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Abstract

Privacy is defined as the right to control, edit, manage, and delete information about
oneself and decide when, how, and to what extent this information is communicated to
others. Therefore, every person should ideally be empowered to manage and protect his
own data, individually and independently of others. This assumption, however, barely
holds in practice, because people are by nature biologically and socially interconnected.
An individual’s identity is essentially determined at the biological and social levels. First,
a person is biologically determined by his DNA, his genes, that fully encode his physical
characteristics. Second, human beings are social animals, with a strong need to create
ties and interact with their peers. Interdependence is present at both levels. At the
biological level, interdependence stems from genetic inheritance. At the social level,
interdependence emerges from social ties. In this thesis, we investigate whether, in
today’s highly connected world, individual privacy is in fact achievable, or if it is almost
impossible due to the inherent interdependence between people.

First, we study interdependent privacy risks at the social level, focusing on online
social networks (OSNs), the digital counterpart of our social lives. We show that, even if
an OSN user carefully tunes his privacy settings in order to not be present in any search
directory, it is possible for an adversary to find him by using publicly visible attributes of
other OSN users. We demonstrate that, in OSNs where privacy settings are not aligned
between users and where some users reveal a (even limited) set of attributes, it is almost
impossible for a specific user to hide in the crowd. Our navigation attack complements
existing work on inference attacks in OSNs by showing how we can efficiently find targeted
profiles in OSNs, which is a necessary precondition for any targeted attack. Our attack
also demonstrates the threat on OSN-membership privacy.

Second, we investigate upcoming interdependent privacy risks at the biological level.
More precisely, due to the recent drop in costs of genome sequencing, an increasing num-
ber of people are having their genomes sequenced and share them online and/or with
third parties for various purposes. However, familial genetic dependencies induce indi-
rect genomic privacy risks for the relatives of the individuals who share their genomes.
We propose a probabilistic framework that relies upon graphical models and Bayesian
inference in order to formally quantify genomic privacy risks. Then, we study the inter-
play between rational family members with potentially conflicting interests regarding the
storage security and disclosure of their genomic data. We consider both purely selfish and
altruistic behaviors, and we make use of multi-agent influence diagrams to efficiently de-
rive equilibria in the general case where more than two relatives interact with each other.
We also propose an obfuscation mechanism in order to reconcile utility with privacy in
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genomics, in the context where all family members are cooperative and care about each
other’s privacy.

Third, we study privacy-enhancing systems, such as anonymity networks, where users
do not damage other users’ privacy but are actually needed in order to protect privacy.
In this context, we show how incentives based on virtual currency can be used and their
amount optimized in order to foster cooperation between users and eventually improve
everyone’s privacy. We derive our analytical findings by relying upon Markov chains,
game theory, and Markov decision processes. This last part demonstrates that other
people can also play a beneficial role in privacy.

We conclude that the quest for online privacy is chimerical because of the lack of in-
dividual control over data. As a consequence, unless cooperation between people quickly
expands, we should consider that online privacy is steadily vanishing, and start designing
novel mechanisms for the upcoming post-privacy era. We should finally redefine privacy,
which is, beyond an individual right, now part of the commons.

Keywords : interdependent privacy, genomic privacy, online social networks (OSNs),
incentives, cooperation, Bayesian inference, graphical models, obfuscation mechanism,
game theory, Markov chains, Markov decision processes, multi-agent influence diagrams



Résumé

La protection de la vie privée est définie comme le droit de controler, d’éditer, de gérer,
et d’effacer I'information nous concernant, ainsi que de décider quand, comment, et dans
quelle mesure cette information peut étre communiquée a des tiers. Par conséquent,
chaque individu devrait idéalement avoir les moyens de gérer et de protéger ses propres
données, individuellement et indépendamment des autres. Cependant, cette hypothése
n’est que peu valable en pratique, car nous sommes par nature interconnectés biologique-
ment et socialement. Or, notre identité est essentiellement déterminée par nos spheres
biologique et social. Premiérement, un individu est déterminé par son ADN, ses genes,
qui codent entierement ses caractéristiques physiques. Deuxiemement, I'homme est un
animal social, avec un besoin profond de créer des liens et d’interagir avec ses sem-
blables. Nous sommes interdépendants a ces deux niveaux de notre identité. Au niveau
biologique, 'interdépendance est le résultat de notre héritage génétique. Au niveau so-
cial, 'interdépendance est liée a nos liens sociaux. Dans cette theése, nous étudions si,
dans notre monde hyperconnecté, la protection de la vie privée est possible individu-
ellement, ou si ceci est rendu quasi impossible par l'interdépendance inhérente & notre
humanité.

Tout d’abord, nous étudions les risques de confidentialité liés a notre interdépendance
au niveau social, en se focalisant sur les réseaux sociaux en ligne (comme Facebook), qui
sont la projection numérique de notre vie sociale. Nous montrons que, méme si un
utilisateur définit avec soin ses parametres de confidentialité afin de ne pas étre présent
dans I'annuaire de recherche, il est possible pour un attaquant de le retrouver en utilisant
les attributs des autres utilisateurs accessibles publiquement. Nous démontrons que,
dans les réseaux sociaux ou les réglages de confidentialités ne sont pas similaires entre les
utilisateurs et ol certains utilisateurs révelent un ensemble d’attributs (méme restreint),
il est pratiquement impossible pour un utilisateur spécifique de se cacher dans la masse
des utilisateurs. Notre attaque de navigation complémente les travaux existants sur les
attaques d’inférence dans les réseaux sociaux, en montrant comment 1’on peut trouver
efficacement des profils cibles dans les réseaux sociaux, ce qui est une condition nécessaire
a n’importe quelle attaque ciblée. Notre attaque démontre également la menace qui pese
sur la confidentialité de I'adhésion a un réseau social.

Deuxiémement, nous examinons les risques de confidentialité liés & notre in-
terdépendance au niveau biologique. En particulier, grace a la baisse rapide des cotits de
séquencage du génome, un nombre croissant d’'individus font séquencer leur génome et
le partagent en ligne et/ou avec des tiers. Cependant, les dépendances génétiques famil-
iales entrainent des risques indirects pour la confidentialité des données génomiques des
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membres d’une famille dont certains individus partagent leurs propres génomes. Nous
proposons un modele probabiliste qui s’appuie sur les modeles graphiques et I'inférence
bayésienne pour quantifier formellement les risques liés aux données génomiques. Ensuite,
nous étudions 'interaction entre des agents rationnels appartenant & une méme famille,
avec des intéréts potentiellement contradictoires concernant la sécurité et le partage des
données génomiques. Nous considérons a la fois des comportements égoiste et altruiste,
et utilisons des diagrammes d’influence multi-agents afin de calculer efficacement des
équilibres dans le cas général ou plus de deux membres d’une méme famille intéragissent
entre eux. Nous proposons également un mécanisme de brouillage afin de réconcilier
I'utilité avec la protection des données génomiques, dans un contexte ou tous les membres
de la famille sont coopératifs et se soucient de la confidentialité des données génomiques
des autres membres.

Troisiemement, nous étudions des systemes de protection de la vie privée, comme
les réseaux anonymes, ou les autres utilisateurs ne nuisent pas notre vie privée mais
sont au contraire nécessaires a la protection de cette vie privée. Dans ce contexte, nous
montrons comment des incitations basées sur une monnaie virtuelle peuvent étre utilisées
et leur quantité optimisée afin d’encourager la coopération entre les utilisateurs et en fin
de compte améliorer 'anonymat de tous les utilisateurs. Nous obtenons nos résultats
analytiques en nous appuyant sur des chaines de Markov, de la théorie des jeux, ainsi
que sur des processus de décision markoviens. Cette derniere partie démontre que les
autres individus peuvent aussi jouer un role positif dans la protection de la vie privée.

En conclusion, nous estimons que la quéte de la confidentialité en ligne est une chimere
a cause du manque de controle individuel sur les données personnelles. Par conséquent,
a moins que la coopération entre les individus ne se développe rapidement, nous de-
vrions considérer que la confidentialité en ligne est en train de disparaitre, et devrions
commencer & concevoir de nouveaux mécanismes pour 1’ére post-confidentialité a venir.
Nous devrions finalement redéfinir (le droit &) la vie privée, qui est désormais, au-dela
d’un droit individuel, partie intégrante de nos biens communs.

Mots-Clés : interdépendance dans la protection des données, protection des données
génomiques, réseaux sociaux en ligne, incitations, coopération, inférence bayésienne,
modeles graphiques, mécanisme de brouillage, théorie des jeux, chaines de Markov, pro-
cessus de décision markoviens, diagrammes d’influence multi-agents
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Chapter 1

Introduction

Since its popularization in the 1990s, the Internet has dramatically changed the world
we live in. Among various benefits, the Web has enabled decentralized information and
communication on a large scale, thus diminishing censorship and control over public
opinion by political or economic powers. The Arab Spring of 2011 is certainly the best
example of the positive impact of the Internet on free speech, civic rights, political
freedom and democracy. Social media, such as Facebook or Twitter, were instrumental in
the organization of the protests, and in the dissemination of information. The other side
of this digital revolution is in the new forms of surveillance and control it enables. Billions
of dollars are invested by surveillance agencies in both democratic and authoritarian
regimes to intercept and analyze communication data, and in some countries, to censor
political or religious content. Increasing computing and storage capabilities enable global
data mining and lead to perpetual electronic surveillance.

Surveillance, however, is at odds with privacy, a fundamental human right recog-
nized by the Swiss Federal Constitution (article 13), by the European Convention on
Human Rights (article 8), and by the Universal Declaration of Human Rights (article
12). In many aspects, privacy (including anonymity) is a condition for democracy, as
it is essential to the preservation of freedom of speech. The protection of sources in
journalism also ultimately relies upon privacy and anonymity. Recent revelations about
mass surveillance by Western government agencies have shed light on the right to pri-
vacy, generating intense debate about the limits of this right and the balance between
privacy and (national) security. These revelations also highlight the privacy risks caused
by trading our data off in return for free services, such as Web search, e-mails, or social
media. We should keep in mind that by doing so, we, as Internet users, are also, and
perhaps primarily, fuelling the current immense privacy erosion.

By the number of their users and the scale of deliberate data disclosure, online social
networks (OSNs) are probably the most relevant example illustrating this phenomenon.
By providing their billion users with platforms for sharing their pictures, videos, inter-
ests, political views, emotions, and other intimate data, online social networks fulfill the
human need for social recognition, gratification and publicity. Social media especially
encourage data over-sharing, as their business model essentially relies on targeted adver-
tising, thus users’ data. But this trend seriously threatens users’ privacy. First, according
to revelations about the PRISM program, companies such as Facebook and Google per-
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2 CHAPTER 1. INTRODUCTION

mit U.S. and British intelligence to directly tap into their central servers to track foreign
targets [I]. Second, government agencies of authoritarian regimes, even though they do
not have direct access to the OSNs’ servers, also exploit OSNs to infiltrate protesters’ so-
cial networks. Indeed, several Syrian activists reported having been arrested and forced
to reveal their Facebook passwords [141]. Third, recruiters are known to look up OSN
profiles of job applicants, potentially leading to hiring discriminations. Some employers
and colleges even request the Facebook passwords of job applicants and students in order
to get full access to their profiles [156].

Following the over-sharing behavior driven by OSNs, some people have started pub-
licly disclosing their most intimate biological data, i.e. their genetic data. With the help
of rapidly developing technology, the cost of DNA sequencing has dramatically decreased.
This has allowed the availability and use of genomic data in research, healthcare, law
enforcement, and recreational applications. Moreover, individuals can now obtain the
sequencing of a significant part of their DNA (genotype) for less than $100 via direct-
to-consumer genetic testing. These individuals can then use this genomic data to learn
about their ancestries, their predispositions to diseases, and even their (genetic) compati-
bilities with potential partners. Following the trend exemplified by online social networks,
some individuals bring the disclosure of personal data to new heights, by revealing their
genomic data on genome-sharing websites (such as OpenSNP [2] or Personal Genome
Project [3]). Today, there are already thousands of genotypes available online, and this
number continues to increase. The sharing of genomic data might be seen as more benev-
olent than the egocentric storytelling of OSNSE but this does not at all diminish the huge
privacy risks inherent to this very sensitive information.

First of all, as genomic data carries information about our predisposition to diseases
and physical traits, it can be used to infer future physical conditions. As a consequence,
access to this data can potentially lead to serious discriminations in health insurance, life
insurance, or mortgages. Furthermore, genomic data could also be used to discriminate
people in their work, sports, and eventually in their whole life ambitions, as very well
portrayed by the 1997 movie Gattaca. Moreover, as it also carries information about
kinship, genomic data can lead to familial nightmares, for instance, divorce caused by
the discovery of illegitimate offspring [5]. Last but not least, as DNA bears detailed
information about our ethnicity and ancestries, it could be leveraged by racist move-
ments to discriminate people based on their genetic origins. We should definitely not
underestimate this risk, which is of low likelihood, but whose effect would be of extreme
magnitude. The European tragedy of the Holocaust should remind us that ethnic dif-
ferences can be exploited for evil ends. We can also imagine how the systematic racial
segregation could have been even worsened if detailed genetic profiles had fallen into
the hands of Nazi authorities [6]. Such tragedies could occur again, against any ethnic
minority, especially with the rise of far-right parties and hate ideas in today’s Europe.
Our duty is to limit the risk of such systematic segregation by preventing the leakage
and dissemination of genomic data.

Following Alan Westin’s definition [I71], privacy is the right to control, edit, man-
age, and delete information about oneself and decide when, how, and to what extent
information is communicated to others. Therefore, each person should be empowered to
manage and preserve his own privacy, individually and independently of others. How-

LA recent survey showed that the first motivation of individuals who publicly share their genotypes
was to help research [4].



ever, there are many online activities where the privacy attitudes of others matter as
much as our own. The best example is probably e-mail service providers that have most
of our e-mails, even if we do not use these e-mail providers ourselves [7]. Unfortunately,
at both social and biological levels of our lives, which together determine our identity,
there exist mutual privacy risks. At the social level, interdependence emerges from our
social ties, our friends, acquaintances or colleagues. Consequently, by their behavior in
OSNs, they can reveal information about us that we cannot control. At the biological
level, interdependence is inherent to genetic inheritance that relates our genome to those
of our family members. Interdependence is an integral part of mankind, and privacy is
no exception.

In this thesis, we investigate how these interdependent risks affect our privacy at
both of the aforementioned levels of lives; we also propose countermeasures and solutions
to mitigate indirect threats caused by others. We conclude this thesis with the study
of privacy-enhancing systems where others, instead of damaging our own privacy, are
actually needed to preserve it, thus demonstrating that interdependence can also be
beneficial to privacy.

Contributions

In this thesis, we explore the problem of interdependent privacy risks and protec-
tion in today’s highly connected world. We primarily study mutual privacy risks
incurred by individuals who are, by nature, biologically and socially interconnected. We
also propose solutions that eventually all require some degree of cooperation among in-
dividuals. Finally, we demonstrate how others can play a positive role for individuals’
privacy when appropriate incentives are put in place.

Our contributions are as follows:

1. We study interdependent privacy risks in online social networks. We propose a
navigation privacy attack, where an external adversary exploits the public social
links and public attributes of users to find a target user. We describe a search
algorithm that, in order to efficiently navigate towards target users, relies upon
geographical attributes as well as occupation attributes. Our results show that the
majority of users of two prominent OSNs can be found with our algorithm. This
study complements the existing work on inference attacks in OSNs by showing that
an OSN user cannot hide simply by excluding himself from a central directory or
search function, even in a network with more than one billion users. Our findings
also demonstrate that with the current privacy policies of most OSNs there is
no OSN-membership privacy; for instance, the Syrian activists or job applicants
mentioned above would have no chance of denying the existence of their OSN
accounts. We suggest countermeasures that could easily be implemented by OSN
operators in order to prevent this uncontrollable loss of privacy.

2. Considering the emergence of direct-to-consumer genetic testing and the resulting
increasing use of genomic data for various purposes, we tackle the novel problem of
genomic privacy. The first step in this endeavor is to formally measure the threats.
To this end, we propose a probabilistic framework that relies upon Bayesian in-
ference to quantify the genomic privacy and health privacy risks, including those
induced by a person’s relatives. We show that interdependence within a family



4 CHAPTER 1. INTRODUCTION

can have a serious impact on the family members’ privacy levels. We illustrate the
significance of the threat by carrying out a cross-website attack, using OSNs as a
side channel to gather kinship information. Moreover, in the context of personal
genomics, we study the interactions between relatives with different interests and
behaviors regarding the storage security and sharing of their genomic data. We
consider only purely selfish relatives who are willing to maximize only their own
utility. We extend the game-theoretic framework to also take into account the al-
truistic behavior that can stem from familial ties. We also propose to rely upon
multi-agent influence diagrams in order to efficiently predict equilibrium behav-
iors in the general scenario where more than two family members interact with
each other. Finally, we develop a genomic-privacy preserving mechanism based on
obfuscation that allows individuals to share (part of) their genomic data, while
preserving some of the genomic privacy of their relatives. We emphasize that this
is possible only if the family members care about each other, thus would cooperate
with each other.

3. To end on a positive note, we study cooperative privacy-enhancing technologies
where others do not compromise our privacy but actually help improve it. There
are plenty of such systems where we need to rely upon our peers to protect our
privacy. Indeed, one of the current most popular privacy-enhancing tools (Tor [56])
is based on the cooperation of others. The cost of cooperation causes a lack of such
benevolent agents, which remains one of the main issues in Tor. We suggest that
monetary incentives could be put in place in order to foster cooperation of more
users in anonymity networks and in other privacy-enhancing systems. Under this
assumption, we study the optimal amount of virtual money needed to maximize
the efficiency of the system. To achieve this goal, we propose a scrip system model,
which notably enables us to demonstrate that threshold strategies lead to a stable
equilibrium. We evaluate the effect of various parameters on the optimal amount
of money. Finally, we apply our analytical findings to real-world applications, such
as anonymity networks. This part of the thesis demonstrates that our novel scrip
system can help improve fairness and efficiency of cooperative privacy-enhancing
systems via well-designed monetary incentives.

Thesis Outline

Following the three main areas of contributions described above, this thesis contains
three parts. Part I discusses the interdependent privacy risks in online social networks.
In particular, we show in Chapter 2] how any external adversary can find target users by
exploiting publicly revealed information and misaligned privacy settings of OSN users.
In Part II, we study interdependent privacy in the genomic context. In Chapter [3] we
focus on the quantification of genomic privacy risks inherent to kinship. In Chapter
we analyze the interplay between family members with non-cooperative behaviors in the
genomic-privacy context. In Chapter [5] we describe a genomic-privacy preserving mech-
anism that relies upon some degree of cooperation between relatives. In Part III, we
study systems where interdependence can be beneficial for privacy. In Chapter [6] in par-
ticular, we investigate how incentives can be optimized in order to encourage cooperative



behavior in mutual privacy protection, thus eventually maximizing fairness and efficiency
of the privacy-enhancing systems.

Publications

Chapter [2] is an extended version of [94]. Chapter |3|is an extension of [89], whereas
Chapter [4|is based on the results of [01]. Chapter [5|contains the findings of [90]. Finally,
Chapter [6] rests on the results of [93].






Part 1

Interdependent Privacy in Online
Social Networks






Chapter 2

Navigating around Privacy in Online
Social Networks

2.1 Introduction

Over the last few years, online social networks (OSNs) have revolutionized the way people
behave and interact with each other over the Internet. OSNs enable the majority of users
to not just be passive consumers of the Web, but to become active producers of content,
and to be storytellers of their own lives for the first time online. The other side of the coin
is that privacy breaches are intrinsically bound to OSNs, and new forms of surveillance
and control have emerged with OSNs. Recruiters are now known to look up Facebook
profiles of job applicants, and hiring discrimination based on OSNs has become a serious
threat [19][66]. Some employers and colleges even request the Facebook passwords of job
applicants and student athletes in order to get full access to their profiles [I56]. OSNs
have also been exploited by government agencies of authoritarian regimes to infiltrate
protesters’ social networks. Several Syrian activists have notably reported having been
arrested and forced to reveal their Facebook passwords [I41]. These practices are only
the tip of the iceberg of privacy erosion caused by OSNs.

The first, straightforward method for finding an individual in an online social network
is to rely on a central directory, if available. Obviously, a user u trying to keep his profile
private would opt not to be listed in such a directory or, if this privacy option is not
availableﬂ make use of a pseudonym. The second method to reach w is to rely on the
social links between users and to navigate via these links towards u. This approach works
if some of u’s friends show their friend lists publicly (thereby exposing «), which is the
default setting in most OSNs.

In order to find a hidden user, an attacker could search the whole public social graph.
However, such an exhaustive search, despite guaranteeing to find any user in the giant
componentﬂ would certainly be too expensive for OSNs that contain hundreds of millions
users, notably because of the anti-crawling features deployed by virtually all OSNs. To

ISince the end of 2012, Facebook does not allow its members to remove themselves from the search
directory, even though this is considered to be an important privacy setting [75].

2This holds if the search starts from the giant component and the target is in this component too.
This is a fair assumption for current OSNs; for example, in 2011, researchers found that 99.91% of users
belonged to the giant component in Facebook [164].

9



10 CHAPTER 2. NAVIGATING AROUND PRIVACY IN ONLINE SOCIAL NETWORKS

reduce the search cost, the attacker can decide to crawl only a targeted subset of OSN
users. In this chapter, we evaluate the feasibility of such an attack for large networks
and ultimately answer the following question: Is it possible to find a target profile by
navigating a small fraction of the whole network, by relying on public attributes of
queried profiles? Answering this question is crucial for privacy, because reaching the
target profile or its neighborhood is the mecessary precondition for any targeted attack
such as the inference of hidden attributes (e.g., political or religious views) through other
personal attributes [45] [130], or through friends’ public attributes [115] [135] [654].

To the best of our knowledge, this is the first work proposing to make use of social
links between users to find a target profile in an OSN. Our navigation attack is generic in
order to apply to any attribute-enhanced OSN (such as Facebook, Google+, or Twitter).
We propose a search algorithm that relies on a space of attributes and distance heuristics
based on A* search [83]. The categories of attributes and their priorities can be adapted
to any kind of OSN. We show how the attack can be efficiently carried out, given the
OSN visibility and privacy policies, and the users’ privacy choices, by implementing it
in the two largest OSNs, Facebook and Google+. For this OSN; building upon results
on navigation and routing in social networks, the attack first relies on geographical
attributes only, making use of additional types of attributes (such as education or work)
as soon as it reaches the target’s city. Our results demonstrate that 66.5% of Facebook
users are findable by crawling a median number of users smaller than 400, and 59% of
Google+ users are findable by crawling a median number of users small than 300. This
shows that it is very difficult to hide in an OSN, however large it is, and thus to prevent
targeted attacks and/or to deny the existence of a profile. Moreover, targets’ cities are
reached in 92% and 93.5% of the cases by crawling a median number of 13 and 8 users, in
Facebook and Google+, respectively. This shows the efficiency of geographic navigation
in Facebook and Google+. We propose two main explanations for the failed cases. First,
the targets least likely to be discovered are those who have a small number of friends,
or have privacy-cautious friends (not revealing too much information), or friends whose
revealed information is not similar to their own information. Second, users living in
larger cities tend to be harder to discover than others, especially in Facebook. Whereas
the latter reason is inherent to the structure of the OSN and to the limit we impose
on the number of crawled users, the former is essentially due to the privacy settings of
the targets’ friends and the OSN dynamics. Our results demonstrate that homophily
in social networks [I31} 25] does not only allow to infer hidden attributes of OSN users
locally, but also allows to efficiently navigate toward the target. Note that we do not
assume any prior knowledge on the network structure and the users’ distribution in the
network. Moreover, by starting the navigation from a random user in the network, we
consider the worst-case scenario for the attacker, and provide a lower-bound on the attack
efficiency. It is clear that the use of advanced search filters or source users closer to the
target can only further benefit the attacker. We briefly show how this can dramatically
reduce the search cost. Finally, we show that simple countermeasures exist and could be
implemented directly by the OSN operators.

2.2 Model

OSN Model Online social networks can be described as social links between online users
who own a personal profile. Formally, an OSN can be defined as a graph G = (V, E),
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O User with public social links

. L @ User with private social links
= Public social link

Private social link @ Target (with private social links)

Figure 2.1: OSN model. The target keeps his social links private, but two of his neighbors
make these links public.

where the vertex set, V, represents the set of usersEl and F, the edge set, their social
links. Each user u € V is endowed with a set of attributes A,, that is a subset of the set A
of the available attributes (gender, birthdate, education, city, ...). OSNs with symmetric
social links requiring mutual consent, such as Facebook or LinkedIn, can be modeled
as undirected graphs, whereas OSNs with asymmetric social links, such as Twitter or
Google+, can be represented as directed graphsEl

In most OSNs, users can decide to what extent and with whom they share information
by appropriately tuning their privacy settings. For instance, in Facebook users can reveal
personal attributes to friends only, to friends of friends, or to everyone in the OSN. The
same settings are generally available for their list of social links. Embedding users’ privacy
settings on their social links into the original social graph G induces a directed public
subgraph D, where directed edges are those whose tail vertices have publicly available
social links. Formally, D = (V, Ey), with E; = {(u,v)|(u,v) € E,T'(u) # &}, where I'(u)
represents the out-neighbors of u € D. Note that we make the conservative assumption
that all privacy settings except the public one (e.g., everyone in Facebook) are private
(e.g., friends, friends of friends), as we cannot access the information if we are not part
of a user’s close neighborhood. Figure shows a simple example of an OSN with 22
users, among which 7 have private social links.

Adversary Model The attacker can be any external curious entity that wants to collect
data or infer information about a target ¢t. We assume that the attacker controls at least
one node and can thus have access to information publicly visible in the OSN. In order
to reach his target, the attacker will search the public subgraph D, relying on all public

3In the rest of the chapter, we will alternatively write user, node or vertezx to refer to a member of
the OSN.

4Note that Facebook now also allows asymmetric social links, by enabling users to become subscribers
of other users.
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social links and other public personal attributes (such as place of residence and work,
educational affiliations, hobbies, etc.). We assume this attacker to have prior knowledge
on the values of a subset A} of t’s personal attributes, that he will use to navigate towards
the target. As the attacker will reach the target through the target’s social links (friends,
friends of friends, ...), he will also discover at least one friend of the target, which can be
useful for friend-based inference attacks [135] [54] [I73]. Finally, note that the attacker we
consider in this work is passive, in that he does not subvert any user account or interact
with other OSN users, e.g., to create social ties with them.

2.3 Approach

We present here our navigation attack and algorithm. This attack is generic in order
to apply to any attribute-enhanced OSN. We suppose that the attacker cannot rely on
any search directory to find the target or to jump towards any user close to the target
and that the navigation’s starting point is randomly selected. This helps us evaluate the
feasibility of a navigation attack in the worst-case scenario, and provide an upper-bound
on the number of nodes that need to be crawled before reaching a target in general. In
Subsec. we nevertheless show how the attacker can take advantage of search filters
to quicken the navigation.

In the generic scenario, the attacker navigates from user to user through public so-
cial links, until he reaches the target. He makes an informed decision about the next
user to visit by relying on information publicly revealed by users at each hop towards
the target and on his prior knowledge about the target. Whereas in Milgram’s experi-
ment [133] every participant in the chain could rely on his own local information about
his acquaintances to make a decision about the next user to select, the attacker here
relies on global information bounded by the attributes publicly revealed by users on the
path. Our navigation attack is represented by Algorithm [T} called TargetedCrawler. This
generic algorithm relies on a heuristic model inspired by A* search [83].

The TargetedCrawler’s inputs are (i) the source user s, from which the attacker will
start crawling, (ii) the target user ¢ that he has to reach, (iii) a subset of the target’s
attributes A; C A; known a priori by the attacker, (iv) the distance functions for each
attribute, and (v) the priority of the attributes. The priorities depend essentially on
the OSN and on the prior knowledge about the target’s attributes. For instance, we
will give higher priority to profession or workplace attributes in job-oriented OSNs (such
as LinkedIn), to interests in microblogging OSNs (like Twitter), or to geographical at-
tributes for mobile OSNs. The highest- and lowest-priority attributes will be represented
as A and AN, respectively. The algorithm outputs t’s profile and the shortest discovered
path from s to t.

The total estimated cost ¢, (line 13) from the source to the target at some node u on
the path is divided into (i) the cost from the source to u, dnop(s,u) (hop distance), and
the estimated remaining cost from u to the target, dyem(u,t), that is expressed as

kndn (Al ADY if (A7, AT =0Vj < h
drem(u, )_{ h h( w? t) 1 J( w? t) 0 J < (21)

N\ kds (AL A}l)  otherwise

where dj (A", AM) is the distance function between users u and ¢ in the attribute h
(attribute with At priority). The distance functions can be represented by (i) binary
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Algorithm 1: TargetedCrawler

1: F < s % Initializing the frontier with the source user

2: £ + @ % The explored set is initially empty

3: repeat

4. if F = @ then

5: Failure

6: else

7 Select the user u* € F with the lowest estimated cost to the target ¢ and
remove it from F

8: E+—u*

9: if ¢t € T'(u*) then

10: Return ¢’s profile and the path from s to ¢

11: else

12: for all u € I'(u*) do

13: Cu = dhop(s, u) + drem (u, t)

14: if u¢ F AND u ¢ £ then

15: F <+ (u,cy)

16: else if u € F AND ¢, < 24 then

17: ol = ¢,

18: Replace the former parent of u by u*

19: until ¢ reached

values (e.g., 0 or 1 for last names), (ii) real values (e.g., difference for ages, or geographical
distance for locations), or (iii) integers based on hierarchical decompositions (e.g., half the
tree distance for tree-based hierarchies). kj, is a normalization parameter translating the
attribute distance into a hop distance. kj, should decrease with h, as the more attributes
we share, the closer to each other we should be. With dep,, the targeted crawler will
reach a user sharing the same first-priority attribute as the target before considering the
second-priority attribute, then reach a user sharing a second-priority attribute before
considering the third-priority attribute, and so on. We conjecture that OSN users share
certain categories of attributes more than others (depending on the OSN) and that these
attributes affect the way users cluster on different OSNs. Thus, in order to increase the
search efficiency, we prioritize different categories of attributes depending on the type of

OSN.

2.4 Experiments

As the current largest OSN (1.1 billion users as of March 2013), Facebook is the most
representative candidate for evaluating our attack. Moreover, its privacy policies are no-
toriously designed to encourage public disclosure: the default policy for many important
user attributes is everybody, i.e., full public Visibility We also implemented our attack
in Google+ in order to validate our findings in Facebook. This OSN is now the second
largest OSN after Facebook [169] and shares many privacy features with Facebook. It
also reveals the users’ social links by default but, contrary to Facebook, allows users to
be not searchable by name.

5As of this writing, this is the case for the following attributes: current city, hometown, sexual
orientation, friend list, relationship status, family, education, work, activities, as well as music, books,
movies, and the sports users like.
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2.4.1 Implementation in Facebook and Google+

Gathering Source-Target Pairs Before beginning the navigation attack, we had to collect
source users from which to start and target users to be reached. We chose to select
pairs of users that would act both as source and as target to further evaluate the paths’
symmetry. In order to have representative and meaningful results, we wanted to avoid
sampling biases as much as possible. Unfortunately, as Facebook and Google+ IDs are
encoded over 64 bits, there is a very small probability that a randomly generated ID
corresponds to an existing profile.

For this reason, we decided to sample on the Facebook directory to gather source
and target profiles, as in [45]. The Facebook directoryﬂ has a tree structure, and profiles
are sorted in first-name alphabetical order. The first layer of the tree is divided into
Latin characters and non-Latin characters. Then, all subsequent layers are divided by
alphabetical order into at most 120 subcategories until the fifth layer where we can
actually select users’ profiles. At each layer of the directory tree, we randomly selected
one branch, until we reached the last layer, where we randomly selected one profile.
Unfortunately, Google+ does not provide such a public directory. Thus, we decided
to sample source and target users by relying on a random walk method. Our method
starts by walking through 50 different profiles in order to reach a random profile in the
network. Once we have reached this profile, we select a node with probability inversely
proportional to its (bidirectional) degree to be added to the source-target set. This
probability compensates the random walk bias towards high degree nodes [73]. Finally,
we retain only profiles with at least two publicly accessible attributes, assuming these
to be part of the attacker’s prior knowledgeEI Note that we repeat the random walk
through 50 profiles for each new node that we add into the source-target set. We discuss
selection bias and the representativeness of our target set in Subsection [2.4.2

Navigating in Facebook and Google+ Because of the very limited Facebook API, we had
to implement our own crawler of users’ friend lists. With the standard HTTP request
to access the friend list, Facebook provides only the first 60 friends of a user. Then,
it dynamically provides the rest of the friends if the Web user scrolls down the friend
list’s page. While the user is scrolling down, his Web browser actually sends an Ajax
request to get the subsequent 60 friends in the friend list. The server replies in about
2 seconds with a JSON (JavaScript Object Notation) object that contains the next 60
friends in the list. We parsed the list of user IDs of each JSON object, as well as the
additional piece of information (if any) provided right below each friend’s name that
would be used for the navigation. We also implemented our own crawler for Google—+.
We could get both all outgoing and incoming social links with only two HTTP requests.
Both requests returned a JSON object with the social links’ profiles (names), and some
attributes (including location, employer, education, profile picture) also useful for the
navigation.

Several lessons can be learned from previous work on navigation in social networks:
(i) Geography and occupation are the two most crucial dimensions in choosing the next
hop in a chain [I10]; (ii) geography tends to dominate in early stages of routing [58]; (iii)
adding non-geographic dimensions once the chain has reached a point geographically

Shttp://www.facebook.com/directory
7This does not mean that a target without any publicly available attributes could not be found. We
need this information here to replace the prior knowledge the attacker is assumed to have.
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close to the target can make the routing more efficient [162] [I70]; and (iv) seeking hubs
(highly connected users) seems to be effective in some experiments [162] 23] and to have
limited effect in others [568]. As Facebook and Google+ share many properties with
real social networks, we incorporate these findings into our navigation attack in order
to maximize its efficiency. We select location (current city or hometown) as the first-
priority attribute in Algorithm |1} and education, employer/workplace, and last name as
second-priority attributes. We make this choice also because of the OSN structure and
design. All aforementioned attributes are those most publicly shared by the Facebook and
Google+ users. Location (current city or hometown), education and work are publicly
revealed by around 35%, 30%, and 25% of the Facebook users, respectively [45] [78]. In
Google+, location, education, and employer are publicly shared by 26%, 27%, and 21%
of the users, respectively [I29]. Moreover, these attributes are directly available from the
social links” JSON objects, allowing us to not crawl all friends’ profiles individually, and
thus dramatically decreasing the number of HT'TP requests and crawling time.

We propose to rely on two different types of distance function to evaluate the similarity
between two locations. The first metric is computed as half the tree distance where the
tree is defined by a discrete geographical hierarchy: dq (AL, A}) is equal to 3, 2, 1, or 0,
if user u shares a continent, a country, a region/state or a city, respectively, with the
target t. di(AL, A}) = 4 if u and t are from different continents. The second distance
metric relies on the real geographical distances between two locations and d; (AL, A}) is
then defined as

di (A, A}) = max(0, log(dgeo (u, t) /) (2.2)

where the logarithm is base-10, dgeo is the great-circle distance (in km), and « is a
normalization constant set to 1 km. We notice that this distance is very close to the
discrete-hierarchy distance (first metric). In order to infer detailed geographical informa-
tion from any location attribute, we relied on GeoName&ﬁ7 a Web service with a database
containing over 10 million geographical names. More precisely, we used GeoNames (i) to
find the region, country and continent associated with a city in the first distance metric
and (ii) to compute the distance between two locations in the second metric. k; is set to
2 to get a maximal (theoretical) hop distance of around 8.

We give all non-geographical attributes (education, workplace and last name) second,
thus same, priority. We make these design choices mainly because we can only access
a single attribute in the Facebook users’ friend lists (below each friend’s name). These
structural constraints, imposed by the OSN architecture, lead us to trade off some of
Algorithm 1’s steps against efficiency. Moreover, we make use of a binary distance
function for these second-priority attributes (0 if two attributes match, 1 otherwise)
because (i) we believe it is more efficient to directly select users based on whether they
share the same attribute with the target once we have reached the same city, and (ii)
it is particularly complex to build more elaborate distance functions for last names,
employers, high schools or universities. ko can be set to any number strictly smaller than
2; we chose ko = 1.

For simplicity, we verify whether we have reached the target profile by checking his
ID or alias, which both uniquely identify users. An attacker who is not supposed to
know such identifiers will have to check the target’s first and last names that, in addition
to the location, should uniquely identify most of the people. In case there are multiple

8http://www.geonames.org/
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Figure 2.2: Empirical complementary cumulative distributions of (a) the targets’ city
sizes, and (b) the targets’ degrees.

matching targets, the attacker could, for instance, just check the profile pictures of these
few potential targets in order to select the correct target. Facial recognition could be
further used to automatize the targets’ check for targets making use of pseudonymsﬂ

2.4.2 Dataset Description

We ran our experiments on Facebook from April to November 2012, discontinuously and
not too intensively. In this way, we avoided overloading the system and our crawler
had a behavior similar to an energetic human user. Despite this, we attempted to reach
200 targets, collecting approximately 393k different friend lists, 197 million social links,
and 138 million public user attributes. We also targeted 200 different users in Google+,
during Spring 2013, collecting 398k friend lists and 139 million social links. For the
Google+ crawler, we took similar precautions as for Facebook.

In both Facebook and Google+, we gathered targets in 42 different countries, spread
over all continents. North America encompasses 33.5% of the targets in Facebook and
44% in Google+, Asia 26% in Facebook and 31% in Google+, Europe 18% and 15%,
South America 13.5% and 8%, Africa 7.5% and 1%, and Oceania 1.5% and 1%. The
continent distribution is quite close to the actual distribution of users’ continents, ex-
cept for North America that is a bit over-represented with respect to Europe and Asia.
Regarding the countries, USA represents 26% of the targets in Facebook, followed by
Indonesia, Brazil, and India, with 9.5%, 8.5%, and 8%, respectively. Almost the same
sequence appears in Google+, with USA representing 38% of the targets, India 13%,
Brazil 4%, and Indonesia 4%.

Regarding the targets’ cities, we can notice in Figure that the populations’
distributions of Facebook and Google+ follow a similar shape, Google+’s targets living in
cities with a bit more inhabitants in general. The average and the median city populations
are equal to 870k and 233k, respectively, in Facebook, and to 2.6M and 440k, respectively,
in Google—+.

Regarding the targets’ degrees (friends’ or social links’ numbers), we clearly notice
a phase transition in the degree distribution (Figure in Facebook, which is very

9Face recognition has been shown to be very accurate and efficient for subject re-identification in
OSNs [22].
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Table 2.1: Success rates and numbers of crawled nodes for all continents.

Facebook Google+

Continent | % success \ # nodes: mean | median | % succ. \ mean \ med.
North Am. 71.6 1,065 467 67.1 668 272
Asia 51.9 1,061 658 49.2 565 179
Europe 86.1 513 144 53.3 348 72
South Am. 59.3 1,275 445 56.3 667 628
Africa 60 1,500 1,608 67 805 100
Oceania 66.7 2,270 553 100 92 14

similar to the one shown in [164]. Moreover, the average target has 291 friends, which is
fairly close to the global average which was around 278 in April 2012 according to [82].
The targets’ degree distribution is more scattered in Google+, with more targets having
degrees smaller than 100 and greater than 1000. The median number of social links is
equal to 71, smaller than Facebook, but its average is 424, greater than Facebook. It
is hard to link these numbers with other studies, as Google+ is a recent OSN known
to be evolving rapidly [129]. The geographical distance between sources and targets is
quite uniformly distributed between 450 km (shortest distance) and 18,962 km (longest
distance) in Facebook, and between 285 km and 15,814 km in Google+.

2.5 Results

In this section, we will first exhibit the results of our generic navigation attack, showing
its success rate and efficiency. We will also provide some explanations for the failed cases.
We will then mention how, by using some search filters, we can drastically reduce the
crawling effort.

2.5.1 General Results

Our objective is not to launch a brute-force attack by crawling millions of nodes, which
would demand a lot of resources. We rather aim to develop an algorithm that can reach
a specific target in the network in a limited amount of time. For this reason, we decide
to stop the attack after a certain number of crawled nodes, even if the frontier F is not
empty. We choose a limit of 4,000 users, which already takes about 14 hours in Facebook
(much slower than in Google+). We assume this is the maximum bearable time for an
attacker attempting to reach someone in Facebook, and we keep the same limit with
Google+, for consistency. Despite this limit, our attack successfully reaches its target in
66.5% of the cases in Facebook, and 59% of the cases in Google+. Using the Clopper-
Pearson interval in order to evaluate the confidence interval for this success rate, we
find that 95% of the users are reachable with a success rate in the intervals [59.5%, 73%]
and [52%, 66%)] for Facebook and Google+, respectively. The Clopper-Pearson interval
is an exact method for calculating binomial confidence intervals. However, it is quite
conservative, thus the intervals above might be wider than what it needs to be in order to
achieve 95% confidence. Table shows the success rates, average and median numbers
of crawled nodes, for each continent.

We notice that the North American targets are reached quite successfully in both
OSNs, whereas reaching Asian users are more challenging to reach. We also note that
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Figure 2.3: Success rates with respect to (a) the target’s city size, and (b) his number
of friends. We made use of the Clopper-Pearson method to compute the 95% confidence
intervals.

European targets are reached very successfully in Facebook but not in Google+. Figure
helps us understand these discrepancies. In particular, Figure shows that the
success rate drops with the size of the target’s city in Facebook but not with Google—+.
We note in Figure that the success rate increases with the target’s number of
friends, especially in Google+. Lower success rates in Facebook can be explained by
comparing the average numbers of inhabitants for the different continents. We find that
European and North American city populations have averages way below 1M (217k and
449k, respectively), whereas Asia, South America and Africa have average city sizes
close to or above 1M (925k, 1.83M, and 2.46M, respectively). This lower success rate
is certainly due to the fact that, in large cities, our algorithm has to crawl more nodes
in order to cover all the users living in these cities. Our 4,000-node limit is certainly
too low for such cities. However, this does not seem to explain the difference in success
rates in Google+. This is probably due to the fact that Google+ being more recent
and smaller than Facebook, there are less people publicizing the same city, thus less
people to potentially crawl. What seems to have the highest impact on the success rate
in Google+ is the number of friends of the targets. For instance, the median number
of friends in Europe is equal to 33, where it is equal to 81 in North America. This
is certainly due to the fact that the young age of Google+, and smaller adoption by
European users. Note that there is no significant effect of the distance between sources
and targets on the success rate. This shows that it is possible to efficiently navigate
through large geographical distances in Facebook. We must also mention that source
users have no effect on the success rate: all crawls successfully navigate out of the source
neighborhood, and the large majority of them (92% in Facebook and 93.5% in Google+)
reach the target’s city.

We evaluate the nodes’ efficiency by looking at the number of nodes crawled during
our searches. Crawling a node in our experiment means crawling his friend list, not
his personal profile. On average, 983 and 591 nodes needed to be crawled before a
target could be reached, in Facebook and Google+, respectively. Half of the targets were
attained in 380 and 291 or few nodes in Facebook and Google+, respectively. European
targets were especially rapidly reached, after 513 and 348 nodes on average, half of the
targets being found after less than 144 and 72 crawled nodes in Facebook and Google+,
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Figure 2.4: (a) Empirical CCDF of the number of crawled nodes in successful cases, (b)
number of crawled nodes with respect to the target’s city size (number of inhabitants).

respectively. We see in Figure that the number of crawled nodes is (positively)
correlated to the target’s city size. This is again due to the fact that more nodes will be
seen in larger cities, thus reaching the target after a higher expected number of crawled
nodes. It also tells us that the failures to reach European targets is not due to the city
size but rather to the low number of neighbors. Moreover, for all failed and successful
cases, on average 44 and 28 nodes had to be crawled before reaching a user in the target’s
city, and half of the searches found a user living in the target’s city in less than 13 and
8 crawled nodes, in Facebook and Google+, respectively. This shows that our search
algorithm makes use of long-range social links to efficiently reach the target’s city, and
that the most challenging part of the search is the navigation within the target’s city,
when we have to narrow down the search using second-priority attributes.

The target’s neighborhood also has a huge impact on how easy this target can be
reached. Some targets have only a few friends revealing their friend lists and who display
information similar to the target’s information. These targets have less chance of being
reached. For instance, around 6.5% of the targets have no friends who publicly reveal
their friend list and display information similar to the target’s. Due to their privacy-
cautious friends, these targets are obviously impossible to reach with our attack. Table
demonstrates the importance, for the success of the attack, of similar attributes being
publicly shared by the target’s friends. The difference between the median number of
attributes (city, or other information) of successful and unsuccessful cases is very signifi-
cant, especially in Google+. Furthermore, the median amount of attributes revealed by
friends of non-reached targets is quite low. This leads us to conclude that, in addition to
the size of the city, the amount of attributes revealed by the target’s friends is crucial to
the attack success. Whereas the influence of the city size is inherent to the OSN structure
and to the 4,000-node limit that we impose, the influence of the target’s friends is due
to the OSN users and their privacy behaviors. Some users might also just have arrived
in their current city, thus not have many friends yet in this city. They might also have
education and work attributes that are not geographically correlated to their location,
thus not be of great help for our attack. In order to improve the attack performance, we
could target more than one cities when needed, e.g., the target’s current city, hometown,
and the city where he studied.

From each subgraph crawled during a successful attack, we reconstructed the shortest
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Table 2.2: Number of similar attributes publicly revealed by the target’s friends with
public friend lists.

Facebook Google+
Success Failure Success Failure
Average | Median | Ave. | Med. | Ave. | Med. | Ave. | Med.
City 17 12 8 3 282 45 22 6
Other infos 14.4 7 9.1 3 4 0 0.7 0
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Figure 2.5: (a) Histograms of the shortest discovered path lengths within the crawled
subgraphs, and (b) evolutions of the information types used to navigate towards the
target (information types shared by users on the shortest paths).

discovered path from the source to the target. Figure [2.5(a)| illustrates the distribution
of the shortest discovered path lengths. We notice that it goes from 4 to 18 hops in
Facebook, most of shortest paths being between 9 and 11-hops long. This is approxi-
mately twice the distance found in [35] with the knowledge of the complete social graph.
The shortest paths are between 3 and 11 hops in Google+, most of them being 6 hops
long. This result is similar to the diameter obtained in [74], where 90% of the pairs were
separated by a distance of 5, 6 or 7 hops.

We show in Figure how the information the nodes on the shortest path (SP)
display evolves. It shows that the city is especially useful 3, 2, and 1 hop(s) before the
target, for both OSNs. At 4 (and more) hops from the target, other (non-local) geo-
graphical attributes are used to navigate towards the target. We also note that other
types of attributes (education, work, or last name) begin to be more used 4 hops before
the target (certainly once we have reached the target’s city) and increase their influence
while getting closer to the target. At the latest hop before the target, the city is repre-
sented in 70% of cases in Facebook and 56% in Google+, non-geographical information
representing around 30% of cases in both OSNs. This shows that geographical informa-
tion remains crucial, but also that other types of information can still be useful when we
get close to the target, as it was already mentioned in [I62]. Finally, we note that 25%
of the targets in Google+ were found from a profile sharing no similar attribute with
the target. These targets were reached from a user geographically close (at a median
distance of 32 km) but not sharing the same location.
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2.5.2 Jumping towards the Target

Facebook provides an additional feature in order to help people find their acquaintances
in the network: It allows users to apply search filters on location, education or workplace.
This means that, in addition to the first and last names, we can, for instance, specify the
city of the searched person. We did not want to rely extensively on this feature for our
navigation attack because we wanted to keep it generic and applicable to other OSNs.
However, we show here that the attacker can take advantage of Facebook’s search filters
to facilitate his attack.

We search for the last names and the cities of the targets using the Facebook search
filters, and then crawl the friend lists of the users found by the search directory. We search
for last names because users sharing same last names are more likely to be relatives, thus
to be friends. If more than ten users are found, we select the first ten displayed users
as sources. Of course, our targets can appear in the users found by the search filters, as
we chose targets that are in the Facebook directory for our experiments. Searching for
the last names and the cities of our targets, we directly find the targets in 49.5% of the
search results. As targets are assumed to not be in the directory, we remove them from
the list of users to be crawled. At least 10 users satisfying the search criteria are found
in 30% of the filtered searches, and the search requests output no user in 15% of the
cases. By crawling only the friend lists of users found by our filtered search, we reach the
targets with a success rate of 16.5%. This means that an attacker can find a target in
only one hop (and a maximum of 10 crawled nodes) in 16.5% of the cases by relying on
the Facebook search filters. It is interesting to note that 18.2% of the targets discovered
in one hop are targets that were not found by our generic attack. Most of these are living
in large African or South American cities. The size of these cities is probably the reason
our targeted crawler did not find them in less than 4,000 crawled nodes.

2.6 Countermeasures

Countermeasures should logically be developed and implemented by the OSN operators
themselves. An obvious solution, already advanced in [I61], is to set the visibility policy
as the intersection of visibility policies selected by all users involved in the published
information. Although it is difficult to force a friend to change his privacy settings on
his personal attributes, it is possible to enforce his social links’ privacy policy. Choosing
the intersection of both users’ policies on social links would mean that a user electing
to reveal his social links to his friends, or friends of friends only, would automatically
enforce non-public social links for his own friends. It would prevent any curious stranger
from accessing his profile by using his friends’ friend lists. Another change in the privacy
policies could be to automatically remove users who are not in the search directory from
their peers’ friend lists. OSN operators could finally also prevent anyone from publicly
showing his social links, as it is the case in LinkedIn. They could at least design non-
public default privacy settings on social links. Detailed formal requirements to protect
multilateral privacy are presented in [80].

If the OSN operators themselves do not re-design their privacy policies, the users
could also take action. The first option is to change the default privacy settings on
social links to more restrictive settings. For this option though, users must collectively
deviate from the default policy in order for it to be efficient. Another strategy is to
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unfriend “dangerous” friends who publicly reveal their social links and other personal
attributes. However, this strategy, already envisaged in a more general setting in [78],
can dramatically spoil users’ experiences and social lives. Finally, if more users decided
to hide their personal attributes (such as city, education, ...), the attacker’s ability to
navigate efficiently in the social graph would decrease, thus reducing the threat presented
in this chapter.

The last and most extreme countermeasure is certainly to change the full OSN archi-
tecture, and rely on a decentralized architecture with encrypted personal data and social
links (e.g., [49, [06]), even though it seems too involved to be accepted by most of the
OSN users.

2.7 Related Work

We present here the most closely related work on privacy threats in OSNs, showing how
our work complements existing attacks. We also discuss the background on navigation
in social networks.

2.7.1 Privacy Issues in Online Social Networks

Acquisti and Gross were among the first to mention the potential risks induced by in-
formation sharing in OSNs in their seminal papers [76, 21I]. They study in detail the
Facebook privacy settings and data visibility, and they emphasize the potential threats
caused by weak privacy settings (used by most users). In [I17] and [118], Krishnamurthy
and Wills study what types of information are shared with whom, by default or not, and
what kind of privacy settings are available for various pieces of personally identifiable
information. They show that, among 12 OSNs, 10 publicly reveal social links by default
and 1 reveals them always (i.e., without any possibility of changing the settings). 7 reveal
by default the user’s location and 5 always reveal it. 8 reveal the attended schools by
default and 6 the employers. These statistics are relevant for our work as they show what
kind of attributes are publicly revealed, and thus can be used for the navigation.

He et al. [84] were among the first to propose inference attacks based on the users’
neighborhood. They make use of Bayesian inference and multi-hop inference to predict
private attributes based on the friends, and friends of friends of the targeted users. The
authors apply their analytical findings to a LiveJournal dataset with hypothetical at-
tributes. In the same vein, Lindamood et al. propose to infer political affiliation (binary
attribute: liberal or conservative) based on a modified Naive Bayes classifier [127]. Their
results show that simply sanitizing user attributes or links is not enough to prevent
inference attacks. Johnson [I04] also emphasizes that social links can leak very sensi-
tive information about a specific Facebook user, for instance whether a certain user is
homosexual or not.

Zheleva and Getoor [I74] propose novel inference attacks based on social links and
group memberships, which they apply in four different social networks. Another work on
inference of undisclosed attributes proposes to rely on any of the user’s public attributes,
and on any of the aggregates of his friends’ attributes [I15]. Finally, Chaabane et al. [45]
show how music interests can be used to infer private sensitive attributes of Facebook
users. Their approach does not rely on users’ social links or group memberships, but
only on users’ attributes.
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Thomas et al. [I61] examine how the lack of joint privacy controls can put a user’s
privacy at risk. Notably, they highlight the inherent interdependent privacy risks due
to friends in Facebook, and the fact that a user had no control over his friends’ friend
lists. They present inference techniques that, based on wall posts and friends, present
improvements compared to previous work by relying only on friends to infer private
attributes. Yamada et al. [I73] also emphasize the impact of conflicting privacy policies
on users’ privacy. They propose 3 different attacks: friend-list, profile and wall-post
recovery attacks. Dey et al. [64] estimate the leakage of age information in Facebook,
either by relying on the target’s profile directly, or by using information released by the
targets’ friends.

While these previous papers exploit the notion of homophily to infer hidden attributes
of a user from the visible attributes of his neighbors, our work exploits the global struc-
ture of visible attributes to navigate efficiently towards a target. While the former is a
purely local operation, ours exploits a macroscopic property of the social network. It
complements existing work by showing how to efficiently find anyone in an OSN, neces-
sary condition for any targeted inference attack.

Finally, Jain and Kumaraguru propose an integrated system which uses major dimen-
sions of a user identity (profile, content and network) to search and link a user across
multiple social networks [97]. Our work notably differs in the method used to search for
a user. Our navigation attack does not require the targeted user to be present in multiple
OSNs, and does not assume the target profile to be known in one OSN in order to find
him in another.

2.7.2 Navigation in Social Networks

The seminal experiment by Milgram [133] shows that any arbitrarily selected individuals
can reach any other person through a short chain of acquaintances. There generally
exists a short path from any individual to another, thanks to a few long-range social
links. However, knowing that short chains exist does not tell us how arbitrary pairs
of strangers are able to find them. Since Milgram’s experiment, there have been many
theoretical and experimental papers that explain how people can find short paths, and
thus navigate, in social networks [126].

Travers and Milgram ask 296 arbitrarily selected individuals in the United States to
generate acquaintance chains (using postal mail) to a single target person. Out of the
296 starting chains, 64 reach the target (22% of completion rate) with a mean number
of intermediaries between the sources and the target of 5.2 [162]. They also show that
chains converge essentially by using geographic information; but once in the target’s city,
they often circulate before entering the target’s circle of acquaintances. Dodds et al.
propose a similar social-search experimental approach except that they rely on e-mails
instead of classic postal service to reach a target [68]. This allows them to increase the
number of targeted individuals (18 in 13 countries, instead of 1 target) and the number of
distinct chains (24,163 instead of 296). In total, 384 out of the 24,163 chains reach their
targets, showing an extremely low chain completion rate of 1.6% with an average chain
length of 4.05. They show that geography clearly dominates the routing strategies of
senders at early stages of the chains and is less frequently used than other characteristics
(such as occupation) after the third step.

On a more theoretical side, Kleinberg develops a graphical model, d-dimensional
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lattices encompassing the small-world properties, and derives several analytical results,
notably showing the conditions under which a decentralized algorithm that uses only
local information could efficiently (i.e., in polylogarithmic time) route messages from a
source to a target [112 [I13]. Considering another model, rank-based friendship, Kumar
et al. prove that greedy routing can find a short path (of expected polylogarithmic
length) from an arbitrary source to a target as long as the doubling dimension of the
metric space of locations is low [120].

Watts et al. present a hierarchical model for categorical organization in social net-
works for message routing. They define the social distance between two people as the
minimum ultrametric distance over all group hierarchies [I70]. Eppstein et al. study the
existence of mathematical frameworks that demonstrate the feasibility of local category-
based routing in social networks [6I]. They notably introduce the notion of membership
dimension that characterizes the cognitive load of performing routing tasks in a given
system of categories. Their results show how participants in a social network, while re-
membering an amount of information that is polylogarithmic in the size of the network,
can efficiently route messages by using a local, greedy, category-based routing strategy.
Liben-Nowell et al. study the role of geography in order to route messages in social
networks and provide a theoretical model to explain path discovery [126]. To the best
of our knowledge, they are the first to analyze routing in an “online” social network,
namely the LiveJournal social network. However, they limit themselves to the problem
of reaching the target’s city. Among other results, they show that geography remains a
crucial factor in online friendship and is thus very helpful when trying to reach a target.
Lattanzi et al. extend this one-dimensional approach based on geographical proximity
to a multidimensional space of interests relying on a model of social networks called
“affiliation networks” [123].

Knowing that acquaintances’ and social networks show small-world properties, we
now question whether current OSNs do so as well. Mislove et al. already provided a piece
of the answer to that question in 2007 [I34]. The four considered OSNs exhibit power-law
degree distributions, a densely connected core of high-degree nodes linking small groups of
strongly clustered nodes and, as a result, short path lengths. Wilson et al. make another
step in that direction, by crawling a significant portion of Facebook and showing its
small-world properties [I72]. A crucial step in providing evidence about the small-world
characteristics of OSNs has recently been achieved with the publication of two reports
by Facebook researchers on the Facebook full social graph [164] 35]. Their dataset of 721
million users follows the main small-world properties: 99.91% users belong to the largest
component, the distribution of nodes degree follows a power-law distribution, and the
average distance between users equals 4.7, showing that online social networks are even
smaller than real-world social networks. We can thus predict that, by relying on users’
attributes, most OSNs should also be navigable. However, how to efficiently navigate
on them was until now an open question. Furthermore, Facebook reports considered the
full social graph, with all social links, whereas the attacker assumed in this work would
not have access to all those links. In this chapter, we study whether the public subgraph
induced by the users’ privacy settings on their social links is navigable by relying on
publicly revealed attributes.
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2.8 Summary

In this chapter, we have introduced a navigation privacy attack, where an external adver-
sary attempts to find a target user by exploiting publicly visible attributes of intermediate
users. We describe a search algorithm that relies on public attributes of users and dis-
tance heuristics. As most attributes (such as place of residence, age, or alma mater) tend
to correlate with social proximity, they can be exploited as navigational cues while crawl-
ing the network. The problem is exacerbated by privacy policies where an OSN user who
keeps his profile private remains nevertheless visible in his friends’ “friend lists”, leading
to interdependent privacy risks.

Our search algorithm discovers more than 66% of the targeted Facebook users and
59% of the targeted Google+ users, in a median number of crawled nodes smaller than 400
in Facebook, and smaller than 300 in Google+. Moreover, the targets’ cities are reached
in 92%, respectively 93.5%, of the cases, in a median number of 13, respectively 8, crawled
nodes, showing the efficiency of geographic navigation in Facebook and Google+. The
navigation within the targets’ cities, that rely on more attributes, is less efficient and
successful. One important reason for the failed cases is the privacy behaviors of the
target’s friends: the more friends have public attributes and public social links, the more
likely the target is to be found. This demonstrates the crucial role of social ties in OSNs,
who can have a non-negligible impact on our own privacy. Finally, we highlight the
increased risk induced by advanced search filters in OSNs.

Our results suggest that an OSN user cannot hide simply by excluding himself from
a central directory or search function. This leads us to conclude that it is urgent that
OSN operators implement countermeasures to thwart navigation attacks, thus to reduce
interdependent privacy risks. The most obvious one is to set by default the social links
(friend lists) to be non-public.

Consequences of our Work In addition to being a required prerequisite for most of the
targeted attacks already proposed in the literature, our navigation attack also demon-
strates that it is in most cases impossible for a user to claim that he does not have any
account in a given OSN, thus jeopardizing OSN-membership privacy. This is of partic-
ular relevance when considering the Arab Spring. It is well-known that the successful
protest against the Tunisian and Egyptian regimes was channeled by social media, and in
particular Facebook. The security officials of those countries were apparently unprepared
for such a threat and the rulers were toppled. But, meanwhile, the Syrian government
seems to have learned the lesson. Several Syrian activists have indeed reported having
been arrested and forced to reveal their Facebook passwords [I41]. Of course, one of first
reaction of an arrested activist was to claim that he did not have any Facebook account,
but the police had already found his profile and were monitoring him. Considering our
results, most political activists could never hide in Facebook. Our results also apply to
the job applicants who were required by recruiters to allow for access to their entire pro-
files [T56]. These individuals would also be affected by the attack shown in this chapter.
Most of them could not claim that they do not have any Facebook account. This leads
us to conclude that OSN-membership privacy is in jeopardy.
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Chapter 3

Quantifying Kin Genomic Privacy

3.1 Introduction

With the help of rapidly developing technology, DNA sequencing is becoming less ex-
pensive. As a consequence, large collections of human genomes are now available to
geneticists, which dramatically increases the speed of genomic research and paves the
way to personalized medicine. Furthermore, individuals can obtain the sequencing of the
most significant part of their DNA (genotype) for less than $100 via direct-to-consumer
genetic testing. Individuals are then using their genotypes to learn about their (genetic)
predispositions to diseases, their ancestries (e.g., on 23andMe [§]), and even their (ge-
netic) compatibilities with potential partners (e.g., on GenePartner [9]). This trend has
also caused the launch of genome-sharing websites and online social networks (OSNs),
in which individuals share their genomic data (e.g., OpenSNP [2] or 23andMe [§])]T]
Thus, already today, thousands of genomes are available online and this number keeps
increasing.

Even though most of the genomic sequences on the Internet are anonymized, many
individuals publish their genomes under their real identities (e.g., on OpenSNP). Fur-
thermore, it has been shown that anonymization is not sufficient for protecting the real
identities of the genome donors [81] [I58]. The genome containing very sensitive informa-
tion about ethnicity, kinship, and predisposition to diseases, its leakage/usage can lead
to genetic discrimination (e.g., by employers or insurance companies) [29, [62], and even
divorce [5]. Some believe that they have nothing to hide about their genetic structure,
hence they might decide to give full consent for the publication of their genomes on the
Internet to help genomic research. However, our DNA sequences are highly correlated
to our relatives’ sequences. The DNA sequences between two random human beings are
99.9% similar, and this value is even higher for closely related people due to familial in-
heritance. Consequently, somebody revealing his genome does not only damage his own
genomic privacy, but also puts his relatives’ privacy at risk [154]. Moreover, currently, a
person does not need consent from his relatives to share his genome online, thus making
the protection of genomic privacy even more complicated.

A recent New York Times’ article [10] reports the controversy about sequencing and

LA survey about users’ motivation for and fear about genome sharing can be found in [4].
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publishing, without the permission of her family, the genome of Henrietta Lacks (died
1951). On the one hand, the family members think that her genome is private family
information and it should not be published without the consent of the family. On the
other hand, some scientists argue that the genomes of current family members have
changed so much over time (due to gene mixing during reproduction), that nothing
accurate can be told about the genomes of current family members by using Henrietta
Lacks’ genome. We will show in this chapter that they are, at least partially, wrong.
Unfortunately, the Lacks family is only the tip of iceberg. As mentioned before, thousands
of genomes are already available online, thus there are currently thousands of families
facing the same threat. Once the identity of a genome donor is known, an attacker can
learn about his relatives (or family tree) by using an auxiliary side channel, such as an
OSN, and infer significant information about the DNA sequences of the donor’s relatives.
We show the feasibility of such an attack in Section |3.5

Although the researchers took Henrietta Lacks’ genome offline from SNPedia, other
databases continued to publish portions of her genomic data. Unfortunately, publishing
only portions of a genome does not, however, completely hide the unpublished portions;
even if a person reveals only a part of his genome, other parts can be inferred using
the statistical relationships between the nucleotides in his DNA. For example, James
Watson, co-discoverer of DNA, made his whole DNA sequence publicly available, with the
exception of one gene known as Apolipoprotein E (ApoE), one of the strongest predictors
for the development of Alzheimer’s disease. However, it was shown that the correlation
(called linkage disequilibrium by geneticists) between one or multiple polymorphisms and
ApoE can be used to predict the ApoE status [137]. Thus, an attacker can also use these
statistical relationships (which are publicly available) to infer the DNA sequences of a
donor’s family members, even if the donor shares only part of his genome. It is important
to note that these privacy threats not only jeopardize kin genomic privacy, but, if not
properly addressed, these issues could also hamper genomic research due to untimely fear
of potential misuse of genomic information.

In this chapter, we evaluate the genomic privacy of an individual threatened by his
relatives revealing their genomes. Focusing on the most common genetic variant in
human population, single nucleotide polymorphism (SNP), and considering the statistical
relationships between the SNPs on the DNA sequence, we quantify the loss in genomic
privacy of individuals when one or more of their family members’ genomes are (either
partially or fully) revealed. To achieve this goal, first, we design a reconstruction attack
based on a well-known statistical inference technique. The computational complexity of
the traditional ways of realizing such inference grows exponentially with the number of
SNPs (which is on the order of tens of millions) and relatives. In order to reduce the
complexity and infer the values of the unknown SNPs in linear complexity, we represent
the SNPs, family relationships and the statistical relationships between SNPs on a factor
graph and use the belief propagation algorithm [139] [I19] for inference. Then, using
various metrics, we quantify the genomic privacy of individuals and show the decrease in
their level of genomic privacy caused by the genomes of their family members. We also
quantify the health privacy of the individuals by considering their (genetic) predisposition
to certain serious diseases. We evaluate the proposed inference attack and show its
efficiency and accuracy by using real genomic data of a pedigree. More importantly, by
using genomic data and familial information we collected from a public genome-sharing
website and OSNs, we show that the proposed inference attack threatens not only the
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Lacks family, but also many other families. We define in this chapter the quantification
concepts and formalism that we will rely upon in Chapters [ and

3.2 Background

In this section, we briefly introduce the relevant genetic principles, as well as the concept
of belief propagation.

3.2.1 Genomics

DNA is a double-helix structure that consists of two complementary polymer chains.
Genetic information is encoded on the DNA as a sequence of nucleotides (A,T,G,C) and
a human DNA includes around 3 billion nucleotide pairs. With the decreasing cost of
DNA sequencing, genomic data is currently being used mainly in the following two areas:
(i) clinical diagnostics, for personalized genomic medicine and genetic research (e.g.,
genome-wide association studiesEI), and (ii) direct-to-consumer genomics, for genetic risk
estimation of various diseases or for recreational activities such as ancestry search. In
the following, we briefly introduce some concepts, which we use throughout this thesis,
about the human genome and reproduction.

Single Nucleotide Polymorphism

As already mentioned, human beings have 99.9% of their DNA in common. Thus, there
is no need to focus on the whole DNA but rather on the most important variants. Single
nucleotide polymorphism (SNP) is the most common DNA variation in human popula-
tion. A SNP occurs when a nucleotide (at a specific position on the DNA) varies between
individuals of a given population (as illustrated in Figure . There are approximately
50 million SNP positions currently known in the human population [I1]. Recent discover-
ies show that the susceptibility of an individual to several diseases can be computed from
his SNPs [103], 12]. For example, it has been reported that two particular SNPs (rs7412
and rs429358) on the Apolipoprotein E (ApoE) gene indicate an (increased) risk for
Alzheimer’s disease. SNPs carry privacy-sensitive information about individuals’ health,
hence we will quantify health privacy focusing on individuals’ published (or inferred)
SNPs and the diseases they reveal.

Two different nucleotides (called alleles) can usually be observed at a given SNP
position: (i) the major allele is the most frequently observed nucleotide, and (ii) the
minor allele is the rare nucleotide. From here on, we represent the major allele as B for
a SNP position, and the minor allele as b (where both B and b are in {4, T, G, C}).

Furthermore, each SNP position contains two nucleotides (one inherited from the
mother and one from the father, as we will discuss next). Thus, the content of a SNP
position can be in one of the following states: (i) BB (homozygous-major genotype),
if an individual receives the same major allele from both parents; (ii) Bb (heterozygous
genotype), if he receives a different allele from each parent (one minor and one major);
or (iii) bb (homozygous-minor genotype), if he inherits the same minor allele from both
parents. For simplicity of presentation, in the rest of the thesis, we encode BB with 0,

2Examination of many genetic variants in different individuals to determine if any variant is associ-
ated with a trait.
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Figure 3.1: Reproduction and single nucleotide polymorphism (SNP). Each parent pro-
duces gametes that are derived from his or her genome. The offspring’s genome is the
combination of these two gamets. As an example, the SNP circled on the offspring’s
genome is homozygous-minor for the offspring but heterozygous for the parents.

Father (F)
BB Bb bb
s o (1,0,0) (05050 | (0,1,0)
E Bb (0.5,0.5,0) (0.25,0.5,0.25) | (0,0.5,0.5)
2| b 0,1,0) (00505 | (0,0,1)

Table 3.1: Mendelian inheritance probabilities Fr(Xi,, X, XL,) for a SNP g;, given
different genotypes for the parents. The probabilities of the child’s genotype is repre-
sented in parentheses. Each table entry represents (P(XL = BB|X};,XL), P(XL =
BbXiy, Xk), P(XL = bb[Xhy, Xk)).

Bb with 1, and bb with 2. Finally, each SNP g¢; has a minor allele frequency (MAF),
pfnaf, which represents the frequency at which the minor allele b of the corresponding
SNP occurs in a given population (typically, 0 < pi . < 0.5).

Reproduction

Mendel’s First Law states that alleles are passed independently from parents to children
for different meioses (the process of cell division necessary for reproduction). For each
SNP position, a child inherits one allele from his mother and one from his father (as
shown in Figure . Each allele of a parent is passed on to a child with equal prob-
ability of 0.5. Let Fr(Xi,, Xk, X4L) = P(XL|Xi,, XL) be the function modeling the
Mendelian inheritance of a SNP g;, where M, F', and C represent mother, father, and
child, respectively. We illustrate the Mendelian inheritance probabilities in Table
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Linkage Disequilibrium

Linkage disequilibrium (LD) [63] is a correlation that appears between any pair of SNP
positions in the whole genome due to the population’s genetic history. Because of LD, the
content of a SNP position can be inferred from the contents of other SNP positions. The
strength of the LD between two SNP positions is usually represented by the correlation
coefficient 72, where 72 = 1 represents the strongest LD relationship.

3.2.2 Belief Propagation

Belief propagation [139, [119] is a message-passing algorithm for performing inference on
graphical models (Bayesian networks, Markov random fields). It is typically used to
compute marginal distributions of unobserved variables conditioned on observed ones.
Computing marginal distributions is hard in general as it might require summing over an
exponentially large number of terms. The belief propagation algorithm can be described
in terms of operations on a factor graph, a graphical model that is represented as a
bipartite graph. One of the two disjoint sets of the factor graph’s vertices represents the
(random) variables of interest, and the second set represents the functions that factor
the joint probability distribution (or global function) based on the dependences between
variables. An edge connects a variable node to a factor node if and only if the variable is
an argument of the function corresponding to the factor node. The marginal distribution
of an unobserved variable can be exactly computed by using the belief propagation algo-
rithm if the factor graph has no cycles. However, the algorithm is still well-defined and
often gives good approximate results for factor graphs with cycles. Belief propagation
is commonly used in artificial intelligence and information theory. It has demonstrated
empirical success in numerous applications including LDPC codes [140], reputation man-
agement [31], and recommender systems [30].

3.3 The Proposed Framework

In this section, we formalize our approach and present the different components that will
allow us to quantify kin genomic privacy. Figure|3.2| gives an overview of the framework.

The SNPs of all relatives are represented by the random variable X that takes value
in the set X = {0,1,2}"*™, where n is the number of relatives in the targeted family
and m is the number of SNPs in a single DNA sequence. Moreover, the hidden SNPs
are represented by the random variable Xg (that takes value in the set Xp), and the
SNPs observed by the adversary by the random variable Xo (that takes value in the
set Xp). We define R = {rq,r9,...,7,} to be the set of relatives in the targeted family
(whose family tree, showing the familial connections between the relatives, is denoted as
T)and G ={g1,92,---,9m} to be the set of SNPs (i.e., positions on the DNA sequence).
Let X;-, respectively x; € {0, 1,2}, represent the random variable representing SNP g, of
individual r;, respectively its value. Furthermore, we let x; = [z} 22 ... z]"

. ] represent
the values of the SNPs of individual r;, and x € X be the n X m matrix representing the
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Figure 3.2: Overview of the proposed framework to quantify kin genomic privacy. Each
vector x; (j € {1,...,n}) includes the set of SNPs for an individual in the targeted
family. Furthermore, SNP g; of relative r; is represented by x; € {0,1,2}. Once the
health privacy is quantified, the family should ideally decide whether to reveal less or
more of their genomic information through the genomic-privacy preserving mechanism

(GPPM). The optimization of the GPPM is presented in more details in Chapter

values of the SNPs of all relatives:
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Fr(Xi,, X%, XL) is the function representing the Mendelian inheritance probabilities
(in Table , where M, F', C represent mother, father, and child, respectively. The
m X m matrix L represents the pairwise linkage disequilibrium (LD) values between the
SNPs in G, that can be expressed by r2; l;; refers to the matrix entry at row ¢ and column
j. li; > 0if i and j are in LD, and [;; = 0 if these two SNPs are independent (i.e., there
is no LD between them). The m-size vector ppas = [p}naf pfnaf e pfn“af] represents the
minor allele probabilities (or MAF) of the SNPs in G. Finally, note that, for any r € R,
gi € G, and g; € G, the joint probability P(X%,X7}) can be derived from I;;, pi,.;, and
pfnaf'

The adversary carries out a reconstruction attack to infer the value xyg € Xy by
relying on his background knowledge, Fr(X%,, X%, X%), L, Pmaf, and on his observation
X0 € XOE] After carrying out this reconstruction attack, we evaluate genomic and health
privacy of the family members based on the adversary’s success and his certainty about
the targeted SNPs and the predispositions to diseases they reveal.

3xo is constructed by replacing hidden SNPs in x by L.
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3.3.1 Adversary Model

An adversary is defined by his objective(s), attack(s), and knowledge. The objective of
the adversary is to compute the values of the targeted SNPs for one or more members of
a targeted family by using (i) the available genomic data of one or more family members,
(ii) the familial relationships between the family members, (iii) the rules of reproduction
(in Section [3.2.1)), (iv) the minor allele frequencies (MAFs) of the nucleotides, and (v)
the population LD values between the SNPs. We note that (i) and (ii) can be gathered
online from genome-sharing websites and OSNs, and (iii), (iv), and (v) are publicly known
information. Note that, in the future, the increasing possibility to accurately sequence,
and to impute the actual haplotypes carried by an individual in each of the copies of the
diploid genome will allow a more accurate inference of relatives’ genotype than relying
on population LD patterns only.

Various attacks can be launched, depending on the adversary’s interest. The ad-
versary might want to infer one particular SNP of a specific individual (targeted-SNP-
targeted-relative attack) or one particular SNP of multiple relatives in the targeted family
(targeted-SNP-multiple-relatives attack) by observing one or more other relatives’ SNP
at the same position. Furthermore, the adversary might also want to infer multiple
SNPs of the same individual (multiple-SNP-targeted-relative attack) or multiple SNPs
of multiple family members (multiple-SNP-multiple-relatives attack) by observing SNPs
at various positions of different relatives. In this chapter, we propose an algorithm that
implements the latter attack, from which any other attacks can be carried out. We
formulate this attack as a statistical inference problem.

3.3.2 Inference Attack

We formulate the reconstruction attack (on determining the values of the targeted SNPs)
as finding the marginal probability distributions of the random variable Xy representing
the hidden SNPs, given the observed values xo, familial relationships 7, and the publicly
available statistical information. We represent the marginal distribution of a SNP g; for
an individual 7; as P(X} = 2%|Xo = x0).

These marginal probability distributions could traditionally be extracted from
P(Xu = xulXo = xo0,Fr(XYy, X%, X%5), L, T, Pmat), which is the joint probability
distribution function of of the hidden SNPs, given the available side information and the
observed SNPs. Then, clearly, each marginal probability distribution could be obtained
as follows:

P(X} =2}|Xo =x0) = (3.2)
Z P(XH’ = XH’7X; = $;|XO = XOv-FR( 3\/[7 %‘7Xic)7LaT7 pmaf)v

xH/EXH\X;’
(3.3)

where Xy is the random variable representing all SNPs except SNP g; of relative r;.
However, the number of terms in grows exponentially with the number of vari-
ables, making the computation infeasible considering the scale of the human genome
(which includes tens of million of SNPs). In the worst case, the computation of the
marginal probabilities has a complexity of 0(3”’”). Thus, we propose to factorize the
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joint probability distribution function into products of simpler local functions, each of
which depends on a subset of variables. These local functions represent the conditional
dependences (due to LD and reproduction) between the different SNPs represented by
X. Then, by running the belief propagation algorithm on a factor graph, we can compute
the marginal probability distributions in linear complexity (with respect to nm).

A factor graph is a bipartite graph containing two sets of nodes (corresponding to
variables and factors) and edges connecting these two sets. Following [I19], we form a
factor graph by setting a variable node xg for each random variable X; (9 € G and
r; € R). We use two types of factor nodes: (i) familial factor node, representing the
familial relationships and reproduction, and (ii) LD factor node, representing the LD
relationships between the SNPs. We summarize the connections between the variable
and factor nodes below (Figure [3.3):

e Each variable node m; has its familial factor node fj7 and they are connected.
Furthermore, j, (k # j) is also connected to f if k is the mother or father of j (in
T). Thus, the maximum degree of a familial factor node is 3.

e Variable nodes 7 and z7* are connected to a LD factor node g™ if SNP g; is in
LD with SNP g,,. Since the LD relationships are pairwise between the SNPs, the
degree of a LD factor node is always 2.

Given the conditional dependences given by reproduction and LD, the global dis-
tribution P(Xg = xu|Xo = xo0, Fr(XY;, X%, X5), L, T, Pmat) can be factorized into
products of several local functions, each having a subset of variables from x as arguments:

(XH = XHlXO = XO?‘FR(X§\4a %7Xi6')aLvT7 pmaf) =
|: H H f m(] ‘rf(])afR(XvaFaXC 7pmafi| |: H H g .’Ej7$?l,ljm) s

gi€EGTr;ER i €R (j,m) s
Jm;éO

(3.4)

where Z is the normalization constant, and z? (i)’ respectively m %(j) are the SNPs g; of
the mother, respectively father, of r; (if they exist in 7).

Next, we introduce the messages between the factor and the variable nodes to compute
the marginal probability distributions using belief propagation. We denote the messages
from the variable nodes to the factor nodes as u. We also denote the messages from
familial factor nodes to variable nodes as A, and from LD factor nodes to variable nodes
as 3. Let X)) = {xé(u) :r; € R,g; € G} be the collection of variables representing the

values of the variable nodes at the iteration v of the algorithm. The message /JEZZ k(xj»(y))

denotes the probability of ) — ¢ (¢ € {0,1,2}), at the v*" iteration. Furthermore,
)\ECV_)M( i )) denotes the probability that x’( ) = = (, for ¢ € {0,1,2}, at the v*" iteration
given ! i) f(j), Fr(Xi, X%, X5), and pmar. Finally, ) (2} i )) denotes the prob-

k—1
ability that le»(y) = ¢, for £ € {0,1,2}, at the v*" iteration given the LD relationships

between the SNPs.

For the clarity of presentation, we choose a simple family tree consisting of a trio
(i.e., mother, father, and child) and 3 SNPs (i.e., [R| = 3 and |G| = 3). In Figure we
show how the trio and the SNPs are represented on a factor graph, where 71 represents
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Figure 3.3: The factor graph representation of a trio (mother, father, child) and 3 SNPs
per family member. The message passing described in the main text is between the nodes
ri, fi, and gi’2 highlighted in the graph.

the mother, ro represents the father, and r3 represents the child. Furthermore, the 3
SNPs are g1, g2, and g3. We describe the message exchange between the variable node
representing the first SNP of the mother (1), the familial factor node of the child (f3),
and the LD factor node 91’2. The belief propagation algorithm iteratively exchanges
messages between the factor and the variable nodes in Figure updating the beliefs on
the values (in xp) of the targeted SNPs at each iteration, until convergence. We denote
the variable and factor nodes 1, fi, and gi’2 with the letters i, k, and z, respectively.

The variable nodes generate their messages (1) and send them to their neighbors.
Variable node ¢ forms ,ugy_zk(:r}(u)) by multiplying all information it receives from its
neighbors excluding the familial factor node k:E] Hence, the message from variable node
i to the familial factor node k at the v iteration is given by

v ), _1 V- (v—-1) v (v—1)
mu @) = 2o [T NS T 85 @ ), 69

we(~k) y€{z,97 3}

where Z is a normalization constant, and the notation (~ k) means all familial factor
node neighbors of the variable node 4, except k. This computation is repeated for every
neighbor of each variable node. It is important to note that the message in is valid
if the value of z{ is unobserved to the adversary. However, the value of z} can also be
observed by the adversary. In this case, if 21 = p (p € {0,1,2}), then ugﬁk(m%(y) =p) =1
gﬁk(z%(y)) = 0 for other potential values of z} (regardless of the values of the
messages received by the variable node i from its neighbors).

Next, the factor nodes generate their messages. The message from the familial factor
th

and p

node k to the variable node i at the v*" iteration is formed using the principles of belief

propagation as

v (¥) i i i v ()
Al(c—)m(:c% )= Z f31(x}7x:n(1))’Z}(l))‘FR(XvaF?XC),pmaf) H /’Lg(;—)ﬂc(x% ).
{=d,23} ye{at,at}

(3.6)

()

4The message s (x%(y)) from the variable node ¢ to the LD factor node z is constructed similarly.
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Note that f5 (@t 20,00), 25 0)) FrR(X s X, X6 ), Prat) o
P(xﬂa:}n(l))w}(l))flg(X}w, X%, X%), Pmaf), and this probability is computed us-
ing Table Furthermore, if the degree of the familial factor node is 1 for a particular
SNP, then the local function corresponding to the familial factor node only depends on
the MAF of the corresponding SNP. For example, the degree of f{ (in Figure c))
is 1, hence f}(z1, 957171(1)%93}(1))-7:1%()(3\0 X%, X4), Pmat) o« P(zi|pl.;). The above
computation must be performed for every neighbor of each familial factor node.

Similarly, the message from the LD factor node z to the variable node i at the v*"
iteration is formed as

v (v) v (v)
6,&—11( 1 ) x17xlal12 H ,Ltélk 1 ) (37)

z3 ye{z3}

As before, this computation is performed for every neighbor of each LD factor node. We
further note that g, (z1,23,11.2) o< P(x1,2?), which is derived from Iy 2, pL . and P2 ..
The algorithm proceeds to the next iteration in the same way as the v*" iteration.

The algorithm starts at the variable nodes. Thus, at the first iteration of the algorithm
(i.e., v = 1), the variable node ¢ sends messages to its neighboring factor nodes based on
the following rules: (i) If the value of x1 is hidden from the adversary, uglk(x%(l)) =1
for all potential values of 2} and, (ii) if the value of x1 is observed by the adversary and
zi =p(p€{0,1,2}), ,ul_yk(:z:%( )= p)=1and ;Ll(l_zk(x%(l)) = 0 for other potential values
of z1. The iterations stop when all variable nodes have converged to stable distributions.
The marginal probability of each variable in Xy is given by multiplying all the incoming
messages at each variable node representing an unobserved SNP.

3.3.3 Computational Complexity

The computational complexity of the proposed inference attack is proportional to the
number of factor nodes. In our setting, there are nm familial factor nodes and a maximum
of nm(m — 1)/2 LD factor nodes. Hence, the worst-case computational complexity per
iteration is O(nm2). However, as each SNP is in LD with a limited number of other
SNPs, the matrix L is sparse and the number of LD factor nodes grows with m rather
than with m(m — 1)/2, especially if we focus on SNPs in strong LD only. Thus, the
average computational complexity per iteration is O(nm) Based on our experiments, we
can state that the number of iterations before convergence is a small constant, between
10 and 15. Note finally that this complexity can be further reduced by using similar
techniques developed for message-passing decoding of LDPC codes (e.g., working in log-
domain [46]).

3.3.4 Genomic-Privacy Metrics

A crucial step towards protecting genomic privacy is to quantify the privacy loss induced
by the release of genomic information. Through the inference attack, the adversary
infers the targeted SNPs belonging to the members of a targeted family by using his
background knowledge and observed genomic data (of the family members). The in-
ferred information can be expressed as the posterior distribution P(Xg = xg|Xo =
x0, Fr(Xi, Xt X4), L, T, Pmar). Moreover, each posterior marginal probability distri-
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bution is represented as P(X; = £§-|Xo = Xo)ﬂ for all 7; € R,g; € G. We propose
to quantify kin genomic privacy using the following metrics: expected estimation error
(incorrectness) and uncertaintyﬂ

Correctness was already proposed in the context of location privacy [152]. In our
scenario, correctness quantifies the adversary’s success in inferring the targeted SNPs.
That is, it quantifies the expected distance between the adversary’s estimate on the
value of a SNP, % and the true value of the corresponding SNP, z%. This distance can

J
be expressed as the expected estimation error as follows:

Bj= > P(Xj=lXo=xo)lz - | (8.8)
#:e{0,1,2}

Privacy can also be represented as the adversary’s uncertainty [55, [147], that is the
ambiguity of P(X;'- = ic;\Xo = xp). This uncertainty is generally considered to be
maximum if the posterior distribution is uniform. This definition of uncertainty can be
quantified as the (normalized) entropy of P(X’ = #4|Xo = x0) as follows:

i —Zi;‘.e{o,m} P(X; = i‘ﬂxo = XO)IOgP(X;- = CE§'|XO = Xo) . H(X;\Xo)

J log(3) T log(3)
(3.9)

The higher the entropy is, the higher is the uncertainty.

Finally, we propose another entropy-based metrics that quantifies the mutual de-
pendence between the hidden genomic data that the adversary is trying to recon-
struct, and the observed data. This is quantified by mutual information I (X;;Xo) =
H(X’)— H(X%|Xo) [24]. As privacy decreases with mutual information, we propose the
following (normalized) privacy metrics:

H(Xj) - HX}|Xo) H(X}|Xo)

I=1- X)) = HXT) (3.10)

The aforementioned metrics are useful for quantifying the genomic privacy of individ-
uals. In order to quantify a more tangible privacy, we must convert these genomic-privacy
metrics into health-privacy metrics. To quantify an individual’s health privacy, we focus
on his predisposition to different diseases. Let S; be the set of SNPs that are associated
with a disease d. Then, a metric quantifying the health privacy for an individual 7;
regarding the disease d can be defined as follows:

D¢ 1

K2

Z Cka

- 7 (311)
Zk:gkésd Ck keSqa

where Gf is the genomic privacy of SNP g, of individual r;, computed using , ,
or , and ¢y is the contribution of SNP k to disease dm Other health-privacy metrics
based on non-linear combinations of genotypes or combinations of alleles will be defined
in future work. Note that health-privacy metrics are valid at a given time, and cannot
be used to evaluate future privacy provision, as genome research can change knowledge
on the contribution of SNPs to diseases.

5We use here :2; to refer to the estimate of m;

6These metrics are not specific to the proposed inference attack; they can be used to quantify genomic
privacy in general.

"These contributions are determined as a result of medical studies. Some SNPs might increase (or
decrease) the risk for a disease more than others.
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3.3.5 Genomic-Privacy Preserving Mechanism

Individuals willing to share genomic data for research or recreational purposes might
be unwilling to share all their DNA sequence, and thus need to properly obfuscate the
sensitive part(s) before releasing their genomic data. To do so, their DNA will go through
an obfuscation process, that we call genomic-privacy preserving mechanism (GPPM).
GPPM can be implemented using one of the following techniques: (i) hiding the SNPs,
or (ii) reducing the precision or the quantity of the revealed SNPs.

Hiding all or specific SNPs can be achieved either by not releasing them or by en-
crypting them. Obviously, not releasing any of the SNPs would hinder genetic research,
thus it is not a preferred way to protect the genomic privacy of individuals. Instead of
not releasing the SNPs, the use of cryptographic algorithms to encrypt the genome is
proposed. For example, Kantarcioglu et al. propose using homomorphic encryption on
the SNPs of the individuals to perform genetic research on the encrypted SNPs [106].
However, the security of an individual’s genome should be guaranteed for at least 70-100
years (i.e., during the typical lifetime of a human). As we show in this chapter, even life-
long protection is not enough, considering kin privacy implications (e.g., for offsprings).
It is known that even the best of the cryptographic algorithms we use today could be bro-
ken in around 30 years. Therefore, the appropriateness of cryptographic techniques for
storing and processing the genomic data has been questioned due to long-term security
requirements of the genomic data.

As an alternative to the cryptographic techniques, utility can be traded off for privacy.
The precision of the revealed SNPs can be reduced, for example, by revealing only one
of the two alleles of a SNP. Similarly, family members’ SNPs can be selectively revealed
by also considering the previously revealed SNPs from the corresponding family (to keep
the genomic privacy of other family members above a desired threshold): we evaluate
the privacy provided by this technique in Section [3.4] by assessing the inference power of
the adversary for different fractions of observed data from a targeted family. Eventually,
using one of the above techniques, the GPPM will take x as input and output the matrix
Xo of observed SNPs. We detail the GPPM and its optimization in Chapter

3.4 Evaluation

In this section, we first evaluate the performance of the proposed inference attack, then
compare the performance of the inference with and without considering the linkage dis-
equilibrium (LD) between SNPs, and finally evaluate the entropy-based metrics with
respect to the expected estimation error in quantifying the genomic privacy.

For this evaluation, we use the CEPH/Utah Pedigree 1463 that contains the partial
DNA sequences of 17 family members (4 grandparents, 2 parents, and 11 children) [59].
We note in Figure[3.4]that we only use 5 (out of 11) children for our evaluation because (i)
11 is much above the average number of children per family, and (ii) we observe that the
strength of adversary’s inference does not increase further (due to the children’s revealed
genomes) when more that 5 children’s genomes are revealed. As the SNPs related to
important diseases, like Alzheimer’s, are not included in this dataset, we quantify health
privacy in Section by using the data collected from a genome-sharing website.

To quantify the genomic privacy of the individuals in the CEPH family, we focus on
their SNPs on chromosome 1 (which is the largest chromosome). We rely on the three
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63559

Figure 3.4: Family tree of CEPH/Utah Pedigree 1463 consisting of the 11 family mem-
bers that were considered. The symbols ¢ and @ represent the male and female family
members, respectively.

metrics introduced in Section [3:3:4] That is, we compute the genomic privacy of each
family member using the expected estimation error in , the (normalized) entropy in
, and the (normalized) mutual information in on the targeted SNPs, and we
average the result based on the number of targeted SNPs for each individual. We rely
on the L; norm to measure the distance between two SNP values in .

First, we assume that the adversary targets one family member and tries to infer
his/her SNPs by using the published SNPs of other family members without considering
the LD between the SNPs. We select an individual from the CEPH family and denote him
as the target individual. We construct G, the set of SNPs that we consider for evaluation,
from 80k SNPs on chromosome 1. Thus, the targeted SNPs are the 80k SNPs of the
target individual. Furthermore, we gradually fill the matrix of xo of observed SNPs
with the values of the 80k SNPs of other family members. That is, we sequentially
reveal 80k SNPs (in G) of all family members (excluding the target individual) beginning
with the most distant family members from the target individual (in terms of number of
hops in Figure and we keep revealing relatives until we reach his/her closest family
members[f]

In Figure we show the evolution of the genomic privacy of three target individuals
from the CEPH family (in Figure 3.4): (i) grandparent (GP1), (ii) parent (P5), and
(iii) child (C7). We note that all entropy-based metrics for each target individual start
from the same values. We also observe that the parent’s and the child’s genomic privacy
decreases considerably more than the grandparent’s (the adversary’s error for the grand-
parent’s genome does not go below 0.3). Moreover, the observation of GP3, GP4 and
P6’s genomes has no effect on GP1 and P5’s privacy as their genomes are independent (if
no other relatives’ genomes are observed). We observe in Figure that the grand-
parent’s genomic privacy is mostly affected by the SNPs of the first revealed children
(C7, C8), and also by those of his spouse and his child (P5). We also observe (in Fig-
ure that, by revealing all family members’ SNPs (expect P5), the adversary can
almost reach an estimation error of 0. The target parent’s genomic privacy significantly

8The exact sequence of the family members (whose SNPs are revealed) is indicated for each evalua-
tion.
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Figure 3.5: Evolution of the genomic privacy of the (a) grandparent (GP1), (b) parent
(P5), and (c) child (C7). We reveal all the 80k SNPs on chromosome 1 of other family
members starting from the most distant family members of the target individual (in
terms of number of hops to the target individual in Figure ; the z-axis represents
the disclosure sequence. We note that x = 0 represents the prior distribution, when no
genomic data is observed by the adversary.
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Figure 3.6: Evolution of the genomic privacy of the (a) grandparent (GP1), (b) parent
(P5), and (c) child (C7), with and without considering LD. For each family member, we
reveal 50 randomly picked SNPs (among 100 SNPs in S), starting from the most distant
family members, and the z-axis represents the exact sequence of this disclosure. Note
that = 0 represents the prior distribution, when no genomic data is revealed.

decreases only with the observation of his children’s and spouse’s SNPs. Finally, we ob-
serve in Figurethat C7’s genomic privacy decreases smoothly with the observation
of his grandparents’ SNPs, and then of his siblings’. We also observe a slight decrease
of privacy once the parents’ SNPs (P5 and P6) are also revealed, but the observation of
parents (after the other children) does not have a significant effect on the adversary’s
error. It is important to note that the importance of a family member for the inference
power of the adversary also depends on the sequence at which his/her SNPs are revealed
in Figure For example, in Figure if the SNPs of the parents (P5 and P6) of
the target child (C7) were revealed before her siblings (C8-C11), then the observation of
her parents would reduce the genomic privacy of the target child more than her siblings
(but the final genomic privacy would not change).

Next, we include the LD relationships and observe the change in the inference power
of the adversary using the LD values. We construct G from 100 SNPs on chromosome 1.
Among these 100 SNPs, each SNP is in LD with 5 other SNPs on average. Furthermore,
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Figure 3.7: Evolution of the global privacy for the whole family by gradually revealing
10% of family’s SNPs.

the strength of the LD (r? value in Section uniformly varies between 0.5 and
1 (where 72 = 1 represents the strongest LD relationship, as discussed before). We
note that we only use 100 SNPs for this study as the LD values are not yet completely
defined over all SNPs; and the definition of such values is still an ongoing research. As
before, we define a target individual from the CEPH family, and sequentially reveal
other family members’ SNPs to observe the decrease in the genomic privacy of the target
individual. We observe that individuals sometimes reveal different parts of their genomes
(e.g., different sets of SNPs) on the Internet. Thus, we assume that for each family
member (except for the target individual), the adversary observes only 50 random SNPs
from G (instead of all the SNPs in G), and these sets of observed SNPs are different
for each family member. In Figure [3.6] we show the evolution of genomic privacy of
three target individuals when the adversary also uses the LD values. We observe that
LD decreases genomic privacy, especially when few individuals’ genomes are revealed. As
more family member’s genomes are observed, LD has less impact on the genomic privacy.

We also evaluate the inference power of the adversary to infer multiple SNPs among
all family members, given a subset of SNPs belonging to some family members, and
also considering the LD between SNPs. That is, we evaluate the inference power of the
adversary for different fractions of observed data for the family members. Using the same
set of 100 SNPs, we construct x, from (x x 100 x n) SNPs, randomly selected from all
family members, where n is the number of family members in the family tree (n = 11 for
this scenario), and 0 < k < 1. We assume that the SNPs that are not in x, are hidden
from the adversary (i.e., in xg), and we observe the inference power of the adversary
for all the SNPs in x, for different increasing values of x. In Figure we observe
an exponential decrease in the global genomic privacy (privacy of all family members),
showing that the observation of a small portion of the family’s SNPs can have a huge
impact on genomic privacy. The estimation error is decreased by around 3 by observing
only the first 10% of the SNPs.
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3.5 Cross-Website Attacks

In order to show that the proposed inference attack threatens not only the Lacks family,
but potentially all families, we collected publicly available data from a genome-sharing
website and familial relationships from OSNs, and evaluated the decrease in genomic and
health privacy of people due to the observation of their relatives’ genomic data.

3.5.1 OpenSNP and Facebook

We gathered individuals’ genomic data from OpenSNP [2], a website on which people can
publicly share sets of SNPs. Then, we identified the owners of some gathered genomic
profiles by using their names and sometimes profile pictures. Among these identified
individuals, we managed to find family relationships of 6 of them (who publicly reveal the
names of some of their relatives) on Facebookﬂ We expect this number to increase in the
future, as more health-related OSNs (which let people share their genomic profiles, such
as 23andMe [§]) emerge. Furthermore, we anticipate that the current widely used health-
related OSNs (e.g., PatientsLikeMe [I3]) will let users upload and share their genomic
data. We identified 29 target individuals from 6 different families, whose genomic data
can be inferred using the observed SNPs of the identified individuals.

We focus on 2 individuals I; and Is out of these 6 identified individuals and evaluate
the genomic and health privacy for their family members. We observed that both Iy
and I, publicly disclosed around 1 million of their SNPs. Furthermore, we identified the
names of (i) 1 mother, 2 sons, 2 daughters, 1 grandchild, 1 aunt, 2 nieces, and 1 nephew
of I1, and (ii) 1 sibling, 1 aunt, 1 uncle, and 6 cousins of I5 on Facebook. We compute the
genomic and health privacy of these target individuals using the (normalized) entropy in
on the targeted SNPs, and normalize the result based on the number of targeted
SNPs for each individual. We do not use the expected estimation error in , as we
do not have the ground truth for the genomes of the target individuals. Thus, privacy is
quantified as the uncertainty of the adversary in this section.

To quantify the genomic privacy of the target individuals (i.e., family members of
I and I), we first construct G from all SNPs on chromosome 1 (from the observed
genomes of I; and I3). The set of observed SNPs includes the observed SNPs of Iy
(respectively I5) for the inference of family members of I; (respectively Is). The set
of targeted SNPs includes 77k SNPs for I;’s family and 79k for Iy’s family for each
evaluation. In Figure [3.8, we show the decrease in the genomic privacy for different
family members of I; (aunt, niece/nephew, grandchild, mother, child) and Iy (cousin,
aunt/uncle, sibling) as a result of our proposed inference attack, first without considering
the LD dependencies (similarly to previous section). We observe that, as expected, the
decrease in the genomic privacy of close family members is significantly higher than that
of more distant family members. However, as we have seen in Section [3.4]and we will show
in the next Subsection, the observation of one (or more) additional family member(s)
has often much more impact on the target’s privacy than the observation of only one
relative.

In Figure[3.9] we display the decrease of genomic privacy with respect to 100 SNPs of
chromosome 1]E| We first show the different privacy levels by using all 100 SNPs of the

9 According to [79], around 12% of Facebook users publicly share at least one family member on their
profiles.
10We consider only 100 SNPs here for the same reason as in Section
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Figure 3.8: Attacker’s uncertainty about all SNP values on chromosome 1 for two different
families gathered on Facebook, without using LD. A stands for aunt, N for niece/nephew,
GC for grandchild, M for mother, C for child, U for uncle. Same notations are used in

Figures [3.9] and
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Figure 3.9: Attacker’s uncertainty about values of 100 SNPs on chromosome 1 for two
families gathered on Facebook, by observing (i) all 100 SNPs of the relative that reveals
his/her genome, and (ii) only 50 SNPs but using LD.

observed relative (i.e., I; or I5), and then show the same by using only 50 SNPs of the
observed relative and LD values. We note that the use of LD decreases privacy slightly
more for the first familyt than for the second family. This is because we randomly picked
50 different SNPs for both families, and those picked in the second family had weaker
LD relationships with other SNPs. We finally observe that the difference between the
two observation cases (50 SNPs with LD and 100 SNPs without LD) is higher for close
relatives (mother, child, or sibling) than for others.

We also evaluate the health privacy of the family members of I; and I considering
their predispositions to various diseases. We first noticed that almost all important SNPs
for privacy-sensitive diseases affected by genomic factors, like Alzheimer’s, ischemic heart
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Figure 3.10: Adversary’s uncertainty about Alzheimer’s disease predisposition for two
families gathered on Facebook.

disease, or macular degeneration, were revealed by I; and I. Due to lack of space,
we focus on Alzheimer’s as it is one of the most important diseases that are mainly
attributable to genetic factors. Having two ApoE4 alleles (in SNPs rs7412 and rs429358
located on chromosome 19) dramatically increases an individual’s probability of having
Alzheimer’s by the age of 80. Thus, the contents of these two SNPs carry privacy-sensitive
information for individuals. We use the metrics in to quantify the health privacy
of family members for Alzheimer’s disease. We assign equal weights to both associated
SNPs (as their combination determines the predisposition to Alzheimer’s disease). In
Figure [3.10] we show the attacker’s uncertainty about the predisposition to Alzheimer’s
disease for the family members of I; and I,. We notice a decrease of around 0.2 (from
0.5 to 0.3) in uncertainty between close relatives. Clearly, the knowledge of the SNPs of
more relatives would further worsen the situation.

3.56.2 OpenSNP and Genealogy Website

We gathered individuals’ genomic data from OpenSNP.org here too. Then, we matched
47 OpenSNP profiles (who provided their full names) with profiles on genealogy websites
(that included familial information), clearly showing us the scale of the threat. We
noticed that three of the individuals identified on OpenSNP were associated to the same
family (which is hereafter referred to as the target family). Furthermore, from the family
tree, we obtained the names of 3 target individuals (only considering ancestors up to the
grandparents of youngest identified individual revealing his SNPs) in the same family,
as shown in Figure We emphasize again that these 3 target individuals did
not publicly share any genomic data and that they would possibly be against such a
disclosure. We compute the health privacy of these 3 targets about their predispositions
to Alzheimer’s disease by using the same SNPs as in Subsection [3.5.1

In Figure we show the attacker’s uncertainty about the predisposition to
Alzheimer’s disease for the target individuals. We notice a decrease of 40% for the
father, and of 60% for both the grandmother and the grandfather, compared to their
initial privacy (prior, without any information about the genomes of their relatives).
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Figure 3.11: Quantification of health privacy for one family (with three relatives revealing
their SNPs) found in a genealogy webiste. (a) The family tree of the target family,
where black means that the genomic data of the family member is publicly available
on OpenSNP, and grey means it is not. (b) Adversary’s uncertainty about Alzheimer’s
disease predisposition of family members whose genomes are not publicly available.

This demonstrates that the more genomic data is shared, the less privacy is provided to
the family members.

3.6 Related Work

Stajano et al. were among the first to raise the issue of kin privacy in genomics and
to suggest discussing questions such as; Should you be allowed to disclose your genome
if other relatives do not want to? [I54]. Cassa et al. provide a framework for mea-
suring the risks to siblings of someone who reveals his SNPs [44]. They show that the
inference error is substantially reduced when the sibling’s SNPs are known, compared
to when only the population frequencies are used. We push this work further, by con-
sidering any kind of family members, and LD relationship between SNPs, by proposing
and evaluating different privacy metrics, and by presenting a real attack scenario using
publicly available data. Our generic framework considers any observation of a family’s
SNPs, and the adversary’s background knowledge. Re-identification attacks have also
been proposed in the literature. Homer et al. [86] prove that de-identification is an in-
effective way to protect the privacy of participants in genome-wide association studies,
which is also supported by other works [167, [72, [T75]. More recently, Gymrek et al. show
how they identified DNAs of several individuals (and their families) who participated in
scientific studies [§1]. Finally, Sweeney et al. de-anonymized participants of the Personal
Genome Project by linking their demographic information to public records such as voter
lists [I58].

Several algorithms for inference on graphical models have been proposed in the con-
text of pedigree analysis. Exact inference techniques on Bayesian networks are used
in order to map disease genes and construct genetic maps [67, [124] [105]. Monte Carlo
methods (Gibbs sampling) were also proved to be efficient for genetic analyses in the
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case of complex pedigrees [100] 160, 148]. All these methods aim to infer specific geno-
types given phenotypes (like diseases). Another paper relies on Gibbs sampling in order
to infer haplotypes (used in association studies) from genotype data [ITI]. Genotype
imputation [125] is another technique used by geneticists to complete missing SNPs
based upon given genotyped data. A similar approach has recently been used to infer
high-density genotypes in pedigrees, by relying notably on low-resolution genotypes and
identity-by-descent regions of the genome [42]. None of these contributions addresses
privacy.

In contrast with these contributions, in this chapter, we propose a novel and effi-
cient inference attack in order to reconstruct genomic data of individuals given observed
genomic data of their family members and special characteristics of genomic data. Fur-
thermore, we quantify the genomic privacy of individuals as a result of this attack using
different metrics, and show the real threat by using the data collected from different
websites and OSNs.

3.7 Summary

In this chapter, we have formalized the problem of quantifying kin genomic privacy. To
quantify privacy, we mimic the reconstruction attack of an adversary who tries to infer
hidden data based on the genomic data he gets access to and some public background
knowledge. We propose an efficient inference attack that relies upon probabilistic graph-
ical models and belief propagation. Our inference algorithm provides us with the exact
posterior marginal distributions of the random variables representing the genomic data
when linkage disequilibrium is not taken into account. When linkage disequilibrium is in-
cluded in the graphical model, the posterior distributions are only estimations but which
are, in practice, very close to the exact values. We introduce different genomic-privacy
metrics that express the (in)correctness and (un)certainty of the adversary’s estimation
of genomic data. In order to get more tangible metrics, we also suggest to quantify health
privacy, that is the privacy of individuals regarding the predisposition to certain diseases.
We evaluate our approach and metrics on real genomic data gathered from eleven close
relatives. Furthermore, we demonstrate the extent of the threat by matching users shar-
ing their genomic data online with OSNs profiles where these users also reveal (some of)
their relatives.

Our results notably show that, by disclosing only 10% of its genomic data, a family
loses more than 50% of its global genomic privacy. This is an effect of both genetic
dependencies between relatives and dependencies within each genome via linkage dise-
quilibrium. We also show, in our cross-website attack, that the privacy regarding predis-
position to Alzheimer’s disease can drop by 40% due to the disclosure of a first-degree
relative’s genomic data related to this disease. The privacy situation even worsens if
more than one relative reveals his genomic data.



Chapter 4

Non-cooperative Behavior in Genomic
Privacy

4.1 Introduction

The decreasing cost in genome sequencing has dramatically increased the availability
and use of genomic data in many domains such as healthcare, research, law enforce-
ment, and recreational genomics. This availability raises many questions regarding the
management (storage, sharing, etc.) and, ultimately, the privacy of genomic data. For
instance, thousands of individuals are already sharing their genomic data online, either
anonymouslyﬂ or with their real identity (e.g., on OpenSNP.org), showing the willingness
of some people to disclose their genomic data. In addition to this, all individuals whose
DNA has been sequenced have to carefully manage their genomic data. Some may de-
cide to store it on personal devices, others on external (potentially untrusted) servers. In
both cases, guaranteeing security and privacy has a non-negligible cost. Schematically,
in this work, we consider that an individual whose DNA has been sequenced must make
decisions on (i) whether to share his genomic data or not, and (ii) how much to invest
in securing the storage of this data. In this chapter, we analyze the strategic behaviors
of members of the same family in a genomic-privacy context by using a game-theoretic
approach. Game theory has been shown to be very useful for analyzing the behavior
of strategic agents in information security settings [26]. In particular, interdependent
security (IDS) games have been proposed for scenarios where agents make decisions that
affect not only their own security risks but also those of others [122]. As we have seen
in the previous chapter, the genomic data of close relatives is highly correlated, thus
leading to interdependent privacy (IDP) risks. Following the IDS works, we define two
IDP games between family members with different perceived benefits, costs and pri-
vacy levels: (i) the storage-security game where family members have to decide on the
security investment to protect their genomic data, and (ii) the disclosure game where
relatives have to choose whether to disclose or not their genomes. First, we study the
interplay between two family members, who are selfish or (partially) altruistic. With

L Anonymization has been proven to not be an effective technique for protecting identities of the data
owners in the genomic context [8T) [158].

49
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the two-player setting, we derive a closed-form expression to quantify genomic privacy
of any individual given one of his relatives’ genome, and compute different closed-form
Nash equilibria for the two games we study. This closed-form expression enables us to
compute the genomic privacy of individuals three orders of magnitude faster than with
the belief propagation method (proposed in Chapter . Furthermore, we consider some
altruistic behavior within a family. Then, we extend the two-player game to consider n
family members who decide whether to secure or disclose their genomes. To efficiently
compute the Nash equilibrium of the n-player game, we make use of multi-agent influence
diagrams (MAIDs), an extension of Bayesian networks that enables us to include deci-
sion and utility variables. With this approach we can significantly reduce computational
complexity with respect to a classic extensive-form game. Note that, compared to IDS
games that rely upon theoretical models of interdependence, the indirect risks in the IDP
games come from the actual familial correlations evidenced by genetics. Furthermore,
we quantify genomic-privacy losses with real genomic data, which provides very tangible
results.

Our results show that, if the discrepancy between the players’ perceptions of the
genome-sharing benefits is too high, they follow opposite strategies, creating externalities.
These misaligned incentives lead to inefficient equilibria that result in a lower familial
utility than when incentives are aligned. Our analysis also shows that, surprisingly,
altruism does not always lead to a more efficient outcome in a genomic privacy game.
Yet, such suboptimal equilibrium can be avoided if the players coordinate.

4.2 Model

Users We consider a set of n users from a family whose genotypes are sequenced. We
assume that all users have the same number and set G of SNPs sequenced and stored
on their devices. Users have to make choices regarding the investment on securing their
genomic data and the sharing of this data (e.g., to help research). A user might prefer
storing his genomic data on a personal, and possibly mobile, device. For instance, as
suggested in [52], there are various advantages to keep a person’s genome on a smart-
phone. It is portable, highly personal, and nowadays has very good computational and
storage capabilities. Unfortunately, the number of pieces of malware in current smart-
phones has exploded over the last few years [I55], and keeping a mobile device secure
yields non-negligible costs. Alternatively, a user could decide to outsource the storage
of his genomic data to an untrusted third party. Second, a user might want to publicly
share his SNPs, essentially because his perceived benefits outweigh the perceived cost
(loss) for his genomic privacyﬂ We assume such users typically do not invest in securing
their genomes on their personal devices, as they are already publicly disclosed.

Adversary The adversary’s goal is to collect and infer genomic data. His motivations for
gathering individuals’ genotypes can be multiple. For instance, the adversary could sell
the collected genomic data to life or health insurances that would then use it to genetically
discriminate potential insurees. As usually assumed in IDS games, the adversary is
considered to be an exogenous, persistent threat [I22]. Thus, we do not model him as
a strategic agent, but rather as a probability A(-) of a successful breach on the targeted

2See, e.g., [4] to understand users’ motivations for and fears about genome sharing.
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system. If a user decides to publicly disclose his SNPs online, the probability of a breach
is 1 as the adversary can easily access the data.

4.3 Genomic Privacy Games

The genomes of close family members are highly correlated. Thus, the individuals’ be-
haviors regarding their genomic data will not only affect their personal genomic privacy,
but also those of their relatives, thus leading to interdependent risks. Game theory en-
ables us to model the interplay between users with dependent payoffs, with potentially
conflicting interests, and it enables us to predict their behaviors. We define two inter-
dependent privacy games between family members: (i) the (storage-)security game G,
and the disclosure game G4. Both G and Gy are defined as a triplet (P, S, U), where
P is the set of players, S is the set of strategies, and U is the set of payoff functions.
e Players: The set of players P = { Py, ..., P, } corresponds to the set of n family members
having their genomes sequenced, in both games G, and Gg.
e Strategies: In the game G, for each player P;, the strategy s; € S represents the
security investment for the storage of his genomic data. As differences between discrete
and continuous models of investment appear only in some boundary cases [122] [77], we
consider here the discrete model, i.e. s; € {0,1}. s; = 1 means “to invest in securing his
own device”, and s; = 0 means “to not invest”, with his data on his device or outsourced
to an untrusted third party (that could be itself attacked). The strategy profile is then
defined as s = [s1,--- ,5,]7. In the game Gy, the strategy is represented by the decision
d; to publicly share P;’s SNPs (e.g., on OpenSNP.org) or not. As the majority of genome-
sharing people currently choose to disclose nothing or their whole set of SNPs, we consider
here a discrete binary model, i.e. d; € {0,1} (0 meaning “no disclosure” and 1 “full
disclosure”). Note that we study is studied in detail a finer granularity of disclosure in a
cooperative context in Chapter 5} A player will choose d; = 1 if and only if he perceives
more utility by sharing than by protecting. The strategy profile is then represented by
d=[dy, - ,dy".
e Payoff Functions: The utility of a player is, by definition, equal to the benefit minus
the cost. In our setting, the first term of the benefit, b7, represents the fact that a user’s
genome is sequenced and available for various benefits (e.g., personalized medicine).
This generic benefit can be added to the benefit b¢ that player P; obtains by disclosing
his genomic data online in game G4. The cost comprises the (unit) cost of a security
investment for protecting his genome, ¢;, and the potential loss /; of genomic privacy. E|
The cost ¢; can represent the OS updates that can lead to a non-negligible cost (renewal
of the equipment) once a device becomes too old to support them.

In our genomic context, the privacy loss I; can be precisely quantified by relying upon
the expected estimation error Ef defined in in Chapter |3| Giving the same weight
to each SNP, we then get
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where X rep