
Reversible Logic Synthesis via Biconditional Binary
Decision Diagrams

Anupam Chattopadhyay∗, Alessandro Littarru†, Luca Amarú‡, Pierre-Emmanuel Gaillardon‡, Giovanni De Micheli‡
∗School of Computer Engineering, NTU, Singapore (anupam@ntu.edu.sg)

†MPSoC Architectures Research Group, RWTH Aachen, Germany (aleciu@yahoo.it)
‡Integrated Systems Laboratory, EPFL, Lausanne, Switzerland (luca.amaru@epfl.ch)

Abstract—Reversible logic synthesis is an emerging research
area to aid the circuit implementation for multiple nano-scale
technologies with bounded fan-out. Due to the inherent com-
plexity of this problem, several heuristics are proposed in the
literature. Among those, reversible logic synthesis using decision
diagrams offers an attractive solution due to its scalability and
performance. In this paper, we exploit a novel, canonical, Bicon-
ditional Binary Decision Diagram (BBDD) for reversible logic
synthesis. Using BBDD, for multiple classes of Boolean functions,
superior circuit performance is achievable due to its compact
representation. We discuss theoretical and experimental studies in
comparison with state-of-the-art reversible logic synthesis based
on decision diagrams.

I. INTRODUCTION

The study of reversible logic has received significant re-
search attention over the last few decades since it was shown
that asymptotic zero power dissipation can be achieved by
reversible computation [1]. With diminishing returns in the
current semiconductor technology and increasing focus on
low-power computing, research on reversible logic synthesis
is being pursued with more emphasis than ever. Reversible
logic finds a wide range of applications in Quantum comput-
ing [2], optical computing [3] and nanotechnologies [4], where
unbounded fan out is not supported.

An n-input n-output Boolean function is reversible if it is
a bijection, that is, if each input vector can be mapped to
a unique output vector. It can be expressed as an n-input,
n-output bijection or alternatively, as a Boolean permutation
function over the truth value set {0, 1, . . . 2n−1}. An irre-
versible Boolean function firr : {0, 1}n → {0, 1}m with
n ̸= m can also be made reversible with the help of extra
constant-initialized input lines termed as ancilla.

A. Reversible Logic Gates

Reversible Boolean logic synthesis is the mapping of a
Boolean function to a set of reversible logic gates [9]. The
gates are characterized by their implementation cost in quan-
tum technologies, which is dubbed as Quantum Cost (QC).
Prominent reversible logic gates are, NOT(A) = a; CNOT(a, b)
= (a, a ⊕ b), which can be generalized with Tofn gate with
first n− 1 variables acting as control lines and Fred(a, b, c) =
(a, ab + ac, ac + ab), which can be generalized with Fredn
gate (n > 1), with first n − 2 variables as control lines.
Multiple sets of reversible gates form universal gate library

for realizing classical Boolean functions, such as, NCT (NOT,
CNOT, Toffoli) and NCTSF (NOT, CNOT, Toffoli, SWAP,
Fredkin).

B. Reversible Logic Synthesis

Several reversible logic synthesis methods have been pro-
posed in the literature. Quantum computing being one of the
prime target technologies for reversible circuit implementa-
tions, there have been several methods proposed for syn-
thesizing Quantum logic circuits, i.e, unitary transformations
on complex-valued circuits [19]. However, classical Boolean
functions do also appear heavily in Quantum algorithms as
well as in other applications of reversible logic. The focus of
this paper is limited to the synthesis techniques of classical
Boolean functions. Such techniques can be grossly classified
based on the type of algorithm deployed (e.g., optimal, heuris-
tic) or the type of intermediate representation (e.g., truth-table,
decision diagram).

Optimal Methods: Due to the complexity of reversible
logic synthesis [5], optimal synthesis methods fail to produce
reversible circuits for Boolean functions with large number
of variables [7]. Up to 6-variable, depth-limited, optimal
reversible circuits could be synthesized using SAT-based ap-
proach [8].

Heuristic Methods Heuristic methods for reversible logic
synthesis can be classified according to the internal data-
structure of the Boolean function. Several methods rely on the
Exclusive Sum-of-Product (ESOP) form of the Boolean func-
tion [10], while a set of methods use repeated transformations
on the Boolean function truth-table for performing reversible
logic synthesis [12].

Methods based on Binary Decision Diagram Wille and
Drechsler proposed reversible logic synthesis based on Binary
Decision Diagrams (BDD) in [20]. The initial results are
promising in terms of the large Boolean functions a BDD-
based synthesis method could handle. The effects of BDD
optimizations on the quality of synthesized reversible circuit
are studied in [21]. The general observation was that BDD-
based reversible logic synthesis method incurs a large number
of ancilla lines compared to the other heuristic methods,
while achieving low QC. A technique of isomorphic subgraph
matching was presented to BDD-based reversible logic syn-
thesis for reducing the ancilla count in [23]. Recently, Soeken

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148010158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

et al [18] proposed ancilla-free reversible logic synthesis
using BDDs. There, an earlier truth-table-based synthesis
approach using Young subgroups is extended to use BDD
as the representative structure. The key idea is to utilize
characteristic function representation in BDD structures. The
technique provides good scalability and reduced QC compared
to [6]. However, the QC values still remain significantly
higher than BDD-based synthesis techniques, where ancilla
is supported [17]. Thus, ancilla-free BDD-based reversible
logic synthesis remains scalable with very high QC and on
the other hand, earlier BDD-based methods attempt to reduce
ancilla without compromising QC. The work presented in this
paper adds to the body of research on exploring new decision
diagrams for reversible logic synthesis.

C. Motivation and Contribution

BDD-based reversible logic synthesis is clearly advan-
tageous due to its scalability for large Boolean functions.
Naturally, this scalability advantage is applicable to the general
class of Decision Diagrams [14]. Despite that, little progress
has been made w.r.t. the study of diverse types of Decision Di-
agrams towards their applicability in reversible logic synthesis,
although the effect of optimizations and variable ordering in
BDD-based synthesis methods have been explored [21], [11].

In this paper, we propose reversible logic synthesis based on
another canonical representation of Boolean function, known
as Biconditional Binary Decision Diagram (BBDD) [24]. This
complements the state-of-the-art in the sense that, almost all
BDD-based synthesis techniques can be ported to BBDDs with
potential gain in implementation/runtime efficiency.

II. BBDD-BASED SYNTHESIS METHOD

The biconditional expansion of a Boolean function is de-
fined as following. Here, x1 and x2 are denoted as Primary
Variable (PV) and Secondary Variable (SV) respectively.

f(x1, x2, · · · , xn) = (x1 ⊕ x2) · f(x′
2, x2, · · · , xn)

+ (x1 ⊙ x2) · f(x2, x2, · · · , xn)
(1)

Based on this expansion1, the BBDD is proposed as a Directed
Acyclic Graph (DAG) that is uniquely identified by its root, the
set of internal nodes, the set of edges and the 1/0-sink nodes.
Each internal node in a BBDD is labeled by two Boolean
variables: v, the Primary Variable (PV), and w, the Secondary
Variable (SV), and has two outgoing edges labeled PV ̸=
SV and PV = SV . In [24], several reductions of BBDD
are shown. Under these reductions and a particular variable
ordering, BBDD is canonical. By utilizing the reductions and
multiple heuristic optimizations, BBDD manipulation package
is able to achieve significantly reduced node count compared
to BDD.

Synthesis of decision diagram representation to a reversible
circuit essentially depends on two phases. First, the optimiza-
tion of decision diagrams geared towards efficient reversible
circuit generation [21], [11]. Second, node-wise mapping to a

1⊙ stands for exclusive-nor operator

set of reversible gates. In this paper, we focus on the node-
wise mapping strategies and rely on the default optimization
techniques for node-count minimization.

Fig. 1. Background: Mapping of BDD Node w/ Ancilla

A. Mapping of BDD Nodes

For a BDD node, different reversible circuit mapping with
elementary 1-QC reversible gates are presented in [20]. It is
important to note that, there are multiple possible mappings,
in which the inputs are not necessarily preserved. Correspond-
ingly, these result in different ancilla/gate-count/QC.

For a BDD with shared nodes, the reversible circuit real-
ization in Figure 1 is required. This preserves all the initial
nodes, while realizing the target function f in a separate ancilla
line. Figure 1 shows a circuit based on Tofn gates as well as
a circuit using 1-QC reversible logic gates. The QC of the
Toffoli circuit is 10 and the QC of the optimized circuit is 8.
In [20], [23], [21], authors reported both the gate count and
QC. Hereafter, we report only the QC as the implementations
based on Toffoli networks are clearly inferior in terms of QC.

Fig. 2. Reversible Circuit for BDD Node: w/ Ancilla, One node shared

More efficient mapping to reversible circuit can be achieved
in case of BDD nodes with children leading to a terminal
value. Separate consideration has to be given for mapping
BDD nodes with complemented edges. These cases are dealt
with in [20], [21]. In Table I, the QC and ancilla count for these
cases, as reported in the previous literature, are summarized.
In addition, few new scenarios are mentioned in this table,

2

which are not covered earlier. These are shown graphically
in Figure 2. It is trivial to extend that with another ancilla
line, resulting in a QC of 7 when both the children nodes are
shared. The non-terminal values of f0 and f1 are indicated by
g0 and/or g1 respectively.

Value Shared f0 Uncomplemented f0 Complemented
f0 f1 f0 f1 Ancilla QC Ancilla QC

g0 g1

X X 1 8 1 8
X X 2 7 - -
X × 1 6 1 7
× X 1 6 1 7
× × 0 5 0 6

g0 g0
X X - - 1 2
× × - - 0 2

0 g1
× X 1 5 1 5
× × 1 5 1 5

1 g1
× X 1 5 1 5
× × 1 5 1 5

g0 0
X × 1 5 1 5
× × 1 5 1 5

g0 1
X × 1 5 1 5
× × 1 5 1 5

0 1 × × 1 1 - -
1 0 × × 1 1 - -

TABLE I
QC, ANCILLA COUNT FOR MAPPING OF BDD NODES

B. Mapping of BBDD Nodes

On the basis of a range of mapping options for a BDD node,
a simple extension is sufficient for mapping of a BBDD node.
This is shown graphically in Figure 3. The additional CNOT
gates used for this mapping are marked in gray. Essentially,
the value of (xi ⊕ xj) is stored temporarily in the position
of xj , which is recovered at the end. Similarly, corresponding
mappings for all variations of BDD node-wise mappings are
possible with the introduction of additional 2 QC per node.
Note that, both the BDD and BBDD node-wise mappings use
the same number of ancilla lines.

Fig. 3. Reversible Circuit for BBDD Node

Let us define the QC for a BDD node and BBDD as
QCBDD and QCBBDD respectively. The ratio of these values
denotes node-mapping efficiency. This can be expressed as the

node-level Ratio of QC or RQCnode.

RQCnode =
QCBDD

QCBBDD
=

QCBDD

QCBDD + 2
(2)

Considering at least one non-terminal child node, this ratio
ranges between 4

5 and 5
7 , which corresponds to entries from

row 1 and row 5 in Table I respectively. We will use RQCnode

later in section III for deriving analytical performance advan-
tage of BBDD.

C. Optimizations
The two additional CNOT gates introduced for BBDD

node mapping can be further optimized with two strategies.
First, one may schedule the computations of (xi ⊕ xj) in
synchronization with the mapping of BBDD nodes such that,
the uncomputing of xi ⊕ xj can be deferred. This will allow
saving of 1 QC for the BBDD nodes, which share the same
input conditions. Second, it is also possible to compute all the
conditions for BBDD nodes in advance. This will introduce
an xor-plane driving the rest of the computation. With this,
RQCnode becomes 1. However, this introduces ancilla lines
and incurs a fixed QC overhead as shown below.

Lemma 1. An n-variable xor-plane for X =
{x1, x2, · · · , xn} computing Y = {xi ⊕ xj , ∀xi, xj ∈
X : i ̸= j} requires 1 ancilla/garbage line and a QC of
(n− 1)

2.

Proof: Consider x1. This needs to have ⊕ operation with
(n − 1) elements. We create (n − 2) new copies of all the
variables {x3, · · · , xn}. These copy operations require (n−2)
1-QC CNOT gates. Another (n− 2) CNOT gates with x1 as
control and the newly created lines as target generates (n−2)
linear functions. For the remaining function, dealing with x1,
i.e., (x1 ⊕ x2), x1 is used as the target line. Hence, x1 needs
(n− 2) extra lines and 2(n− 2) + 1 QC. This procedure can
be repeated till xn−2, which requires 1 additional line and
2 QC. Finally, xn−1 requires a QC of 1, due to xn−1 ⊕ xn

operated directly there. The total number of lines introduced
is, therefore,

∑n−2
i=1 i, i.e.

(
n−1
2

)
. For each of these lines, a QC

of 2 is required. For n− 1 lines from {x1, · · · , xn−1}, a QC
of 1 is required. By summing this up, we get the QC result.
Now considering the total number of

(
n
2

)
functions that

we need to generate, additional lines for storing the output
required is

(
n
2

)
− n = n2−3n

2 . Considering the new lines
introduced in the procedure, we have

(
n−1
2

)
− n2−3n

2 = 1
ancilla/garbage line.

The synthesis algorithm proceeds as following. First, the
BBDD for a given function is generated. Then, from the root
node, a breadth-first traversal is done. For each node, the
corresponding mapping as outlined in the Table I is chosen
with the goal of minimizing overall QC. At each step, sharing
of control functions between neighboring nodes within a user-
controllable edge distance is explored.

III. ANALYTICAL COMPARISON

In this section, we analytically compare the worst-case QC
of a BBDD against that of a BDD. This is done using the

3

following equation

RQCnode ×
NodeBDD

NodeBBDD
(3)

A general result for arbitrary Boolean function is out of scope
for the current paper. We focus on the existing worst-case
bounds and provide new worst-case bounds for symmetric
Boolean functions in the following. For all the comparisons,
under the same ancilla value for BDD and BBDD, two
different values of RQCnode namely, 4

5 and 5
7 are considered.

A. Majority and Adder Functions

We present two theorems on BBDD node complexity (for
proofs, please refer to [24]). The QC values as computed from
Equation 3 are plotted against the increasing variable counts.

Theorem 1. A BBDD for the majority function of n (odd)
variables has 1

4 (n
2 + 7) nodes [24].

The corresponding BDD has ⌈n
2 ⌉(n − ⌈n

2 ⌉ + 1) + 1
nodes [25]. Considering n odd, this bound is 1

4 (n
2 +2n+5).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 20 30 40 50 60 70 80

Q
u

a
n

tu
m

 C
o

s
t

U
p

p
e

r
B

o
u

n
d

Variable Count

BDD(5/7)
BBDD(5/7)

BDD(4/5)
BBDD(4/5)

Fig. 4. QC Bound for n-bit Majority, n odd

Theorem 2. A BBDD for the n-bit binary adder func-
tion has 3n + 1 nodes when the variable order π =
(an−1, bn−1, an−2, bn−2, · · · , a0, b0) is imposed[24].

Corresponding BDD has 5n+ 2 nodes [25].
It can be observed from Figures 4 and 5 that, while for

adder the BBDD representation provides an improved QC
compared to the BDD, for the majority function the BDD
representation fares better.

Remark: From the aforementioned analysis, it can be de-
duced that utilization of xor-plane (lemma 1) is useful only
when the node count for BDD and BBDD is in the order of
nk, k > 2. In the experiments reported in the current paper,
we have not used this lemma.

B. Symmetric Functions

Symmetric functions are an important class of Boolean
functions, of which AND, OR, Majority and Threshold (a.k.a.
Voting) functions are various subclasses. Symmetric functions
are used in arithmetic and cryptographic applications [27].

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50

Q
u

a
n

tu
m

 C
o

s
t

U
p

p
e

r
B

o
u

n
d

Variable Count

BDD(5/7)
BBDD(5/7)

BDD(4/5)
BBDD(4/5)

Fig. 5. QC Bound for n-bit Adder

An n-variable Boolean function f{x1, x2, · · · , xn} is called
totally symmetric or symmetric iff the function output is
unchanged for any permutation of the input variables. This
property leads to the characterization of a symmetric function
only in terms of the Hamming weight of its input variables.
In other words, an n-variable symmetric function can be
described as a (n+1)-bit vector, where index of the bit-vector
corresponds to a specific Hamming weight. If that index value
is true, then the function evaluates to true for that particular
Hamming weight. For example, a 7-input Majority function
has corresponding representation as 00001111.

In order to determine the BBDD complexity for symmet-
ric functions, we first introduce the definitions of Hamming
Weight Set and Hamming Weight Tree for a BBDD.

Definition 3. Every edge of a BDD or BBDD can be char-
acterized with a set of possible Hamming weights, that the
target child node can assume. This is called Hamming Weight
Set (HWS).

Definition 4. A BDD or BBDD, when fully characterized with
HWS for each of its edges, is called a Hamming Weight Tree
(HWT).

For an edge eij , connecting nodes vi → vj , the HWS is
denoted as HWSij . Here we list a few properties for HWS
and HWT for BBDDs, without proofs, which are trivial.

• 1 ≤ |HWSij | ≤ 2
• If vj is a terminal node, |HWSij | = 1
• For continuously connected ̸=-edges, |HWSij | = 1

A 2-member HWS for eij is always ordered as per the
assumed node values of vi, i.e., HWS(k) stores the value
corresponding to vi = k, k ∈ 0, 1. Note that, the value of the
nodes in a HWT are dictated by the incident = or ̸=-edges.

Since each biconditional decomposition reduces the variable
count by 1 and introducing 2 new BBDD nodes, worst-case
BBDD node count is O(2n), which is of the same order of
worst-case node complexity for BDD. However, the bi-variate
decomposition pattern leads to more compact representation
in some cases.

4

Lemma 5. If a BBDD node vi has an outgoing ̸=-edge with
|HWSij | = 1, vj does not require the PV or SV from vi for
the HWT construction.

Proof: SV of vi is typically used as the PV of vj during
BBDD construction. If |HWSij | = 1 then, a ̸=-edge starting
from vi indicates that the PV and SV of vi differ by 1.
This always increases the Hamming weight by 1. For HWT
construction, it is not important to know which of PV and SV
assumed which value. Hence, vj can skip PV and SV.

Definition 6. HWSij = HWSmn iff |HWSij | = |HWSmn|
and ∀t,HWSij(t) = HWSmn(t), t = 0, · · · , |HWSmn|

Lemma 7. Two BBDD nodes v1 and v2 are equivalent in a
HWT, iff both the nodes have same PV, SV and HWSi1 =
HWSj2, i ̸= j.

Proof: For Hamming weight computation, two nodes are
equivalent if those lead to the same sub-tree for Hamming
weight computation under different variations of = and ̸=-
edges. If two nodes share the same PV and SV and if they
start from the same HWS for the incident edges, the sub-tree
would be same.

It is evident that two BBDD nodes cannot be equivalent if
they share the same immediate parent node.

Fig. 6. HWT for Symm(6)

Theorem 8. An n-variable symmetric function can be repre-
sented using BBDD with 1

2 (n
2+3) nodes, when n is odd and

with 1
2 (n

2 + 1) nodes, when n is even.

Proof: We show the proof for n even only. The HWT
for a 6-variable symmetric function is shown in the Figure 6,
where edges to the terminal node are skipped for simplicity.
For the =-edges, at most after one child node, it is always
possible to find an equivalent BBDD node, that is existent in
the tree created by ̸=-eges. Furthermore, one may skip nodes
in the tree created by ̸=-edges as per Lemma 5. This gives us
a linear non-homogeneous recurrence relation as Equation 4.

Sym(n) = Sym(n− 2) + n+ n− 2 (4)

where the initial conditions are Sym(2) = 3 and Sym(3) = 6.
Deriving the closed form solution of the above equation proves
the theorem.

BDD representation of a symmetric function has been
studied in [26]. There, a symmetric function is defined as
Symm(n, k), where the function assumes the value of 1 iff
the number of 1s in the input is exactly k(k = 0, 1, 2, · · · , n).
The node count, considering one sink node is determined to
be { (k+1)(k+2)

2 + 1}. For k = (n− 1), this is 1
2 (n

2 + n+ 2).
For Symmetric functions, the relative order of complexity

between BDD and BBDD is similar to that of Majority
function. Thus, for reversible circuit implementation BBDD
does not provide any assured performance edge over BDD, as
far as the canonical structures are concerned.

IV. EXPERIMENTAL RESULTS

For our experiments, the BBDD package, available on-
line [22], is extended with optimization and backend flow
for mapping to reversible logic circuits. In addition to the
basic BBDD package, this constituted roughly 4K lines of
C code. The reversible benchmark functions, obtained from
RevLib [13], are processed with this flow to generate reversible
circuits and associated performance values. Correctness of the
generated BBDD circuits are verified via equivalence check.
QC calculation follows the cost model from [15] to compare
against the results of [20].

The experiments are done on a AMD Phenom™II X6 1055T
2800 MHz processor running a Scientific Linux Release 6.5
with 8 GB RAM. Table II reports the results in terms of QC,
lines and runtime. The runtime of the synthesis for different
benchmark shows that BBDD-based synthesis scales well for
large benchmarks.

The results provide a complete perspective of the efficacy of
BBDD against BDD. Out of 26 benchmarks functions studied,
20 reported improved QC and 13 reported improvement in
QC as well as line count. As expected from the theoretical
observations, for adder functionality, e.g., mini − alu 84,
BBDD provides better line count as well as QC. For Sym-
metric functions (sym6 63, sym9 71), the improvement for
BBDD-based flow is more than expected, possibly due to
the better heuristics for optimizing such functions in BBDD,
compared to BDD. For several benchmark functions, BDDs
provide significantly better results. A closer study reveals that
these benchmark functions, e.g., plus63mod4096 79 contain
major contribution from non-linear sub-circuits, which are
represented in more compact form in BDD. That translates
to better performance of BDD-based synthesis. Interestingly,
for functions computing Hamming distance, hidden-weighted
Boolean functions and constant-operand modulo additions, the
share of linear component diminishes with increasing variable
count. This is also reflected in the performance figures. Note
that, the improvement of synthesis results are irrespective of
circuit size, e.g., e64 reports an improved QC and line count.
Nevertheless, for large benchmarks, failure to report general
improvements can be partly attributed to the immaturity of the
BBDD package w.r.t. BDD.

5

Benchmark BDD [20] BBDD Improvement (%)
Name I/O Line QC Runtime (in seconds) Line QC Runtime (in seconds) Line QC
4mod5 8 4/1 7 24 < 0.01 6 10 0.01 14.28 58.33
decod24 10 2/4 6 27 < 0.01 6 23 0.02 0 14.81
mini-alu 84 4/2 10 60 < 0.01 8 42 0.03 20.00 30.00
alu 9 5/1 7 29 0.01 7 25 0.02 0 13.79
rd53 68 5/3 13 98 < 0.01 13 81 0.03 0 17.34
mod5adder 66 6/6 32 292 < 0.01 32 269 0.05 0 7.76
rd73 69 7/3 13 217 < 0.01 15 117 0.04 -15.38 46.08
rd84 70 8/4 34 304 < 0.01 31 256 0.04 8.82 15.79
sym6 63 6/1 14 93 < 0.01 11 49 0.02 21.43 47.31
sym9 71 9/1 27 206 < 0.01 22 124 0.06 18.52 39.81
cycle10 2 61 12/12 39 202 0.09 25 183 0.03 35.89 9.41
cordic 23/2 52 325 0.06 50 222 0.02 3.84 31.69
bw 5/28 87 943 0.11 78 645 0.03 10.35 31.60
apex2 39/3 498 5922 0.24 744 5242 9.30 -49.39 11.48
seq 41/35 1617 19632 1.14 2440 18366 27.78 -50.89 6.45
spla 16/46 489 5925 0.10 788 5315 1.16 -61.15 10.30
ex5p 8/63 206 1843 0.24 251 1682 1.1 -21.85 8.74
e64 65/65 195 907 0.04 192 826 1.14 1.54 8.93
ham7 29 7/7 21 141 < 0.01 18 153 0.03 14.29 -8.51
ham15 30 15/15 45 309 0.25 43 573 0.06 4.44 -85.44
hwb5 13 5/5 28 276 0.01 30 238 0.02 -7.14 13.77
hwb6 14 6/6 46 507 < 0.01 49 488 0.06 -6.52 3.75
hwb7 15 7/7 73 909 < 0.01 102 978 0.12 -39.73 -7.59
hwb8 64 8/8 112 1461 0.01 189 1831 0.35 -68.75 -25.33
plus63mod4096 79 12/12 23 89 0.08 28 186 0.16 -21.74 -108.99
plus127mod8192 78 13/13 25 98 0.21 31 210 0.02 -24.00 -114.28

TABLE II
BENCHMARKING BBDD AGAINST BDD

V. SUMMARY AND OUTLOOK

In this paper, we proposed synthesis of reversible logic
circuits via BBDD. The mapping is explored from a theoretical
viewpoint, including the analysis of BBDD complexity for var-
ious Boolean functions. Clearly, the representation of Boolean
functions play a major role in the achievable performance.
While determining circuit-specific representation is hard, it is
worthwhile to explore synthesis via a hybrid, adaptable data-
structure. This is something that we plan to address in future.

REFERENCES

[1] C. H. Bennett, “Logical reversibility of computation,” in IBM Journal of
Research and Development, vol. 17, no. 6, pp. 525–532, 1973.

[2] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation, Cambridge Univ. Press, 2000.

[3] R. Cuykendall and D. R. Andersen, “Reversible optical computing
circuits,” in Optics Letters, vol. 12, no. 7, pp. 542–544, 1987.

[4] R. C. Merkle, “Reversible electronic logic using switches,” in Nanotech-
nology, vol. 4, pp. 21–40, 1993.

[5] A. Chattopadhyay, C. Chandak and K. Chakraborty, “Complexity
Analysis of Reversible Logic Synthesis,” in CoRR abs/1402.0491,
http://arxiv.org/abs/1402.0491, 2014.

[6] Miller, D. M., Thornton, M. A., “QMDD: A decision diagram structure
for reversible and quantum circuits,” in International Symposium on
Multiple-Valued Logic, Vol. 36. p. 30., 2006

[7] O. Golubitsky, S. M. Falconer and D. Maslov, “Synthesis of the optimal
4-bit reversible circuits,” in Proceedings of DAC, pp. 653–656, 2010.

[8] D. Grosse, R. Wille, G. W. Dueck and R. Drechsler, “Exact multiple-
control Toffoli network synthesis with SAT techniques,” in IEEE
TCAD,vol. 28, issue 5,May 2009.

[9] A. Barenco et al., “Elementary gates for Quantum Computation,” in
Physical Review, 1995.

[10] Y. Sanaee and G. W. Dueck, “ESOP-Based Toffoli Network Generation
with Transformations,” in Proceedings of the ISMVL, pp. 276–281, 2010.

[11] David Y. Feinstein and Mitchell A. Thornton, “On the Guidance of
Reversible Logic Synthesis by Dynamic Variable Reordering,” in Pro-
ceedings of ISMVL, 2009, doi=10.1109/ISMVL.2009.31

[12] D. Maslov, G. W. Dueck and D. M. Miller, “Toffoli network synthesis
with templates,” in IEEE TCAD, vol. 24, issue 6, pp. 807–817, 2005.

[13] R. Wille, D. Grosse, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An Online Resource for Reversible Functions and Reversible Circuits,”
in 38th International Symposium on Multiple Valued Logic, pp. 220–225,
2008. RevLib is available at http://www.revlib.org.

[14] R. Drechsler and R. Wille, “Synthesis of Reversible Circuits Using Deci-
sion Diagrams,” in Electronic System Design (ISED), 2012 International
Symposium on, pp.1–5, 2012 doi: 10.1109/ISED.2012.37

[15] D. Maslov, “Reversible Benchmarks,” http://webhome.cs.uvic.ca/
∼dmaslov/definitions.html, last accessed October, 2014.

[16] M. Soeken, S. Frehse, R. Wille and R. Drechsler, “RevKit: A Toolkit
for Reversible Circuit Design,” in Workshop on Reversible Computation,
2010.

[17] M. Soeken, R. Wille, C. Hilken, N. Przigoda and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,”
in Design Automation Conference (ASP-DAC), pp.85–92, 2012, doi:
10.1109/ASPDAC.2012.6165069

[18] M. Soeken, L. Tague, G. W. Dueck and R. Drechsler, “Ancilla-free
synthesis of large reversible functions using binary decision diagrams,”
in CoRR abs/1408.3955, http://arxiv.org/abs/1408.3955, 2014.

[19] M. Amy, D. Maslov, M. Mosca and M. Roetteler,“A Meet-in-the-
Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Cir-
cuits,” in IEEE TCAD, vol. 32, no. 6, pp. 818–830, June 2013, doi:
10.1109/TCAD.2013.2244643

[20] R. Wille and R. Drechsler, “BDD-based Synthesis of Reversible Logic
for Large Functions,” in Proceedings of DAC, pp. 270–275, 2009.

[21] R. Wille and R. Drechsler, “Effect of BDD Optimization on Synthesis
of Reversible and Quantum Logic,” in Electronic Notes in Theoretical
Computer Science, vol. 253, no. 6, pp. 57–70, March 2010.

[22] L. Amarú, “BBDD package,” http:// lsi.epfl.ch/BBDD, last accessed
October, 2014.

[23] M. Krishna and A. Chattopadhyay, “Efficient Reversible Logic Synthesis
via Isomorphic Subgraph Matching,” in Proceedings of the ISMVL, 2014.

[24] L. Amarú, P.-E. Gaillardon and G. De Micheli, “Biconditional BDD: a
novel canonical BDD for logic synthesis targeting XOR-rich circuits,” in
Proceedings of the Conference on Design, Automation and Test in Europe
(DATE ’13), pp. 1014–1017, 2013.

[25] I. Wegener, “Branching Programs and Binary Decision Diagrams: The-
ory and Applications,” SIAM, 2000.

[26] T. Sasao, “Optimization of Multiple-valued AND-EXOR Expressions
using Multiple-Place Decision Diagrams,” in Proceedings of ISMVL,
(May 1992), pp. 451–458.

[27] A. Canteaut and M. Videau, “Symmetric Boolean functions,” in IEEE
Transactions on Information Theory, 2004, pp. 2791–2811.

6

