributions used for error detection

and (ii) the corresponding classification accuracy. This analysis was performed using the

filtered EEG data to avoid the influence of activity not originated in the error-processing

brain areas (i.e., artefacts).

2.4.1. Feature extraction Previous studies have demonstrated that amplitude values

of the error-related potentials from several fronto-central channels are suitable features

for their discrimination (error vs non-error) [22, 28, 23]. In this study, features are

constructed as linear combinations of amplitudes of channels and time points that best
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separate these two classes [47]. Given a set of n labelled trials of the two classes, for each

trial, eight fronto-central channels (Fz, FC1, FCz, FC2, C1, Cz, C2, and CPz) within a

time window of [200, 800] ms were subsampled to 64 Hz and concatenated as a vector

of 312 features. The feature vectors of all trials were normalized, and then decorrelated

using PCA, retaining 95% of the explained variance. The k-most discriminant features

were selected based on a robust variant of the Fisher score [9]:

FS(f i) =
|med(f i

1)−med(f i
2)|

medad(f i
1) +medad(f i

2)
, (1)

with med(f i
j) and medad(f

i
j) being the median and the median absolute deviation

of feature f i for class j ∈ {1, 2}. The number of features to retain k was determined by

a ten-fold cross validation.

The effect of signal variations was measured by the statistical significance between

the features distributions for each class, between operational tasks (inter-task) and

between subtasks (intra-task). One-way within-subjects ANOVAs (factor: tasks or

subtasks) were conducted on the single-trial features of each class to assess the statistical

significance. In addition, the inter/intra-task similarity of the features’ distributions

was quantified by the Kullback-Leibler (KL) divergence. The KL divergence from

P ∼ N (µP ,ΣP ) to Q ∼ N (µQ,ΣQ) is:

DKL(P ||Q) =
1

2

(
tr(Σ−1

Q ΣP ) + vTΣ−1
Q v − ln

( |ΣP |
|ΣQ|

)
− k

)
(2)

with v = (µQ − µP ). High values of DKL(P ||Q) entail large differences between

distributions. The KL divergences were computed using the k = 10 most discriminant

features (according to (1)) to compare the intra/inter features distributions.

2.4.2. Single-trial classification The classifier used in the analysis was a regularized

version of the linear discriminant analysis (LDA) [48]. The LDA discriminant function

D(f) is the hyperplane that maximally separates the feature distributions corresponding

to two classes: D(f) = wTf + b, where f is the feature vector to be classified, and w

and b are the normal vector to the hyperplane and the corresponding bias computed by:

µ̂ = 1
2
(µ̂1 + µ̂2), w = Σ̃−1(µ̂2 − µ̂1), b = −wT µ̂; where µ̂j is the sample mean of class

j, µ̂ the sample global mean, and Σ̃ the regularized sample covariance matrix (shared

for both classes).

Regularization aims to minimize the covariance estimation error E = |Σ− Σ̃|, with
Σ being the real covariance matrix, by penalizing very large and very small eigenvalues.

The regularized covariance matrix was computed by: Σ̃ = (1− γ(n))Σ̂ + γ(n)νI; where

n was the number of trials used for training, γ(n) ∈ [0, 1] the regularization factor

(whose value can be computed numerically [48]), Σ̂ the sample covariance matrix, and

ν = tr(Σ̂)/k the average eigenvalue of Σ̂, with k being the number of diagonal elements

of Σ̂.

To tackle the signal variations, the classifier was adapted based on a sequential

process in which labelled examples of the new task were used to modify the discriminant
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function of the LDA classifier [9]. Namely, given a new example of class j at time t,

fj(t), the mean µ̂j was updated using an exponential moving average:

µ̂j(t) = (1− α)µ̂j(t− 1) + αfj(t). (3)

α ∈ [0, 1] is the update parameter (fixed to α = 0.05 [9]) and the initial values for

µ̂j were obtained using data of another task or subtask. The corresponding discriminant

function was recomputed using the new mean µ̂j to update the w and b parameters

accordingly.

The impact of signal variations was analyzed firstly without adaptation, and then

with the supervised adaptation. Firstly, the classifier was trained with examples of one

task and tested with another one (inter-task) or trained with examples of one subtask

and tested with the other subtasks (intra-task). The results were then compared with the

performance of the baseline classifier computed using a ten-fold cross-validation scheme

for each task (subtask) separately. Secondly, the adaptation was evaluated against the

baseline classifier performance as a function of the number of trials used to train/adapt

the classifier (i.e., calibration time). The adaptive classification results were obtained

using the train-test sets, as follows: the classifier was initially trained using the train

dataset and then, the test dataset was split into two subsets (D1 with 300 examples and

D2 with the remaining). For each trial at time t, the classifier was updated using (3)

and tested on the D2 dataset. The results were then compared with the performance of

baseline classifiers built using trials [1 . . . t] of D1 and tested on D2. This process was

repeated 10 times to reduce variability in the results for adaptive and baseline classifiers

while shuffling trial positions, and then averaging the obtained accuracies.

3. Results

3.1. Electrophysiology of potentials their signal variations

The analysis comprises the raw EEG data along with the filtered EEG data (see

subsection 2.3). The proposed filter eliminated 90% of the ICA components that were

not estimated within ACC or pre-SMA. The majority of these components were ocular

artefacts such as eye movements (estimated in frontal areas such as Brodmann areas

10, 11 or 38) and brain activity estimated either in parieto-occipital/occipital areas

(Brodmann areas 17, 18 and 19) or the posterior cingulate cortex (PCC, Brodmann

areas 23 and 31). Although these components contributed to the EEG, they were

not originated in the main error-processing areas and thus were eliminated by the

filter. Artefact correlation with the subtasks but not with the tasks is an effect worthy

of mention, which might affect feature extraction and classification analysis of the

generalization study. Figure 2 displays an example with the raw and filtered EEG

for the subtask OT1.Right. Without filtering, a signed r2 discriminability test indicated

that the most discriminant features were on frontal channels (originated by lateral eye

movements); on the other hand, after filtering, the most discriminant features were due

to fronto-central activations (originated by error-related potentials). Note that without



Task-dependent signal variations in EEG error-related potentials for BCIs 9

filtering, the most discriminant features may greatly discriminate the potentials within

the subtask OT1.Right (due to the lateral eye movements), but would not generalize

for the other subtasks or task as they involved different eye movements.

Time (ms)

 

 

0   100 200 300 400 500 600 700 800 900 1000

32.Oz  
31.Pz  

30.Cp2 
29.Cpz 
28.Cp1 
27.Cz  
26.Fc2 
25.Fcz 
24.Fc1 
23.Fz  

22.O2  
21.O1  
20.P8  
19.P4  
18.P3  
17.P7  

16.Cp6 
15.Cp5 
14.T8  
13.C4  
12.C3  
11.T7  

10.Fc6 
 9.Fc5 
 8.F8  
 7.F4  
 6.F3  
 5.F7  
 4.Af4 
 3.Af3 

 2.Fp2 
 1.Fp1 −0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (ms)

C
h

a
n

n
e

ls

 

 

0   100 200 300 400 500 600 700 800 900 1000

32.Oz  
31.Pz  

30.Cp2 
29.Cpz 
28.Cp1 
27.Cz  
26.Fc2 
25.Fcz 
24.Fc1 
23.Fz  

22.O2  
21.O1  
20.P8  
19.P4  
18.P3  
17.P7  

16.Cp6 
15.Cp5 
14.T8  
13.C4  
12.C3  
11.T7  

10.Fc6 
 9.Fc5 
 8.F8  
 7.F4  
 6.F3  
 5.F7  
 4.Af4 
 3.Af3 

 2.Fp2 
 1.Fp1 

RAW EEG SIGNAL FILTERED EEG SIGNAL

Frontal Channels

Fronto-Central

Channels

Frontal Channels

Fronto-Central

Channels

Figure 2. Signed r2 discriminability test of non-error versus error, performed on the

subtask OT1.Right, when not filtering the signal (Left) and when filtering the signal

(Right). The x-axis represents the time (from 0 to 1000 ms) and the y-axis represents

each recorded EEG channel. Topographic interpolation of the r2 is shown at 350 and

500 ms. The solid boxes mark the position of fronto-central channels, whereas the

dashed boxes mark the position of frontal channels. When not filtering the signals,

most of the discriminability comes from frontal channels with the sign reversed on the

left and right hemispheres. When filtering the signals, most of the discriminability

comes from fronto-central channels.

For both operational tasks and subtasks, the average difference of the raw/filtered

potentials for both conditions presented a small negative deflection approximately at

250 ms (an N2 component) and prominent positive and negative peaks (P3 and N4

components) at approximately 300 ms and 500 ms (in agreement with the r2 test,

figure 3). The topographical scalp maps at these last two peaks showed fronto-central

activations for the two operational tasks.

When not filtering the data, source estimations for OT1 (at 500 ms of the error

average) were in the paracentral lobule (Brodmann Area 5), whereas for OT2 (at 450

ms of the error average) were in the ACC (Brodmann area 24). On the contrary, when

filtering the data the potentials from both operational tasks were estimated within the

ACC, agreeing with previous studies on error-related potentials [38, 22, 23, 27]. These

results indicated that the use of the ICA filter was advisable for the isolation of the

error-processing brain activity.
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Figure 3. Time-locked grand averaged signals for the raw EEG data (left) and after

data filtering (right) on channel FCz (averaged for all subjects) for OT1 (top), OT2

(down) and averages of each subtask for the raw data (centre). The time range is

[−200, 1000] ms with 0 being the onset of the action. Error and non-error potentials

are in red and blue respectively, and the difference averages (error minus non-error

averages) are in dashed lines. The r2 discriminability test [1] between error and non-

error potentials is below each plot, where dark colours indicate high values (i.e., large

differences) between the potentials in both conditions. The spatial location of each

peak of the difference average is displayed as topographical scalp maps, as well as the

source location of the error grand average at the most prominent negativity (500 ms

and 450 ms for OT1 and OT2). The single-trial potentials sorted by the negative peak

latencies are shown below the source localization as a colour encoded image (red and

blue indicate amplitudes higher and lower than 0 µV respectively).
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Regarding the inter-task analysis, visual inspection revealed that the shape of the

averaged potentials differed between the two operational tasks (figure 3). In OT1,

the averaged error-related potentials presented two positive peaks at 200 and 300 ms,

whereas in OT2 the first positive peak was smaller, with a more prominent peak at

280 ms. This difference was also appreciated in the sorted single-trial error-related

potentials. Additionally, the ANOVA analyses reported statistical differences on the

latency of the three main components both for the raw (F1,9 = 9.574, p = 0.01;

F1,9 = 24.469, p = 0.001; and F1,9 = 48.442, p = 1 · 10−4 for the N2, P3 and N4

components) and filtered data (F1,9 = 7.789, p = 0.02; F1,9 = 24.970, p = 0.001; and

F1,9 = 28.809, p = 0.0005). For the amplitude of the components, statistical differences

were found only for the N4 component of the filtered data (F1,9 = 15.66, p = 0.003).

These results indicated the existence of signal variations in the error-related potentials

between operational tasks affecting mainly the latency of their main components.

Regarding the intra-task analysis, visual inspection revealed that the shape of the

averaged potentials was very similar among subtasks (figure 3). The ANOVA analyses

reported no statistical differences (p > 0.05) except for the N2 component of OT1 for

the raw data (F2,18 = 12.021, p = 0.0005). These results indicated that on average, the

components did not change among subtasks of the same task.

3.2. Features analysis

Regarding the inter-task analysis, visual inspection of the features showed that only the

best feature (f 1) reflected similar patterns between OT1 and OT2, whereas the other

features presented different spatio-temporal combinations (see figure 4 Top-Middle for

representative examples). In the intra-task case, the features were very similar between

subtasks. For instance, the best features (f 1 to f 3 in the figure) were almost equal

among subtasks while the worst feature f 10 presented greater variations.

For each class (non-error and error), feature distributions were significantly different

for inter- and intra-tasks (ANOVA test, p < 0.001 in all the cases). For the inter-

task case, KL divergences were 0.64 ± 0.34 and 1.71 ± 0.46 for non-error and error

respectively, while for the intra-tasks of OT1 and OT2 the divergences were 0.64± 0.51

and 1.06 ± 0.28, and 0.44 ± 0.19 and 1.92 ± 0.60. For all tasks and subtasks,

the non-error KL divergences were significantly lower than the error KL divergences

(unpaired one-tailed t-test, p < 1 · 10−4). The inter and intra-task KL divergences

of the error distributions for OT1 were significantly different (unpaired two-tailed t-

test, t38 = 5.36, p = 4 · 10−6), but the inter/intra-task divergences of the non-error

distributions were not (t38 = 0.04, p = 0.97). For OT2, inter/intra-task KL divergences

were significantly different for the non-error distributions (t68 = 2.69, p = 0.01), but

no significant differences were found for the inter/intra-task divergences of the error

distributions (t68 = −1.05, p = 0.30). In summary, feature distributions changed

significantly between tasks and among subtasks, and the error distributions changed

significantly more than the non-error distributions. Furthermore, the features varied
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Figure 4. (Top-Middle) Representative examples of the feature extraction process for

each operational task. The r2 metric (Left) was used to choose the time window of

[200, 800] ms in fronto-central channels and then extract the initial features, as in [28].

These features were the inputs to the spatio-temporal filter, whose outputs were the

k-most (k = 10 for the features analysis) discriminant features, each of them encoding

combinations of time points and channels. The weights of some features for each task

and subtask are shown as a colour encoded image (blue and red indicate negative and

positive weights, respectively). (Lower part of figure) Bar plots of the KL divergences

(mean ± SEM) between the features distributions for the inter-task and intra-task

conditions (blue and red for the non-error and error distributions).
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Figure 5. Mean ± std classification accuracies averaged for all the subjects, for the

(Left) inter-task and their baseline and (Right) intra-task and their baseline. Blue and

red bars indicate accuracies for non-error and error potentials respectively.

significantly more when changing the task, than when changing the subtask.

3.3. Classification

3.3.1. Analysis without adaptation The ten-fold accuracies of non-error and error

potentials were, on average, 89.29% and 78.00% for OT1 and 86.64% and 73.00% for

OT2; and 89.38% and 77.97% for subtasks of OT1, and 84.06% and 72.33% for subtasks

of OT2 (see figure 5). All baseline classifiers were above the chance level.

Regarding the inter-task generalization results (figure 5,Left), when training with

OT1 and testing with OT2 there was significant average increase of 6.76% (one-tailed

paired t-test, t18 = 1.86, p = 0.04) in the detection of non-error potentials, but a

significant decrease of 21.54% (t18 = −4.19, p = 0.0003) for error potentials. As can

be seen, the standard deviation was also increased compared to the ten-fold accuracies.

This indicated that the accuracy drops varied substantially from subject to subject,

with subjects having large drops, and others having almost no accuracy decrease. When

training with OT2 and testing with OT1, the accuracies presented significant decreases

of 6.44% and 12.44% (t18 = −1.83, p = 0.04 and t18 = −2.75, p = 0.007), respectively.

As with the previous case, the standard deviations increased, and thus the drops varied

substantially from subject to subject.

Regarding the intra-task generalization results (figure 5,Right), there was a general

decrease in classification accuracy with respect to the ten-fold accuracy. For the subtasks

of OT1, significant average decreases of 5.99% and 5.58% (t18 = −1.84, p = 0.04 and

t18 = −2.42, p = 0.01) were identified for non-error and error potentials. For the

subtasks of OT2, average decreases of 1.65% and 5.84% were obtained, but they were

not significant (p > 0.05) (see the supplementary materials for the accuracies obtained

for each subject).

3.3.2. Analysis with adaptation For the operational tasks, the baseline accuracies

reached maximum mean accuracies of 81.26% and 78.30% for OT1 and OT2 after 300

trials. For the subtasks, the baseline reached maximum mean accuracies of 81.51%

and 77.63% for OT1 and OT2 after 300 trials. Note that the accuracy convergence
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Figure 6. Mean ± SEM classification (solid ± dashed lines) accuracies averaged for all

subjects, for the baseline and adaptive classifiers across trials. The results are shown

for the inter-task (two left columns) and intra-task (two right columns) conditions.

For each plot, the x-axis indicates the number of trials used to adapt the previous

classifier (adaptive classifier, shown in red lines), or the number of trials used to train

the classifier (baseline classifier, shown in black lines), and the y-axis represents the

single-trial accuracy.

was fast, since only few examples were needed to reach high accuracies. For instance,

the baseline classifier obtained accuracies of 79.49% and 76.63% (tasks) and 79.09%

and 74.56% (subtasks) with 100 trials (approximately 5 minutes of EEG recording, see

figure 6, black lines).

The adaptive classifier started with the mean accuracies obtained with the classifiers

of the previous subsection (c.f. figure 5), and as more examples were available, the

accuracy of the adaptive classifier increased (see figure 6). After 300 trials (examples),

the mean accuracies were 74.07% and 78.33% for the inter-task cases, and 78.26% and

74.22% for the intra-task cases. This increase in performance was due to a reduction in

accuracy differences between the two classes, more relevant in the inter-task case.

In the inter-task analysis (training with OT1 and testing with OT2 and viceversa),

the adaptive classifier started with better accuracies than the baseline classifier but: (i)

after 66 trials and 32 trials, the baseline classifier outperformed the adaptive classifier;

and (ii) after 300 trials the adaptive classifier presented accuracies 4.23% and 2.93%

lower than the baseline (figure 6, first and second columns). The intra-task analysis

showed similar results (figure 6, third and fourth columns): The adaptive classifier

presented worse accuracies than the baseline after 51 and 65 trials for OT1 and OT2

respectively, and a lower accuracy compared to the baseline, with drops of 3.25% and

3.41% after 300 trials.

In summary, the supervised adaptation achieved high accuracies from the beginning

of the new task/subtask that were improved as more examples were available. The

baseline classifier (calibrating from scratch the new task/subtask) started with lower

accuracies than supervised adaptation but rapidly outperformed the latter as the number

of examples used to train the baseline classifier increased. In all the situations, less than

100 examples (five minutes of EEG recording) were sufficient to calibrate the BCI to

obtain better accuracies than adaptation.
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4. Discussion

This paper studied and showed the presence of signal variations in error-related BCIs,

where the mental task was coupled with the operational task. The electrophysiology

analysis presented statistical differences mainly in the latencies of the three error-related

potential components. There is previous evidence that the error-related potentials

remain very similar between different days [24] or even months and years [23]. Thus,

the authors understand that the variations of these potentials were due to the difference

of operational tasks and not to the fact that the experimentation was performed in

different days.

The study analyzed the raw EEG as well as a filtered EEG signal that retained

only EEG information whose origin was estimated in the brain areas involved in the

generation of the error-related potentials. This filter played a crucial role in the analysis

as, while the grand averages showed that the most prominent activity was due to errors,

an r2 test revealed the presence of artefacts within subtasks of activity not associated

to the error-related potentials, but correlated to the erroneous/non-erroneous actions of

the device. This affected the intra-task feature extraction and classification process, in

such a way that the artefactual information helped to improve the ten-fold intra-task

classification (with information not related to the error-processing, i.e., artefacts) but

it did not generalize for other subtasks of the same task. For instance, when using

raw EEG data from the separated OT1 subtasks, the ten-fold classification accuracy

was 92.03%/82.86% for non-error and error potentials respectively, while using the

filtered EEG signal the accuracy was 89.38%/77.97%, respectively. However, when

generalization of the classifiers was tested on the other subtasks of OT1, the accuracy

of the raw EEG dropped a 17.00%/13.83% for error and non-error responses, while for

filtered data the decrease was only of 5.99%/5.58%.

The signal variations affected significantly the distributions of the features selected

for classification and the final performance of the trained classifiers. The quantitative

analysis (KL divergences) confirmed that the features differences were greater for

error than for non-error responses. When generalizing among operational tasks and

subtasks, there was a decrease in accuracy with respect to the baseline, which was

more pronounced in the inter-task than in the intra-task and more pronounced for error

potentials than for non-error potentials (the decrease was not always symmetric for error

and non-error potentials). Further studies might focus on understanding whether this

effect was either due to the error and non-error event-related activity, or dependent on

the experimental procedure (as the dataset presented an unbalanced number of examples

for each class).

Feature analysis and classification results depend on the type of features, which in

this study were computed based on a spatio-temporal filter that decorrelated signals to

maximize the difference between classes. A possible question that arises is whether such

feature extraction introduces differences with respect to the use of EEG amplitudes in

the selected channels and time windows, as it is a widespread procedure in these BCIs



Task-dependent signal variations in EEG error-related potentials for BCIs 16

Table 1. Inter-task accuracies (Mean ± std). Features comparison.

Ten-Fold OT1 Ten-Fold OT2

Features as in

[22, 28, 23]

Features used in

this work

Features as in

[22, 28, 23]

Features used in

this work

Non-error 90.91± 4.05 89.29± 4.62 86.21± 8.38 83.64± 9.67

Error 79.31± 4.95 78.00± 3.57 73.46± 7.42 72.96± 8.23

Train OT2 - Test OT1 Train OT1 - Test OT2

Features as in

[22, 28, 23]

Features used in

this work

Features as in

[22, 28, 23]

Features used in

this work

Non-error 84.43± 9.22 82.85± 10.11 91.72± 5.61 90.40± 6.25

Error 64.39± 11.89 65.56± 13.87 50.87± 15.84 51.42± 14.04

[22, 28, 23]. Table 1 compares the results obtained using both types of features computed

after filtering the EEG for the inter-task generalization (results of the intra-task study

were similar). The classification accuracies presented no significant differences neither

in the ten-fold baseline case nor in the generalization one, with only slight decreases

in the accuracies of around 1% when using the proposed features. Nonetheless, in

the performed experiments the proposed feature extraction presented an important

advantage over the use of EEG amplitudes in terms of calibration time. The use of

a lower number of features (an average of 25 features versus 312) reduces substantially

the dimensionality of the classifier’s hypothesis space, simplifying the learning process

and reducing the calibration time. On the contrary, for higher dimensional spaces (as

with EEG amplitudes with no feature selection) the calibration time is much higher and

adaptation pays off. Figure 7 displays, for the EEG amplitudes, the same comparison

between adaptation and calibration shown in figure 6 for the inter-task case. The

selection of a set of decorrelated features proposed herein reduces calibration time

considerably and achieves a better performance than adaptation in less than five minutes

(i.e., less than 100 examples).

In this study, the features were fixed and adaptation was performed only on the

classifier. The choice of a different set of features could help reduce the impact of signal

variations. For instance, several works have proposed feature extraction methods to find

time-invariant features to deal with time-dependent non-stationarities [5], which could

be extrapolated to find task-invariant features. However, this would require data from

multiple tasks, thus increasing the calibration effort for these BCIs. Other approaches

could be used to adapt the classifier to a new task without using labels (i.e., during

the device operation), for instance those based on a maximum likelihood estimation of

the distribution parameters [49] or on predicted labels [50]. Future work by the authors

will consider the possibility of combining both paradigms to jointly adapt the classifier

and the features for new tasks, as a way to increase the performance of BCIs for new

operational tasks while reducing or removing the calibration effort.
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Figure 7. Mean ± SEM classification (solid ± dashed lines) accuracies averaged for

all the subjects, for the baseline and adaptive classifiers across trials using the feature

extraction method as in [22, 28, 23], for the inter-task case.
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Table 2. Ten Fold and Inter/Intra-Task accuracies (%).

Ten-Fold OT1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 90.42 84.10 85.49 84.58 90.28 85.63 93.89 96.60 95.00 86.94 89.29 4.62

Error 73.61 75.00 78.89 74.44 78.61 74.72 83.89 81.67 81.67 77.50 78.00 3.57

Train OT2 - Test OT1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 96.11 87.15 66.94 74.38 84.24 84.72 90.21 95.35 79.79 69.58 82.85 10.11

Error 33.89 53.61 71.67 57.78 75.00 65.00 80.83 71.39 75.83 70.56 65.56 13.87

Ten-Fold OT2

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 90.00 88.65 73.65 67.71 92.40 84.17 93.54 94.69 75.00 76.56 83.64 9.67

Error 72.08 78.33 62.08 61.67 81.67 74.17 86.25 77.92 67.08 68.33 72.96 8.23

Train OT1 - Test OT2

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 94.17 83.02 80.00 87.92 93.85 94.69 95.10 98.13 93.54 83.54 90.40 6.25

Error 55.00 60.00 32.50 32.92 64.17 57.08 76.25 52.08 41.25 42.92 51.42 14.04

Ten-Fold OT1.i

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 91.46 87.64 83.47 84.44 91.11 81.11 94.24 96.46 94.79 89.03 89.38 5.18

Error 73.33 76.94 72.50 74.44 79.44 72.50 84.72 83.06 82.22 80.56 77.97 4.63

Train OT1.j - Test OT1.i

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 87.57 80.76 78.85 78.65 89.06 63.54 89.41 94.20 91.01 80.76 83.38 8.89

Error 73.06 68.75 70.28 67.36 76.39 61.25 79.31 78.33 76.67 72.50 72.39 5.63

Ten-Fold OT2.i

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 85.06 88.50 76.94 71.87 91.69 87.74 91.11 93.45 78.55 75.70 84.06 7.67

Error 72.95 78.96 69.00 58.41 74.88 77.06 82.29 78.51 64.43 66.76 72.33 7.52

Train OT2.j - Test OT2.i

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean std

Non-error 83.95 87.20 73.35 69.25 90.16 84.06 91.78 92.73 75.54 76.09 82.41 8.33

Error 68.60 68.57 59.34 56.91 74.28 67.45 80.30 74.16 56.26 58.96 66.48 8.33


