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Abstract

Privacy is defined as the right to control, edit, manage, and delete information about

oneself and decide when, how, and to what extent this information is communicated to

others. Therefore, every person should ideally be empowered to manage and protect his

own data, individually and independently of others. This assumption, however, barely

holds in practice, because people are by nature biologically and socially interconnected.

An individual’s identity is essentially determined at the biological and social levels. First,

a person is biologically determined by his DNA, his genes, that fully encode his physical

characteristics. Second, human beings are social animals, with a strong need to create

ties and interact with their peers. Interdependence is present at both levels. At the

biological level, interdependence stems from genetic inheritance. At the social level,

interdependence emerges from social ties. In this thesis, we investigate whether, in

today’s highly connected world, individual privacy is in fact achievable, or if it is almost

impossible due to the inherent interdependence between people.

First, we study interdependent privacy risks at the social level, focusing on online

social networks (OSNs), the digital counterpart of our social lives. We show that, even if

an OSN user carefully tunes his privacy settings in order to not be present in any search

directory, it is possible for an adversary to find him by using publicly visible attributes of

other OSN users. We demonstrate that, in OSNs where privacy settings are not aligned

between users and where some users reveal a (even limited) set of attributes, it is almost

impossible for a specific user to hide in the crowd. Our navigation attack complements

existing work on inference attacks in OSNs by showing how we can efficiently find targeted

profiles in OSNs, which is a necessary precondition for any targeted attack. Our attack

also demonstrates the threat on OSN-membership privacy.

Second, we investigate upcoming interdependent privacy risks at the biological level.

More precisely, due to the recent drop in costs of genome sequencing, an increasing num-

ber of people are having their genomes sequenced and share them online and/or with

third parties for various purposes. However, familial genetic dependencies induce indi-

rect genomic privacy risks for the relatives of the individuals who share their genomes.

We propose a probabilistic framework that relies upon graphical models and Bayesian

inference in order to formally quantify genomic privacy risks. Then, we study the inter-

play between rational family members with potentially conflicting interests regarding the

storage security and disclosure of their genomic data. We consider both purely selfish and

altruistic behaviors, and we make use of multi-agent influence diagrams to efficiently de-

rive equilibria in the general case where more than two relatives interact with each other.

We also propose an obfuscation mechanism in order to reconcile utility with privacy in
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genomics, in the context where all family members are cooperative and care about each

other’s privacy.

Third, we study privacy-enhancing systems, such as anonymity networks, where users

do not damage other users’ privacy but are actually needed in order to protect privacy.

In this context, we show how incentives based on virtual currency can be used and their

amount optimized in order to foster cooperation between users and eventually improve

everyone’s privacy. We derive our analytical findings by relying upon Markov chains,

game theory, and Markov decision processes. This last part demonstrates that other

people can also play a beneficial role in privacy.

We conclude that the quest for online privacy is chimerical because of the lack of in-

dividual control over data. As a consequence, unless cooperation between people quickly

expands, we should consider that online privacy is steadily vanishing, and start designing

novel mechanisms for the upcoming post-privacy era. We should finally redefine privacy,

which is, beyond an individual right, now part of the commons.

Keywords : interdependent privacy, genomic privacy, online social networks (OSNs),

incentives, cooperation, Bayesian inference, graphical models, obfuscation mechanism,

game theory, Markov chains, Markov decision processes, multi-agent influence diagrams



Résumé

La protection de la vie privée est définie comme le droit de contrôler, d’éditer, de gérer,

et d’effacer l’information nous concernant, ainsi que de décider quand, comment, et dans

quelle mesure cette information peut être communiquée à des tiers. Par conséquent,

chaque individu devrait idéalement avoir les moyens de gérer et de protéger ses propres

données, individuellement et indépendamment des autres. Cependant, cette hypothèse

n’est que peu valable en pratique, car nous sommes par nature interconnectés biologique-

ment et socialement. Or, notre identité est essentiellement déterminée par nos sphères

biologique et social. Premièrement, un individu est déterminé par son ADN, ses gènes,

qui codent entièrement ses caractéristiques physiques. Deuxièmement, l’homme est un

animal social, avec un besoin profond de créer des liens et d’interagir avec ses sem-

blables. Nous sommes interdépendants à ces deux niveaux de notre identité. Au niveau

biologique, l’interdépendance est le résultat de notre héritage génétique. Au niveau so-

cial, l’interdépendance est liée à nos liens sociaux. Dans cette thèse, nous étudions si,

dans notre monde hyperconnecté, la protection de la vie privée est possible individu-

ellement, ou si ceci est rendu quasi impossible par l’interdépendance inhérente à notre

humanité.

Tout d’abord, nous étudions les risques de confidentialité liés à notre interdépendance

au niveau social, en se focalisant sur les réseaux sociaux en ligne (comme Facebook), qui

sont la projection numérique de notre vie sociale. Nous montrons que, même si un

utilisateur définit avec soin ses paramètres de confidentialité afin de ne pas être présent

dans l’annuaire de recherche, il est possible pour un attaquant de le retrouver en utilisant

les attributs des autres utilisateurs accessibles publiquement. Nous démontrons que,

dans les réseaux sociaux où les réglages de confidentialités ne sont pas similaires entre les

utilisateurs et où certains utilisateurs révèlent un ensemble d’attributs (même restreint),

il est pratiquement impossible pour un utilisateur spécifique de se cacher dans la masse

des utilisateurs. Notre attaque de navigation complémente les travaux existants sur les

attaques d’inférence dans les réseaux sociaux, en montrant comment l’on peut trouver

efficacement des profils cibles dans les réseaux sociaux, ce qui est une condition nécessaire

à n’importe quelle attaque ciblée. Notre attaque démontre également la menace qui pèse

sur la confidentialité de l’adhésion à un réseau social.

Deuxièmement, nous examinons les risques de confidentialité liés à notre in-

terdépendance au niveau biologique. En particulier, grâce à la baisse rapide des coûts de

séquençage du génome, un nombre croissant d’individus font séquencer leur génome et

le partagent en ligne et/ou avec des tiers. Cependant, les dépendances génétiques famil-

iales entrâınent des risques indirects pour la confidentialité des données génomiques des
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membres d’une famille dont certains individus partagent leurs propres génomes. Nous

proposons un modèle probabiliste qui s’appuie sur les modèles graphiques et l’inférence

bayésienne pour quantifier formellement les risques liés aux données génomiques. Ensuite,

nous étudions l’interaction entre des agents rationnels appartenant à une même famille,

avec des intérêts potentiellement contradictoires concernant la sécurité et le partage des

données génomiques. Nous considérons à la fois des comportements égöıste et altruiste,

et utilisons des diagrammes d’influence multi-agents afin de calculer efficacement des

équilibres dans le cas général où plus de deux membres d’une même famille intéragissent

entre eux. Nous proposons également un mécanisme de brouillage afin de réconcilier

l’utilité avec la protection des données génomiques, dans un contexte où tous les membres

de la famille sont coopératifs et se soucient de la confidentialité des données génomiques

des autres membres.

Troisièmement, nous étudions des systèmes de protection de la vie privée, comme

les réseaux anonymes, où les autres utilisateurs ne nuisent pas notre vie privée mais

sont au contraire nécessaires à la protection de cette vie privée. Dans ce contexte, nous

montrons comment des incitations basées sur une monnaie virtuelle peuvent être utilisées

et leur quantité optimisée afin d’encourager la coopération entre les utilisateurs et en fin

de compte améliorer l’anonymat de tous les utilisateurs. Nous obtenons nos résultats

analytiques en nous appuyant sur des châınes de Markov, de la théorie des jeux, ainsi

que sur des processus de décision markoviens. Cette dernière partie démontre que les

autres individus peuvent aussi jouer un rôle positif dans la protection de la vie privée.

En conclusion, nous estimons que la quête de la confidentialité en ligne est une chimère

à cause du manque de contrôle individuel sur les données personnelles. Par conséquent,

à moins que la coopération entre les individus ne se développe rapidement, nous de-

vrions considérer que la confidentialité en ligne est en train de disparâıtre, et devrions

commencer à concevoir de nouveaux mécanismes pour l’ère post-confidentialité à venir.

Nous devrions finalement redéfinir (le droit à) la vie privée, qui est désormais, au-delà

d’un droit individuel, partie intégrante de nos biens communs.

Mots-Clés : interdépendance dans la protection des données, protection des données

génomiques, réseaux sociaux en ligne, incitations, coopération, inférence bayésienne,

modèles graphiques, mécanisme de brouillage, théorie des jeux, châınes de Markov, pro-

cessus de décision markoviens, diagrammes d’influence multi-agents
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Chapter 1

Introduction

Since its popularization in the 1990s, the Internet has dramatically changed the world

we live in. Among various benefits, the Web has enabled decentralized information and

communication on a large scale, thus diminishing censorship and control over public

opinion by political or economic powers. The Arab Spring of 2011 is certainly the best

example of the positive impact of the Internet on free speech, civic rights, political

freedom and democracy. Social media, such as Facebook or Twitter, were instrumental in

the organization of the protests, and in the dissemination of information. The other side

of this digital revolution is in the new forms of surveillance and control it enables. Billions

of dollars are invested by surveillance agencies in both democratic and authoritarian

regimes to intercept and analyze communication data, and in some countries, to censor

political or religious content. Increasing computing and storage capabilities enable global

data mining and lead to perpetual electronic surveillance.

Surveillance, however, is at odds with privacy, a fundamental human right recog-

nized by the Swiss Federal Constitution (article 13), by the European Convention on

Human Rights (article 8), and by the Universal Declaration of Human Rights (article

12). In many aspects, privacy (including anonymity) is a condition for democracy, as

it is essential to the preservation of freedom of speech. The protection of sources in

journalism also ultimately relies upon privacy and anonymity. Recent revelations about

mass surveillance by Western government agencies have shed light on the right to pri-

vacy, generating intense debate about the limits of this right and the balance between

privacy and (national) security. These revelations also highlight the privacy risks caused

by trading our data off in return for free services, such as Web search, e-mails, or social

media. We should keep in mind that by doing so, we, as Internet users, are also, and

perhaps primarily, fuelling the current immense privacy erosion.

By the number of their users and the scale of deliberate data disclosure, online social

networks (OSNs) are probably the most relevant example illustrating this phenomenon.

By providing their billion users with platforms for sharing their pictures, videos, inter-

ests, political views, emotions, and other intimate data, online social networks fulfill the

human need for social recognition, gratification and publicity. Social media especially

encourage data over-sharing, as their business model essentially relies on targeted adver-

tising, thus users’ data. But this trend seriously threatens users’ privacy. First, according

to revelations about the PRISM program, companies such as Facebook and Google per-
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2 CHAPTER 1. INTRODUCTION

mit U.S. and British intelligence to directly tap into their central servers to track foreign

targets [1]. Second, government agencies of authoritarian regimes, even though they do

not have direct access to the OSNs’ servers, also exploit OSNs to infiltrate protesters’ so-

cial networks. Indeed, several Syrian activists reported having been arrested and forced

to reveal their Facebook passwords [141]. Third, recruiters are known to look up OSN

profiles of job applicants, potentially leading to hiring discriminations. Some employers

and colleges even request the Facebook passwords of job applicants and students in order

to get full access to their profiles [156].

Following the over-sharing behavior driven by OSNs, some people have started pub-

licly disclosing their most intimate biological data, i.e. their genetic data. With the help

of rapidly developing technology, the cost of DNA sequencing has dramatically decreased.

This has allowed the availability and use of genomic data in research, healthcare, law

enforcement, and recreational applications. Moreover, individuals can now obtain the

sequencing of a significant part of their DNA (genotype) for less than $100 via direct-

to-consumer genetic testing. These individuals can then use this genomic data to learn

about their ancestries, their predispositions to diseases, and even their (genetic) compati-

bilities with potential partners. Following the trend exemplified by online social networks,

some individuals bring the disclosure of personal data to new heights, by revealing their

genomic data on genome-sharing websites (such as OpenSNP [2] or Personal Genome

Project [3]). Today, there are already thousands of genotypes available online, and this

number continues to increase. The sharing of genomic data might be seen as more benev-

olent than the egocentric storytelling of OSNs,1 but this does not at all diminish the huge

privacy risks inherent to this very sensitive information.

First of all, as genomic data carries information about our predisposition to diseases

and physical traits, it can be used to infer future physical conditions. As a consequence,

access to this data can potentially lead to serious discriminations in health insurance, life

insurance, or mortgages. Furthermore, genomic data could also be used to discriminate

people in their work, sports, and eventually in their whole life ambitions, as very well

portrayed by the 1997 movie Gattaca. Moreover, as it also carries information about

kinship, genomic data can lead to familial nightmares, for instance, divorce caused by

the discovery of illegitimate offspring [5]. Last but not least, as DNA bears detailed

information about our ethnicity and ancestries, it could be leveraged by racist move-

ments to discriminate people based on their genetic origins. We should definitely not

underestimate this risk, which is of low likelihood, but whose effect would be of extreme

magnitude. The European tragedy of the Holocaust should remind us that ethnic dif-

ferences can be exploited for evil ends. We can also imagine how the systematic racial

segregation could have been even worsened if detailed genetic profiles had fallen into

the hands of Nazi authorities [6]. Such tragedies could occur again, against any ethnic

minority, especially with the rise of far-right parties and hate ideas in today’s Europe.

Our duty is to limit the risk of such systematic segregation by preventing the leakage

and dissemination of genomic data.

Following Alan Westin’s definition [171], privacy is the right to control, edit, man-

age, and delete information about oneself and decide when, how, and to what extent

information is communicated to others. Therefore, each person should be empowered to

manage and preserve his own privacy, individually and independently of others. How-

1A recent survey showed that the first motivation of individuals who publicly share their genotypes
was to help research [4].
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ever, there are many online activities where the privacy attitudes of others matter as

much as our own. The best example is probably e-mail service providers that have most

of our e-mails, even if we do not use these e-mail providers ourselves [7]. Unfortunately,

at both social and biological levels of our lives, which together determine our identity,

there exist mutual privacy risks. At the social level, interdependence emerges from our

social ties, our friends, acquaintances or colleagues. Consequently, by their behavior in

OSNs, they can reveal information about us that we cannot control. At the biological

level, interdependence is inherent to genetic inheritance that relates our genome to those

of our family members. Interdependence is an integral part of mankind, and privacy is

no exception.

In this thesis, we investigate how these interdependent risks affect our privacy at

both of the aforementioned levels of lives; we also propose countermeasures and solutions

to mitigate indirect threats caused by others. We conclude this thesis with the study

of privacy-enhancing systems where others, instead of damaging our own privacy, are

actually needed to preserve it, thus demonstrating that interdependence can also be

beneficial to privacy.

Contributions

In this thesis, we explore the problem of interdependent privacy risks and protec-

tion in today’s highly connected world. We primarily study mutual privacy risks

incurred by individuals who are, by nature, biologically and socially interconnected. We

also propose solutions that eventually all require some degree of cooperation among in-

dividuals. Finally, we demonstrate how others can play a positive role for individuals’

privacy when appropriate incentives are put in place.

Our contributions are as follows:

1. We study interdependent privacy risks in online social networks. We propose a

navigation privacy attack, where an external adversary exploits the public social

links and public attributes of users to find a target user. We describe a search

algorithm that, in order to efficiently navigate towards target users, relies upon

geographical attributes as well as occupation attributes. Our results show that the

majority of users of two prominent OSNs can be found with our algorithm. This

study complements the existing work on inference attacks in OSNs by showing that

an OSN user cannot hide simply by excluding himself from a central directory or

search function, even in a network with more than one billion users. Our findings

also demonstrate that with the current privacy policies of most OSNs there is

no OSN-membership privacy; for instance, the Syrian activists or job applicants

mentioned above would have no chance of denying the existence of their OSN

accounts. We suggest countermeasures that could easily be implemented by OSN

operators in order to prevent this uncontrollable loss of privacy.

2. Considering the emergence of direct-to-consumer genetic testing and the resulting

increasing use of genomic data for various purposes, we tackle the novel problem of

genomic privacy. The first step in this endeavor is to formally measure the threats.

To this end, we propose a probabilistic framework that relies upon Bayesian in-

ference to quantify the genomic privacy and health privacy risks, including those

induced by a person’s relatives. We show that interdependence within a family
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can have a serious impact on the family members’ privacy levels. We illustrate the

significance of the threat by carrying out a cross-website attack, using OSNs as a

side channel to gather kinship information. Moreover, in the context of personal

genomics, we study the interactions between relatives with different interests and

behaviors regarding the storage security and sharing of their genomic data. We

consider only purely selfish relatives who are willing to maximize only their own

utility. We extend the game-theoretic framework to also take into account the al-

truistic behavior that can stem from familial ties. We also propose to rely upon

multi-agent influence diagrams in order to efficiently predict equilibrium behav-

iors in the general scenario where more than two family members interact with

each other. Finally, we develop a genomic-privacy preserving mechanism based on

obfuscation that allows individuals to share (part of) their genomic data, while

preserving some of the genomic privacy of their relatives. We emphasize that this

is possible only if the family members care about each other, thus would cooperate

with each other.

3. To end on a positive note, we study cooperative privacy-enhancing technologies

where others do not compromise our privacy but actually help improve it. There

are plenty of such systems where we need to rely upon our peers to protect our

privacy. Indeed, one of the current most popular privacy-enhancing tools (Tor [56])

is based on the cooperation of others. The cost of cooperation causes a lack of such

benevolent agents, which remains one of the main issues in Tor. We suggest that

monetary incentives could be put in place in order to foster cooperation of more

users in anonymity networks and in other privacy-enhancing systems. Under this

assumption, we study the optimal amount of virtual money needed to maximize

the efficiency of the system. To achieve this goal, we propose a scrip system model,

which notably enables us to demonstrate that threshold strategies lead to a stable

equilibrium. We evaluate the effect of various parameters on the optimal amount

of money. Finally, we apply our analytical findings to real-world applications, such

as anonymity networks. This part of the thesis demonstrates that our novel scrip

system can help improve fairness and efficiency of cooperative privacy-enhancing

systems via well-designed monetary incentives.

Thesis Outline

Following the three main areas of contributions described above, this thesis contains

three parts. Part I discusses the interdependent privacy risks in online social networks.

In particular, we show in Chapter 2 how any external adversary can find target users by

exploiting publicly revealed information and misaligned privacy settings of OSN users.

In Part II, we study interdependent privacy in the genomic context. In Chapter 3, we

focus on the quantification of genomic privacy risks inherent to kinship. In Chapter 4,

we analyze the interplay between family members with non-cooperative behaviors in the

genomic-privacy context. In Chapter 5, we describe a genomic-privacy preserving mech-

anism that relies upon some degree of cooperation between relatives. In Part III, we

study systems where interdependence can be beneficial for privacy. In Chapter 6, in par-

ticular, we investigate how incentives can be optimized in order to encourage cooperative
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behavior in mutual privacy protection, thus eventually maximizing fairness and efficiency

of the privacy-enhancing systems.

Publications

Chapter 2 is an extended version of [94]. Chapter 3 is an extension of [89], whereas

Chapter 4 is based on the results of [91]. Chapter 5 contains the findings of [90]. Finally,

Chapter 6 rests on the results of [93].
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Interdependent Privacy in Online

Social Networks
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Chapter 2

Navigating around Privacy in Online

Social Networks

2.1 Introduction

Over the last few years, online social networks (OSNs) have revolutionized the way people

behave and interact with each other over the Internet. OSNs enable the majority of users

to not just be passive consumers of the Web, but to become active producers of content,

and to be storytellers of their own lives for the first time online. The other side of the coin

is that privacy breaches are intrinsically bound to OSNs, and new forms of surveillance

and control have emerged with OSNs. Recruiters are now known to look up Facebook

profiles of job applicants, and hiring discrimination based on OSNs has become a serious

threat [19, 66]. Some employers and colleges even request the Facebook passwords of job

applicants and student athletes in order to get full access to their profiles [156]. OSNs

have also been exploited by government agencies of authoritarian regimes to infiltrate

protesters’ social networks. Several Syrian activists have notably reported having been

arrested and forced to reveal their Facebook passwords [141]. These practices are only

the tip of the iceberg of privacy erosion caused by OSNs.

The first, straightforward method for finding an individual in an online social network

is to rely on a central directory, if available. Obviously, a user u trying to keep his profile

private would opt not to be listed in such a directory or, if this privacy option is not

available,1 make use of a pseudonym. The second method to reach u is to rely on the

social links between users and to navigate via these links towards u. This approach works

if some of u’s friends show their friend lists publicly (thereby exposing u), which is the

default setting in most OSNs.

In order to find a hidden user, an attacker could search the whole public social graph.

However, such an exhaustive search, despite guaranteeing to find any user in the giant

component,2 would certainly be too expensive for OSNs that contain hundreds of millions

users, notably because of the anti-crawling features deployed by virtually all OSNs. To

1Since the end of 2012, Facebook does not allow its members to remove themselves from the search
directory, even though this is considered to be an important privacy setting [75].

2This holds if the search starts from the giant component and the target is in this component too.
This is a fair assumption for current OSNs; for example, in 2011, researchers found that 99.91% of users
belonged to the giant component in Facebook [164].

9
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reduce the search cost, the attacker can decide to crawl only a targeted subset of OSN

users. In this chapter, we evaluate the feasibility of such an attack for large networks

and ultimately answer the following question: Is it possible to find a target profile by

navigating a small fraction of the whole network, by relying on public attributes of

queried profiles? Answering this question is crucial for privacy, because reaching the

target profile or its neighborhood is the necessary precondition for any targeted attack

such as the inference of hidden attributes (e.g., political or religious views) through other

personal attributes [45, 130], or through friends’ public attributes [115, 135, 54].

To the best of our knowledge, this is the first work proposing to make use of social

links between users to find a target profile in an OSN. Our navigation attack is generic in

order to apply to any attribute-enhanced OSN (such as Facebook, Google+, or Twitter).

We propose a search algorithm that relies on a space of attributes and distance heuristics

based on A∗ search [83]. The categories of attributes and their priorities can be adapted

to any kind of OSN. We show how the attack can be efficiently carried out, given the

OSN visibility and privacy policies, and the users’ privacy choices, by implementing it

in the two largest OSNs, Facebook and Google+. For this OSN, building upon results

on navigation and routing in social networks, the attack first relies on geographical

attributes only, making use of additional types of attributes (such as education or work)

as soon as it reaches the target’s city. Our results demonstrate that 66.5% of Facebook

users are findable by crawling a median number of users smaller than 400, and 59% of

Google+ users are findable by crawling a median number of users small than 300. This

shows that it is very difficult to hide in an OSN, however large it is, and thus to prevent

targeted attacks and/or to deny the existence of a profile. Moreover, targets’ cities are

reached in 92% and 93.5% of the cases by crawling a median number of 13 and 8 users, in

Facebook and Google+, respectively. This shows the efficiency of geographic navigation

in Facebook and Google+. We propose two main explanations for the failed cases. First,

the targets least likely to be discovered are those who have a small number of friends,

or have privacy-cautious friends (not revealing too much information), or friends whose

revealed information is not similar to their own information. Second, users living in

larger cities tend to be harder to discover than others, especially in Facebook. Whereas

the latter reason is inherent to the structure of the OSN and to the limit we impose

on the number of crawled users, the former is essentially due to the privacy settings of

the targets’ friends and the OSN dynamics. Our results demonstrate that homophily

in social networks [131, 25] does not only allow to infer hidden attributes of OSN users

locally, but also allows to efficiently navigate toward the target. Note that we do not

assume any prior knowledge on the network structure and the users’ distribution in the

network. Moreover, by starting the navigation from a random user in the network, we

consider the worst-case scenario for the attacker, and provide a lower-bound on the attack

efficiency. It is clear that the use of advanced search filters or source users closer to the

target can only further benefit the attacker. We briefly show how this can dramatically

reduce the search cost. Finally, we show that simple countermeasures exist and could be

implemented directly by the OSN operators.

2.2 Model

OSN Model Online social networks can be described as social links between online users

who own a personal profile. Formally, an OSN can be defined as a graph G = (V,E),
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User with public social links 

User with private social links 

Target (with private social links) 

Public social link 

Private social link 

Figure 2.1: OSN model. The target keeps his social links private, but two of his neighbors
make these links public.

where the vertex set, V , represents the set of users3 and E, the edge set, their social

links. Each user u ∈ V is endowed with a set of attributes Au that is a subset of the set A
of the available attributes (gender, birthdate, education, city, ...). OSNs with symmetric

social links requiring mutual consent, such as Facebook or LinkedIn, can be modeled

as undirected graphs, whereas OSNs with asymmetric social links, such as Twitter or

Google+, can be represented as directed graphs.4

In most OSNs, users can decide to what extent and with whom they share information

by appropriately tuning their privacy settings. For instance, in Facebook users can reveal

personal attributes to friends only, to friends of friends, or to everyone in the OSN. The

same settings are generally available for their list of social links. Embedding users’ privacy

settings on their social links into the original social graph G induces a directed public

subgraph D, where directed edges are those whose tail vertices have publicly available

social links. Formally, D = (V,Ed), with Ed = {(u, v)|(u, v) ∈ E,Γ(u) 6= ∅}, where Γ(u)

represents the out-neighbors of u ∈ D. Note that we make the conservative assumption

that all privacy settings except the public one (e.g., everyone in Facebook) are private

(e.g., friends, friends of friends), as we cannot access the information if we are not part

of a user’s close neighborhood. Figure 2.1 shows a simple example of an OSN with 22

users, among which 7 have private social links.

Adversary Model The attacker can be any external curious entity that wants to collect

data or infer information about a target t. We assume that the attacker controls at least

one node and can thus have access to information publicly visible in the OSN. In order

to reach his target, the attacker will search the public subgraph D, relying on all public

3In the rest of the chapter, we will alternatively write user, node or vertex to refer to a member of
the OSN.

4Note that Facebook now also allows asymmetric social links, by enabling users to become subscribers
of other users.
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social links and other public personal attributes (such as place of residence and work,

educational affiliations, hobbies, etc.). We assume this attacker to have prior knowledge

on the values of a subset A′t of t’s personal attributes, that he will use to navigate towards

the target. As the attacker will reach the target through the target’s social links (friends,

friends of friends, ...), he will also discover at least one friend of the target, which can be

useful for friend-based inference attacks [135, 54, 173]. Finally, note that the attacker we

consider in this work is passive, in that he does not subvert any user account or interact

with other OSN users, e.g., to create social ties with them.

2.3 Approach

We present here our navigation attack and algorithm. This attack is generic in order

to apply to any attribute-enhanced OSN. We suppose that the attacker cannot rely on

any search directory to find the target or to jump towards any user close to the target

and that the navigation’s starting point is randomly selected. This helps us evaluate the

feasibility of a navigation attack in the worst-case scenario, and provide an upper-bound

on the number of nodes that need to be crawled before reaching a target in general. In

Subsec. 2.5.2, we nevertheless show how the attacker can take advantage of search filters

to quicken the navigation.

In the generic scenario, the attacker navigates from user to user through public so-

cial links, until he reaches the target. He makes an informed decision about the next

user to visit by relying on information publicly revealed by users at each hop towards

the target and on his prior knowledge about the target. Whereas in Milgram’s experi-

ment [133] every participant in the chain could rely on his own local information about

his acquaintances to make a decision about the next user to select, the attacker here

relies on global information bounded by the attributes publicly revealed by users on the

path. Our navigation attack is represented by Algorithm 1, called TargetedCrawler. This

generic algorithm relies on a heuristic model inspired by A∗ search [83].

The TargetedCrawler’s inputs are (i) the source user s, from which the attacker will

start crawling, (ii) the target user t that he has to reach, (iii) a subset of the target’s

attributes A′t ⊆ At known a priori by the attacker, (iv) the distance functions for each

attribute, and (v) the priority of the attributes. The priorities depend essentially on

the OSN and on the prior knowledge about the target’s attributes. For instance, we

will give higher priority to profession or workplace attributes in job-oriented OSNs (such

as LinkedIn), to interests in microblogging OSNs (like Twitter), or to geographical at-

tributes for mobile OSNs. The highest- and lowest-priority attributes will be represented

as A1 and AN , respectively. The algorithm outputs t’s profile and the shortest discovered

path from s to t.

The total estimated cost cu (line 13) from the source to the target at some node u on

the path is divided into (i) the cost from the source to u, dhop(s, u) (hop distance), and

the estimated remaining cost from u to the target, drem(u, t), that is expressed as

drem(u, t) =

{
khdh(Ahu, A

h
t ) if dj(A

j
u, A

j
t ) = 0 ∀j < h

k1d1(A1
u, A

1
t ) otherwise

(2.1)

where dh(Ahu, A
h
t ) is the distance function between users u and t in the attribute h

(attribute with hth priority). The distance functions can be represented by (i) binary
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Algorithm 1: TargetedCrawler

1: F ← s % Initializing the frontier with the source user
2: E ← ∅ % The explored set is initially empty
3: repeat
4: if F = ∅ then
5: Failure
6: else
7: Select the user u∗ ∈ F with the lowest estimated cost to the target t and

remove it from F
8: E ← u∗

9: if t ∈ Γ(u∗) then
10: Return t’s profile and the path from s to t
11: else
12: for all u ∈ Γ(u∗) do
13: cu = dhop(s, u) + drem(u, t)
14: if u /∈ F AND u /∈ E then
15: F ← (u, cu)
16: else if u ∈ F AND cu < cold

u then
17: cold

u = cu
18: Replace the former parent of u by u∗

19: until t reached

values (e.g., 0 or 1 for last names), (ii) real values (e.g., difference for ages, or geographical

distance for locations), or (iii) integers based on hierarchical decompositions (e.g., half the

tree distance for tree-based hierarchies). kh is a normalization parameter translating the

attribute distance into a hop distance. kh should decrease with h, as the more attributes

we share, the closer to each other we should be. With drem, the targeted crawler will

reach a user sharing the same first-priority attribute as the target before considering the

second-priority attribute, then reach a user sharing a second-priority attribute before

considering the third-priority attribute, and so on. We conjecture that OSN users share

certain categories of attributes more than others (depending on the OSN) and that these

attributes affect the way users cluster on different OSNs. Thus, in order to increase the

search efficiency, we prioritize different categories of attributes depending on the type of

OSN.

2.4 Experiments

As the current largest OSN (1.1 billion users as of March 2013), Facebook is the most

representative candidate for evaluating our attack. Moreover, its privacy policies are no-

toriously designed to encourage public disclosure: the default policy for many important

user attributes is everybody, i.e., full public visibility.5 We also implemented our attack

in Google+ in order to validate our findings in Facebook. This OSN is now the second

largest OSN after Facebook [169] and shares many privacy features with Facebook. It

also reveals the users’ social links by default but, contrary to Facebook, allows users to

be not searchable by name.

5As of this writing, this is the case for the following attributes: current city, hometown, sexual
orientation, friend list, relationship status, family, education, work, activities, as well as music, books,
movies, and the sports users like.
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2.4.1 Implementation in Facebook and Google+

Gathering Source-Target Pairs Before beginning the navigation attack, we had to collect

source users from which to start and target users to be reached. We chose to select

pairs of users that would act both as source and as target to further evaluate the paths’

symmetry. In order to have representative and meaningful results, we wanted to avoid

sampling biases as much as possible. Unfortunately, as Facebook and Google+ IDs are

encoded over 64 bits, there is a very small probability that a randomly generated ID

corresponds to an existing profile.

For this reason, we decided to sample on the Facebook directory to gather source

and target profiles, as in [45]. The Facebook directory6 has a tree structure, and profiles

are sorted in first-name alphabetical order. The first layer of the tree is divided into

Latin characters and non-Latin characters. Then, all subsequent layers are divided by

alphabetical order into at most 120 subcategories until the fifth layer where we can

actually select users’ profiles. At each layer of the directory tree, we randomly selected

one branch, until we reached the last layer, where we randomly selected one profile.

Unfortunately, Google+ does not provide such a public directory. Thus, we decided

to sample source and target users by relying on a random walk method. Our method

starts by walking through 50 different profiles in order to reach a random profile in the

network. Once we have reached this profile, we select a node with probability inversely

proportional to its (bidirectional) degree to be added to the source-target set. This

probability compensates the random walk bias towards high degree nodes [73]. Finally,

we retain only profiles with at least two publicly accessible attributes, assuming these

to be part of the attacker’s prior knowledge.7 Note that we repeat the random walk

through 50 profiles for each new node that we add into the source-target set. We discuss

selection bias and the representativeness of our target set in Subsection 2.4.2.

Navigating in Facebook and Google+ Because of the very limited Facebook API, we had

to implement our own crawler of users’ friend lists. With the standard HTTP request

to access the friend list, Facebook provides only the first 60 friends of a user. Then,

it dynamically provides the rest of the friends if the Web user scrolls down the friend

list’s page. While the user is scrolling down, his Web browser actually sends an Ajax

request to get the subsequent 60 friends in the friend list. The server replies in about

2 seconds with a JSON (JavaScript Object Notation) object that contains the next 60

friends in the list. We parsed the list of user IDs of each JSON object, as well as the

additional piece of information (if any) provided right below each friend’s name that

would be used for the navigation. We also implemented our own crawler for Google+.

We could get both all outgoing and incoming social links with only two HTTP requests.

Both requests returned a JSON object with the social links’ profiles (names), and some

attributes (including location, employer, education, profile picture) also useful for the

navigation.

Several lessons can be learned from previous work on navigation in social networks:

(i) Geography and occupation are the two most crucial dimensions in choosing the next

hop in a chain [110]; (ii) geography tends to dominate in early stages of routing [58]; (iii)

adding non-geographic dimensions once the chain has reached a point geographically

6http://www.facebook.com/directory
7This does not mean that a target without any publicly available attributes could not be found. We

need this information here to replace the prior knowledge the attacker is assumed to have.
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close to the target can make the routing more efficient [162, 170]; and (iv) seeking hubs

(highly connected users) seems to be effective in some experiments [162, 23] and to have

limited effect in others [58]. As Facebook and Google+ share many properties with

real social networks, we incorporate these findings into our navigation attack in order

to maximize its efficiency. We select location (current city or hometown) as the first-

priority attribute in Algorithm 1, and education, employer/workplace, and last name as

second-priority attributes. We make this choice also because of the OSN structure and

design. All aforementioned attributes are those most publicly shared by the Facebook and

Google+ users. Location (current city or hometown), education and work are publicly

revealed by around 35%, 30%, and 25% of the Facebook users, respectively [45, 78]. In

Google+, location, education, and employer are publicly shared by 26%, 27%, and 21%

of the users, respectively [129]. Moreover, these attributes are directly available from the

social links’ JSON objects, allowing us to not crawl all friends’ profiles individually, and

thus dramatically decreasing the number of HTTP requests and crawling time.

We propose to rely on two different types of distance function to evaluate the similarity

between two locations. The first metric is computed as half the tree distance where the

tree is defined by a discrete geographical hierarchy: d1(A1
u, A

1
t ) is equal to 3, 2, 1, or 0,

if user u shares a continent, a country, a region/state or a city, respectively, with the

target t. d1(A1
u, A

1
t ) = 4 if u and t are from different continents. The second distance

metric relies on the real geographical distances between two locations and d1(A1
u, A

1
t ) is

then defined as

d1(A1
u, A

1
t ) = max(0, log(dgeo(u, t)/α)) (2.2)

where the logarithm is base-10, dgeo is the great-circle distance (in km), and α is a

normalization constant set to 1 km. We notice that this distance is very close to the

discrete-hierarchy distance (first metric). In order to infer detailed geographical informa-

tion from any location attribute, we relied on GeoNames8, a Web service with a database

containing over 10 million geographical names. More precisely, we used GeoNames (i) to

find the region, country and continent associated with a city in the first distance metric

and (ii) to compute the distance between two locations in the second metric. k1 is set to

2 to get a maximal (theoretical) hop distance of around 8.

We give all non-geographical attributes (education, workplace and last name) second,

thus same, priority. We make these design choices mainly because we can only access

a single attribute in the Facebook users’ friend lists (below each friend’s name). These

structural constraints, imposed by the OSN architecture, lead us to trade off some of

Algorithm 1’s steps against efficiency. Moreover, we make use of a binary distance

function for these second-priority attributes (0 if two attributes match, 1 otherwise)

because (i) we believe it is more efficient to directly select users based on whether they

share the same attribute with the target once we have reached the same city, and (ii)

it is particularly complex to build more elaborate distance functions for last names,

employers, high schools or universities. k2 can be set to any number strictly smaller than

2; we chose k2 = 1.

For simplicity, we verify whether we have reached the target profile by checking his

ID or alias, which both uniquely identify users. An attacker who is not supposed to

know such identifiers will have to check the target’s first and last names that, in addition

to the location, should uniquely identify most of the people. In case there are multiple

8http://www.geonames.org/
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Figure 2.2: Empirical complementary cumulative distributions of (a) the targets’ city
sizes, and (b) the targets’ degrees.

matching targets, the attacker could, for instance, just check the profile pictures of these

few potential targets in order to select the correct target. Facial recognition could be

further used to automatize the targets’ check for targets making use of pseudonyms.9

2.4.2 Dataset Description

We ran our experiments on Facebook from April to November 2012, discontinuously and

not too intensively. In this way, we avoided overloading the system and our crawler

had a behavior similar to an energetic human user. Despite this, we attempted to reach

200 targets, collecting approximately 393k different friend lists, 197 million social links,

and 138 million public user attributes. We also targeted 200 different users in Google+,

during Spring 2013, collecting 398k friend lists and 139 million social links. For the

Google+ crawler, we took similar precautions as for Facebook.

In both Facebook and Google+, we gathered targets in 42 different countries, spread

over all continents. North America encompasses 33.5% of the targets in Facebook and

44% in Google+, Asia 26% in Facebook and 31% in Google+, Europe 18% and 15%,

South America 13.5% and 8%, Africa 7.5% and 1%, and Oceania 1.5% and 1%. The

continent distribution is quite close to the actual distribution of users’ continents, ex-

cept for North America that is a bit over-represented with respect to Europe and Asia.

Regarding the countries, USA represents 26% of the targets in Facebook, followed by

Indonesia, Brazil, and India, with 9.5%, 8.5%, and 8%, respectively. Almost the same

sequence appears in Google+, with USA representing 38% of the targets, India 13%,

Brazil 4%, and Indonesia 4%.

Regarding the targets’ cities, we can notice in Figure 2.2(a) that the populations’

distributions of Facebook and Google+ follow a similar shape, Google+’s targets living in

cities with a bit more inhabitants in general. The average and the median city populations

are equal to 870k and 233k, respectively, in Facebook, and to 2.6M and 440k, respectively,

in Google+.

Regarding the targets’ degrees (friends’ or social links’ numbers), we clearly notice

a phase transition in the degree distribution (Figure 2.2(b)) in Facebook, which is very

9Face recognition has been shown to be very accurate and efficient for subject re-identification in
OSNs [22].
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Table 2.1: Success rates and numbers of crawled nodes for all continents.

Facebook Google+
Continent % success # nodes: mean median % succ. mean med.

North Am. 71.6 1,065 467 67.1 668 272
Asia 51.9 1,061 658 49.2 565 179

Europe 86.1 513 144 53.3 348 72
South Am. 59.3 1,275 445 56.3 667 628

Africa 60 1,500 1,608 67 805 100
Oceania 66.7 2,270 553 100 92 14

similar to the one shown in [164]. Moreover, the average target has 291 friends, which is

fairly close to the global average which was around 278 in April 2012 according to [82].

The targets’ degree distribution is more scattered in Google+, with more targets having

degrees smaller than 100 and greater than 1000. The median number of social links is

equal to 71, smaller than Facebook, but its average is 424, greater than Facebook. It

is hard to link these numbers with other studies, as Google+ is a recent OSN known

to be evolving rapidly [129]. The geographical distance between sources and targets is

quite uniformly distributed between 450 km (shortest distance) and 18,962 km (longest

distance) in Facebook, and between 285 km and 15,814 km in Google+.

2.5 Results

In this section, we will first exhibit the results of our generic navigation attack, showing

its success rate and efficiency. We will also provide some explanations for the failed cases.

We will then mention how, by using some search filters, we can drastically reduce the

crawling effort.

2.5.1 General Results

Our objective is not to launch a brute-force attack by crawling millions of nodes, which

would demand a lot of resources. We rather aim to develop an algorithm that can reach

a specific target in the network in a limited amount of time. For this reason, we decide

to stop the attack after a certain number of crawled nodes, even if the frontier F is not

empty. We choose a limit of 4,000 users, which already takes about 14 hours in Facebook

(much slower than in Google+). We assume this is the maximum bearable time for an

attacker attempting to reach someone in Facebook, and we keep the same limit with

Google+, for consistency. Despite this limit, our attack successfully reaches its target in

66.5% of the cases in Facebook, and 59% of the cases in Google+. Using the Clopper-

Pearson interval in order to evaluate the confidence interval for this success rate, we

find that 95% of the users are reachable with a success rate in the intervals [59.5%, 73%]

and [52%, 66%] for Facebook and Google+, respectively. The Clopper-Pearson interval

is an exact method for calculating binomial confidence intervals. However, it is quite

conservative, thus the intervals above might be wider than what it needs to be in order to

achieve 95% confidence. Table 2.1 shows the success rates, average and median numbers

of crawled nodes, for each continent.

We notice that the North American targets are reached quite successfully in both

OSNs, whereas reaching Asian users are more challenging to reach. We also note that
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Figure 2.3: Success rates with respect to (a) the target’s city size, and (b) his number
of friends. We made use of the Clopper-Pearson method to compute the 95% confidence
intervals.

European targets are reached very successfully in Facebook but not in Google+. Figure

2.3 helps us understand these discrepancies. In particular, Figure 2.3(a) shows that the

success rate drops with the size of the target’s city in Facebook but not with Google+.

We note in Figure 2.3(b) that the success rate increases with the target’s number of

friends, especially in Google+. Lower success rates in Facebook can be explained by

comparing the average numbers of inhabitants for the different continents. We find that

European and North American city populations have averages way below 1M (217k and

449k, respectively), whereas Asia, South America and Africa have average city sizes

close to or above 1M (925k, 1.83M, and 2.46M, respectively). This lower success rate

is certainly due to the fact that, in large cities, our algorithm has to crawl more nodes

in order to cover all the users living in these cities. Our 4,000-node limit is certainly

too low for such cities. However, this does not seem to explain the difference in success

rates in Google+. This is probably due to the fact that Google+ being more recent

and smaller than Facebook, there are less people publicizing the same city, thus less

people to potentially crawl. What seems to have the highest impact on the success rate

in Google+ is the number of friends of the targets. For instance, the median number

of friends in Europe is equal to 33, where it is equal to 81 in North America. This

is certainly due to the fact that the young age of Google+, and smaller adoption by

European users. Note that there is no significant effect of the distance between sources

and targets on the success rate. This shows that it is possible to efficiently navigate

through large geographical distances in Facebook. We must also mention that source

users have no effect on the success rate: all crawls successfully navigate out of the source

neighborhood, and the large majority of them (92% in Facebook and 93.5% in Google+)

reach the target’s city.

We evaluate the nodes’ efficiency by looking at the number of nodes crawled during

our searches. Crawling a node in our experiment means crawling his friend list, not

his personal profile. On average, 983 and 591 nodes needed to be crawled before a

target could be reached, in Facebook and Google+, respectively. Half of the targets were

attained in 380 and 291 or few nodes in Facebook and Google+, respectively. European

targets were especially rapidly reached, after 513 and 348 nodes on average, half of the

targets being found after less than 144 and 72 crawled nodes in Facebook and Google+,
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Figure 2.4: (a) Empirical CCDF of the number of crawled nodes in successful cases, (b)
number of crawled nodes with respect to the target’s city size (number of inhabitants).

respectively. We see in Figure 2.4(b) that the number of crawled nodes is (positively)

correlated to the target’s city size. This is again due to the fact that more nodes will be

seen in larger cities, thus reaching the target after a higher expected number of crawled

nodes. It also tells us that the failures to reach European targets is not due to the city

size but rather to the low number of neighbors. Moreover, for all failed and successful

cases, on average 44 and 28 nodes had to be crawled before reaching a user in the target’s

city, and half of the searches found a user living in the target’s city in less than 13 and

8 crawled nodes, in Facebook and Google+, respectively. This shows that our search

algorithm makes use of long-range social links to efficiently reach the target’s city, and

that the most challenging part of the search is the navigation within the target’s city,

when we have to narrow down the search using second-priority attributes.

The target’s neighborhood also has a huge impact on how easy this target can be

reached. Some targets have only a few friends revealing their friend lists and who display

information similar to the target’s information. These targets have less chance of being

reached. For instance, around 6.5% of the targets have no friends who publicly reveal

their friend list and display information similar to the target’s. Due to their privacy-

cautious friends, these targets are obviously impossible to reach with our attack. Table

2.2 demonstrates the importance, for the success of the attack, of similar attributes being

publicly shared by the target’s friends. The difference between the median number of

attributes (city, or other information) of successful and unsuccessful cases is very signifi-

cant, especially in Google+. Furthermore, the median amount of attributes revealed by

friends of non-reached targets is quite low. This leads us to conclude that, in addition to

the size of the city, the amount of attributes revealed by the target’s friends is crucial to

the attack success. Whereas the influence of the city size is inherent to the OSN structure

and to the 4,000-node limit that we impose, the influence of the target’s friends is due

to the OSN users and their privacy behaviors. Some users might also just have arrived

in their current city, thus not have many friends yet in this city. They might also have

education and work attributes that are not geographically correlated to their location,

thus not be of great help for our attack. In order to improve the attack performance, we

could target more than one cities when needed, e.g., the target’s current city, hometown,

and the city where he studied.

From each subgraph crawled during a successful attack, we reconstructed the shortest
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Table 2.2: Number of similar attributes publicly revealed by the target’s friends with
public friend lists.

Facebook Google+
Success Failure Success Failure

Average Median Ave. Med. Ave. Med. Ave. Med.
City 17 12 8 3 282 45 22 6

Other infos 14.4 7 9.1 3 4 0 0.7 0
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Figure 2.5: (a) Histograms of the shortest discovered path lengths within the crawled
subgraphs, and (b) evolutions of the information types used to navigate towards the
target (information types shared by users on the shortest paths).

discovered path from the source to the target. Figure 2.5(a) illustrates the distribution

of the shortest discovered path lengths. We notice that it goes from 4 to 18 hops in

Facebook, most of shortest paths being between 9 and 11-hops long. This is approxi-

mately twice the distance found in [35] with the knowledge of the complete social graph.

The shortest paths are between 3 and 11 hops in Google+, most of them being 6 hops

long. This result is similar to the diameter obtained in [74], where 90% of the pairs were

separated by a distance of 5, 6 or 7 hops.

We show in Figure 2.5(b) how the information the nodes on the shortest path (SP)

display evolves. It shows that the city is especially useful 3, 2, and 1 hop(s) before the

target, for both OSNs. At 4 (and more) hops from the target, other (non-local) geo-

graphical attributes are used to navigate towards the target. We also note that other

types of attributes (education, work, or last name) begin to be more used 4 hops before

the target (certainly once we have reached the target’s city) and increase their influence

while getting closer to the target. At the latest hop before the target, the city is repre-

sented in 70% of cases in Facebook and 56% in Google+, non-geographical information

representing around 30% of cases in both OSNs. This shows that geographical informa-

tion remains crucial, but also that other types of information can still be useful when we

get close to the target, as it was already mentioned in [162]. Finally, we note that 25%

of the targets in Google+ were found from a profile sharing no similar attribute with

the target. These targets were reached from a user geographically close (at a median

distance of 32 km) but not sharing the same location.
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2.5.2 Jumping towards the Target

Facebook provides an additional feature in order to help people find their acquaintances

in the network: It allows users to apply search filters on location, education or workplace.

This means that, in addition to the first and last names, we can, for instance, specify the

city of the searched person. We did not want to rely extensively on this feature for our

navigation attack because we wanted to keep it generic and applicable to other OSNs.

However, we show here that the attacker can take advantage of Facebook’s search filters

to facilitate his attack.

We search for the last names and the cities of the targets using the Facebook search

filters, and then crawl the friend lists of the users found by the search directory. We search

for last names because users sharing same last names are more likely to be relatives, thus

to be friends. If more than ten users are found, we select the first ten displayed users

as sources. Of course, our targets can appear in the users found by the search filters, as

we chose targets that are in the Facebook directory for our experiments. Searching for

the last names and the cities of our targets, we directly find the targets in 49.5% of the

search results. As targets are assumed to not be in the directory, we remove them from

the list of users to be crawled. At least 10 users satisfying the search criteria are found

in 30% of the filtered searches, and the search requests output no user in 15% of the

cases. By crawling only the friend lists of users found by our filtered search, we reach the

targets with a success rate of 16.5%. This means that an attacker can find a target in

only one hop (and a maximum of 10 crawled nodes) in 16.5% of the cases by relying on

the Facebook search filters. It is interesting to note that 18.2% of the targets discovered

in one hop are targets that were not found by our generic attack. Most of these are living

in large African or South American cities. The size of these cities is probably the reason

our targeted crawler did not find them in less than 4,000 crawled nodes.

2.6 Countermeasures

Countermeasures should logically be developed and implemented by the OSN operators

themselves. An obvious solution, already advanced in [161], is to set the visibility policy

as the intersection of visibility policies selected by all users involved in the published

information. Although it is difficult to force a friend to change his privacy settings on

his personal attributes, it is possible to enforce his social links’ privacy policy. Choosing

the intersection of both users’ policies on social links would mean that a user electing

to reveal his social links to his friends, or friends of friends only, would automatically

enforce non-public social links for his own friends. It would prevent any curious stranger

from accessing his profile by using his friends’ friend lists. Another change in the privacy

policies could be to automatically remove users who are not in the search directory from

their peers’ friend lists. OSN operators could finally also prevent anyone from publicly

showing his social links, as it is the case in LinkedIn. They could at least design non-

public default privacy settings on social links. Detailed formal requirements to protect

multilateral privacy are presented in [80].

If the OSN operators themselves do not re-design their privacy policies, the users

could also take action. The first option is to change the default privacy settings on

social links to more restrictive settings. For this option though, users must collectively

deviate from the default policy in order for it to be efficient. Another strategy is to
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unfriend “dangerous” friends who publicly reveal their social links and other personal

attributes. However, this strategy, already envisaged in a more general setting in [78],

can dramatically spoil users’ experiences and social lives. Finally, if more users decided

to hide their personal attributes (such as city, education, ...), the attacker’s ability to

navigate efficiently in the social graph would decrease, thus reducing the threat presented

in this chapter.

The last and most extreme countermeasure is certainly to change the full OSN archi-

tecture, and rely on a decentralized architecture with encrypted personal data and social

links (e.g., [49, 96]), even though it seems too involved to be accepted by most of the

OSN users.

2.7 Related Work

We present here the most closely related work on privacy threats in OSNs, showing how

our work complements existing attacks. We also discuss the background on navigation

in social networks.

2.7.1 Privacy Issues in Online Social Networks

Acquisti and Gross were among the first to mention the potential risks induced by in-

formation sharing in OSNs in their seminal papers [76, 21]. They study in detail the

Facebook privacy settings and data visibility, and they emphasize the potential threats

caused by weak privacy settings (used by most users). In [117] and [118], Krishnamurthy

and Wills study what types of information are shared with whom, by default or not, and

what kind of privacy settings are available for various pieces of personally identifiable

information. They show that, among 12 OSNs, 10 publicly reveal social links by default

and 1 reveals them always (i.e., without any possibility of changing the settings). 7 reveal

by default the user’s location and 5 always reveal it. 8 reveal the attended schools by

default and 6 the employers. These statistics are relevant for our work as they show what

kind of attributes are publicly revealed, and thus can be used for the navigation.

He et al. [84] were among the first to propose inference attacks based on the users’

neighborhood. They make use of Bayesian inference and multi-hop inference to predict

private attributes based on the friends, and friends of friends of the targeted users. The

authors apply their analytical findings to a LiveJournal dataset with hypothetical at-

tributes. In the same vein, Lindamood et al. propose to infer political affiliation (binary

attribute: liberal or conservative) based on a modified Naive Bayes classifier [127]. Their

results show that simply sanitizing user attributes or links is not enough to prevent

inference attacks. Johnson [104] also emphasizes that social links can leak very sensi-

tive information about a specific Facebook user, for instance whether a certain user is

homosexual or not.

Zheleva and Getoor [174] propose novel inference attacks based on social links and

group memberships, which they apply in four different social networks. Another work on

inference of undisclosed attributes proposes to rely on any of the user’s public attributes,

and on any of the aggregates of his friends’ attributes [115]. Finally, Chaabane et al. [45]

show how music interests can be used to infer private sensitive attributes of Facebook

users. Their approach does not rely on users’ social links or group memberships, but

only on users’ attributes.
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Thomas et al. [161] examine how the lack of joint privacy controls can put a user’s

privacy at risk. Notably, they highlight the inherent interdependent privacy risks due

to friends in Facebook, and the fact that a user had no control over his friends’ friend

lists. They present inference techniques that, based on wall posts and friends, present

improvements compared to previous work by relying only on friends to infer private

attributes. Yamada et al. [173] also emphasize the impact of conflicting privacy policies

on users’ privacy. They propose 3 different attacks: friend-list, profile and wall-post

recovery attacks. Dey et al. [54] estimate the leakage of age information in Facebook,

either by relying on the target’s profile directly, or by using information released by the

targets’ friends.

While these previous papers exploit the notion of homophily to infer hidden attributes

of a user from the visible attributes of his neighbors, our work exploits the global struc-

ture of visible attributes to navigate efficiently towards a target. While the former is a

purely local operation, ours exploits a macroscopic property of the social network. It

complements existing work by showing how to efficiently find anyone in an OSN, neces-

sary condition for any targeted inference attack.

Finally, Jain and Kumaraguru propose an integrated system which uses major dimen-

sions of a user identity (profile, content and network) to search and link a user across

multiple social networks [97]. Our work notably differs in the method used to search for

a user. Our navigation attack does not require the targeted user to be present in multiple

OSNs, and does not assume the target profile to be known in one OSN in order to find

him in another.

2.7.2 Navigation in Social Networks

The seminal experiment by Milgram [133] shows that any arbitrarily selected individuals

can reach any other person through a short chain of acquaintances. There generally

exists a short path from any individual to another, thanks to a few long-range social

links. However, knowing that short chains exist does not tell us how arbitrary pairs

of strangers are able to find them. Since Milgram’s experiment, there have been many

theoretical and experimental papers that explain how people can find short paths, and

thus navigate, in social networks [126].

Travers and Milgram ask 296 arbitrarily selected individuals in the United States to

generate acquaintance chains (using postal mail) to a single target person. Out of the

296 starting chains, 64 reach the target (22% of completion rate) with a mean number

of intermediaries between the sources and the target of 5.2 [162]. They also show that

chains converge essentially by using geographic information; but once in the target’s city,

they often circulate before entering the target’s circle of acquaintances. Dodds et al.

propose a similar social-search experimental approach except that they rely on e-mails

instead of classic postal service to reach a target [58]. This allows them to increase the

number of targeted individuals (18 in 13 countries, instead of 1 target) and the number of

distinct chains (24,163 instead of 296). In total, 384 out of the 24,163 chains reach their

targets, showing an extremely low chain completion rate of 1.6% with an average chain

length of 4.05. They show that geography clearly dominates the routing strategies of

senders at early stages of the chains and is less frequently used than other characteristics

(such as occupation) after the third step.

On a more theoretical side, Kleinberg develops a graphical model, d-dimensional



24 CHAPTER 2. NAVIGATING AROUND PRIVACY IN ONLINE SOCIAL NETWORKS

lattices encompassing the small-world properties, and derives several analytical results,

notably showing the conditions under which a decentralized algorithm that uses only

local information could efficiently (i.e., in polylogarithmic time) route messages from a

source to a target [112, 113]. Considering another model, rank-based friendship, Kumar

et al. prove that greedy routing can find a short path (of expected polylogarithmic

length) from an arbitrary source to a target as long as the doubling dimension of the

metric space of locations is low [120].

Watts et al. present a hierarchical model for categorical organization in social net-

works for message routing. They define the social distance between two people as the

minimum ultrametric distance over all group hierarchies [170]. Eppstein et al. study the

existence of mathematical frameworks that demonstrate the feasibility of local category-

based routing in social networks [61]. They notably introduce the notion of membership

dimension that characterizes the cognitive load of performing routing tasks in a given

system of categories. Their results show how participants in a social network, while re-

membering an amount of information that is polylogarithmic in the size of the network,

can efficiently route messages by using a local, greedy, category-based routing strategy.

Liben-Nowell et al. study the role of geography in order to route messages in social

networks and provide a theoretical model to explain path discovery [126]. To the best

of our knowledge, they are the first to analyze routing in an “online” social network,

namely the LiveJournal social network. However, they limit themselves to the problem

of reaching the target’s city. Among other results, they show that geography remains a

crucial factor in online friendship and is thus very helpful when trying to reach a target.

Lattanzi et al. extend this one-dimensional approach based on geographical proximity

to a multidimensional space of interests relying on a model of social networks called

“affiliation networks” [123].

Knowing that acquaintances’ and social networks show small-world properties, we

now question whether current OSNs do so as well. Mislove et al. already provided a piece

of the answer to that question in 2007 [134]. The four considered OSNs exhibit power-law

degree distributions, a densely connected core of high-degree nodes linking small groups of

strongly clustered nodes and, as a result, short path lengths. Wilson et al. make another

step in that direction, by crawling a significant portion of Facebook and showing its

small-world properties [172]. A crucial step in providing evidence about the small-world

characteristics of OSNs has recently been achieved with the publication of two reports

by Facebook researchers on the Facebook full social graph [164, 35]. Their dataset of 721

million users follows the main small-world properties: 99.91% users belong to the largest

component, the distribution of nodes degree follows a power-law distribution, and the

average distance between users equals 4.7, showing that online social networks are even

smaller than real-world social networks. We can thus predict that, by relying on users’

attributes, most OSNs should also be navigable. However, how to efficiently navigate

on them was until now an open question. Furthermore, Facebook reports considered the

full social graph, with all social links, whereas the attacker assumed in this work would

not have access to all those links. In this chapter, we study whether the public subgraph

induced by the users’ privacy settings on their social links is navigable by relying on

publicly revealed attributes.
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2.8 Summary

In this chapter, we have introduced a navigation privacy attack, where an external adver-

sary attempts to find a target user by exploiting publicly visible attributes of intermediate

users. We describe a search algorithm that relies on public attributes of users and dis-

tance heuristics. As most attributes (such as place of residence, age, or alma mater) tend

to correlate with social proximity, they can be exploited as navigational cues while crawl-

ing the network. The problem is exacerbated by privacy policies where an OSN user who

keeps his profile private remains nevertheless visible in his friends’ “friend lists”, leading

to interdependent privacy risks.

Our search algorithm discovers more than 66% of the targeted Facebook users and

59% of the targeted Google+ users, in a median number of crawled nodes smaller than 400

in Facebook, and smaller than 300 in Google+. Moreover, the targets’ cities are reached

in 92%, respectively 93.5%, of the cases, in a median number of 13, respectively 8, crawled

nodes, showing the efficiency of geographic navigation in Facebook and Google+. The

navigation within the targets’ cities, that rely on more attributes, is less efficient and

successful. One important reason for the failed cases is the privacy behaviors of the

target’s friends: the more friends have public attributes and public social links, the more

likely the target is to be found. This demonstrates the crucial role of social ties in OSNs,

who can have a non-negligible impact on our own privacy. Finally, we highlight the

increased risk induced by advanced search filters in OSNs.

Our results suggest that an OSN user cannot hide simply by excluding himself from

a central directory or search function. This leads us to conclude that it is urgent that

OSN operators implement countermeasures to thwart navigation attacks, thus to reduce

interdependent privacy risks. The most obvious one is to set by default the social links

(friend lists) to be non-public.

Consequences of our Work In addition to being a required prerequisite for most of the

targeted attacks already proposed in the literature, our navigation attack also demon-

strates that it is in most cases impossible for a user to claim that he does not have any

account in a given OSN, thus jeopardizing OSN-membership privacy. This is of partic-

ular relevance when considering the Arab Spring. It is well-known that the successful

protest against the Tunisian and Egyptian regimes was channeled by social media, and in

particular Facebook. The security officials of those countries were apparently unprepared

for such a threat and the rulers were toppled. But, meanwhile, the Syrian government

seems to have learned the lesson. Several Syrian activists have indeed reported having

been arrested and forced to reveal their Facebook passwords [141]. Of course, one of first

reaction of an arrested activist was to claim that he did not have any Facebook account,

but the police had already found his profile and were monitoring him. Considering our

results, most political activists could never hide in Facebook. Our results also apply to

the job applicants who were required by recruiters to allow for access to their entire pro-

files [156]. These individuals would also be affected by the attack shown in this chapter.

Most of them could not claim that they do not have any Facebook account. This leads

us to conclude that OSN-membership privacy is in jeopardy.
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Chapter 3

Quantifying Kin Genomic Privacy

3.1 Introduction

With the help of rapidly developing technology, DNA sequencing is becoming less ex-

pensive. As a consequence, large collections of human genomes are now available to

geneticists, which dramatically increases the speed of genomic research and paves the

way to personalized medicine. Furthermore, individuals can obtain the sequencing of the

most significant part of their DNA (genotype) for less than $100 via direct-to-consumer

genetic testing. Individuals are then using their genotypes to learn about their (genetic)

predispositions to diseases, their ancestries (e.g., on 23andMe [8]), and even their (ge-

netic) compatibilities with potential partners (e.g., on GenePartner [9]). This trend has

also caused the launch of genome-sharing websites and online social networks (OSNs),

in which individuals share their genomic data (e.g., OpenSNP [2] or 23andMe [8]).1

Thus, already today, thousands of genomes are available online and this number keeps

increasing.

Even though most of the genomic sequences on the Internet are anonymized, many

individuals publish their genomes under their real identities (e.g., on OpenSNP). Fur-

thermore, it has been shown that anonymization is not sufficient for protecting the real

identities of the genome donors [81, 158]. The genome containing very sensitive informa-

tion about ethnicity, kinship, and predisposition to diseases, its leakage/usage can lead

to genetic discrimination (e.g., by employers or insurance companies) [29, 62], and even

divorce [5]. Some believe that they have nothing to hide about their genetic structure,

hence they might decide to give full consent for the publication of their genomes on the

Internet to help genomic research. However, our DNA sequences are highly correlated

to our relatives’ sequences. The DNA sequences between two random human beings are

99.9% similar, and this value is even higher for closely related people due to familial in-

heritance. Consequently, somebody revealing his genome does not only damage his own

genomic privacy, but also puts his relatives’ privacy at risk [154]. Moreover, currently, a

person does not need consent from his relatives to share his genome online, thus making

the protection of genomic privacy even more complicated.

A recent New York Times’ article [10] reports the controversy about sequencing and

1A survey about users’ motivation for and fear about genome sharing can be found in [4].
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publishing, without the permission of her family, the genome of Henrietta Lacks (died

1951). On the one hand, the family members think that her genome is private family

information and it should not be published without the consent of the family. On the

other hand, some scientists argue that the genomes of current family members have

changed so much over time (due to gene mixing during reproduction), that nothing

accurate can be told about the genomes of current family members by using Henrietta

Lacks’ genome. We will show in this chapter that they are, at least partially, wrong.

Unfortunately, the Lacks family is only the tip of iceberg. As mentioned before, thousands

of genomes are already available online, thus there are currently thousands of families

facing the same threat. Once the identity of a genome donor is known, an attacker can

learn about his relatives (or family tree) by using an auxiliary side channel, such as an

OSN, and infer significant information about the DNA sequences of the donor’s relatives.

We show the feasibility of such an attack in Section 3.5.

Although the researchers took Henrietta Lacks’ genome offline from SNPedia, other

databases continued to publish portions of her genomic data. Unfortunately, publishing

only portions of a genome does not, however, completely hide the unpublished portions;

even if a person reveals only a part of his genome, other parts can be inferred using

the statistical relationships between the nucleotides in his DNA. For example, James

Watson, co-discoverer of DNA, made his whole DNA sequence publicly available, with the

exception of one gene known as Apolipoprotein E (ApoE), one of the strongest predictors

for the development of Alzheimer’s disease. However, it was shown that the correlation

(called linkage disequilibrium by geneticists) between one or multiple polymorphisms and

ApoE can be used to predict the ApoE status [137]. Thus, an attacker can also use these

statistical relationships (which are publicly available) to infer the DNA sequences of a

donor’s family members, even if the donor shares only part of his genome. It is important

to note that these privacy threats not only jeopardize kin genomic privacy, but, if not

properly addressed, these issues could also hamper genomic research due to untimely fear

of potential misuse of genomic information.

In this chapter, we evaluate the genomic privacy of an individual threatened by his

relatives revealing their genomes. Focusing on the most common genetic variant in

human population, single nucleotide polymorphism (SNP), and considering the statistical

relationships between the SNPs on the DNA sequence, we quantify the loss in genomic

privacy of individuals when one or more of their family members’ genomes are (either

partially or fully) revealed. To achieve this goal, first, we design a reconstruction attack

based on a well-known statistical inference technique. The computational complexity of

the traditional ways of realizing such inference grows exponentially with the number of

SNPs (which is on the order of tens of millions) and relatives. In order to reduce the

complexity and infer the values of the unknown SNPs in linear complexity, we represent

the SNPs, family relationships and the statistical relationships between SNPs on a factor

graph and use the belief propagation algorithm [139, 119] for inference. Then, using

various metrics, we quantify the genomic privacy of individuals and show the decrease in

their level of genomic privacy caused by the genomes of their family members. We also

quantify the health privacy of the individuals by considering their (genetic) predisposition

to certain serious diseases. We evaluate the proposed inference attack and show its

efficiency and accuracy by using real genomic data of a pedigree. More importantly, by

using genomic data and familial information we collected from a public genome-sharing

website and OSNs, we show that the proposed inference attack threatens not only the
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Lacks family, but also many other families. We define in this chapter the quantification

concepts and formalism that we will rely upon in Chapters 4 and 5.

3.2 Background

In this section, we briefly introduce the relevant genetic principles, as well as the concept

of belief propagation.

3.2.1 Genomics

DNA is a double-helix structure that consists of two complementary polymer chains.

Genetic information is encoded on the DNA as a sequence of nucleotides (A,T,G,C) and

a human DNA includes around 3 billion nucleotide pairs. With the decreasing cost of

DNA sequencing, genomic data is currently being used mainly in the following two areas:

(i) clinical diagnostics, for personalized genomic medicine and genetic research (e.g.,

genome-wide association studies2), and (ii) direct-to-consumer genomics, for genetic risk

estimation of various diseases or for recreational activities such as ancestry search. In

the following, we briefly introduce some concepts, which we use throughout this thesis,

about the human genome and reproduction.

Single Nucleotide Polymorphism

As already mentioned, human beings have 99.9% of their DNA in common. Thus, there

is no need to focus on the whole DNA but rather on the most important variants. Single

nucleotide polymorphism (SNP) is the most common DNA variation in human popula-

tion. A SNP occurs when a nucleotide (at a specific position on the DNA) varies between

individuals of a given population (as illustrated in Figure 3.1). There are approximately

50 million SNP positions currently known in the human population [11]. Recent discover-

ies show that the susceptibility of an individual to several diseases can be computed from

his SNPs [103, 12]. For example, it has been reported that two particular SNPs (rs7412

and rs429358) on the Apolipoprotein E (ApoE) gene indicate an (increased) risk for

Alzheimer’s disease. SNPs carry privacy-sensitive information about individuals’ health,

hence we will quantify health privacy focusing on individuals’ published (or inferred)

SNPs and the diseases they reveal.

Two different nucleotides (called alleles) can usually be observed at a given SNP

position: (i) the major allele is the most frequently observed nucleotide, and (ii) the

minor allele is the rare nucleotide. From here on, we represent the major allele as B for

a SNP position, and the minor allele as b (where both B and b are in {A, T,G,C}).
Furthermore, each SNP position contains two nucleotides (one inherited from the

mother and one from the father, as we will discuss next). Thus, the content of a SNP

position can be in one of the following states: (i) BB (homozygous-major genotype),

if an individual receives the same major allele from both parents; (ii) Bb (heterozygous

genotype), if he receives a different allele from each parent (one minor and one major);

or (iii) bb (homozygous-minor genotype), if he inherits the same minor allele from both

parents. For simplicity of presentation, in the rest of the thesis, we encode BB with 0,

2Examination of many genetic variants in different individuals to determine if any variant is associ-
ated with a trait.
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Figure 3.1: Reproduction and single nucleotide polymorphism (SNP). Each parent pro-
duces gametes that are derived from his or her genome. The offspring’s genome is the
combination of these two gamets. As an example, the SNP circled on the offspring’s
genome is homozygous-minor for the offspring but heterozygous for the parents.

Father (F)

BB Bb bb

BB (1,0,0) (0.5,0.5,0) (0,1,0)

Bb (0.5,0.5,0) (0.25,0.5,0.25) (0,0.5,0.5)

bb (0,1,0) (0,0.5,0.5) (0,0,1)M
ot

he
r (

M
)

Table 3.1: Mendelian inheritance probabilities FR(Xi
M,X

i
F,X

i
C) for a SNP gi, given

different genotypes for the parents. The probabilities of the child’s genotype is repre-
sented in parentheses. Each table entry represents

(
P (Xi

C = BB|Xi
M,X

i
F), P (Xi

C =

Bb|Xi
M,X

i
F), P (Xi

C = bb|Xi
M,X

i
F)
)
.

Bb with 1, and bb with 2. Finally, each SNP gi has a minor allele frequency (MAF),

pimaf, which represents the frequency at which the minor allele b of the corresponding

SNP occurs in a given population (typically, 0 < pimaf < 0.5).

Reproduction

Mendel’s First Law states that alleles are passed independently from parents to children

for different meioses (the process of cell division necessary for reproduction). For each

SNP position, a child inherits one allele from his mother and one from his father (as

shown in Figure 3.1). Each allele of a parent is passed on to a child with equal prob-

ability of 0.5. Let FR(Xi
M,X

i
F,X

i
C) = P (Xi

C|Xi
M,X

i
F) be the function modeling the

Mendelian inheritance of a SNP gi, where M , F , and C represent mother, father, and

child, respectively. We illustrate the Mendelian inheritance probabilities in Table 3.1.
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Linkage Disequilibrium

Linkage disequilibrium (LD) [63] is a correlation that appears between any pair of SNP

positions in the whole genome due to the population’s genetic history. Because of LD, the

content of a SNP position can be inferred from the contents of other SNP positions. The

strength of the LD between two SNP positions is usually represented by the correlation

coefficient r2, where r2 = 1 represents the strongest LD relationship.

3.2.2 Belief Propagation

Belief propagation [139, 119] is a message-passing algorithm for performing inference on

graphical models (Bayesian networks, Markov random fields). It is typically used to

compute marginal distributions of unobserved variables conditioned on observed ones.

Computing marginal distributions is hard in general as it might require summing over an

exponentially large number of terms. The belief propagation algorithm can be described

in terms of operations on a factor graph, a graphical model that is represented as a

bipartite graph. One of the two disjoint sets of the factor graph’s vertices represents the

(random) variables of interest, and the second set represents the functions that factor

the joint probability distribution (or global function) based on the dependences between

variables. An edge connects a variable node to a factor node if and only if the variable is

an argument of the function corresponding to the factor node. The marginal distribution

of an unobserved variable can be exactly computed by using the belief propagation algo-

rithm if the factor graph has no cycles. However, the algorithm is still well-defined and

often gives good approximate results for factor graphs with cycles. Belief propagation

is commonly used in artificial intelligence and information theory. It has demonstrated

empirical success in numerous applications including LDPC codes [140], reputation man-

agement [31], and recommender systems [30].

3.3 The Proposed Framework

In this section, we formalize our approach and present the different components that will

allow us to quantify kin genomic privacy. Figure 3.2 gives an overview of the framework.

The SNPs of all relatives are represented by the random variable X that takes value

in the set X = {0, 1, 2}n×m, where n is the number of relatives in the targeted family

and m is the number of SNPs in a single DNA sequence. Moreover, the hidden SNPs

are represented by the random variable XH (that takes value in the set XH), and the

SNPs observed by the adversary by the random variable XO (that takes value in the

set XO). We define R = {r1, r2, . . . , rn} to be the set of relatives in the targeted family

(whose family tree, showing the familial connections between the relatives, is denoted as

T ) and G = {g1, g2, . . . , gm} to be the set of SNPs (i.e., positions on the DNA sequence).

Let Xi
j , respectively xij ∈ {0, 1, 2}, represent the random variable representing SNP gi of

individual rj , respectively its value. Furthermore, we let xi =
[
x1
i x

2
i · · · xmi

]
represent

the values of the SNPs of individual ri, and x ∈ X be the n×m matrix representing the
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Figure 3.2: Overview of the proposed framework to quantify kin genomic privacy. Each
vector xj (j ∈ {1, . . . , n}) includes the set of SNPs for an individual in the targeted
family. Furthermore, SNP gi of relative rj is represented by xij ∈ {0, 1, 2}. Once the
health privacy is quantified, the family should ideally decide whether to reveal less or
more of their genomic information through the genomic-privacy preserving mechanism
(GPPM). The optimization of the GPPM is presented in more details in Chapter 5.

values of the SNPs of all relatives:

x =


x1

1 x2
1 · · · xm1

x1
2 x2

2 · · · xm2
...

...
. . .

...

x1
n x2

n · · · xmn

 (3.1)

FR(Xi
M ,X

i
F ,X

i
C) is the function representing the Mendelian inheritance probabilities

(in Table 3.1), where M , F , C represent mother, father, and child, respectively. The

m×m matrix L represents the pairwise linkage disequilibrium (LD) values between the

SNPs in G, that can be expressed by r2; lij refers to the matrix entry at row i and column

j. lij > 0 if i and j are in LD, and lij = 0 if these two SNPs are independent (i.e., there

is no LD between them). The m-size vector pmaf =
[
p1

maf p
2
maf · · · pmmaf

]
represents the

minor allele probabilities (or MAF) of the SNPs in G. Finally, note that, for any rk ∈ R,

gi ∈ G, and gj ∈ G, the joint probability P (Xi
k,X

j
k) can be derived from lij , p

i
maf, and

pjmaf.

The adversary carries out a reconstruction attack to infer the value xH ∈ XH by

relying on his background knowledge, FR(Xi
M ,X

i
F ,X

i
C), L, pmaf, and on his observation

xO ∈ XO.3 After carrying out this reconstruction attack, we evaluate genomic and health

privacy of the family members based on the adversary’s success and his certainty about

the targeted SNPs and the predispositions to diseases they reveal.

3xo is constructed by replacing hidden SNPs in x by ⊥.
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3.3.1 Adversary Model

An adversary is defined by his objective(s), attack(s), and knowledge. The objective of

the adversary is to compute the values of the targeted SNPs for one or more members of

a targeted family by using (i) the available genomic data of one or more family members,

(ii) the familial relationships between the family members, (iii) the rules of reproduction

(in Section 3.2.1), (iv) the minor allele frequencies (MAFs) of the nucleotides, and (v)

the population LD values between the SNPs. We note that (i) and (ii) can be gathered

online from genome-sharing websites and OSNs, and (iii), (iv), and (v) are publicly known

information. Note that, in the future, the increasing possibility to accurately sequence,

and to impute the actual haplotypes carried by an individual in each of the copies of the

diploid genome will allow a more accurate inference of relatives’ genotype than relying

on population LD patterns only.

Various attacks can be launched, depending on the adversary’s interest. The ad-

versary might want to infer one particular SNP of a specific individual (targeted-SNP-

targeted-relative attack) or one particular SNP of multiple relatives in the targeted family

(targeted-SNP-multiple-relatives attack) by observing one or more other relatives’ SNP

at the same position. Furthermore, the adversary might also want to infer multiple

SNPs of the same individual (multiple-SNP-targeted-relative attack) or multiple SNPs

of multiple family members (multiple-SNP-multiple-relatives attack) by observing SNPs

at various positions of different relatives. In this chapter, we propose an algorithm that

implements the latter attack, from which any other attacks can be carried out. We

formulate this attack as a statistical inference problem.

3.3.2 Inference Attack

We formulate the reconstruction attack (on determining the values of the targeted SNPs)

as finding the marginal probability distributions of the random variable XH representing

the hidden SNPs, given the observed values xO, familial relationships T , and the publicly

available statistical information. We represent the marginal distribution of a SNP gi for

an individual rj as P (Xi
j = xij |XO = xO).

These marginal probability distributions could traditionally be extracted from

P (XH = xH|XO = xO,FR(Xi
M ,X

i
F ,X

i
C), L, T ,pmaf), which is the joint probability

distribution function of of the hidden SNPs, given the available side information and the

observed SNPs. Then, clearly, each marginal probability distribution could be obtained

as follows:

P (Xi
j = xij |XO = xO) = (3.2)∑

xH′∈XH\X ij

P (XH′ = xH′ ,X
i
j = xij |XO = xO,FR(Xi

M ,X
i
F ,X

i
C), L, T ,pmaf),

(3.3)

where XH′ is the random variable representing all SNPs except SNP gi of relative rj .

However, the number of terms in (3.3) grows exponentially with the number of vari-

ables, making the computation infeasible considering the scale of the human genome

(which includes tens of million of SNPs). In the worst case, the computation of the

marginal probabilities has a complexity of O
(
3nm

)
. Thus, we propose to factorize the
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joint probability distribution function into products of simpler local functions, each of

which depends on a subset of variables. These local functions represent the conditional

dependences (due to LD and reproduction) between the different SNPs represented by

X. Then, by running the belief propagation algorithm on a factor graph, we can compute

the marginal probability distributions in linear complexity (with respect to nm).

A factor graph is a bipartite graph containing two sets of nodes (corresponding to

variables and factors) and edges connecting these two sets. Following [119], we form a

factor graph by setting a variable node xij for each random variable Xi
j (gi ∈ G and

rj ∈ R). We use two types of factor nodes: (i) familial factor node, representing the

familial relationships and reproduction, and (ii) LD factor node, representing the LD

relationships between the SNPs. We summarize the connections between the variable

and factor nodes below (Figure 3.3):

• Each variable node xij has its familial factor node f ij and they are connected.

Furthermore, xik (k 6= j) is also connected to f ij if k is the mother or father of j (in

T ). Thus, the maximum degree of a familial factor node is 3.

• Variable nodes xji and xmi are connected to a LD factor node gj,mi if SNP gj is in

LD with SNP gm. Since the LD relationships are pairwise between the SNPs, the

degree of a LD factor node is always 2.

Given the conditional dependences given by reproduction and LD, the global dis-

tribution P (XH = xH|XO = xO,FR(Xi
M ,X

i
F ,X

i
C), L, T ,pmaf) can be factorized into

products of several local functions, each having a subset of variables from x as arguments:

P (XH = xH|XO = xO,FR(Xi
M ,X

i
F ,X

i
C), L, T ,pmaf) =

1

Z

[ ∏
gi∈G

∏
rj∈R

f ij(x
i
j ,x

i
m(j), x

i
f(j),FR(Xi

M ,X
i
F ,X

i
C),pmaf)

]
×
[ ∏
ri∈R

∏
(j,m) s.t.
ljm 6=0

gj,mi (xji , x
m
i , ljm)

]
,

(3.4)

where Z is the normalization constant, and xim(j), respectively xif(j), are the SNPs gi of

the mother, respectively father, of ri (if they exist in T ).

Next, we introduce the messages between the factor and the variable nodes to compute

the marginal probability distributions using belief propagation. We denote the messages

from the variable nodes to the factor nodes as µ. We also denote the messages from

familial factor nodes to variable nodes as λ, and from LD factor nodes to variable nodes

as β. Let X(ν) = {xij
(ν)

: rj ∈ R, gi ∈ G} be the collection of variables representing the

values of the variable nodes at the iteration ν of the algorithm. The message µ
(ν)
i→k(xij

(ν)
)

denotes the probability of xij
(ν)

= ` (` ∈ {0, 1, 2}), at the νth iteration. Furthermore,

λ
(ν)
k→i(x

i
j
(ν)

) denotes the probability that xij
(ν)

= `, for ` ∈ {0, 1, 2}, at the νth iteration

given xim(j), x
i
f(j), FR(Xi

M ,X
i
F ,X

i
C), and pmaf. Finally, β

(ν)
k→i(x

i
j
(ν)

) denotes the prob-

ability that xij
(ν)

= `, for ` ∈ {0, 1, 2}, at the νth iteration given the LD relationships

between the SNPs.

For the clarity of presentation, we choose a simple family tree consisting of a trio

(i.e., mother, father, and child) and 3 SNPs (i.e., |R| = 3 and |G| = 3). In Figure 3.3, we

show how the trio and the SNPs are represented on a factor graph, where r1 represents
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Figure 3.3: The factor graph representation of a trio (mother, father, child) and 3 SNPs
per family member. The message passing described in the main text is between the nodes
x1

1, f1
3 , and g1,2

1 highlighted in the graph.

the mother, r2 represents the father, and r3 represents the child. Furthermore, the 3

SNPs are g1, g2, and g3. We describe the message exchange between the variable node

representing the first SNP of the mother (x1
1), the familial factor node of the child (f1

3 ),

and the LD factor node g1,2
1 . The belief propagation algorithm iteratively exchanges

messages between the factor and the variable nodes in Figure 3.3, updating the beliefs on

the values (in xH) of the targeted SNPs at each iteration, until convergence. We denote

the variable and factor nodes x1
1, f1

3 , and g1,2
1 with the letters i, k, and z, respectively.

The variable nodes generate their messages (µ) and send them to their neighbors.

Variable node i forms µ
(ν)
i→k(x1

1
(ν)

) by multiplying all information it receives from its

neighbors excluding the familial factor node k.4 Hence, the message from variable node

i to the familial factor node k at the νth iteration is given by

µ
(ν)
i→k(x1

1
(ν)

) =
1

Z
×

∏
w∈(∼k)

λ
(ν−1)
w→i (x1

1
(ν−1)

)×
∏

y∈{z,g11,3}

β
(ν−1)
y→i (x1

1
(ν−1)

), (3.5)

where Z is a normalization constant, and the notation (∼ k) means all familial factor

node neighbors of the variable node i, except k. This computation is repeated for every

neighbor of each variable node. It is important to note that the message in (3.5) is valid

if the value of x1
1 is unobserved to the adversary. However, the value of x1

1 can also be

observed by the adversary. In this case, if x1
1 = ρ (ρ ∈ {0, 1, 2}), then µ

(ν)
i→k(x1

1
(ν)

= ρ) = 1

and µ
(ν)
i→k(x1

1
(ν)

) = 0 for other potential values of x1
1 (regardless of the values of the

messages received by the variable node i from its neighbors).

Next, the factor nodes generate their messages. The message from the familial factor

node k to the variable node i at the νth iteration is formed using the principles of belief

propagation as

λ
(ν)
k→i(x

1
1
(ν)

) =
∑
{x1

2,x
1
3}

f1
3 (x1

1, x
1
m(1)), x

1
f(1))FR(Xi

M ,X
i
F ,X

i
C),pmaf)

∏
y∈{x2

1,x
3
1}

µ
(ν)
y→k(x1

1
(ν)

).

(3.6)

4The message µ
(ν)
i→z(x11

(ν)
) from the variable node i to the LD factor node z is constructed similarly.
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Note that f1
3 (x1

1, x
1
m(1)), x

1
f(1))FR(Xi

M ,X
i
F ,X

i
C),pmaf) ∝

P (x1
1|x1

m(1)), x
1
f(1))FR(Xi

M ,X
i
F ,X

i
C),pmaf), and this probability is computed us-

ing Table 3.1. Furthermore, if the degree of the familial factor node is 1 for a particular

SNP, then the local function corresponding to the familial factor node only depends on

the MAF of the corresponding SNP. For example, the degree of f1
1 (in Figure 3.3(c))

is 1, hence f1
1 (x1

1, x
1
m(1)), x

1
f(1))FR(Xi

M ,X
i
F ,X

i
C),pmaf) ∝ P (x1

1|p1
maf). The above

computation must be performed for every neighbor of each familial factor node.

Similarly, the message from the LD factor node z to the variable node i at the νth

iteration is formed as

β
(ν)
z→i(x

1
1
(ν)

) =
∑
x2
1

g1,2
1 (x1

1, x
2
1, l12)

∏
y∈{x2

1}

µ
(ν)
y→k(x1

1
(ν)

). (3.7)

As before, this computation is performed for every neighbor of each LD factor node. We

further note that g1,2
1 (x1

1, x
2
1, l1,2) ∝ P (x1

1, x
2
1), which is derived from l1,2, p1

maf, and p2
maf.

The algorithm proceeds to the next iteration in the same way as the νth iteration.

The algorithm starts at the variable nodes. Thus, at the first iteration of the algorithm

(i.e., ν = 1), the variable node i sends messages to its neighboring factor nodes based on

the following rules: (i) If the value of x1
1 is hidden from the adversary, µ

(1)
i→k(x1

1
(1)

) = 1

for all potential values of x1
1 and, (ii) if the value of x1

1 is observed by the adversary and

x1
1 = ρ (ρ ∈ {0, 1, 2}), µ(1)

i→k(x1
1
(1)

= ρ) = 1 and µ
(1)
i→k(x1

1
(1)

) = 0 for other potential values

of x1
1. The iterations stop when all variable nodes have converged to stable distributions.

The marginal probability of each variable in XH is given by multiplying all the incoming

messages at each variable node representing an unobserved SNP.

3.3.3 Computational Complexity

The computational complexity of the proposed inference attack is proportional to the

number of factor nodes. In our setting, there are nm familial factor nodes and a maximum

of nm(m − 1)/2 LD factor nodes. Hence, the worst-case computational complexity per

iteration is O
(
nm2

)
. However, as each SNP is in LD with a limited number of other

SNPs, the matrix L is sparse and the number of LD factor nodes grows with m rather

than with m(m − 1)/2, especially if we focus on SNPs in strong LD only. Thus, the

average computational complexity per iteration is O
(
nm
)
. Based on our experiments, we

can state that the number of iterations before convergence is a small constant, between

10 and 15. Note finally that this complexity can be further reduced by using similar

techniques developed for message-passing decoding of LDPC codes (e.g., working in log-

domain [46]).

3.3.4 Genomic-Privacy Metrics

A crucial step towards protecting genomic privacy is to quantify the privacy loss induced

by the release of genomic information. Through the inference attack, the adversary

infers the targeted SNPs belonging to the members of a targeted family by using his

background knowledge and observed genomic data (of the family members). The in-

ferred information can be expressed as the posterior distribution P (XH = xH|XO =

xO,FR(Xi
M ,X

i
F ,X

i
C), L, T ,pmaf). Moreover, each posterior marginal probability distri-
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bution is represented as P (Xi
j = x̂ij |XO = xO),5 for all rj ∈ R, gi ∈ G. We propose

to quantify kin genomic privacy using the following metrics: expected estimation error

(incorrectness) and uncertainty.6

Correctness was already proposed in the context of location privacy [152]. In our

scenario, correctness quantifies the adversary’s success in inferring the targeted SNPs.

That is, it quantifies the expected distance between the adversary’s estimate on the

value of a SNP, x̂ij and the true value of the corresponding SNP, xij . This distance can

be expressed as the expected estimation error as follows:

Eij =
∑

x̂ij∈{0,1,2}

P (Xi
j = x̂ij |XO = xO)

∥∥xij − x̂ij∥∥. (3.8)

Privacy can also be represented as the adversary’s uncertainty [55, 147], that is the

ambiguity of P (Xi
j = x̂ij |XO = xO). This uncertainty is generally considered to be

maximum if the posterior distribution is uniform. This definition of uncertainty can be

quantified as the (normalized) entropy of P (Xi
j = x̂ij |XO = xO) as follows:

Hi
j =
−
∑
x̂ij∈{0,1,2}

P (Xi
j = x̂ij |XO = xO) logP (Xi

j = x̂ij |XO = xO)

log(3)
:=

H(Xi
j |XO)

log(3)
.

(3.9)

The higher the entropy is, the higher is the uncertainty.

Finally, we propose another entropy-based metrics that quantifies the mutual de-

pendence between the hidden genomic data that the adversary is trying to recon-

struct, and the observed data. This is quantified by mutual information I(Xi
j ; XO) =

H(Xi
j)−H(Xi

j |XO) [24]. As privacy decreases with mutual information, we propose the

following (normalized) privacy metrics:

Iij = 1−
H(Xi

j)−H(Xi
j |XO)

H(Xi
j)

=
H(Xi

j |XO)

H(Xi
j)

. (3.10)

The aforementioned metrics are useful for quantifying the genomic privacy of individ-

uals. In order to quantify a more tangible privacy, we must convert these genomic-privacy

metrics into health-privacy metrics. To quantify an individual’s health privacy, we focus

on his predisposition to different diseases. Let Sd be the set of SNPs that are associated

with a disease d. Then, a metric quantifying the health privacy for an individual ri
regarding the disease d can be defined as follows:

Dd
i =

1∑
k:gk∈Sd ck

∑
k∈Sd

ckG
k
i , (3.11)

where Gki is the genomic privacy of SNP gk of individual ri, computed using (3.8), (3.9),

or (3.10), and ck is the contribution of SNP k to disease d.7 Other health-privacy metrics

based on non-linear combinations of genotypes or combinations of alleles will be defined

in future work. Note that health-privacy metrics are valid at a given time, and cannot

be used to evaluate future privacy provision, as genome research can change knowledge

on the contribution of SNPs to diseases.

5We use here x̂ij to refer to the estimate of xij .
6These metrics are not specific to the proposed inference attack; they can be used to quantify genomic

privacy in general.
7These contributions are determined as a result of medical studies. Some SNPs might increase (or

decrease) the risk for a disease more than others.
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3.3.5 Genomic-Privacy Preserving Mechanism

Individuals willing to share genomic data for research or recreational purposes might

be unwilling to share all their DNA sequence, and thus need to properly obfuscate the

sensitive part(s) before releasing their genomic data. To do so, their DNA will go through

an obfuscation process, that we call genomic-privacy preserving mechanism (GPPM).

GPPM can be implemented using one of the following techniques: (i) hiding the SNPs,

or (ii) reducing the precision or the quantity of the revealed SNPs.

Hiding all or specific SNPs can be achieved either by not releasing them or by en-

crypting them. Obviously, not releasing any of the SNPs would hinder genetic research,

thus it is not a preferred way to protect the genomic privacy of individuals. Instead of

not releasing the SNPs, the use of cryptographic algorithms to encrypt the genome is

proposed. For example, Kantarcioglu et al. propose using homomorphic encryption on

the SNPs of the individuals to perform genetic research on the encrypted SNPs [106].

However, the security of an individual’s genome should be guaranteed for at least 70-100

years (i.e., during the typical lifetime of a human). As we show in this chapter, even life-

long protection is not enough, considering kin privacy implications (e.g., for offsprings).

It is known that even the best of the cryptographic algorithms we use today could be bro-

ken in around 30 years. Therefore, the appropriateness of cryptographic techniques for

storing and processing the genomic data has been questioned due to long-term security

requirements of the genomic data.

As an alternative to the cryptographic techniques, utility can be traded off for privacy.

The precision of the revealed SNPs can be reduced, for example, by revealing only one

of the two alleles of a SNP. Similarly, family members’ SNPs can be selectively revealed

by also considering the previously revealed SNPs from the corresponding family (to keep

the genomic privacy of other family members above a desired threshold): we evaluate

the privacy provided by this technique in Section 3.4 by assessing the inference power of

the adversary for different fractions of observed data from a targeted family. Eventually,

using one of the above techniques, the GPPM will take x as input and output the matrix

xO of observed SNPs. We detail the GPPM and its optimization in Chapter 5.

3.4 Evaluation

In this section, we first evaluate the performance of the proposed inference attack, then

compare the performance of the inference with and without considering the linkage dis-

equilibrium (LD) between SNPs, and finally evaluate the entropy-based metrics with

respect to the expected estimation error in quantifying the genomic privacy.

For this evaluation, we use the CEPH/Utah Pedigree 1463 that contains the partial

DNA sequences of 17 family members (4 grandparents, 2 parents, and 11 children) [59].

We note in Figure 3.4 that we only use 5 (out of 11) children for our evaluation because (i)

11 is much above the average number of children per family, and (ii) we observe that the

strength of adversary’s inference does not increase further (due to the children’s revealed

genomes) when more that 5 children’s genomes are revealed. As the SNPs related to

important diseases, like Alzheimer’s, are not included in this dataset, we quantify health

privacy in Section 3.5 by using the data collected from a genome-sharing website.

To quantify the genomic privacy of the individuals in the CEPH family, we focus on

their SNPs on chromosome 1 (which is the largest chromosome). We rely on the three
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Figure 3.4: Family tree of CEPH/Utah Pedigree 1463 consisting of the 11 family mem-
bers that were considered. The symbols ♂ and ♀ represent the male and female family
members, respectively.

metrics introduced in Section 3.3.4. That is, we compute the genomic privacy of each

family member using the expected estimation error in (3.8), the (normalized) entropy in

(3.9), and the (normalized) mutual information in (3.10) on the targeted SNPs, and we

average the result based on the number of targeted SNPs for each individual. We rely

on the L1 norm to measure the distance between two SNP values in (3.8).

First, we assume that the adversary targets one family member and tries to infer

his/her SNPs by using the published SNPs of other family members without considering

the LD between the SNPs. We select an individual from the CEPH family and denote him

as the target individual. We construct G, the set of SNPs that we consider for evaluation,

from 80k SNPs on chromosome 1. Thus, the targeted SNPs are the 80k SNPs of the

target individual. Furthermore, we gradually fill the matrix of xO of observed SNPs

with the values of the 80k SNPs of other family members. That is, we sequentially

reveal 80k SNPs (in G) of all family members (excluding the target individual) beginning

with the most distant family members from the target individual (in terms of number of

hops in Figure 3.4) and we keep revealing relatives until we reach his/her closest family

members.8

In Figure 3.5 we show the evolution of the genomic privacy of three target individuals

from the CEPH family (in Figure 3.4): (i) grandparent (GP1), (ii) parent (P5), and

(iii) child (C7). We note that all entropy-based metrics for each target individual start

from the same values. We also observe that the parent’s and the child’s genomic privacy

decreases considerably more than the grandparent’s (the adversary’s error for the grand-

parent’s genome does not go below 0.3). Moreover, the observation of GP3, GP4 and

P6’s genomes has no effect on GP1 and P5’s privacy as their genomes are independent (if

no other relatives’ genomes are observed). We observe in Figure 3.5(a) that the grand-

parent’s genomic privacy is mostly affected by the SNPs of the first revealed children

(C7, C8), and also by those of his spouse and his child (P5). We also observe (in Fig-

ure 3.5(b)) that, by revealing all family members’ SNPs (expect P5), the adversary can

almost reach an estimation error of 0. The target parent’s genomic privacy significantly

8The exact sequence of the family members (whose SNPs are revealed) is indicated for each evalua-
tion.
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Figure 3.5: Evolution of the genomic privacy of the (a) grandparent (GP1), (b) parent
(P5), and (c) child (C7). We reveal all the 80k SNPs on chromosome 1 of other family
members starting from the most distant family members of the target individual (in
terms of number of hops to the target individual in Figure 3.4); the x-axis represents
the disclosure sequence. We note that x = 0 represents the prior distribution, when no
genomic data is observed by the adversary.
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Figure 3.6: Evolution of the genomic privacy of the (a) grandparent (GP1), (b) parent
(P5), and (c) child (C7), with and without considering LD. For each family member, we
reveal 50 randomly picked SNPs (among 100 SNPs in S), starting from the most distant
family members, and the x-axis represents the exact sequence of this disclosure. Note
that x = 0 represents the prior distribution, when no genomic data is revealed.

decreases only with the observation of his children’s and spouse’s SNPs. Finally, we ob-

serve in Figure 3.5(c) that C7’s genomic privacy decreases smoothly with the observation

of his grandparents’ SNPs, and then of his siblings’. We also observe a slight decrease

of privacy once the parents’ SNPs (P5 and P6) are also revealed, but the observation of

parents (after the other children) does not have a significant effect on the adversary’s

error. It is important to note that the importance of a family member for the inference

power of the adversary also depends on the sequence at which his/her SNPs are revealed

in Figure 3.5. For example, in Figure 3.5(c), if the SNPs of the parents (P5 and P6) of

the target child (C7) were revealed before her siblings (C8-C11), then the observation of

her parents would reduce the genomic privacy of the target child more than her siblings

(but the final genomic privacy would not change).

Next, we include the LD relationships and observe the change in the inference power

of the adversary using the LD values. We construct G from 100 SNPs on chromosome 1.

Among these 100 SNPs, each SNP is in LD with 5 other SNPs on average. Furthermore,
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Figure 3.7: Evolution of the global privacy for the whole family by gradually revealing
10% of family’s SNPs.

the strength of the LD (r2 value in Section 3.2.1) uniformly varies between 0.5 and

1 (where r2 = 1 represents the strongest LD relationship, as discussed before). We

note that we only use 100 SNPs for this study as the LD values are not yet completely

defined over all SNPs, and the definition of such values is still an ongoing research. As

before, we define a target individual from the CEPH family, and sequentially reveal

other family members’ SNPs to observe the decrease in the genomic privacy of the target

individual. We observe that individuals sometimes reveal different parts of their genomes

(e.g., different sets of SNPs) on the Internet. Thus, we assume that for each family

member (except for the target individual), the adversary observes only 50 random SNPs

from G (instead of all the SNPs in G), and these sets of observed SNPs are different

for each family member. In Figure 3.6, we show the evolution of genomic privacy of

three target individuals when the adversary also uses the LD values. We observe that

LD decreases genomic privacy, especially when few individuals’ genomes are revealed. As

more family member’s genomes are observed, LD has less impact on the genomic privacy.

We also evaluate the inference power of the adversary to infer multiple SNPs among

all family members, given a subset of SNPs belonging to some family members, and

also considering the LD between SNPs. That is, we evaluate the inference power of the

adversary for different fractions of observed data for the family members. Using the same

set of 100 SNPs, we construct xo from (κ × 100 × n) SNPs, randomly selected from all

family members, where n is the number of family members in the family tree (n = 11 for

this scenario), and 0 ≤ κ ≤ 1. We assume that the SNPs that are not in xo are hidden

from the adversary (i.e., in xH), and we observe the inference power of the adversary

for all the SNPs in x, for different increasing values of κ. In Figure 3.7, we observe

an exponential decrease in the global genomic privacy (privacy of all family members),

showing that the observation of a small portion of the family’s SNPs can have a huge

impact on genomic privacy. The estimation error is decreased by around 3 by observing

only the first 10% of the SNPs.
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3.5 Cross-Website Attacks

In order to show that the proposed inference attack threatens not only the Lacks family,

but potentially all families, we collected publicly available data from a genome-sharing

website and familial relationships from OSNs, and evaluated the decrease in genomic and

health privacy of people due to the observation of their relatives’ genomic data.

3.5.1 OpenSNP and Facebook

We gathered individuals’ genomic data from OpenSNP [2], a website on which people can

publicly share sets of SNPs. Then, we identified the owners of some gathered genomic

profiles by using their names and sometimes profile pictures. Among these identified

individuals, we managed to find family relationships of 6 of them (who publicly reveal the

names of some of their relatives) on Facebook.9 We expect this number to increase in the

future, as more health-related OSNs (which let people share their genomic profiles, such

as 23andMe [8]) emerge. Furthermore, we anticipate that the current widely used health-

related OSNs (e.g., PatientsLikeMe [13]) will let users upload and share their genomic

data. We identified 29 target individuals from 6 different families, whose genomic data

can be inferred using the observed SNPs of the identified individuals.

We focus on 2 individuals I1 and I2 out of these 6 identified individuals and evaluate

the genomic and health privacy for their family members. We observed that both I1
and I2 publicly disclosed around 1 million of their SNPs. Furthermore, we identified the

names of (i) 1 mother, 2 sons, 2 daughters, 1 grandchild, 1 aunt, 2 nieces, and 1 nephew

of I1, and (ii) 1 sibling, 1 aunt, 1 uncle, and 6 cousins of I2 on Facebook. We compute the

genomic and health privacy of these target individuals using the (normalized) entropy in

(3.9) on the targeted SNPs, and normalize the result based on the number of targeted

SNPs for each individual. We do not use the expected estimation error in (3.8), as we

do not have the ground truth for the genomes of the target individuals. Thus, privacy is

quantified as the uncertainty of the adversary in this section.

To quantify the genomic privacy of the target individuals (i.e., family members of

I1 and I2), we first construct G from all SNPs on chromosome 1 (from the observed

genomes of I1 and I2). The set of observed SNPs includes the observed SNPs of I1
(respectively I2) for the inference of family members of I1 (respectively I2). The set

of targeted SNPs includes 77k SNPs for I1’s family and 79k for I2’s family for each

evaluation. In Figure 3.8, we show the decrease in the genomic privacy for different

family members of I1 (aunt, niece/nephew, grandchild, mother, child) and I2 (cousin,

aunt/uncle, sibling) as a result of our proposed inference attack, first without considering

the LD dependencies (similarly to previous section). We observe that, as expected, the

decrease in the genomic privacy of close family members is significantly higher than that

of more distant family members. However, as we have seen in Section 3.4 and we will show

in the next Subsection, the observation of one (or more) additional family member(s)

has often much more impact on the target’s privacy than the observation of only one

relative.

In Figure 3.9, we display the decrease of genomic privacy with respect to 100 SNPs of

chromosome 1.10 We first show the different privacy levels by using all 100 SNPs of the

9According to [79], around 12% of Facebook users publicly share at least one family member on their
profiles.

10We consider only 100 SNPs here for the same reason as in Section 3.4.
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Figure 3.8: Attacker’s uncertainty about all SNP values on chromosome 1 for two different
families gathered on Facebook, without using LD. A stands for aunt, N for niece/nephew,
GC for grandchild, M for mother, C for child, U for uncle. Same notations are used in
Figures 3.9 and 3.10.
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Figure 3.9: Attacker’s uncertainty about values of 100 SNPs on chromosome 1 for two
families gathered on Facebook, by observing (i) all 100 SNPs of the relative that reveals
his/her genome, and (ii) only 50 SNPs but using LD.

observed relative (i.e., I1 or I2), and then show the same by using only 50 SNPs of the

observed relative and LD values. We note that the use of LD decreases privacy slightly

more for the first familyt than for the second family. This is because we randomly picked

50 different SNPs for both families, and those picked in the second family had weaker

LD relationships with other SNPs. We finally observe that the difference between the

two observation cases (50 SNPs with LD and 100 SNPs without LD) is higher for close

relatives (mother, child, or sibling) than for others.

We also evaluate the health privacy of the family members of I1 and I2 considering

their predispositions to various diseases. We first noticed that almost all important SNPs

for privacy-sensitive diseases affected by genomic factors, like Alzheimer’s, ischemic heart
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Figure 3.10: Adversary’s uncertainty about Alzheimer’s disease predisposition for two
families gathered on Facebook.

disease, or macular degeneration, were revealed by I1 and I2. Due to lack of space,

we focus on Alzheimer’s as it is one of the most important diseases that are mainly

attributable to genetic factors. Having two ApoE4 alleles (in SNPs rs7412 and rs429358

located on chromosome 19) dramatically increases an individual’s probability of having

Alzheimer’s by the age of 80. Thus, the contents of these two SNPs carry privacy-sensitive

information for individuals. We use the metrics in (3.11) to quantify the health privacy

of family members for Alzheimer’s disease. We assign equal weights to both associated

SNPs (as their combination determines the predisposition to Alzheimer’s disease). In

Figure 3.10, we show the attacker’s uncertainty about the predisposition to Alzheimer’s

disease for the family members of I1 and I2. We notice a decrease of around 0.2 (from

0.5 to 0.3) in uncertainty between close relatives. Clearly, the knowledge of the SNPs of

more relatives would further worsen the situation.

3.5.2 OpenSNP and Genealogy Website

We gathered individuals’ genomic data from OpenSNP.org here too. Then, we matched

47 OpenSNP profiles (who provided their full names) with profiles on genealogy websites

(that included familial information), clearly showing us the scale of the threat. We

noticed that three of the individuals identified on OpenSNP were associated to the same

family (which is hereafter referred to as the target family). Furthermore, from the family

tree, we obtained the names of 3 target individuals (only considering ancestors up to the

grandparents of youngest identified individual revealing his SNPs) in the same family,

as shown in Figure 3.11(a). We emphasize again that these 3 target individuals did

not publicly share any genomic data and that they would possibly be against such a

disclosure. We compute the health privacy of these 3 targets about their predispositions

to Alzheimer’s disease by using the same SNPs as in Subsection 3.5.1.

In Figure 3.11(b), we show the attacker’s uncertainty about the predisposition to

Alzheimer’s disease for the target individuals. We notice a decrease of 40% for the

father, and of 60% for both the grandmother and the grandfather, compared to their

initial privacy (prior, without any information about the genomes of their relatives).
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Figure 3.11: Quantification of health privacy for one family (with three relatives revealing
their SNPs) found in a genealogy webiste. (a) The family tree of the target family,
where black means that the genomic data of the family member is publicly available
on OpenSNP, and grey means it is not. (b) Adversary’s uncertainty about Alzheimer’s
disease predisposition of family members whose genomes are not publicly available.

This demonstrates that the more genomic data is shared, the less privacy is provided to

the family members.

3.6 Related Work

Stajano et al. were among the first to raise the issue of kin privacy in genomics and

to suggest discussing questions such as; Should you be allowed to disclose your genome

if other relatives do not want to? [154]. Cassa et al. provide a framework for mea-

suring the risks to siblings of someone who reveals his SNPs [44]. They show that the

inference error is substantially reduced when the sibling’s SNPs are known, compared

to when only the population frequencies are used. We push this work further, by con-

sidering any kind of family members, and LD relationship between SNPs, by proposing

and evaluating different privacy metrics, and by presenting a real attack scenario using

publicly available data. Our generic framework considers any observation of a family’s

SNPs, and the adversary’s background knowledge. Re-identification attacks have also

been proposed in the literature. Homer et al. [86] prove that de-identification is an in-

effective way to protect the privacy of participants in genome-wide association studies,

which is also supported by other works [167, 72, 175]. More recently, Gymrek et al. show

how they identified DNAs of several individuals (and their families) who participated in

scientific studies [81]. Finally, Sweeney et al. de-anonymized participants of the Personal

Genome Project by linking their demographic information to public records such as voter

lists [158].

Several algorithms for inference on graphical models have been proposed in the con-

text of pedigree analysis. Exact inference techniques on Bayesian networks are used

in order to map disease genes and construct genetic maps [67, 124, 105]. Monte Carlo

methods (Gibbs sampling) were also proved to be efficient for genetic analyses in the
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case of complex pedigrees [100, 160, 148]. All these methods aim to infer specific geno-

types given phenotypes (like diseases). Another paper relies on Gibbs sampling in order

to infer haplotypes (used in association studies) from genotype data [111]. Genotype

imputation [125] is another technique used by geneticists to complete missing SNPs

based upon given genotyped data. A similar approach has recently been used to infer

high-density genotypes in pedigrees, by relying notably on low-resolution genotypes and

identity-by-descent regions of the genome [42]. None of these contributions addresses

privacy.

In contrast with these contributions, in this chapter, we propose a novel and effi-

cient inference attack in order to reconstruct genomic data of individuals given observed

genomic data of their family members and special characteristics of genomic data. Fur-

thermore, we quantify the genomic privacy of individuals as a result of this attack using

different metrics, and show the real threat by using the data collected from different

websites and OSNs.

3.7 Summary

In this chapter, we have formalized the problem of quantifying kin genomic privacy. To

quantify privacy, we mimic the reconstruction attack of an adversary who tries to infer

hidden data based on the genomic data he gets access to and some public background

knowledge. We propose an efficient inference attack that relies upon probabilistic graph-

ical models and belief propagation. Our inference algorithm provides us with the exact

posterior marginal distributions of the random variables representing the genomic data

when linkage disequilibrium is not taken into account. When linkage disequilibrium is in-

cluded in the graphical model, the posterior distributions are only estimations but which

are, in practice, very close to the exact values. We introduce different genomic-privacy

metrics that express the (in)correctness and (un)certainty of the adversary’s estimation

of genomic data. In order to get more tangible metrics, we also suggest to quantify health

privacy, that is the privacy of individuals regarding the predisposition to certain diseases.

We evaluate our approach and metrics on real genomic data gathered from eleven close

relatives. Furthermore, we demonstrate the extent of the threat by matching users shar-

ing their genomic data online with OSNs profiles where these users also reveal (some of)

their relatives.

Our results notably show that, by disclosing only 10% of its genomic data, a family

loses more than 50% of its global genomic privacy. This is an effect of both genetic

dependencies between relatives and dependencies within each genome via linkage dise-

quilibrium. We also show, in our cross-website attack, that the privacy regarding predis-

position to Alzheimer’s disease can drop by 40% due to the disclosure of a first-degree

relative’s genomic data related to this disease. The privacy situation even worsens if

more than one relative reveals his genomic data.



Chapter 4

Non-cooperative Behavior in Genomic

Privacy

4.1 Introduction

The decreasing cost in genome sequencing has dramatically increased the availability

and use of genomic data in many domains such as healthcare, research, law enforce-

ment, and recreational genomics. This availability raises many questions regarding the

management (storage, sharing, etc.) and, ultimately, the privacy of genomic data. For

instance, thousands of individuals are already sharing their genomic data online, either

anonymously1 or with their real identity (e.g., on OpenSNP.org), showing the willingness

of some people to disclose their genomic data. In addition to this, all individuals whose

DNA has been sequenced have to carefully manage their genomic data. Some may de-

cide to store it on personal devices, others on external (potentially untrusted) servers. In

both cases, guaranteeing security and privacy has a non-negligible cost. Schematically,

in this work, we consider that an individual whose DNA has been sequenced must make

decisions on (i) whether to share his genomic data or not, and (ii) how much to invest

in securing the storage of this data. In this chapter, we analyze the strategic behaviors

of members of the same family in a genomic-privacy context by using a game-theoretic

approach. Game theory has been shown to be very useful for analyzing the behavior

of strategic agents in information security settings [26]. In particular, interdependent

security (IDS) games have been proposed for scenarios where agents make decisions that

affect not only their own security risks but also those of others [122]. As we have seen

in the previous chapter, the genomic data of close relatives is highly correlated, thus

leading to interdependent privacy (IDP) risks. Following the IDS works, we define two

IDP games between family members with different perceived benefits, costs and pri-

vacy levels: (i) the storage-security game where family members have to decide on the

security investment to protect their genomic data, and (ii) the disclosure game where

relatives have to choose whether to disclose or not their genomes. First, we study the

interplay between two family members, who are selfish or (partially) altruistic. With

1Anonymization has been proven to not be an effective technique for protecting identities of the data
owners in the genomic context [81, 158].

49
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the two-player setting, we derive a closed-form expression to quantify genomic privacy

of any individual given one of his relatives’ genome, and compute different closed-form

Nash equilibria for the two games we study. This closed-form expression enables us to

compute the genomic privacy of individuals three orders of magnitude faster than with

the belief propagation method (proposed in Chapter 3). Furthermore, we consider some

altruistic behavior within a family. Then, we extend the two-player game to consider n

family members who decide whether to secure or disclose their genomes. To efficiently

compute the Nash equilibrium of the n-player game, we make use of multi-agent influence

diagrams (MAIDs), an extension of Bayesian networks that enables us to include deci-

sion and utility variables. With this approach we can significantly reduce computational

complexity with respect to a classic extensive-form game. Note that, compared to IDS

games that rely upon theoretical models of interdependence, the indirect risks in the IDP

games come from the actual familial correlations evidenced by genetics. Furthermore,

we quantify genomic-privacy losses with real genomic data, which provides very tangible

results.

Our results show that, if the discrepancy between the players’ perceptions of the

genome-sharing benefits is too high, they follow opposite strategies, creating externalities.

These misaligned incentives lead to inefficient equilibria that result in a lower familial

utility than when incentives are aligned. Our analysis also shows that, surprisingly,

altruism does not always lead to a more efficient outcome in a genomic privacy game.

Yet, such suboptimal equilibrium can be avoided if the players coordinate.

4.2 Model

Users We consider a set of n users from a family whose genotypes are sequenced. We

assume that all users have the same number and set G of SNPs sequenced and stored

on their devices. Users have to make choices regarding the investment on securing their

genomic data and the sharing of this data (e.g., to help research). A user might prefer

storing his genomic data on a personal, and possibly mobile, device. For instance, as

suggested in [52], there are various advantages to keep a person’s genome on a smart-

phone. It is portable, highly personal, and nowadays has very good computational and

storage capabilities. Unfortunately, the number of pieces of malware in current smart-

phones has exploded over the last few years [155], and keeping a mobile device secure

yields non-negligible costs. Alternatively, a user could decide to outsource the storage

of his genomic data to an untrusted third party. Second, a user might want to publicly

share his SNPs, essentially because his perceived benefits outweigh the perceived cost

(loss) for his genomic privacy.2 We assume such users typically do not invest in securing

their genomes on their personal devices, as they are already publicly disclosed.

Adversary The adversary’s goal is to collect and infer genomic data. His motivations for

gathering individuals’ genotypes can be multiple. For instance, the adversary could sell

the collected genomic data to life or health insurances that would then use it to genetically

discriminate potential insurees. As usually assumed in IDS games, the adversary is

considered to be an exogenous, persistent threat [122]. Thus, we do not model him as

a strategic agent, but rather as a probability h(·) of a successful breach on the targeted

2See, e.g., [4] to understand users’ motivations for and fears about genome sharing.
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system. If a user decides to publicly disclose his SNPs online, the probability of a breach

is 1 as the adversary can easily access the data.

4.3 Genomic Privacy Games

The genomes of close family members are highly correlated. Thus, the individuals’ be-

haviors regarding their genomic data will not only affect their personal genomic privacy,

but also those of their relatives, thus leading to interdependent risks. Game theory en-

ables us to model the interplay between users with dependent payoffs, with potentially

conflicting interests, and it enables us to predict their behaviors. We define two inter-

dependent privacy games between family members: (i) the (storage-)security game Gs,

and the disclosure game Gd. Both Gs and Gd are defined as a triplet (P, S, U), where

P is the set of players, S is the set of strategies, and U is the set of payoff functions.

•Players: The set of players P = {P1, ..., Pn} corresponds to the set of n family members

having their genomes sequenced, in both games Gs and Gd.

• Strategies: In the game Gs, for each player Pi, the strategy si ∈ S represents the

security investment for the storage of his genomic data. As differences between discrete

and continuous models of investment appear only in some boundary cases [122, 77], we

consider here the discrete model, i.e. si ∈ {0, 1}. si = 1 means “to invest in securing his

own device”, and si = 0 means “to not invest”, with his data on his device or outsourced

to an untrusted third party (that could be itself attacked). The strategy profile is then

defined as s = [s1, · · · , sn]T . In the game Gd, the strategy is represented by the decision

di to publicly share Pi’s SNPs (e.g., on OpenSNP.org) or not. As the majority of genome-

sharing people currently choose to disclose nothing or their whole set of SNPs, we consider

here a discrete binary model, i.e. di ∈ {0, 1} (0 meaning “no disclosure” and 1 “full

disclosure”). Note that we study is studied in detail a finer granularity of disclosure in a

cooperative context in Chapter 5. A player will choose di = 1 if and only if he perceives

more utility by sharing than by protecting. The strategy profile is then represented by

d = [d1, · · · , dn]T .

• Payoff Functions: The utility of a player is, by definition, equal to the benefit minus

the cost. In our setting, the first term of the benefit, bgi , represents the fact that a user’s

genome is sequenced and available for various benefits (e.g., personalized medicine).

This generic benefit can be added to the benefit bdi that player Pi obtains by disclosing

his genomic data online in game Gd. The cost comprises the (unit) cost of a security

investment for protecting his genome, ci, and the potential loss li of genomic privacy. 3

The cost ci can represent the OS updates that can lead to a non-negligible cost (renewal

of the equipment) once a device becomes too old to support them.

In our genomic context, the privacy loss li can be precisely quantified by relying upon

the expected estimation error Eji defined in (3.8) in Chapter 3. Giving the same weight

to each SNP, we then get

Ei =
1

|G|
∑

k:gk∈G

∑
x̂ki ∈{0,1,2}

P (Xk
i = x̂ki |XO = xO)

∥∥xki − x̂ki ∥∥1
, (4.1)

where XO represents the SNPs observed by the adversary. This observation depends on

the strategies of the players in Gs and Gd. We will denote Ei,0 to be the genomic privacy

3Note that an expected monetary loss would be expressed as a non-decreasing function of li. This
is left for future work.
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when no SNP is observed, i.e. when P (Xj
i = x̂ji |XO = xO) = P (Xj

i = x̂ji ). This initial

(prior) privacy level is computed by using the minor allele frequencies (MAFs) pmaf given

by population statistics. In general, as xO depends on the strategy profile s (respectively

d), Ei will be a function of s (respectively d) in game Gs (respectively Gd). As assumed

in several IDS games (e.g., [121]), the probability of successful breach is set to zero when a

player invests in security, i.e. h(si = 1) = 0. Otherwise, h(si = 0) = pa with 0 < pa ≤ 1.

For the game Gd, h(di = 1) = 1 as discussed in Section 4.2, and h(di = 0) = 0.4

In our genomic privacy game, contrarily to IDS games, the interdependence lies in the

genomic-privacy loss and not in the breach probability h(·). The genomic-privacy loss li
is defined as Ei,0 −Ei(·), where Ei(·) is a function of the strategy profile s = (si, s−i) or

d = (di,d−i). Note that the risk is non-additive: Either the adversary manages to know

the player’s genome directly (and the genomic privacy drops to zero), in which case the

knowledge of another genome does not bring any extra information, or the adversary

cannot get access to the player’s genome and then there is only an indirect privacy loss.

Defining h(s−i) as the probability of successful breaches into a subset of players’ devices

(other than Pi), the payoff function of a player Pi in Gs is

ui(si, s−i) = bgi − (sici + h(si)Ei,0 + (1− h(si))h(s−i) (Ei,0 − Ei(s−i))) , (4.2)

and his payoff in the game Gd is

ui(di,d−i) = bgi + dib
d
i − ((1− di)ci + diEi,0 + (1− di) (Ei,0 − Ei(d−i))) .5 (4.3)

• Social Welfare: We define the social welfare function as the sum of the payoffs of all

players: U(s) =
∑
Pi∈P ui(s) for Gs, and U(d) =

∑
Pi∈P ui(d) for Gd.

• Altruism: Finally, we consider that family members are usually not purely selfish

regarding their relatives, meaning that some altruistic factors can play a role in their

decisions. Following an idea introduced in [132] for social networks, we define a familial

factor α ∈ [0, 1] that conveys the fact that relatives tend to be altruistic among them-

selves. We raise this factor to the power k(Pi, Pj) ∈ N∗ that represents the degree of

kinship between players Pi and Pj .
6 α = 0 means that players are purely selfish, whereas

α = 1 implies that they are fully altruistic with their whole family. For instance, in Gs,

the altruistic player Pi will maximize the following utility (instead of (4.2)):

uai (si, s−i) = ui(si, s−i) +
∑

j:Pj∈P,j 6=i

αk(Pi,Pj)uj(si, s−i). (4.4)

4.4 Two-Player Games

In this section, we study the interplay between two relatives who are first purely selfish,

and then who are partially altruistic depending on their degree of kinship.

4We assume that a player who does not share his SNPs will always invest in security in Gd.
5In the following sections, we will use the more concise notation Ei|−i expressing the genomic privacy

of Pi given a subset (that depends on s−i or d−i) of other players’ SNPs.
6k = 1 for first-degree relatives such as parent, child, sibling, k = 2 for second-degree relatives such

as grandparent, grandchild, uncle, aunt, niece, and so on.
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Table 4.1: Normal form of the two-player game Gs.

P1\P2 s2 = 1 s2 = 0
s1 = 1 (bg1 − c1, b

g
2 − c2) (bg1 − c1 − pa(E1,0 − E1|2), bg2 − paE2,0)

s1 = 0
(bg1 − paE1,0,
bg2 − c2 − pa(E2,0 − E2|1)

(bg1 − paE1,0 − (1− pa)pa(E1,0 − E1|2),
bg2 − paE2,0 − (1− pa)pa(E2,0 − E2|1))

4.4.1 Selfish Players

We start our analysis with the game Gs whose strategic representation is shown in

Table 4.1. Assuming the cost of security investment to be the same for all players, i.e.,

c1 = c2 = c, we characterize all Nash equilibria.

Lemma 4.1. For any value c ∈ [0,∞[, there exists at least one pure Nash equilibrium

(NE) in Gs. More precisely, the NE are defined by the best responses (s∗1, s
∗
2):

(s∗1, s
∗
2) =



(1, 1) if c < min(t1, t2)

(1, 1),mNE if min(t1, t2) < c < max(t1, t2)

(1, 1), (0, 0) if max(t1, t2) < c < pa min(t01, t
0
2)

(0, 0),mNE if pa min(t01, t
0
2) < c < pa max(t01, t

0
2)

(0, 0) if c > pa max(t01, t
0
2)

(4.5)

if max(t1, t2) < pa min(t01, t
0
2), where ti = paEi,0 − p2

a(Ei,0 − Ei|j), t0i = Ei,0, and mNE

is a mixed-strategy Nash equilibrium. If max(t1, t2) > pa min(t01, t
0
2), the third case NE

in (4.5) become (0, 1) if t01 < t02 and (1, 0) if t01 > t02, and max(t1, t2) and pa min(t01, t
0
2)

are swapped in the inequality bounds on c.

The NE can be derived from the best responses of each player that are quite straight-

forward by taking a close look at Table 4.1. Figure 4.1 depicts how the NE evolves for

different values of c. In order to obtain closed-formed Nash equilibria, we must analyt-

ically express the genomic privacy levels Ei,0 and Ei|j . In Chapter 3, we have shown

that, in the general case, belief propagation on factor graphs can be used to compute

the posterior marginal probability P (Xk
i |XO) given some observed genomic data, and

thus to quantify genomic privacy. In the following, we show that, if only two members

are involved in the game, and no other familial genomic data is observed, we can de-

rive a closed-form expression for P (Xk
i |XO), thus for Ei,0 and Ei|j . As we assume that

all players have the same set of SNPs G sequenced and potentially exposed, and that

the adversary can access the whole sequence of SNPs or nothing (as he either success-

fully breaches the system or not), linkage disequilibrium (correlations) between the SNPs

30

Figure 4.1: Dependence of the NE of game Gs with respect to the investment cost c.



54 CHAPTER 4. NON-COOPERATIVE BEHAVIOR IN GENOMIC PRIVACY
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Figure 4.2: (a) Bayesian network representation of a three-generation family, and (b)
Markov chain representing the probabilities of moving from one SNP value (state) to
another from generation i to i+ 1 or i− 1. Probability p is the major allele frequency of
the given SNP.

does not help the adversary, and thus is not used in the computation of genomic privacy.

Thus, when we want to compute the privacy at SNP gk of player Pi, we consider only

the observation at the same SNP gk of player Pj . Each SNP can then be considered

independently of other SNPs. In the following two lemmas, we focus on a single SNP,

thus drop the subscript/superscript k. Assuming Yi is the random variable representing

a SNP of an individual at generation i in a familial branch (see Figure 4.2(a), and p is

the major allele frequency of the SNP, we have the following lemma.

Lemma 4.2. The sequence {Yn} is a discrete stochastic process. Moreover, it is a

first-order homogeneous Markov chain, i.e., the conditional probability of Yi+1 given

(direct) ancestors in one of the parents’ family branches is formally defined as P (Yi+1 =

yi+1|Yi = yi,Yi−1 = yi−1, . . . ) = P (Yi+1 = yi+1|Yi = yi). Its transition matrix P is

defined as follows:

P =

 p 1− p 0

p/2 1/2 (1− p)/2
0 p 1− p

 ,

where pmn = P (Yi+1 = n|Yi = m), m and n belonging to the state space {0, 1, 2}.

Proof. Genotypes of individuals in a family can be modeled as a Bayesian network (BN),

such as in Figure 4.2(a), where each node in the BN represents the SNP of a relative [124].

The two biological parents are also the two parents of each node in the BN. Thus, by

definition, the SNP value given its two parents is conditionally independent of any of its

ancestors. In our setting, where we focus on the ancestors in the familial branch of one

parent, the same reasoning applies. This means that the SNP value Yi+1 is conditionally

independent of any ancestor in the subnetwork (whose leaf node is Yi) given Yi. Thus,
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P (Yi+1 = yi+1|Yi = yi,Yi−1 = yi−1, . . . ) = P (Yi+1 = yi+1|Yi = yi). Finally, the

transition probability P (Yi+1 = yi+1|Yi = yi) is equal to∑
zi∈{0,1,2}

P (Yi+1 = yi+1|Yi = yi,Zi = zi)P (Zi = zi), (4.6)

where P (Yi+1 = yi+1|Yi = yi,Zi = zi) is given by the Mendelian inheritance probabili-

ties, and P (Zi = zi) by the major allele frequency p (Zi is not observed). Equation (4.6)

directly leads to the transition matrix P .

Note that the reverse process, which is the conditional probability of Yi−1 given

direct descendants Yi, Yi+1, . . . , is also a first-order homogeneous Markov chain defined

by the same matrix P where pmn = P (Yi−1 = n|Yi = m). This means that going up

or down the familial tree leads to the same conditional distributions. The corresponding

Markov chain is shown in Figure 4.2(b).

Lemma 4.2 helps us determine the conditional probabilities of SNPs of direct an-

cestors or descendants given any relative’s observed SNP. For instance, the conditional

probability P (Yi+k|Yi) of a relative k-degree apart from another direct relative at gen-

eration i whose SNP is observed and equal to m is given by πi+k = πiP
k, where πi is a

row vector that is equal to 1 in the mth coordinate and 0 elsewhere. This is by definition

of the Markov chain. Note also that the stationary distribution defined as the vector

π such that π = πP , is equal to the vector of prior probabilities (P (Yi)), given by the

major allele probability p:

π =
(
p2 2p(1− p) (1− p)2

)
. (4.7)

This follows intuition as π is defined to be equal to any of the columns of P k when k

tends to infinity. When the observed relative’s generation j is really distant from the

targeted individual’s generation i in the family tree, the genomes of relatives have no

more influence on each other. The conditional probabilities are well-defined for direct

relatives. However, if the individual whose SNP is observed is not a relative in direct line

(e.g., an uncle or a niece), the transition matrix P cannot be applied alone, and has to be

combined with a matrix M whose elements mab represent the conditional probabilities

P (Yi1 = b|Yi2 = a) of i1 given his sibling i2. Defining Ym
i−1 and Yf

i−1 to be the mother

and father SNP variable respectively, mab is derived as follows.

P (Yi1 = b|Yi2 = a) =
∑

ymi−1∈{0,1,2}
yfi−1∈{0,1,2}

P (Yi1 = b,Ym
i−1 = ymi−1,Y

f
i−1 = yfi−1|Yi2 = a) (4.8)

=
∑

ymi−1∈{0,1,2}
yfi−1∈{0,1,2}

P (Yi1 = b|Ym
i−1 = ymi−1,Y

f
i−1 = yfi−1)× (4.9)

P (Ym
i−1 = ymi−1|Y

f
i−1 = yfi−1,Yi2 = a)P (Yf

i−1 = yfi−1|Yi2 = a),

(4.10)

where we used the chain rule to go from (4.8) to (4.10), and the fact that

P (Yi1 |Ym
i−1,Y

f
i−1,Yi2) = P (Yi1 |Ym

i−1,Y
f
i−1), since two siblings are conditionally in-

dependent given both their parents. P (Yi1 = b|Ym
i−1,Y

f
i−1) is given by the Mendelian
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inheritance probabilities, P (Yf
i−1|Yi2 = a) is given by matrix P , and

P (Ym
i−1|Y

f
i−1,Yi2 = a) =

P (Yi2 = a|Yf
i−1,Y

m
i−1)P (Ym

i−1)

P (Yi2 = a|Yf
i−1)

, (4.11)

using the Bayes rule and the fact that P (Ym
i−1|Y

f
i−1) = P (Ym

i−1), as two parents are

independent if no child is observed. Again, one can compute every factor of (4.11) by

using the inheritance probabilities, matrix P , and the major allele frequency p. Matrix

M is defined as

M =

p2 + pq + q2

4 pq + q2

2
q2

4
p2

2 + pq
4

p2

2 + 3
2pq + q2

2
pq
4 + q2

2
p2

4
p2

2 + pq p2

4 + pq + q2

 , (4.12)

where q = 1− p.
We define the 3×3 distance matrix D with elements dij = ‖i− j‖1 and the (column)

vector yi with mth coordinate equal to 1 and others 0 if relative ri’s SNP has value m.

We have the following lemma.

Lemma 4.3. The genomic privacy Ei of individual ri at any SNP is:
Ei,0 = πDyi if no relative reveals the SNP

Ei|j = πjP
kDyi if ri and rj are direct relatives and rj’s SNP is revealed

Ei|j = πjP
uMP vDyi if ri and rj are not direct relatives and rj’s SNP is revealed

where k is the degree of kinship between ri and rj, u is the degree of kinship between rj
and his (direct) ancestor whose sibling is the (direct) ancestor of ri, and v is the degree

of kinship between ri and his (direct) ancestor whose sibling is rj’s (direct) ancestor.

Proof. The genomic privacy of one SNP g of individual ri is given by∑
ŷi∈{0,1,2} P (Yi = ŷi|YO)||yi − ŷi||1.

(i) If no observations are made, then P (Yi = ŷi|YO) = P (Yi = ŷi), the prior

probability, which is given by the major allele frequency p. This is equal to π given

in (4.7). The second element ||yi − ŷi||1 is simply expressed in matrix format by Dyi.

Hence, Ei,0 = πDyi.

(ii) If ri is a kth-degree direct relative of rj , then the conditional probability dis-

tribution P (Yi = yi|Yj = yj) is given by πj+k = πjP
k from Lemma 4.2, leading to

Ei|j = πjP
kDyi.

(iii) In case ri and rj are not in direct line, we need to split the conditional probability

computation into two. First, we need to compute the conditional probability of the direct

ancestor aj of rj who is a sibling of the direct ancestor ai of ri. If aj and j are uth-

degree relatives, πaj = πjP
u. Then, as aj and ai are siblings, we make use of matrix

M defined in (4.12) to compute the conditional probability of ai’s SNP given aj ’s SNP

value. Thus, πai = πajM = πjP
uM . Finally, if ai and i are vth-degree relatives, we have

πi = πaiP
v = πjP

uMP v. Hence, we get Ei|j = πjP
uMP vDyi.

To illustrate the third case of Lemma 4.3, let us take for example two close relatives,

uncle and nephew. If rj is the uncle of ri, then the genomic privacy of ri given rj at a

certain SNP is Ei|j = πjP
1MP 0Dyi = πjPMDyi whereas, if rj is the nephew of ri, the

genomic privacy of ri is Ei|j = πjMPDyi.

We can now quantify genomic privacy for a range of SNPs and get closed-form NE.
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Theorem 4.1. For any value c ∈ [0,∞[, the pure Nash equilibrium is:

(x∗1, x
∗
2) =


(1, 1) if c < max(t1, t2)

(1, 1), (0, 0) if max(t1, t2) < c < pa min(t01, t
0
2)

(0, 0) if c > pa min(t01, t
0
2)

(4.13)

if max(t1, t2) < pa min(t01, t
0
2), where t0i = 1

|G|
∑
l:gl∈G π

lDyli, ti = pa
|G|
(∑

l:gl∈G((1 −
pa)πl+paπ

l
jP

k
l )Dyli

)
if ri and rj are direct kth-degree relatives, and ti = pa

|G|
(∑

l:gl∈G((1−
pa)πl + paπ

l
jP

u
l MP vl )Dyli

)
if ri and rj are not direct relatives, u and v as defined in

Lemma 4.3. If max(t1, t2) > pa min(t01, t
0
2), the second-case NE (1, 1), (0, 0) becomes

(0, 1) if t01 < t02 and (1, 0) if t01 > t02, and max(t1, t2) and pa min(t01, t
0
2) are swapped in

the inequality bounds.

Proof. By summing over all SNPs in G the genomic privacy expressions computed in

Lemma 4.3 and embedding them into the NE computed in Lemma 4.1 (keeping only

pure NE), after some reordering, we get the NE in (4.13), as well as the expressions ti’s

and t0i .

In order to make these NE more tangible, we quantify genomic privacy by relying

upon real genomic data. We make use of the CEPH/Utah Pedigree 1463 that contains

the partial DNA sequences of 4 grandparents, 2 parents, and 11 children [59]. Figure 4.3

represents this family with 3 children. We consider all the SNPs that are available on

chromosome 1, around 82,000. Note that, thanks to our closed-form expression of Ei|j ,

its computation on 82,000 SNPs takes less than one second. This is at least three order

of magnitude faster than the belief propagation algorithm run on the same set of SNPs

(which takes more than one hour). Figure 4.4 shows the thresholds separating the three

different cases of NE in Theorem 4.1 with respect to pa and c. (1, 1) stands below the

two (dotted) red and green curves, and (0, 0) stands above these two curves. Thus, we

note that for most values of c and pa, either both relatives secure their genomes (if c is

smaller than around half of pa), or both do not secure them (if c is greater than around

half of pa). This shows that players, if they have similar cost c, have aligned incentives,

leading to an efficient NE. However, there are some values of c and pa for which two pure

NE (1, 1) and (0, 0) co-exist. It is between the two curves, if the (dotted) red curve lies

above the green one. If the green curve lies above the dotted one,7 then we have either

(0, 1) if E1,0 < E2,0 or (1, 0) if E1,0 > E2,0. The discrepancy between the two curves

is the highest in Figure 4.4(c), as the difference between the initial privacy levels Ei,0’s

and posterior levels Ei|j is the most significant (see Table 4.2). On the contrary, in the

game between C7 and GP1, the posterior levels Ei|j are closer to the initial ones Ei,0
(because the two players are second-degree relatives), and the Ei,0’s differ between the

two players, leading to inefficient NE, like (0, 1), as described above.

Discussion: We conclude that, for most security cost values and probabilities of suc-

cessful breach, the players follow the same strategies, even though their genomic privacy

levels are slightly different. They both either secure their devices, or do not secure.

We now move to the disclosure game Gd. Table 4.3 shows the resulting payoffs for

two players P1 and P2. The following theorem determines its NE.

7This happens for pa < 0.29 in Figure 4.4(a) and pa < 0.78 in Figure 4.4(b).
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Figure 4.3: Bayesian network representation of nine relatives of the CEPH/Utah pedigree
1463.
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Figure 4.4: Thresholds of Theorem 4.1 separating the three different pure NE cases of Gs.
We show three different scenarios with two players: (a) Grandparent GP1 and parent
P5, (b) GP1 and child C7, and (c) children C7 and C8.

Table 4.2: Genomic privacy levels of grandparent GP1, parent P5, children C7 and C8,
from the Utah family shown in Figure 4.3.

(P1, P2) E1,0 E1|2 E2,0 E2|1

(P5,GP1) 0.4741 0.3579 0.4402 0.3179
(C7,GP1) 0.4788 0.4296 0.4402 0.3878
(C7,C8) 0.4788 0.3310 0.4803 0.3321

Theorem 4.2. For any value bd1 ∈ [0,∞[, and bd2 ∈ [0,∞[, the pure Nash equilibrium of

game Gd is:

(d∗1, d
∗
2) =



(0, 0) if (bd1 < E1,0 − c1) ∧ (bd2 < E2|1 − c2) ∨ (bd1 < E1|2 − c1) ∧ (bd2 < E2,0 − c2)

(1, 1), (0, 0) if (E1|2 − c1 < bd1 < E1,0 − c1) ∧ (E2|1 − c2 < bd2 < E2,0 − c2)

(1, 1) if (bd1 > E1,0 − c1) ∧ (bd2 > E2|1 − c2) ∨ (bd1 > E1|2 − c1)

(0, 1) if (bd1 < E1|2 − c1) ∧ (bd2 > E2,0 − c2)

(1, 0) if (bd1 > E1,0 − c1) ∧ (bd2 < E2|1 − c2)

where Ei,0 = 1
|G|
∑
l:gl∈G π

lDyli, Ei|j = 1
|G|
∑
l:gl∈G π

lP kl Dyli if i and j are direct kth-

degree relatives and, if i and j are not direct relatives, Ei|j = 1
|G|
∑
l:gl∈G π

lPul DMP vl yli.

The NE can be derived from the best responses of each player that are quite straight-

forward by taking a close look at Table 4.3. Figure 4.5 illustrates the NE computed in
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Table 4.3: Normal form of the two-player game Gd.

P1\P2 d2 = 0 d2 = 1

d1 = 0 (bg1 − c1, b
g
2 − c2)

(bg1 − c1 − (E1,0 − E1|2),

bg2 + bd2 − E2,0)

d1 = 1
(bg1 + bd1 − E1,0,
bg2 − c2 − (E2,0 − E2|1))

(bg1 + bd1 − E1,0, b
g
2 + bd2 − E2,0)

31

Figure 4.5: Dependence of the NE with respect to the genome-sharing benefits bd1 and
bd2.

Theorem 4.2. These NE depend essentially on the value of bdi + ci with respect to Ei,0
and Ei|j . A player Pi will disclose his genome given the other player discloses it as long

as bdi + ci > Ei|j whereas, if the other player’s best response is to not share, Pi will share

only if bdi +ci > Ei,0. Table 4.2 shows concrete values of genomic privacy E1,0, E2,0, E1|2,

and E2|1, for first-degree direct relatives, second-degree direct relatives, and siblings.

Discussion: We conclude that, in Gd, if the discrepancy between the sharing benefits

that players perceive is high enough between the two players, the players follow opposite

strategies, one player putting the other’s privacy at risk by disclosing his genome.

4.4.2 Altruistic Players

In this Subsection, we analyze how the equilibria evolve when the players are not purely

selfish, but consider also their relatives’ payoffs when making their decisions. Intuitively,

by becoming more socially concerned, the players’ decisions and their resulting NE should

lead to higher social welfare. However, as we will see, social welfare does not always

increase with altruism, unless some coordination between players happen.

To evaluate how the NE is affected by altruistic behavior, we focus on the game Gd.

Player P1 considers the altruistic payoff ua1(d1, d2) = u1(d1, d2)+αk(1,2)u2(d1, d2) instead

of merely u1(d1, d2). The same applies symmetrically for P2. We define the familial

Nash equilibrium (FNE) as a strategy profile where no player can reduce his altruistic

payoff ua by unilaterally changing his strategy given the other player’s strategy. Defining

bi = bdi + ci for the ease of presentation, we have the following theorem.
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Theorem 4.3. For any value b1 ∈ [0,∞[, and b2 ∈ [0,∞[, the pure FNE is:

(d∗1, d
∗
2) =



(0, 0) if (b1 < E1,0 +αk(E2,0−E2|1))∧ (b2 < E2|1)∨
(b1 < E1|2) ∧ (bd2 < E2,0 + αk(E1,0 − E1|2))

(1, 1), (0, 0) if (E1|2 < b1 < E1,0 + αk(E2,0 − E2|1) ∧
(E2|1 < b2 < E2,0 + αk(E1,0 − E1|2)

(1, 1) if (b1 > E1,0 +αk(E2,0−E2|1))∧ (b2 > E2|1)∨
(b1 > E1|2) ∧ (b2 > E2,0 + αk(E1,0 − E1|2)

(1, 0) if (b1 > E1,0 + αk(E2,0 − E2|1)) ∧ (b2 < E2|1)

(0, 1) if (b1 < E1|2) ∧ (b2 > E2,0 + αk(E1,0 − E1|2)

(4.14)

where Ei,0 = 1
|G|
∑
l:gl∈G π

lDyli, Ei|j = 1
|G|
∑
l:gl∈G π

lP kl Dyli if Pi and Pj are

direct kth-degree relatives and, if Pi and Pj are not direct relatives, Ei|j =
1
|G|
∑
l:gl∈G π

lPul DMP vl yli.

The FNE can be derived from the Table of payoffs updated to uai . These different NE

are depicted in Figure 4.6 by circled numbers separated by (thick) dotted lines. Note the

up-right shift of the borders of the (0, 0) FNE compared to the selfish NE (red dotted

lines). This tells us that, by considering the other’s player utility, the decision maker will

choose to disclose his genome for a higher value of bi than in the purely selfish scenario.

Discussion: We conclude that altruism, by internalizing externalities into players’ pay-

offs, tends to reduce the privacy loss caused by the other player at equilibrium.

We now describe the strategies that a social planner would choose on behalf of the

players in order to maximize social welfare, thus to attain the social optimum U∗.

Theorem 4.4. For any value b1 ∈ [0,∞[, and b2 ∈ [0,∞[, the social optimum U∗ is

reached with the following strategies:

(d∗1, d
∗
2) =


(0, 0) if (b1+b2 < E1,0+E2,0)∧(b1 < E1,0+E2,0−E2|1)∧(b2 < E1,0+E2,0−E1|2)

(1, 0) if (b1 > E1,0 + E2,0 − E2|1) ∧ (b2 < E2|1)

(0, 1) if (b2 > E1,0 + E2,0 − E1|2) ∧ (b1 < E1|2)

(1, 1) if (b1 + b2 > E1,0 + E2,0) ∧ (b2 > E2|1) ∧ (b1 > E1|2)

(4.15)

where Ei,0 = 1
|G|
∑
l:gl∈G π

lDyli, Ei|j = 1
|G|
∑
l:gl∈G π

lP kl Dyli if Pi and Pj are

direct kth-degree relatives and, if Pi and Pj are not direct relatives, Ei|j =
1
|G|
∑
l:gl∈G π

lPul DMP vl yli.

This theorem is derived by simply summing the utilities of both players in Table 4.3

for all four strategy combinations and selecting the combination that leads to the max-

imum sum for any value of b1 and b2. The social optimum’s strategies are represented

schematically with respect to b1 and b2 by the texture of Figure 4.6. Given this social

optimum U∗(d), the Price of Anarchy (PoA), that measures how the game efficiency de-

creases due to selfishness, is defined as U∗(d)/minNE U(d) [116]. The Price of Stability

(PoS) also measures this inefficiency but considers the best NE instead of the worst one,

assuming that players coordinate, thus is defined as U∗(d)/maxNE U(d) [28].

Following the notion of Windfall of Friendship (WoF) proposed in [132], we define

the Windfall of Kinship (WoK) as the ratio between the social welfare of the worst FNE
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32
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1
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35

4

Figure 4.6: Familial NE and social optima with respect to b1 and b2. Circled numbers
represent the five different cases of Theorem 4.3, in order, separated by (thick) dotted
lines in the figure. The red (small) dotted lines represent the borders of Figure 4.5. The
four different texture patterns represent the strategies of the social optimum, depicted
in Theorem 4.4: white for (0, 0), vertical lines for (1, 0), horizontal lines for (0, 1), and
dots for (1, 1). The single asterisk is E1,0 + αk(E2,0 − E2|1), and the double asterisk is
E1,0 + E2,0 − E2|1.

and the social welfare of the worst NE:

κ(α, k) =
minFNE U(d)

minNE U(d)
(4.16)

Given this definition, we can state the following theorem.

Theorem 4.5. If b1, b2 are such that
b1 + b2 > E1,0 + E2,0

b1 < E1,0 + αk(E2,0 − E2|1)

b2 < E2,0 + αk(E1,0 − E1|2),

(4.17)

then κ(α, k) < 1 for any k ≥ 1 and 0 < α ≤ 1.

Proof. Let us focus on the cases where NE and FNE differ. This happens essentially in

the two strips between Ei,0 and Ei,0 + αk(Ej,0 − Ej|i) for i = 1, j = 2 and the contrary

(see Figure 4.6). We know, from Theorem 4.4, that the social optimum in these strips is

reached at (0, 0) except if b1 + b2 > E1,0 + E2,0 where it is reached at (1, 1). Moreover,

we know that the FNE or worse FNE is (0, 0) in these strips according to Theorem 4.3.

However, the NE is (1, 1) if (bd1 > E1,0 − c1)∧ (bd2 > E2|1 − c2)∨ (bd1 > E1|2 − c1)∧ (bd2 >

E2,0 − c2) according to Theorem 4.2. Let us now compute the ratio between the social

welfare at (0, 0) (FNE) and the social welfare at (1, 1) (NE):

κ =
bg1 + bg2 − c1 − c2

bg1 + bg2 + bd1 + bd2 − E1,0 − E2,0

=
bg1 + bg2 − c1 − c2

bg1 + bg2 + b1 + b2 − c1 − c2 − E1,0 − E2,0
.

κ is strictly smaller than 1 if and only if b1 + b2 > E1,0 + E2,0. This gives us the

first condition of (4.17), the two others being given by the area we are focusing on. If
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Figure 4.7: Evaluation of the (in)efficiency of the NE and FNE with respect to b1 and b2.
(a) Minimum social welfare at NE, (b) Windfall/Price of Kinship, (c) Price of Anarchy,
(d) minimum social welfare at FNE, (e) Windfall of Coordinated Kinship, and (f) Price
of Stability for the game Gd with players GP1 and P5, α = 0.8, and bg1 = bg2 = 0.5.

b1 + b2 < E1,0 +E2,0, we know that the FNE or worse FNE cannot be improved as they

are (0, 0), which is the social optimum. Note that the region where κ < 1 is the small

triangle with dots texture in the FNE area defined by circle 2 in Figure 4.6.

This theorem tells us that, contrarily to intuition, altruism in a family does not

necessarily lead to higher social welfare, and induces a Price of Kinship rather than a

windfall if the bi’s are in the range defined in (4.17). In this range, the social optimum

is to disclose their genomes for both players, but there is the possibility to end up in a

“non-disclose” (0, 0) FNE due to the altruistic factor, leading to a worse outcome than

in the selfish NE. However, note that the WoK is always less than or equal to the PoA.

Indeed, as for any α ∈ [0, 1], k ≥ 1, minFNE U(d) ≤ U∗(d), it directly follows from

(4.16) that κ(α, k) ≤ PoA.

If we assume that some coordination can happen between the players, we can define

the Windfall of Coordinated Kinship (WoCK) as the ratio between the social welfare of

the best FNE and the social welfare of the best NE:

γ(α, k) =
maxFNE U(d)

maxNE U(d)
(4.18)

This new definition allows us to state the following theorem.

Theorem 4.6. For any b1 ∈ [0,∞[, b2 ∈ [0,∞[, k ≥ 1, and α ∈ [0, 1], it holds that:

1 ≤ γ(α, k) ≤ PoS ≤ PoA. (4.19)
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Proof. First, as minNE U(d) ≤ maxNE U(d), we get

U∗(d)

maxNE U(d)
≤ U∗(d)

minNE U(d)
, (4.20)

thus PoS ≤ PoA. Moreover, as maxFNE U(d) ≤ U∗(d), we get

maxFNE U(d)

maxNE U(d)
≤ U∗(d)

maxNE U(d)
, (4.21)

thus γ(α, k) ≤ PoS. We know from Theorem 4.5 that κ(α, k) < 1 in the triangle defined

by (4.17). The difference between κ and γ is that the latter uses the best FNE whereas

the former uses the worst FNE. In the area defined by (4.17), two FNE co-exist,(0, 0)

and (1, 1). The worst FNE is (0, 0) and the best is (1, 1), which corresponds to the social

optimum and the selfish NE in this area. Hence, maxFNE U(d)/maxNE U(d) = 1 in

this triangle. For the rest of the (b1, b2) values where FNE and NE differ, the FNE is

always equal to the social optimum U∗ defined in Theorem 4.4, thus the social welfare

of NE cannot be greater. It follows that γ(α, k) ≥ 1.

In order to evaluate how the NE, FNE, WoK, WoCK, PoA, and PoS evolve in practice,

we make use of the genomic data provided by the Utah family. We choose the two

relatives GP1 and P5, and compute their genomic privacy based on their actual SNPs,

as in Subsection 4.4.1. We set α = 0.8, bg1 = bg2 = 0.5 and compute results (NE, FNE,

...) for b1 and b2 varying between 0 and 1, with granularity 0.01. Figure 4.7 shows

the resulting graphs. First, we notice the up-right shift of (0, 0) between NE and FNE

that follows the borders shown in Figure 4.6. We also see that minimum social welfare

is minimal in the squares standing in the middle of both Figures 4.7(a) and (4.7(d)).

Looking at Figure 4.7(b), we clearly notice that the WoK is smaller than one for values

of b1 and b2 close to 0.5, confirming Theorem 4.5. However, as soon as coordination

happens between players, the ratio between the social welfare of FNE and the social

welfare of NE (WoCK) becomes always greater than or equal to one, as illustrated in

Figure 4.7(e). Finally, we note that PoA and PoS are always greater than or equal to

one, that PoS ≤ PoA, and that PoS ≥ WoCK, confirming Theorem 4.6.

Discussion: In conclusion, if players cannot coordinate, their altruistic conservatism (or

prudence), regarding the disclosure of their genomes can lead to a worse social outcome

than in the purely selfish setting, as shown in Theorem 4.5 and in Figure 4.7(b).

4.5 n-Player Game

In this section, we extend the genomic privacy game to consider n > 2 relatives. Con-

trarily to the two-player framework that allowed us to derive closed-form expressions,

and thus compute all pure Nash equilibria very efficiently, we now face a more challeng-

ing problem. First, in general, all players (family members) can influence other players’

payoffs, thus all other players’ strategies have to be taken into account when a family

member optimizes his own decision. Second, privacy levels Ei|−i cannot be expressed in

closed forms if more than one other family members disclose their genomes.

In order to represent this complex game in a compact way and reduce its complex-

ity, we rely upon multi-agent influence diagrams (MAIDs), introduced by Koller and

Milch [114]. A MAID is an extension of the Bayesian network framework that embeds,
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YM YF

YCDC UC2

DM DF UF2UM2

UM1 UF1

UC1

Figure 4.8: Multi-agent influence diagram representing a trio (mother, father, child) with
one decision variable (square), one chance variable (circle) representing the SNP(s) of the
player, and two utility variables (diamonds) per player. Full lines represent probabilistic
or deterministic dependencies, whereas dotted ones represent the variables that an agent
observes when he makes his decision. This figure illustrates a game with sequential
moves, perfect information, and with purely selfish players.

in addition to random variables, decision and utility variables, and enables to consider

multiple strategic agents, thus permitting to represent games. We define a MAID Md

representing the n-player genomic-privacy game Gd. We show an example of Md for a

trio in Figure 4.8. Note that in MAIDs, all variables are depicted by capital letters. The

chance8 variable Yi is defined as P (Yi = yi) = 1 (other values having probability 0) if

di = 1, and P (Yi = ŷi|YO = yO) if di = 0. Note that, we represent the chance variable

Yi for a single SNP but there actually are |G| chance variables that directly depend

on di, and are independent of each other (thus they can be considered in “parallel” in

the MAID). A child’s SNP is probabilistically determined by his parents’ genomes, as

explained in Subsection 3.2.1. We also define two utility variables: ui1 = bgi + dib
d
i −Ei,0

that directly depends on di , and ui2 = Ei that directly depends on the chance variable

Yi. Note that Ei is zero if di = 1 (genomic privacy drops to zero) and Ei = Ei|−i if

di = 0. Then, Pi’s payoff ui is ui1 + ui2.

We assume that players move (decide) sequentially and under perfect information of

previous decisions made by other players. Variables observed when a decision is made

are depicted by dotted directed edges. For instance, in Figure 4.8, the following decision

ordering is shown: mother, father and then child. Under these assumptions, we can state

the following lemma.

Lemma 4.4. If a player Pi ∈ P moves, i.e. chooses his decision rule, at node Di before

Pj makes his own decision at node Dj, then Di is not s-reachable from Dj.

The concept of s-reachability is defined in Definition 5.3 of [114]. In a nutshell, if Di is

s-reachable from Dj , then Di is relevant to Dj or, in other words, Dj strategically relies

on Di. The main idea of the proof is that, if a decision node Di is observed by Dj (dotted

edge in Figure 4.8), it means that the decision rule δ(dj) at Dj will be conditioned on the

instantiations of Di. The decision rule at Dj will be defined as δ(dj |di),∀di ∈ {0, 1}, thus

8In MAIDs, random variables are called chance variables.
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Figure 4.9: Outcome of the n-player game. Number of players disclosing their genomes
(first row) and social welfare (second row) at NE in the n-player game Gd with the family
members shown in Figure 4.3. We set b2 = 0.4 in (a) and (d), b2 = 0.6 in (b) and (e),
and b2 = 0.8 in (c) and (f).

this decision will not be affected by a change Di. However, because Dj is not observed

by Pi when he makes his decision, Dj will be relevant to Di, thus s-reachable from Di.

Under perfect information, we can define, for any sequence of strategic decision among

players, an acyclic relevance graph9 using Lemma 4.4. From this acyclic relevance graph,

we can construct a topological ordering of the decision nodes D1, ..., Dn such that if Di

is s-reachable from Dj , then i < j. In the example shown in Figure 4.8, the topological

ordering is DC , DF , DM . In the general case, the topological ordering is such that, if

Pi chooses his decision rule before Pj , then j < i. Hence, the topological ordering

corresponds to the reverse decision order.

Theorem 4.7. By iteratively deriving the optimal decision rule δ∗(di|paDi) for each

node Di in topological order, and every instantiation paDi of its parents in the MAID,

we obtain a strategy profile d∗ that is a Nash equilibrium of Md.

This theorem essentially follows from Algorithm 6.1 and Theorem 6.1 of [114]. Note

that, in our scenario, under perfect information assumption, we do not need to define an

arbitrary fully mixed strategy profile at the beginning of the algorithm. The algorithm

defined by Theorem 4.7 is similar to the one defined by backward induction in extensive-

form games. However, thanks to the MAID approach, we can run inference on Md in

order to compute the expected utilities given the decision rules of every player, and to

eventually find a NE in O(|G|2n) instead of O(|G|32n) in the extensive-form game.

We numerically compute the NE of the n-player game Gd by considering the Utah

family shown in Figure 4.3. We assume the sequence of decisions to be the following:

9See the definition of a relevance graph in Definition 5.4 of [114].
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GP1, GP2, GP3, GP4, P5, P6, C7, C8, and C9. We skip the details of the algorithm

and inference and provide here the main numerical results. We focus on 1,000 randomly

chosen SNPs of chromosome 1,10 and compute the NE and resulting social welfare of the

family for varying values of bi’s. We assume bi = b1 for all grandparents, bi = b2 for

all parents, and bi = b3 for all children. We make b1 and b3 vary between 0 and 1 with

granularity 0.1, and b2 be equal to 0.4 (first column of Figure 4.9), 0.6 (second column

of Figure 4.9) and 0.8 (third column of Figure 4.9). In the first row of Figure 4.9, we

see the number of players disclosing their genomes at NE. In Figure 4.9(a), because b2
is quite small (0.4), if b1 and b3 are also small (≤ 0.4), then nobody has the incentive

to share his genome. If b1 or b3 are high enough for the grandparents and the children

to share their genomes, it will automatically lead the parents to do the same, because

then the parents’ genomic privacy will be reduced by their relatives’ decision. We see

this in the left strip where b3 ≥ 0.5 and b1 ≤ 0.2: 5 relatives disclose their SNPs, the 3

children and the 2 parents. By increasing b1 to 0.3, then 2 of the 4 grandparents have

the incentive to share their SNPs, considering their privacy levels. We notice that when

b2 increases to 0.6 (Figure 4.9(b)) and 0.8 (Figure 4.9(c)), then even if b1 and b3 are very

small, the parents’ best responses are to disclose their SNPs. Then, if b1 increases to

0.3 while b3 ≤ 0.1 (bottom strip), then 2 grandparents have the incentive to share their

SNPs (4 players thus share them), and from b1 ≥ 0.4 all grandparents have the incentive

to disclose their genomes.

Discussion: We conclude that, in some cases, when the perceived benefits do not clearly

outweigh the genomic privacy losses, some people with same perceived benefits might end

up with different strategies at equilibrium.

Looking now at the social welfare values at NE, the most interesting finding is that

the social welfare decreases between Figure 4.9(d) and Figure 4.9(e) for values of b1 and

b3 smaller than 0.5, even though b2 increases from 0.4 to 0.6. This is due to the privacy

externalities that are created by the parents disclosing their SNPs whereas grandparents

and children have no incentives to do the same. Hence, misaligned incentives have

negative impact on the social welfare of a family. Our MAID Md model can be easily

adapted to take altruism into account.

We note that the proposed n-player game requires all family members to give their

decisions sequentially but at a given time instant, which might not be feasible in real life

considering infants, or even unborn family members.

4.6 Related Work

Interdependent risks in privacy have recently been demonstrated and explored in different

settings. Due to their intrinsic social nature, online social networks (OSNs) are especially

prone to indirect privacy risks. Mislove et al. evaluate the fraction of users in an OSN

that would be sufficient in order to infer attributes of the remaining users [135]. Henne et

al. study how OSN pictures uploaded by friends can reveal information about one’s own

location [85]. Dey et al. analyze the risk of age inference in OSNs, by notably relying on

information posted by users’ friends and friends-of-friends [54]. In the context of location

privacy, Vratonjic et al. show how mobile users connecting to location-based services from

the same IP address can indirectly compromise location privacy of others [166]. Olteanu

10As in Section 4.4, LD is not used as we assume the same set G of SNPs potentially shared by the
players and targeted by the adversary.
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et al. study how users reporting co-locations with other users (e.g., on online social

networks) can decrease others’ location privacy [138]. In order to precisely quantify the

effect of co-location information, they propose an optimal inference algorithm and two

polynomial-time approximate inference algorithms.

Acquisti et al. are among the first to propose an economic model to formalize in-

centives and interactions between rational agents in the context of privacy [20]. More

precisely, the authors rely on a game-theoretic approach in order to study the incentives

and behaviors of participants in anonymity networks. Freudiger et al. analyze the be-

havior of selfish mobile nodes that want to protect their location privacy by changing

pseudonym and at a minimum cost [69]. Contrarily to Freudiger et al. who assumed a

global attacker, Humbert et al. consider a local adversary with multiple eavesdropping

stations. They study the interaction between such an adversary and mobile users deploy-

ing mix zones to protect their location privacy [92]. Shokri et al. make use of Stackelberg

Bayesian games in order to model the user-adversary interplay in the context of local-

ization attacks [153]. Biczók and Chia tackle, by using a game-theoretic framework,

the issue of interdependent risks caused by agents with misaligned incentives regarding

their privacy in online social networks [38]. They show how negative externalities can

lead to inefficient equilibria. Their work builds upon the literature on IDS games, that

is surveyed in [122]. We follow a similar approach for genomic privacy and, in addi-

tion, precisely evaluate the possible direct and indirect privacy losses with a well-defined

framework and by using real data. The non-linear genetic dependencies between players

in genomic privacy are also a novel compared to previous work.

4.7 Summary

In this chapter, we have studied the interplay between the members of a given family,

who have to decide about whether to share their genomes and how much to invest to

secure their storage. We model the interplay between the family members with differ-

ent incentives and privacy levels by using a game-theoretic approach and predict their

behaviors at equilibrium. First, we extensively study a two-player game between two

purely selfish or partially altruistic family members. In this context, we also derive a

closed-form expression to quantify genomic privacy of any individual given one his rela-

tives’ genome, which dramatically decrease the computational burden compared to the

belief propagation algorithm used in Chapter 3. Then, we extend this framework to an

n-player game using multi-agent influence diagrams, an extension of the Bayesian net-

work framework that enables us to include decision and utility variables. This approach

allows us to significantly reduce the computational complexity of computing the Nash

equilibria with respect to a classic extensive-form game.

In the two-player setting, our results show that the players follow similar security

strategies, that is either invest in security or not, if the cost of investment is the same

for both players, regardless of the cost’s actual value and of the probability of successful

breach from the adversary. In the case of the genome-sharing game, however, if the

benefits of disclosure perceived by the players are different enough, the players follow

opposite strategies, one player putting the other’s privacy at risk by sharing his genome.

We also show that, in general, altruism tends to reduce the privacy loss caused by the

other player at equilibrium. However, for some perceived sharing benefits, the altruistic

prudence can, surprisingly, lead to a worse social outcome than in the purely selfish
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scenario. Finally, in the n-player game, we notice that, when the perceived benefits

do not clearly outweigh the genomic-privacy losses, some players with similar sharing

benefits might end up with different strategies at equilibrium.



Chapter 5

Cooperative Genomic Privacy

Protection

5.1 Introduction

As we have seen in Chapter 3, genomic privacy was popularized by the story of Henrietta

Lacks whose cells were sequenced and whose DNA sequence was put online without the

consent of her descendants [10]. After complaints from the family, essentially due to pri-

vacy concerns, Henrietta’s genome was taken offline, and in 2013, the National Institutes

of Health (NIH) came to an agreement with the Lacks family, which gave them some

control over her genome. Even though this agreement enables the genomic researchers

to use Henrietta’s genome again, it also draws attention to the lack of techniques for

balancing the benefits of genomic research with personal and kin genomic privacy risks.

Richard Sharp, the director of biomedical ethics at the Mayo Clinic, warned that the

agreement was only a “one-off solution” rather than a broad policy that addresses the

tension between research and relatives’ privacy, and he added that a “new policy” was

absolutely needed [14].

Anonymization was the first countermeasure proposed to protect genomic privacy,

but in many different studies it was proven to be inadequate [81, 158, 86]. Another

protection mechanism is to add noise to aggregate statistical results (to satisfy differential

privacy) [64, 102], but at the cost of reduced accuracy. The last option proposed in the

literature is to rely on cryptographic techniques [36, 33]. Even though these techniques

are proven to be effective for using genomic data in healthcare [33, 50], computational

complexity becomes very high when it comes to conducting statistical tests on large

numbers of encrypted genomes for genomic research [106].

In this chapter, we present a genomic-privacy preserving mechanism (GPPM) for

reconciling people’s willingness to share their genomes (e.g., to help research1) with

privacy. Our GPPM acts at the individual data level, not at the aggregate data (or

statistical) level like in [64, 102]. Focusing on the most relevant type of variants (the

SNPs), we study the trade-off between the usefulness of disclosed SNPs (utility) and

genomic privacy. We consider an individual who wants to share his genome, yet who

1http://opensnp.wordpress.com/2011/11/17/first-results-of-the-survey-on-sharing-genetic-
information/

69
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is concerned about the subsequent privacy risks for himself and his family. Thus, we

design a system that maximizes the disclosure utility but does not exceed a certain

level of privacy loss within a family, considering (i) kin genomic privacy, (ii) personal

privacy preferences (of the family members), (iii) privacy sensitivities of the SNPs, (iv)

correlations between SNPs, and (v) the research utility of the SNPs. Our GPPM can

automatically evaluate the privacy risks of all the family members and decide which

SNPs to disclose. To achieve this goal, it relies on probabilistic graphical models and

combinatorial optimization. Our results indicate that, given the current data model,

genomic privacy of an entire family can be protected while an appropriate subset of

genomic data can be made available. Our contributions can be summarized as follows:

• We propose a GPPM for enabling genomic research while protecting personal and

kin genomic privacy.

• Given the genomic data model, our obfuscation mechanism maximizes the utility

and meets all the privacy constraints of a given family.

• Using combinatorial optimization, we first compute the optimal solution without

considering correlations between SNPs, and then we extend the algorithm to ad-

dress non-linear constraints induced by these correlations.

5.2 Genomic-Privacy Preserving Mechanism

In order to mitigate attribute-inference attacks and protect genomic and health pri-

vacy, the GPPM relies upon an obfuscation mechanism. In practice, obfuscation can

be implemented by adding noise to the SNP values, by injecting fake SNP values, by

reducing precision, or by simply hiding the SNP values. In this thesis, we choose SNP

hiding, essentially because the genomic research community would not receive other op-

tions positively. Indeed, genetic researchers are very reluctant about adding noise or

fake data, notably because of the huge investment they make to increase (sequencing)

accuracy. We assume one family member, at a given time, who wants to disclose his

SNPs and to guarantee a minimum privacy level for him and his family.

5.2.1 Settings

Like in the two previous chapters, we focus on one family whose members are defined

by the set R (|R| = n). We assume that there is only one donor rD who makes the

decision to share his genome at a given time. His relatives might have already publicly

shared some of their genomic data on the Internet. rD takes this into account when he

makes his own disclosure decision. We let G (|G| = m) be the set of SNPs. Its cardinality

m can go up to 50 million, as this is currently the approximate number of SNPs in the

human population [11]. In practice, however, people put online (e.g., on OpenSNP) up

to 1 million of the most significant SNPs. We let xD represent the SNPs of rD (xiD is

the value of SNP gi of the donor rD), that are all initially undisclosed (hidden). Finally,

we let yD represent the m-size binary decision vector of rD, where yiD = 1 means SNP gi
will be disclosed, and yiD = 0 means SNP gi will remain hidden. Note that the decision

to disclose a SNP could also be probabilistic, thus transforming yiD into a continuous

variable in [0, 1]. We leave the study of the continuous case for future work.
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We express the privacy constraints of a family member both in terms of genomic and

health privacy. Our framework can account for different privacy preferences for different

family members, SNPs, and diseases. For all rj ∈ R, gi ∈ G, we define the privacy

sensitivity as sij . We can set the sij ’s to be equal by default. Then, an individual willing

to personalize his privacy preferences may further define his own privacy sensitivities

regarding specific SNPs based on his privacy concerns regarding, e.g., certain phenotypes.

As mentioned in Chapter 3, the most well-known example of such a scenario is the case

of James Watson, co-discoverer of DNA, who made his whole DNA sequence publicly

available, with the exception of one gene known as Apolipoprotein E (ApoE), one of the

strongest predictors for the development of Alzheimer’s disease.2 We let the sets P i
s ⊆ G

and P i
d include the privacy-sensitive SNPs and privacy-sensitive diseases of individual ri,

respectively. We represent the tolerance to the genomic-privacy loss of individual i as

Pri(i,P i
s), and the tolerance to the health-privacy loss of individual ri regarding disease

d ∈ P i
d as Pri(i, d). These tolerance values represent the maximum privacy loss (after the

disclosure of rD’s SNPs) that an individual would bear. By considering the privacy losses

instead of the absolute privacy levels, we ensure that the donor will more likely reveal a

SNP whose value is already well inferred by the attacker before donor’s disclosure (e.g., by

using SNPs previously shared by the donor’s relatives). Note that these tolerance values

can always be updated for any new family member willing to disclose his genome. Finally,

the utility function is a non-decreasing function of the norm of yD, as the knowledge of

more SNPs can only help genomic research. In a first step towards enhanced genomic

privacy, we assume linear contribution of SNPs on utility. Formally, we define ui to be

the utility provided by SNP gi. Note that, in practice, the utility of the SNPs can be

determined by the research authorities and can vary based on the study.

5.2.2 Linear Optimization

Optimization Problem

The donor faces an optimization problem: How to maximize research utility while pro-

tecting his own and his relatives’ genomic and health privacy. First, the objective function

is formally defined as
∑
i:gi∈G uiy

i
D. Then, privacy constraints are defined, for each in-

dividual, as the sum of privacy losses induced by the donor’s disclosure over all SNPs.

This sum must be capped by the respective privacy loss tolerances of all family members.

Formally, for all individuals rj ∈ R and SNPs gi ∈ G, the privacy loss induced by the

disclosure of xiD is defined as (Eij(y
i
D = 0)−Eij(yiD = 1)). Note here that the privacy loss

at a given SNP gi for any relative is only affected by the donor’s decision yiD regarding

SNP gi but no other SNP gk 6= gi, meaning that LD correlations are not taken into ac-

count. We make this assumption here in order to define linear constraints. We show how

to extend the linear optimization problem to include LD correlations in Subsection 5.2.3.

Finally, note that if an individual rj , j 6= D has already revealed his SNP gi, the privacy

loss at this SNP for gi for rj is zero, because Eij(y
i
D = 0) = Eij(y

i
D = 1) = 0.

For all rj ∈ R, gi ∈ G, the privacy weight pij is defined as

pij = sij × (Eij(y
i
D = 0)− Eij(yiD = 1)). (5.1)

2Later researchers have used correlations in the genome to unveil Watson’s predisposition to
Alzheimer’s [137]. In this work, we also consider such correlations.
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Clearly, pij at a given SNP gi can be different for each family member rj , depending on

how close he is from the donor in the family tree, on the actual values xij and xiD of his

and the donor’s SNPs, and on his sensitivity. Note that sij = 0 ∀j /∈ P i
s.

We can now define the linear optimization problem as

maximize
yD

∑
i:gi∈G

uiy
i
D

subject to
∑

i:gi∈P j
s

pijy
i
D ≤ Pri(j,P j

s),∀rj ∈ R

∑
k:gk∈Sd

pkj y
k
D ≤ Pri(j, d),∀d ∈ P j

d,∀rj ∈ R

yiD ∈ {0, 1},∀gi ∈ G,

(5.2)

where Sd is the set of SNPs that are associated with disease d. Note that, for the last

inequality, we replace the sensitivity skj in pkj by the contribution ck of SNP k to disease

d described in (3.11), and we embed the normalization factor
∑
k ck of (3.11) in Pri(j, d).

Optimization Algorithm

Our optimization problem is very similar to the multidimensional knapsack problem [70].

We decide to follow the branch-and-bound method proposed by Shih [150], because it

finds the optimal solution, represents a good trade-off between time and storage space,

and allows for the extension of the algorithm to null and negative (privacy) weights.

A branch-and-bound algorithm is a systematic enumeration of all candidate solutions,

where large subsets of candidate solutions are pruned by using upper bounds on the

quantity being optimized. A branch-and-bound method generally relies on two main

rules: (i) the estimation of the upper bound at any node (state of assigned variables) in

the search tree, and (ii) a choice criterion for the selection of a branching variable at the

node selected for further partitioning.

In order to find (i), Shih suggests treating the C-constraint knapsack problem as C

single-constraint knapsack problems with the same objective function, and then comput-

ing the value associated to the optimal fractional solution (thus relaxing yiD ∈ {0, 1} into

yiD ∈ [0, 1]) of all of these C problems separately. The fractional optimal solution is easier

to solve than the integer solution, as it enables us to sort the items (SNPs), with respect

to their ratios between utility and privacy weights rij = ui/p
i
j , from the highest to the

lowest ratios, and then to select all the highest ones that can fit under the constraint,

with the last SNP being partially included (based on the remaining room). Note that,

in our setting, we can have different orderings of SNPs for different constraints, based on

the pij values of the family members. The computation of the fractional optimal solution

is repeated C times, for the C different optimization problems, leading to C optimal

values. Then, the upper bound at the given node is defined as the minimum among all

these C values.

The node selected for the next branching is defined as the one in the search frontier

whose upper bound is the highest among all nodes in the frontier, and where the solution

associated with this upper bound is infeasible (some variables being different than 0 and

1, or some constraints being not satisfied). The branching variable is the one whose ratio

is the smallest among all the non-zero free variables (variables not explicitly assigned to

0 or 1 at a node) in this infeasible solution. If the solution at this node is feasible (all
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decision variables assigned to 0 or 1 and all constraints satisfied), then it is optimal, and

the algorithm stops.

Let us mention that our optimization problem has two main differences with the mul-

tidimensional knapsack problem. First, the privacy metrics, hence weights, are expressed

in real values, between 0 and 2 for Eij , whereas the knapsack problem assumes integer

numbers only. In order to obtain integer values, we merely multiply all our privacy

weights pij ’s and tolerance values Pri(.) by 10k, where k ∈ N+ depends on the precision

we want to attain, and then round the weights to the closest greater integer and the

tolerance values to the closest smaller integer. This ensures that all privacy constraints

in the space of real numbers are still satisfied. Second, the privacy weight pij can be

equal to zero (e.g., if xij has already been disclosed by rj) or even negative (when the

donor reveals a SNP whose value increases the privacy of his relative(s) at the same

SNP).3 Thus, the ratios rij might not be defined or be negative. In order to resolve this

issue, we give a higher ranking in the ordering of SNPs to ratios with null weights with

respect to those with positive weights, and we give an even higher ranking to those with

negative weights. We furthermore give higher ranking to negative weights with absolute

values higher than the others. To enforce this ranking in practice in Section 5.3, we set

rij = ui/0.1 for null pij ’s, and rij = ui|pij |/0.01 for negative pij ’s. Note that, due to the

requirement of integer values for weights, all other (positive) weights pij belong, after the

aforementioned multiplication by 10k and rounding, to N+.

The output of the above optimization algorithm is an optimal solution y∗D that rep-

resents the SNPs the donor could disclose and an optimal value u∗ representing the

maximum research utility. We represent the optimal candidate SNPs to be shared in the

m-size vector x̃D where x̃iD = xiD if yi∗D = 1 and x̃iD = ⊥ if yi∗D = 0. This is the output we

see in state 2 of Figure 5.1. We give x̃D as input to the non-linear algorithm described

in Subsection 5.2.3 to eventually reach state 3.

5.2.3 Non-Linear Extension

Non-Linear Optimization Problem

The LD correlations between the SNPs are not considered in the above optimization

problem in order for the constraints to remain linear. In this subsection, we propose an

extension of the branch-and-bound algorithm in order to deal with non-linear constraints.

Whereas in the case without LD, the privacy loss at a given SNP gi of individual rj
depended only on the donor’s decision yiD regarding SNP gi, we have now to consider

all the SNPs in LD with gi to evaluate the privacy loss at gi. Defining Ẽij to be the

privacy level of individual rj at SNP gi quantified by including LD correlations, the

privacy loss at SNP gi of individual rj induced by the disclosure of x̃D is equal to

(Ẽij(yD = 0)− Ẽij(y∗DD)). This leads to the following updated privacy weights

p̃ij = sij × (Ẽij(yD = 0)− Ẽij(y∗D)). (5.3)

Note that now the argument of Ẽij is the entire vector yD and not only yiD, because

of LD. The optimization problem in (5.2) is reformulated as a non-linear optimization

3For example, assume a child to be homozygous-major at a given SNP and his father to be heterozy-
gous. Then, the estimation error for the child’s SNP, thus the child’s privacy at this SNP, increases when
the father’s SNP is observed by the attacker (compared to the case when it is unknown, when only the
MAF is used, and this MAF is close to 0).
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Subsection 5.2.2
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Subsection 5.2.3
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Figure 5.1: Main steps of the optimization algorithm. Without loss of generality, the
donor rD is assumed to be the n-th member of the family, thus D = n. First, the donor
selects a subset of candidate SNPs to be shared using the optimization algorithm of
Subsection 5.2.2, and then reveals less or more SNPs depending on the updated privacy
weights computed with LD by relying upon the fine-tuning step of Subsection 5.2.3.

problem:

maximize
yD

∑
i:gi∈G

uiy
i
D

subject to
∑

i:gi∈P j
s

p̃ij(yD) ≤ Pri(j,P j
s),∀rj ∈ R

∑
k:gk∈Sd

p̃kj (yD) ≤ Pri(j, d),∀d ∈ P j
d,∀ri ∈ R

yiD ∈ {0, 1},∀gi ∈ G.

(5.4)

Instead of solving this very complex optimization problem, we rely on the optimal

solution y∗D computed in Subsection 5.2.2, embed it into (5.4), and check whether the

privacy constraints are still met with the updated privacy weights p̃ij ’s. Let us first study

the case when no SNP has been disclosed by any relative before the donor’s decision.4 If

XO = ∅, then ∑
i:gi∈P j

s

Ẽij(yD = 0) =
∑

i:gi∈P j
s

Eij(yD = 0) (5.5)

and, because of LD correlations,∑
i:gi∈P j

s

Ẽij(y
∗
D) ≤

∑
i:gi∈P j

s

Eij(y
∗
D). (5.6)

Embedding (5.5) and (5.6) in (5.1) and (5.3), we get∑
i:gi∈P j

s

p̃ij(y
∗
D) ≥

∑
i:gi∈P j

s

pijy
i
D, (5.7)

meaning that, for the same value of Pri(j,P j
s) in (5.2) and (5.4), the privacy constraint

of family member i in (5.4) will be violated with high likelihood once LD is taken into

4Without loss of generality, we focus on the genomic-privacy constraints in the following.
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account. If XO 6= ∅, then two scenarios can happen. If∑
i:gi∈P j

s

Eij(y
∗
D)− Ẽij(y∗D)

︸ ︷︷ ︸
Privacy difference using LD or not

after x̃D is revealed

≥
∑

i:gi∈P j
s

Eij(yD = 0)− Ẽij(yD = 0)

︸ ︷︷ ︸
Privacy difference using LD or not

before x̃D is revealed

,

then we get the same inequality (5.7), leading to the same consequences of constraint

violation. If , on the contrary,∑
i:gi∈P j

s

Eij(y
∗D)− Ẽij(y∗D) <

∑
i:gi∈P j

s

Eij(yD = 0)− Ẽij(yD = 0), (5.8)

then we get ∑
i:gi∈P j

s

p̃ij(y
∗
D) <

∑
i:gi∈P j

s

pijy
i
D, (5.9)

which might allow the donor to reveal more of his SNPs without violating any of his

relatives’ privacy constraints. At a first glance, Inequality (5.9) looks counterintuitive.

However, in order to understand it, let us look at Inequality (5.8), which states that

the difference in privacy levels if LD is used or not is smaller after the observation of a

subset of the donor’s SNPs x̃D. This means that, by revealing his own SNPs, the donor

reduces the importance of using LD correlations to correctly infer some of the SNPs of

his relatives. For instance, let us assume the donor to be the father of a child rj whose

mother has already revealed SNP gi, in LD with another SNP gk revealed by the child.

Furthermore, assume that the father, mother, and child are homozygous major at SNPs

gi and gk. Now, before the father reveals his SNP gi (with value xiD = 0), there is

some uncertainty about the child’s SNP gj (with value xij = 0); but by observing SNP

gk of the child (with value xkj = 0), the attacker improves his estimation if he uses LD

correlation and thus reduces his estimation error, meaning Ẽij(yD = 0) < Eij(yD = 0).

However, once the father decides to reveal his homozygous major SNP gi (yi∗D = 1), the

attacker is certain that the child’s SNP gj is homozygous major (because both mother

and father SNPs are homozygous major and revealed), regardless if LD is used or not, i.e.

Eij(y
∗
D) = Ẽij(y

∗
D) = 0. Thus, we have Eij(y

∗
D) − Ẽij(y∗D) < Eij(yD = 0) − Ẽij(yD = 0),

leading by extension to Inequality (5.8).

Fine-Tuning Algorithm

Let us first describe how we proceed if one or multiple constraints are violated once LD

correlations are considered in the privacy quantification. In this case, we first select the

privacy constraint that is not met anymore with the highest difference between Pri(j,Pj
s)

(or Pri(j, d)) and the newly computed privacy losses. Focusing on the set of genomic-

privacy constraints, we thus select the constraint of the family member k, where

k = arg max
j:rj∈R

{
∑

i:gi∈P j
s

p̃ij(y
∗
D)− Pri(j,P j

s)}. (5.10)

We want then to hide some SNPs gi in x̃D (i.e. where y∗iD = 1) in order that the

constraint of relative rk is satisfied again. For all the SNPs whose value is revealed in

x̃D, we compute a global privacy weight δik for SNP gi of rk that includes the privacy loss
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induced by SNP gi on the SNPs gl ∈ L in LD with gi. We compute this global privacy

weight at SNP gi for individual rk as

δik = p̃ik +
∑
l:gl∈L

p̃lk

= sik(Ẽik(yD = 0)− Ẽik(y∗D)) +
∑
l:gl∈L

slk(Ẽlk(yD = 0)− Ẽlk(y∗D)).
(5.11)

Then, we compute the ratios of each SNP gi (revealed in x̃D) for individual rk as r̄ik =

δik/ui. The SNPs with the highest ratios represent those where LD correlations cause

the highest decrease in the genomic privacy of family member rk and/or provide low

utility to the optimal solution y∗D computed in Subsection 5.2.2. Thus, these should be

removed first from the set of SNPs to be shared in order to meet the privacy constraint

of individual rk again, and to cause the smallest decrease in utility.

To see whether the privacy constraint is met for the family member rk, we iteratively

remove such SNPs (starting with the one with the highest ratio) in x̃D and, after each

removal, we input the new solution to the quantification box. We repeat this until all

the privacy constraints are satisfied for all family members in R. Finally, the SNPs left

in x̃D after the final iteration are publicly shared. This case is illustrated in state 3 of

Figure 5.1.

In the case where including LD correlations in the privacy quantification actually

decreases privacy losses, the privacy constraints are still met and can even enable for

potential new SNPs to be included in x̃D. In this case, we select the genomic-privacy

constraint where the remaining room between the genomic-privacy constraint and the

newly computed privacy loss is the smallest, i.e. we select the constraint of the family

member rk, where

k = arg min
j:rj∈R

{Pri(j,P j
s)−

∑
i:gi∈P j

s

p̃ij(y
∗
D)}. (5.12)

For all SNPs not revealed in x̃D (i.e., where yi∗D = 0), we compute the privacy decrease

led by LD for rk compared to the privacy level computed without LD. We compute this

privacy difference at a SNP gi for individual rk as

∆i
k = Eik(yi∗D = 0)− Ẽik(y∗D), (5.13)

where Eik(yi∗D = 0) is the privacy value at SNP gi for individual rk after the linear

optimization (without considering LD), and Ẽik(y∗D) is the privacy quantified using LD.

Then, we compute the ratios of each SNP gi (not revealed yet) for individual rk as

r̄ik = (ui∆
i
k)/sik. The SNPs with highest ratios represent those where LD correlations

cause the most significant decrease in the genomic privacy of family member rk, and/or

provide high utility. Thus, these SNPs are the first ones that should be revealed and

included in x̃D, in order to have the smallest difference in privacy loss, thus still meeting

rk’s privacy constraint and providing maximal utility increase.

We iteratively include new SNPs in x̃D and input the new solution to the quan-

tification box to check whether all the privacy constraints are still met for all family

members. We repeat this step until one privacy constraint is violated again, and we

publicly share the last vector x̃D to have satisfied all constraints. In the next section,

we briefly show experimentally how close this fine-tuning algorithm is to the maximum

found with exhaustive search.
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5.3 Evaluation

In this section, we evaluate the effectiveness of our optimization algorithm for protecting

individual and kin privacy. We study the balance between maximum achievable utility

and the privacy of each individual in a family. The results show the total utility we can

obtain for different genomic-privacy guarantees.

We make use of the CEPH/Utah Pedigree 1463 [59]. It includes the partial DNA

sequences of 17 family members: 4 grandparents, 2 parents, and 11 children. In order

to remain at a representative scale, we keep only 5 randomly chosen children out of

11, as in Chapter 3. Figure 5.2(a) presents the pedigree structure. We focus on 50

SNPs of chromosome 1 and assume one genomic-privacy constraint, including all the 50

SNPs for each family member. Thus, we have a total of 11 privacy constraints, which

represents more constraints than other generic experiments in the optimization literature

that included up to 5 or 7 constraints [70]. Considering LD strengths between r2 = 0.5

(medium LD) and r2 = 1 (strongest LD), each SNP is in LD with around 4.5 other

SNPs, on average. We set a precision of 0.01 in our privacy weights and tolerance values,

thus multiplying these real-valued elements by 102, and rounding them, as explained

in Subsection 5.2.2. Parent P5 is assumed to be the donor in all scenarios presented

in this section. In our evaluations, for the sake of simplicity, we assume each SNP

is equally useful for the genomic research, i.e., ui = 1 for all SNPs. We also assume

the privacy sensitivities are equal, for all SNPs and individuals, i.e., sij = s. Equal

values of sensitivities for all SNPs would typically be the default setting if, for example,

family members do not want to bother setting their privacy sensitivities themselves.

Other distributions over the utility or sensitivity values should not alter the algorithm’s

performances significantly.

5.3.1 No Previous Disclosure by the Family

As of today most people have not publicly revealed their genome, we first analyze the case

where no family member has shared any of his SNPs before the donor makes his decision.

In other words, we assume that, initially, XO = ∅. We analyze the tension between utility

and privacy for different values of parent P5’s privacy constraint. Figure 5.2(b) shows the

increase in the utility caused by the higher privacy loss tolerance of P5. Because a low

tolerance to privacy loss is assumed for all the other relatives in the family in this case,

the utility (computed without LD) cannot go beyond 19, even if P5’s constraint increases

beyond 4. We also notice that, once the LD is included in the privacy quantification,

the utility decreases, reaching a maximum value of 13 instead of 19. This is because LD

increases the privacy loss incurred when P5 reveals his SNPs, thus reducing the total

number of SNPs parent P5 can reveal without violating the family’s privacy constraints.

5.3.2 Previous Disclosure by Part of the Family

We want to mimic the situation where some of the family members have already revealed

some of their SNPs. We simulate this by randomly selecting (with probability 0.5) some

of the family members (except P5, who is the donor) who reveal a subset of their SNPs.

Then, for the members who are selected to reveal their SNPs, we select, uniformly at

random, some of their 50 SNPs to reveal. In the scenario we focus on, this leads to the

following SNPs being revealed before the donor’s decision: 8 (different) SNPs revealed
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Figure 5.2: Evaluation of the proposed solution on a real Utah pedigree. (a) Genealogical
tree, (b) Utility versus privacy under low tolerance to privacy loss for all relatives except
parent P5, and varying values of privacy constraints Pri(5,P5

s ) for parent P5 (x-axis).
Here, XO = ∅, meaning that no relative has revealed any SNP before P5. Low tolerance
is defined as 1/4 of the total privacy loss that a relative would incur if all 50 SNPs of P5
were revealed. Results are shown up to Pri(5,P5

s ) = 4.4 even if P5’s privacy constraint
can go beyond because, from Pri(5,P5

s ) = 4, the utility stops increasing (capped by other
relatives’ low tolerance).
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Figure 5.3: Utility versus privacy under (a) medium, (b) high tolerance to privacy loss
for all relatives except parent P5, and varying values of privacy constraints for parent P5
(x-axis). Medium, respectively high, tolerance is defined as around half, respectively 3/4,
of the total privacy loss that a relative would incur if all 50 SNPs of P5 were revealed.
The x-axis represents the privacy loss constraint of P5, from no privacy loss (strongest
constraint) to 9.9 privacy loss (i.e., around 0.2 privacy loss per SNP, which is a weak
constraint).

by GP1 and GP2; 35 SNPs revealed by GP3; 42 revealed by GP4; 0 by P6; 0 SNP by

C7, C8, C9, C10; and 30 by C11.

We analyze the relation between utility and privacy for different genomic-privacy

constraint values, for each of the eleven individuals, Pri(i,P i
s). Figure 5.3(a) and 5.3(b)
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Figure 5.4: Genomic privacy of all family members given the genomic-privacy constraint
of P5, under the same setting as in Figure 5.3(a) i.e. under medium privacy loss con-
straints for P5 relatives: (a) privacy computed without LD, and (b) privacy computed
with LD, before the fine-tuning phase. We do not show the privacy levels of GP3, GP4
and P6 as these remain constant. Note the large discrepancy in absolute privacy values
and privacy losses between Figure 5.4(a) and 5.4(b). Also notice that GP1 privacy curve
is hidden by GP2 privacy curve in Figure 5.4(a) (they have same privacy levels w/o LD).

illustrate the utility gain with respect to different privacy loss tolerance levels for the

donor (P5). The two figures differ essentially in terms of the genomic-privacy constraints

of the rest of the family members. In Figure 5.3(a), the tolerance is medium; more

precisely, the privacy constraint for each individual in the pedigree (except P5) is set

to half of the maximum privacy loss that would be incurred by that individual if the

donor revealed all his SNPs. In Figure 5.3(a), the tolerance is higher, set to 3/4 of the

maximum privacy loss.

We first focus on the utility computed using our branch-and-bound algorithm (case

w/o LD). In Figure 5.3(a), we observe that the utility does not increase beyond 38 when

we increase the genomic-privacy loss constraint of the donor more than 5.4. From this

point, the increased privacy tolerance of the donor does not enable him to reveal more

SNPs, because he is constrained by the rest of the family’s privacy requirements. In

Figure 5.3(b), we note that the utility keeps increasing with the privacy loss constraint

of P5 because his relatives are more tolerant regarding their own privacy losses.

Looking at the utility induced once we include the LD correlations in the privacy

quantification, we notice some increase in the utility. In other words, including LD

enables the donor to reveal more SNPs than without LD. Utility in both curves reaches

50 SNPs after a 4.5 privacy loss constraint for the donor. This can be explained by the

fact that, when LD is considered, we use Equation (5.3) (privacy loss with LD) instead

of Equation (5.1) (privacy loss without LD) to compute the privacy weights for each

SNP in each constraint. And the privacy loss in Equation (5.3) is actually smaller than

in Equation (5.1) in this scenario, essentially because LD already decreases significantly

the relatives’ privacy before the donor reveals any of his own SNPs. This is very visible
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in Figure 5.4(a) and 5.4(b). In Figure 5.4(a), we show the privacy levels for any family

member when LD is not included in the privacy quantification. Figure 5.4(b) shows the

privacy levels when LD correlations are also used in the privacy quantification.

First, we notice that in both figures, it is P5’s privacy level that decreases the most,

as he is the one who actually reveals new SNPs in the process. Other relatives’ privacy is

only damaged due to familial correlations. At the origin of the x-axis (i.e., on the y-axis),

we see the privacy levels before the donor makes a decision, i.e., before the optimization

algorithm. We notice that, here again, privacy without LD is much higher than privacy

once LD is used to infer the SNPs. This is because some relatives have already revealed

part of their genomic data. This is the reason, once P5 reveals his own SNPs, the privacy

loss is much smaller in Figure 5.4(b) than in Figure 5.4(a). As a consequence, the donor

(P5) can reveal more SNPs while still meeting his family’s privacy constraints, thus

leading to the utility increase displayed in Figure 5.3(a) and 5.3(b). We conclude that

the values of the privacy-loss constraints have to be carefully determined by the family

members or the genetic counsellors, based on family members’ privacy expectations and

on whether LD is included or not in the initial inference and privacy quantification. In

our case, in order to make use of the linear optimization framework, we defined the

privacy loss constraints based on the privacy levels computed without LD.

Finally, we compared the optimal solutions computed with exhaustive search over

a subset of 10 SNPs whose privacy weights were computed with LD, with the solutions

derived from our optimization algorithm presented in Figure 5.1. In the various scenarios

we tested, the exhaustive search method could never find higher utility values than our

fine-tuning algorithm. In all scenarios, our fine-tuning algorithm reached the maximum

utility. Thus, even though we do not have any formal demonstration that the fine-tuning

step is optimal, we are confident that in general it provides a very good approximation

of the optimum.

5.3.3 Computational Complexity

As expected, the highest computation time is on average induced by the branch-and-

bound algorithm (Subsection 5.2.2), due to the high complexity of the multidimensional

knapsack problem. The non-linear extension (Subsection 5.2.3) is by design very efficient,

as it relies on previous optimal computations and it updates a minimal set of decision

variables, trading-off exact optimality for computational efficiency. This last part only

requires quantifying privacy levels twice at the beginning (in the quantification box), to

get the Ẽij(yD = 0)’s and Ẽij(y
∗
D)’s, and then quantifying once per update on a decision

variable yi∗D .5

The multidimensional knapsack problem is NP-complete and admits no fully

polynomial-time approximation scheme. From our experiments, we notice that the com-

plexity of the branch-and-bound algorithm highly differs for different settings, e.g., dif-

ferent privacy-loss tolerance values or privacy weights. With 50 SNPs, the vast majority

of the solutions were found in less than one second. However, the algorithm did not

scale well for more than 50 decision variables. The positive side is that this whole pro-

cess has to be undertaken only once by the donor and can be run offline. Furthermore,

we considered one privacy constraint for each family member, thus eleven constraints

5Note that the computational complexity of one quantification step is O(nm) (shown in Subsec-
tion 3.3.3).
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in total. In practice, some relatives would certainly not care much about their genomic

privacy, hence some constraints could be relaxed, thus enabling us to consider more SNPs

in the optimization problem. Also, an advantage of the branch-and-bound algorithm is

that it can be parallelized and distributed using a computer cluster. The algorithm’s

running time then scales linearly with the number of machines and cores [41]. Another

way to reduce the complexity is to cluster subsets of SNPs together (based on the dis-

eases they are associated with, or based on the LD correlations between them), thus

trading-off the granularity of the obfuscation mechanism for computational efficiency.

Note that our optimization problem can easily be adapted to deal with clusters of SNPs:

We can simply define the privacy weight of one cluster as the sum of the privacy losses

over the SNPs in this cluster. Finally, instead of using an exact optimization method,

heuristic approaches [70] could be used to approximate the optimal solution and improve

computational efficiency.

5.4 Related Work

Building upon [86], Sankararaman et al. provide quantitative guidelines for researchers

willing to make a certain number of SNPs publicly available in GWAS, without revealing

the presence of a single individual within a study group [145]. Fienberg et al. [64] propose

using differential privacy to protect the identities of participants in scientific study. In

the same vein, Johnson and Shmatikov [102] propose privacy-preserving algorithms for

computing various statistics related to the SNPs, while guaranteeing differential privacy.

However, differential privacy reduces the accuracy of research results and is aimed to be

applied on aggregate results. In our work, we focus on protecting individual genomic

data.

Some works also focus on protecting the privacy of genomic data and on preserv-

ing utility in medical tests such as (i) searching of a particular pattern in the DNA se-

quence [163, 39], (ii) comparing the similarity of DNA sequences [101, 40, 36, 52, 53, 109],

and (iii) performing statistical analysis on several DNA sequences [106]. Furthermore,

Ayday et al. propose privacy-preserving schemes for medical tests and personalized

medicine methods that use patients’ genomic data [34]. For privacy-preserving clinical

genomics, a group of researchers proposes to outsource some costly computations to a

public cloud or semi-trusted service provider [168, 47]. Finally, Ayday et al. propose

techniques for privacy-preserving management of raw genomes [32]. All aforementioned

works make use of cryptographic protocols to protect the privacy of genomic data. In

this thesis, we propose a non-cryptographic approach for protecting genomic privacy,

which has the advantage to be computationally more efficient when making research on

genomic data.

Finally, Calmon and Fawaz propose an inference framework for evaluating privacy

risks under utility constraints in a generic setting [60]. Their goal is to minimize infor-

mation leakage subject to certain utility constraints. They show that their optimization

problem can be cast as a modified rate-distortion problem. They eventually compare

their framework with differential privacy.
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5.5 Summary

In this chapter, we convey the importance of building mechanisms for preserving genomic

privacy. Such privacy goes beyond the protection of genomic information of the individual

to the consideration of the interests of family members. These might be unwilling to

allow predictions of their own genomic data based on the leakage of information from

one or several individuals of the kin. The approach presented here searches for balance

between accuracy (utility) of genomic data and privacy by relying on graphical models

and combinatorial optimization. We take into account the fact that different parts of the

genome can have different utilities in medical research, and different levels of sensitivity

for individuals. Our genomic-privacy preserving mechanism makes use of obfuscation to

meet privacy requirements of family members and maximize utility. We also present an

extension of the optimization algorithm to cope with non-linear constraints induced by

linkage disequilibrium. We implement both linear and non-linear optimization algorithms

and evaluate their computational complexities.
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Chapter 6

Optimizing Incentives for Cooperative

Privacy Protection

6.1 Introduction

Over the last two centuries, non-governmental currencies, known as scrip, have been

issued by private companies or local communities for many different purposes. For in-

stance, to pay employees in isolated mining or logging camps, company scrip was used in

lieu of regular money. More recently, community-issued scrip, such as the Detroit Com-

munity Scrip, has been issued in order to restore economic confidence, and help consumers

make ends meet [17]. In the last decade, scrip systems have been proposed in order to

thwart free riding in online environments (e.g., file sharing or resource sharing [95, 165]).

The free-rider problem is particularly serious in peer-to-peer (P2P) networks such as

BitTorrent, LimeWire or Gnutella, in which most users (85 percent) do not share any

files [88].

Although scrip systems can help ensure fairness and prevent free riding, such systems

are exposed to similar behaviors as in real-world economies that lead to the same mone-

tary issues. The Capitol Hill Baby Sitting Co-Op [157], a concrete scrip system created

by a group of parents working on Capitol Hill, faced a recession and a monetary crash due

to its monetary policy. Several researchers further studied the dynamics of scrip systems,

based on these issues [71, 107, 108]. Among other results, they show that agents following

threshold strategies lead to a nontrivial Nash equilibrium. They show the impact of the

amount of scrip in circulation on the efficiency of the system. In particular, they show

that efficiency (social welfare) increases with the average amount of scrip per agent, until

some point where the system experiences a monetary crash. At that point, no agent is

willing to work anymore and social welfare falls to zero. Finally, they consider different

“irrational” behaviors, such as altruists and hoarders, and identify the impact of sybils

and collusion on scrip systems.

The original scrip system assumes one transaction at a time, where one agent provides

a service to another and gets paid one dollar1 for it (one-to-one exchange) [71]. Previous

work has brought a number of relevant results. However, there is an urgent need to

1We refer to the unit of scrip as the dollar.
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extend the one-to-one scrip system to a system involving more than one dollar and two

agents at a time in order to tackle new challenges led by modern IT systems, such as

fostering cooperation in privacy-enhancing applications.

Privacy-enhancing technologies, such as anonymity networks [56, 51, 68, 143], provide

valuable privacy benefits for Internet users. Among other benefits, anonymity networks

can prevent price discrimination in e-commerce by concealing IP addresses. They are

also used by journalists or human rights activists to circumvent censorship in dictatorial

countries. For instance, there was a dramatic increase of Tunisian Tor [16] users during

the Jasmine Revolution in January 2011 [15].

Many privacy-preserving mechanisms require cooperation among multiple users in

order to achieve a good level of privacy. However, cooperation is not free, and its inherent

cost often prevents users from collaborating. For example, in anonymity systems, running

a relay node costs a non-negligible amount of bandwidth and processing power. Back

in 2003, Acquisti et al. already highlighted the need of incentives to offer and use

anonymity services [20]. Whereas the use of anonymity networks has increased since

then, the number of relays is still much lower than the number of clients, and the client-

to-relay ratio keeps growing. In 2009, there were 1,500 Tor relays for approximately

100,000 simultaneously active Tor clients [128], in June 2011, 2,500 relays for 300,000 to

400,000 clients, and today, in December 2014, there are 10,500 relays (including bridges)

for 2.25 million Tor clients [15].

Among other incentives for acting as a relay in anonymity networks, several schemes

propose to make use of micropayments to reward users relaying others’ anonymous traf-

fic [27, 48, 65] . These previous works have mainly contributed to the design of anony-

mous and secure micropayments. However, they did not evaluate the monetary issues

that could appear in such systems. Assuming an anonymous circuit requires the coop-

eration of n relays, each client has to own (at least) n dollars in order to reward each of

these n relays. In order to earn enough scrip to afford such a relaying service, each client

will then have to serve — relay anonymous traffic — for other users in the anonymity

network.

This leads us to define and study the one-to-n scrip system: one agent requests n

other agents to fulfill a service and pays each of them one dollar. This scheme also better

complies with current file sharing systems, such as BitTorrent, where an agent downloads

multiple equal-size chunks from different neighboring peers of the torrent. In order to

download an entire file and get any utility from it, an agent needs n peers who volunteer

to upload their chunks. Thus, he must reward n agents with n dollars.

In this chapter, we develop and study a new analytical model for scrip systems en-

abling a much wider range of applications. First, we precisely characterize the distribu-

tion of scrip in the one-to-n scrip system at equilibrium as a function of n and of the

fraction of agents of each type. Second, we prove that, under certain assumptions, there

exists a nontrivial Nash equilibrium where all agents play threshold strategies. We study

the effect of n on the agents’ strategies and the consequent equilibrium and prove that

agents’ thresholds increase with n. Third, we evaluate the efficiency (social welfare) of

the one-to-n scrip system and notice that it tends to decrease when n increases. We

show that a system designer can increase the scrip supply in order to offset the loss of

efficiency caused by a larger n. This works well up to a point beyond which the system

experiences a monetary crash. We show that this critical upper bound increases with

n. Finally, we present how our one-to-n scrip system can help to improve fairness and
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Table 6.1: List of symbols.

Symbol Definition

N Number of agents within the system
T Set of agents’ types
f Distribution of types
ft Fraction of agents of type t
W Total amount of scrip in the system
m Average amount of scrip per agent
n Number of volunteers per request
bt Utility an agent gains for having a request satisfied
ct Cost of an agent when satisfying one request
δt Rate at which an agent discounts his utility
αt Request rate
βt Probability that an agent is able to satisfy a request
γt Likelihood to be chosen when an agent volunteers
kt Agent’s threshold
k Vector of size |T | encompassing all kt’s
skt Threshold strategy with threshold equal to kt
sk Strategy profile with agents’ thresholds defined by k
W State space describing the wealth of every agent
X Markov chain defined on W
A Set of agents who can afford a service
V Set of agents who volunteer
M t
i Fraction of agents of type t with i dollars

pu Probability of earning one dollar
pd Probability of having a request satisfied
µ Fraction of agents at their threshold

efficiency in two privacy-enhancing applications. In particular, we evaluate the amount

of scrip that should be allocated into the Tor network to optimize its performance.

6.2 Model

In this work, we consider a scrip system with N agents who interact with each other.

We consider a population of agents with different preferences and characteristics. Each

agent has a type t ∈ T , where T is a finite set of types. The distribution of types is

described by f , where the element ft represents the fraction of agents with type t. The

type t of an agent is described by the tuple t = (bt, ct, δt, αt, βt, γt), whose variables are

defined in the rest of this section and in Table 6.1.

At each time slot, one agent is selected proportionally to his request rate αt to ask for

a service. If this agent has at least $n, he can afford a service and request other agents

to fulfill this service. In order to have his request fully satisfied, n agents must be able

and willing to collaborate. If there are less than n agents able and willing to volunteer,

the request cannot be fulfilled, even partially, and the requester gains no utility. The

service has to be satisfied in an “atomic” way. An agent is able to satisfy a service with

probability βt, and willing to volunteer depending on his strategy. Moreover, an agent

volunteering to provide service is chosen to fulfill another agent’s request with likelihood

γt.
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When a service is performed, meaning that n agents fulfill the request of another

agent, the requester (of type t1) obtains some benefit bt1(n) that is, in most cases, non-

decreasing with n (see Section 6.5 for further details on the privacy gain). Each volunteer

of type t2 bears a utility cost ct2 representing, for instance, the usage of bandwidth and

processing power in anonymity networks. Thus, when n agents of same type t2 collaborate

with another agent (of type t1) and satisfy his request, the whole cost is equal to nct2 ,

and the system’s utility gain is bt1−nct2 . We assume that bt1−nct2 > 0, such that social

welfare increases when a service is satisfied. The system would otherwise not be viable.

Regarding the monetary reward, an agent providing a service is paid some fixed

amount of scrip that we assume is equivalent to $1. Consequently, a service requester

must spend $n to obtain a service. If the chosen agent does not have enough scrip, no

transaction can take place in that time slot and social welfare stagnates. We model the

system as an infinite extensive-form game where the total utility of an agent over time

is the discounted sum of utilities at each time slot. The total discounted utility of agent

i (of type t) is then Ui =
∑∞
τ=0 δ

τ
t ui(τ), where δt represents the rate at which an agent

of type t discounts utility.

As in the one-to-one scrip system, we assume that prices do not change over time,

which allows the agents to know the future monetary cost of their service requests. As

the first step towards an extended scrip system, we will consider a payoff-heterogenous

population, i.e. bt, ct or δt might vary but αt = α, βt = β and γt = γ, for all t. Differences

in these parameters should not fundamentally change the game-theoretic results. The

one-to-n scrip system can be fully described by (T , f , N , m, n), where m is the average

amount of scrip.

6.3 Analytical Results

In this section, we prove the existence of Nash equilibrium when agents make use of

threshold strategies. We also show the effect of n on the system, its equilibrium and the

agents’ strategies. We begin this section by describing the distribution of scrip, which will

help us analyze the strategic behaviors of agents, as well as the resulting social welfare

in Section 6.4.

6.3.1 Distribution of Scrip

Before analyzing the best strategies and the resulting equilibrium, it is crucial to examine

what happens in the system if every agent adopts a predefined category of strategies,

called threshold strategies. Such a class of strategies is easy to explain. If an agent has

too little scrip, he will be willing to work in order to afford service requests later in time,

until he reaches a point at which he will feel “wealthy” enough. This threshold represents

how much scrip an agent wants to save up for future requests. Let sk be the strategy

where an agent volunteers when he has strictly less than k dollars and defects otherwise.

With this definition, s0 represents the strategy where an agent never volunteers, and s∞
the strategy where he always volunteers. As threshold strategies depend on the agents’

types, we write kt to represent the threshold adopted by agents of type t. Vector k

encompasses all the kt’s, for all types t, and sk is the corresponding strategy profile.

In our analysis, we assume that W = mN <
∑
t ftktN , meaning that the total

amount of scrip is not too high in order that the system analysis remains interesting. If
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W ≥
∑
t ftktN , the system would converge to a state where each agent has reached his

threshold, and thus does not want to volunteer anymore. We also assume that m ≥ n.

Otherwise, the system would converge to a state where no agent can afford a service,

i.e. where all agents own less than n dollars. These two requirements seem reasonable

because a system designer should ensure that (i) there are enough scrip in the system

such that exchanges can happen, and (ii) there is not too much scrip in order to prevent

procrastination and to encourage cooperation among agents.

Let X be a Markov chain over the state space W that describes the amount of scrip

each agent owns. Each state of the Markov chain can be described by a vector x, where

xi represents the amount of scrip agent i owns in state Wx. These states must satisfy

some constraints: (i)
∑N
i=1 x(i) = W , and (ii) 0 ≤ x(j) ≤ kt, for all agents j with type

t.2 Thus, even if the Markov chain has a significant number of states (when N is large),

their number is finite. If the Markov chain is in a state Wx, and agent j has a request

satisfied by n agents i1, i2, ..., in, the Markov chain moves to another state, Wy, where


y(j) = x(j)− n
y(i`) = x(i`) + 1, for ` = 1, ..., n,

y(.) = x(.), for all other agents.

(6.1)

We can already notice that, contrarily to the original scrip system, the aforementioned

Markov chain is neither reversible nor symmetric, notably because no single transaction

can restore the chain back to its previous state. Nevertheless, if there are at least n+ 2

agents within the scrip system, there exists a limit distribution, as stated in the following

lemma.

Lemma 6.1. If there are at least n+ 2 agents in the system, then X is finite, aperiodic

and irreducible and has a limit distribution.

Proof. X is aperiodic. Assume that there are (at least) n + 2 agents i1, i2, ..., in+2.

Suppose X is in a state Wx where at least one agent has $n or more and the others

have less than their threshold amount of scrip. There must exist such a state by our

assumption that m is interesting (i.e. neither too small nor too high). There exists a

cycle of length n+ 1 from state Wx to itself: i2, i3, ..., in+1 volunteer for i1, then i1, i3,

..., in+1 volunteer for i2, and so on until i1, i2, ..., in volunteer for in+1. There is also a

cycle of length n+ 2: i2, i3, ..., in+1 volunteer for i1, then i1, i3, i4, ..., in, in+2 volunteer

for i2, then i1, i2, i4, ..., in−1, in+1, in+2 volunteer for i3, and so on until i2, i3, ..., in+1

for in+2.

X is irreducible. Indeed, a Markov chain is said to be irreducible if all states commu-

nicate, or, in other words, if it is possible to reach any state from any other state. For

any pair of states i and j of the Markov chain X , we can show that the probability of

going from i to j in a finite number of steps is strictly greater than 0, proving that any

state is reachable from any other one.

Finally, as the number of states W is finite, X is also finite, and thus a limit distri-

bution exists, and it is independent of the state in which the system starts [144].

2For simplicity, we assume that no one’s amount of scrip exceeds their threshold.
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We can express the transition probabilities for all pairs of states i and j, i 6= j that

are directly reachable from each other3 as

Pij =
1

|A|
· 1(|V|−I

n

) , (6.2)

where A is the set of agents who can afford a service, i.e. who have at least $n, in state

i, and V is the set of volunteers, i.e. agents who have not reached their threshold amount

of scrip, in state i too, and I is 1 if the agent requesting the service has an amount

of scrip that is under his threshold, and 0 otherwise (because an agent cannot satisfy

his own request). The transition probabilities depend on the values |A| and |V| that

vary among the different states. Thus, the limit distribution is not uniform, even when

n = 1. Instead of computing this limit distribution, we will focus on the corresponding

distribution of scrip, because we are not interested in who has how much scrip, rather in

the fraction of people that have a given amount of scrip.

For each state W of the Markov chain X , there is a distribution of scrip M that

describes the fraction of agents for each possible amount of scrip. More precisely, M t
i

represents the fraction of agents of type t who own $i.4 For instance, if there is only one

type of agent and we are in a state W where money is uniformly distributed (x(j) = m

∀j), then M t
m = 1, and all other M t

i are equal to zero. The distribution of scrip must

satisfy two constraints:

∑
t

kt∑
i=0

iM t
i = m (6.3)

kt∑
i=0

M t
i = ft (6.4)

First, the average amount of money is equal to m, and second, the fraction of agents

playing skt is equal to ft (fraction of agents of type t). One can show that, if N is large,

there exists a particular distribution M∗ such that, with high probability, the Markov

chain X will almost always be in a state Wx such that the related distribution of scrip

Mx is close to M∗. This kind of convergence around the most likely distribution is known

as a concentration phenomenon in statistical mechanics [99]. According to Lemma 6.1,

we can state that M∗ exists. Before characterizing M∗, let us define two matrices B and

C of size (n+ 1)× (n+ 1):

B =


1 0 · · · 0 −θn

0

In
...

0

C =


1 + θn 0 · · · 0 −θn

0

In
...

0


where In is the identity matrix of size n, θn = 1

λn , λ chosen to ensure that (6.3) is satisfied

with the distribution M∗ defined in the following theorem.

Theorem 6.1. Given a payoff-heterogenous population, the distribution of scrip in a

one-to-n scrip system will converge to

(M∗)ti =
ftπ

t
i∑kt

j=0 π
t
j

(6.5)

3Pij = 0 if i and j do not directly communicate with each other.
4Mi represents the fraction of agents who own $i, regardless of their type.
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where the πti ’s are defined in the following way:
eti = Bn−1−iCkt−2n+1vπtkt , if i ∈ [0, n− 2];

eti = Ckt−n−ivπtkt , if i ∈ [n− 1, kt − n− 1];

πti = θn(1 + θn)kt−i−1πtkt , if i ∈ [kt − n, kt − 1].

eti and v are vectors of size (n+ 1) defined as:

eti =

 πti
...

πti+n

 v =


θn(1 + θn)n−1

...

θn(1 + θn)

θn
1


Proof. Let us focus on one type t and then generalize for all types. Knowing that agents

of type t have kt + 1 possible states of wealth (i.e., their amount of scrip can go from 0

to kt), we can define a Markov chain Y over kt + 1 states that describes the amount of

scrip an agent of type t can own. When the Markov chain is in some state, it can either

move one state up, or move n states down, or stay in the same state. The probability of

moving one state up is

P (Yi+1|Yi) =
n

|V|
(6.6)

and the probability of moving n states down is

P (Yi−n|Yi) =
1

|A|
(6.7)

where A is the set of agents who can afford a service and V is the set of volunteers.

There is one state from which the Markov chain cannot go up (the state where the

agent has kt + 1 dollars), and some states from which Y cannot go down (the states

where the agent has less than n dollars). From (6.6) and (6.7), we can express the

balance equations for all states:

1
|A|πi = n

|V|πi−1, if i = kt;(
1
|A| + n

|V|

)
πi = n

|V|πi−1, if i ∈ [kt − n+ 1, kt − 1];(
1
|A| + n

|V|

)
πi = n

|V|πi−1 + 1
|A|πi+n, if i ∈ [n, kt − n];

n
|V|πi = n

|V|πi−1 + 1
|A|πi+n, if i ∈ [1, n− 1];

n
|V|πi = 1

|A|πi+n, if i = 0.

By multiplying everything by |V|n and setting λ = |A|
|V| (the ratio between |A| and |V| is

constrained by Equ. (6.3)), we get

1
λnπi = πi−1, if i = kt;(

1
λn + 1

)
πi = πi−1, if i ∈ [kt − n+ 1, kt − 1];(

1
λn + 1

)
πi = πi−1 + 1

λnπi+n, if i ∈ [n, kt − n];

πi = πi−1 + 1
λnπi+n, if i ∈ [1, n− 1];

πi = 1
λnπi+n, if i = 0.
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We then set θn = 1
λn and get the following recursions that fully describe the Markov

chain distribution:
πi = θnπi+1, if i = kt − 1;

πi = (1 + θn)πi+1, if i ∈ [kt − n, kt − 2];

πi = (1 + θn)πi+1 − θnπi+n+1, if i ∈ [n− 1, kt − n− 1];

πi = πi+1 − θnπi+n, if i ∈ [0, n− 2].

We can then express the last (n+ 1) πi’s (but πkt) with respect to πkt :

πi = θn(1 + θn)kt−i−1πkt ∀i ∈ [kt − n, kt − 1]. (6.8)

From these n+ 1 values, we can build the vector v that will be used for the calculation

of all other probabilities:

v =


θn(1 + θn)n−1

...

θn(1 + θn)

θn
1

 (6.9)

Then, we can write 
πkt−n

...

πkt−1

πkt

 = vπkt (6.10)

As ∀i ∈ [n − 1, kt − n − 1], πi = (1 + θn)πi+1 − θnπi+n+1, we can build a matrix C of

size (n+ 1)× (n+ 1) that will be used for computing these probabilities:

C =


1 + θn 0 · · · 0 −θn

0

In
...

0

 (6.11)

where In is the identity matrix of size n. We can then express, for instance, the (non-

normalized) probabilities from state kt − n− 1 to state kt − 1 in the following vectorial

form: πkt−n−1

...

πkt−1

 = C

πkt−n...

πkt

 = Cvπkt (6.12)

By induction, we get the general form:πkt−n−j...

πkt−j

 = Cj

πkt−n...

πkt

 = Cjvπkt . (6.13)

Thus, we can compute πi, ∀i ∈ [n− 1, kt − n− 1]: πi
...

πi+n

 = Ckt−n−ivπkt (6.14)
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Finally, as ∀i ∈ [0, n−2], πi = πi+1−θnπi+n+1, we build a matrix B of size (n+1)×(n+1)

that will help computing the remaining probabilities:

B =


1 0 · · · 0 −θn

0

In
...

0

 (6.15)

We can then express the non-normalized probabilities from state n− 2 to 2n− 2: πn−2

...

π2n−2

 = B

 πn−1

...

π2n−1

 = BCkt−2n+1vπkt (6.16)

By induction again, we get the general form: πn−1−j
...

π2n−1−j

 = Bj

 πn−1

...

π2n−1

 = BjCkt−2n+1vπkt . (6.17)

Hence, we can compute πi, ∀i ∈ [0, n− 2], πi
...

πi+n

 = Bn−1−jCkt−2n+1vπkt (6.18)

By defining ei =
[
πi · · · πi+n

]T
, we get

ei = Bn−1−iCkt−2n+1vπkt , if i ∈ [0, n− 2];

ei = Ckt−n−ivπkt , if i ∈ [n− 1, kt − n− 1];

πi = θn(1 + θn)kt−i−1πkt , if i ∈ [kt − n, kt − 1].

(6.19)

There just remains to normalize the πi’s to get the distribution of scrip:

(M∗)i =
πi∑kt
j=0 πj

. (6.20)

By multiplying by the fraction of agents of each type, we get the complete characterization

of the distribution of scrip:

(M∗)ti =
ftπ

t
i∑kt

j=0 π
t
j

.

We have run simulations of the one-to-n scrip system in order to evaluate how close a

real-system limit distribution was to the theoretical limit distribution found in Theorem

6.1. Figure 6.1 illustrates the distribution of scrip in a one-to-n scrip system with 1000

agents with same type, m = 10, kt = 30, n = 5 and (bt, ct, δt, αt, βt, γt) = (1, 0.05,

0.95, 1, 1, 1). The dark bars show the theoretical distribution, whereas the light ones

show the averaged distribution of scrip after 10,000 steps in the simulated model. Both



94
CHAPTER 6. OPTIMIZING INCENTIVES FOR COOPERATIVE PRIVACY

PROTECTION

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

Amount of Scrip

F
ra

ct
io

n 
of

 A
ge

nt
s

 

 

Simulation results
Analytical results

Figure 6.1: Distribution of scrip with n = 5 and kt = 30 for 1000 agents. Dark (black)
bars represent the theoretical distribution obtained in Theorem 6.1, whereas simulation
results (after 10, 000 iterations) are shown in light (blue).

distributions have very similar shapes. This allows us to believe that a real system would

converge to some point close to the theoretical limit distribution. Back to the example

depicted in Figure 6.1, we notice that both distributions increase until their peaks (at

n − 1 = 4), and then decrease until a very small peak (at kt − n = 25). We notice a

concentration of agents who have reached their threshold (at kt = 30). By doing more

simulations with various values of n, we have noticed the maximum of the curves always

stands at (n−1) if m remains smaller than half of kt. This clearly shows how n influences

the distribution of scrip.

6.3.2 Game Results: Strategies and Equilibria

In this section, we first analytically verify whether there exist an ε-best reply and a

consequent nontrivial ε-Nash equilibrium in the one-to-n scrip system. Then, we evaluate

the effect of n on the agents’ strategies and on the Nash equilibrium. In particular, we

show to what extent n influences the threshold vector k. These results will help us

measure the social welfare in the next section.

Note that δt has to be sufficiently large for all types t in order to reach a nontrivial

Nash equilibrium where all agents follow a threshold strategy. If the discount factor is

so small that it discounts too much future utility, all that matters is present utility and

there is no incentive to volunteer now for future benefit. In this case, the only Nash

equilibrium (trivial one) is to always defect for all agents. Thus, let us assume that

δt > δ∗, ∀t. Moreover, all nontrivial Nash equilibria in threshold strategies will be of the

form sk with kt ≥ n, ∀t. Indeed, there is no incentive for a rational agent to volunteer

up to kt < n and then defect, because, in this case, the agent would never be able to

afford any service.

In order to analyze the game, we consider a single agent i of type t, from whom point
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of view the system can be modeled as a Markov decision process (MDP). If N is large

and n reasonably small with respect to N , what agent i does has essentially no effect on

the behavior of the system and no great impact on the scrip distribution. We will later

see that finding the best reply of agent i to the other agents’ strategies is equivalent to

finding an optimal policy for his MDP.

Assuming that the distribution of scrip is close to M∗ (defined in Theorem 6.1) and

all other agents have fixed their thresholds according to k, we can compute two crucial

probabilities for the optimal decision of agent i:

(i) pu, which is the probability of earning a dollar:

|A| − I
N

n

|V|
=

1−
∑
t

n−1∑
j=0

(M∗)tj

 n

1−
∑
t(M

∗)tkt

(ii) pd, which is the probability of agent i having a request satisfied, or equivalently,

of spending n dollars:
1

N
Pr (|V| ≥ n) ∼=

1

N

pu is the product of two probabilities: (i) the probability that some agent other than

i who has n dollars is chosen to make a request, and (ii) the probability that i is the

agent chosen to satisfy it. Whereas the first probability decreases a little with n, the

second increases linearly with n, and thus pu increases almost linearly with n. pd is the

probability of agent i will have a request satisfied, which can be approximated to the

probability that agent i will be chosen to make a request.5 This probability only depends

on N . However, n will influence the repercussion of pd because if the agent is chosen to

make a request, he will then spend $n.

It follows from [142] that there exists an optimal policy for the MDP of agent i that is

a threshold policy. This threshold, kt, depends on pu, pd, bt, ct, δt, and n. We will prove

later the effect of n on kt. Note here that kt must be a multiple of n. Indeed, supposing

that an agent should decide between a threshold kt (multiple of n) and a threshold kt+1,

he would choose kt + 1 only if the extra dollar would give him the opportunity to make

one more request than with kt, and gain more benefit in the future. As the agent needs n

dollars to pay for a service, the extra dollar will be worth nothing, and eventually wasted.

The cost ct led by this extra dollar will not be compensated by a shorter expected time

to make a request, assuming that δt is large enough and ct is non-negligible.

Furthermore, if every other agent is playing a threshold strategy, for all m and ε > 0,

there exists an optimal threshold policy that is an ε-best reply to the strategy profile

sk. This is valid only for δt > δ∗, large N , and n reasonably small with respect to

N . Moreover, considering ε-best reply formalizes the fact that the optimal policy of the

MDP and the best reply are not exactly the same. Indeed, both pu and pd are related to

agent i’s MDP and they slightly differ from the corresponding probabilities of the game.

They are only close with high probability, and after some amount of time. For instance,

remember that we consider distribution M∗ in the MDP, whereas the actual distribution

in the game will be close but still different.

Before proving that a nontrivial ε-Nash equilibrium exists, we must show that the best

reply function is non-decreasing in k. Let BRtm(sk) be the best reply of an agent of type

5It is almost sure that n agents will be willing and able to volunteer under our initial assumption
that n is reasonably small with respect to N . See Formula (6.23) for more details.
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t given an average amount of money equal to m and the strategy profile sk. BRtm(sk)

is non-decreasing in k. First, it can be shown that if k′ ≥ k (i.e., k′t ≥ kt, ∀t), then∑n−1
j=0 (M∗)t

′

j ≥
∑n−1
j=0 (M∗)tj and (M∗)t

′

k′t
≤ (M∗)tkt for all types t. This means that, by

increasing the threshold vector, more agents will not be able to afford a service, and fewer

agents will reach their threshold. Therefore, with k′, there will be fewer opportunities to

earn money and more agents willing to volunteer for those opportunities, meaning that

agents will earn money less often. Thus, agents will run out of money sooner. Hence,

the utility of earning more scrip will increase, and as a result so well the best reply. We

can now prove the existence of a nontrivial Nash equilibrium.

Theorem 6.2. For δt > δ∗, large N and n reasonably small with respect to N , there

exists a nontrivial ε-Nash equilibrium where all agents of type t play skt for some kt = ltn,

lt ∈ N.

Proof. As the best reply function BR is non-decreasing, Tarski’s fixed point theorem

ensures that there exist a least and a greatest fixed point [159] that are equilibria. The

least fixed point is the trivial equilibrium, and the greatest one can be reached by starting

with s∞ for all agents and using best-reply dynamics [107]. Moreover, if δt > δ∗, there

exists a strategy profile k such that BR(k) ≥ k. Monotonicity ensures that the greatest

fixed point k∗ is greater or equal to k, and thus gives a nontrivial equilibrium. Note that

n affects the nontrivial ε-Nash equilibrium. The higher n is, the further the MDP will

be from the actual game. However, we can finely tune ε to cope with higher values of n.

Moreover, as stated before, the best reply, for all types of agent, is a multiple of n.

The natural question that arises from the above theorem is: To what extent does n

influence kt, for all types t? We already know that, ∀t, kt must be a multiple of n. In

fact, k increases with bt(n), thus with n as proved in the following theorem.

Theorem 6.3. For given values of m, ct, αt, βt, γt, and δt > δ∗ for all t, the threshold

vector k is increasing in n. More precisely, if bt = bt(n),

k ∼ Ω(bt(n)) (6.21)

Proof. Let us focus on the threshold kt = k of a particular agent and generalize it to the

threshold vector k. k is defined as the maximum value such that

ct ≤ E[δ
j(k,pu,pd)
t ]bt (6.22)

holds, where j(k, pu, pd) is a random variable whose value is the first round in which an

agent starting with k dollars, using strategy sk, has less than n dollars. The expectation

is simply the discounted factor that will affect the agent’s benefit at round j. First, we

know that pu increases almost linearly with n. Moreover, pd is independent of n but the

effect of being chosen to make a request is linear to n, as the agent will spend n dollars in

that case. Thus, the effects of pu and pd on j(k, pu, pd) approximately compensate each

other. Assuming that bt generally increases with n, the right part of (6.22) will increase

with n if k remains unchanged. As ct is fixed, the increase in bt allows for the decrease

of E[δ
j(k,pu,pd)
t ] in front of bt and still satisfy the inequality. As j(k, pu, pd) increases in

k (the higher the threshold is, the more money we have and the later we go under $n)

and E[δjt ] decreases in j, E[δ
j(k,pu,pd)
t ] decreases in k. Moreover, as δt is close to one,

E[δ
j(k,pu,pd)
t ] decreases in o(j(k, pu, pd)), and so in o(k). Thus, k can be increased with

bt(n), more precisely in Ω(bt(n)).
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Our results in this subsection show the existence of a nontrivial equilibrium under

certain conditions, as well as some properties of this equilibrium. In the next section, we

focus on the social welfare and the optimal amount of scrip in the system.

6.4 Social Welfare

In this section, we investigate how much scrip should be allocated in the one-to-n scrip

system in order to optimize its performance, and thus social welfare.

A natural question arises when the system is at equilibrium: How good is it? Consider

a single transaction involving only agents of type t. If a request is satisfied, social welfare

increases by bt − nct > 0. If no request is satisfied then no utility is gained. For a

utility gain to happen, two events are required: (i) the agent chosen to make a request

must have $n, which occurs with probability 1 −
∑n−1
i=0 Mi, and (ii) there must be n

volunteers able and willing to satisfy the request. If µ is the fraction of agents at their

threshold (i.e., the agents who do not want to volunteer), the probability of having at

least n volunteers able to satisfy a request is

P (|V| ≥ n) = 1− P (|V| < n) = 1−
n−1∑
i=0

βit(1− βt)(1−µ)N−i

= 1− (1− βt)(1−µ)N ·
1−

(
βt

1−βt

)n
1− βt

1−βt

. (6.23)

Expression
1−( βt

1−βt )
n

1− βt
1−βt

goes to 1 if βt is close to 0 or n = 1. This expression grows until

infinity if βt approaches 1. However, this factor is negligible with respect to (1−βt)(1−τ)N

if n is small with respect to N , which is always the case by assumption. As (1−βt)(1−τ)N

converges to 0 for large N or βt close to 1, the probability of finding n volunteers can be

approximated by 1.

The total expected social welfare over all time is then

(1−
n−1∑
i=0

Mi)
bt − nct
1− δt

. (6.24)

First of all, social welfare is maximized by minimizing the fraction of agents with less than

n dollars. We can make
∑n−1
i=0 Mi decrease by adding more scrip in the system. Indeed,

if N is fixed, by increasing W , and thus m, the number of “poor” agents decreases.

Thus, social welfare increases in m. However, social welfare does not increase to infinity

with m and, beyond a certain average amount of money m∗, the only Nash equilibrium

reached by the one-to-n scrip system is the trivial one, where no agent volunteers. We

now evaluate the influence of n on the social welfare.

Theorem 6.4. For given values of bt, ct, δt, and m < m∗, social welfare of a one-to-n

scrip system is decreasing in n.

Proof. In (1 −
∑n−1
i=0 (M∗)i)(bt − nct)/(1 − δt), two factors depend on n. First, (1 −∑n−1

i=0 (M∗)i) decreases in n. Indeed, from Theorem 6.1, we can compute that, if n′ > n,∑n′−1
i=0 (M∗)′i >

∑n−1
i=0 (M∗)i. Actually this sum increases approximately linearly with

n. Second, (bt − nct) clearly decreases in n if bt remains constant. Consequently, the

whole expression decreases in n, and thus social welfare.
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Figure 6.2: Social welfare for various average amounts of scrip m and various n. When
m is too large with respect to n, social welfare falls to 0 (monetary crash).

Figure 6.2 shows social welfare with respect to n and m, with the same population

used in Figure 6.1. The only change is that now the benefit varies with n: bt(1) = 0.7,

bt(2) = 0.9 and bt(n) = 1, ∀n > 2. We notice that social welfare tends to decrease with

n. The only scenario where it increases slightly is when m = 4 and n moves from 1 to

2. In this case, the increase in benefit is greater than the loss in cost and the loss due to

agents that cannot afford a service. Note that social welfare falls to 0 when the average

amount of money is too high with respect to n (e.g., when m = 10 and n = 1 or 2).

The fact that social welfare generally decreases with n seems surprising at first sight.

Indeed, the more volunteers helping you, the higher the social welfare should be. Thus,

the result is counterintuitive. There are two possible explanations for that. First, we

must keep in mind that the n volunteers are not optional at all; without them no benefit

can be obtained. Moreover, the cost of volunteering ct does not decrease if more agents

volunteer. The cost for each agent remains the same, regardless of n, thus the total cost

for the system increases linearly with n. On the contrary, the benefit bt does not usually

increase so much with higher n. We can solve the first issue, or at least decrease its

negative impact, by increasing the amount of scrip in the system. Indeed, in Theorem

6.4, we assume a fixed average amount of scrip, whereas a system requiring a higher

number of volunteers per request will certainly need more scrip in circulation. This

intuition is formalized by the following corollary.

Corollary 6.1. Assuming all other parameters are fixed, for a certain n, social wel-

fare increases in m. It increases up to a certain average amount of scrip, m∗n, beyond

which there only exists the trivial Nash equilibrium (monetary crash). Furthermore, m∗n
increases in n.

Proof. The threshold vector k decreases when m increases, due to best-reply dynam-

ics. Moreover, from the definition of M∗ in Theorem 6.1, we can prove that
∑n−1
i=0 (M∗)i

decreases if k decreases. Thus, 1−
∑n−1
i=0 (M∗)i and social welfare increase if m is increas-

ing. Furthermore, from Theorem 6.3, we know that the threshold vector at equilibrium
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k increases with n. Thus, the threshold vector k will still decrease when m is increased

but will reach zero (trivial equilibrium) beyond higher m with larger n. In other words,

the system will bear a higher average amount of money before crashing when n increases.

Hence, m∗n increases in n.

Figure 6.2 depicts the positive effect of higher m on the social welfare. It also shows

that scrip systems with higher n support higher average amount of scrip. For instance,

when m = 10, the system crashes with n = 1 or n = 2 but not with n ≥ 3. The ratio

m∗n/n must not go over a certain value that will be formally defined in future work. The

fact that m∗n is increasing in n can be well explained. When n increases, the agents feel

less wealthy if they keep the same threshold values. Indeed, knowing that they then need

more dollars to afford a single request, they will certainly be willing to save more dollars

for future requests. Thus, if n increases, the agents will stop volunteering later, and thus

the system will experience a monetary crash beyond a higher m∗n. Indeed, a monetary

crash appears when agents feel so rich that they are not willing to volunteer anymore.

Increasing n prevents such behavior.

6.5 Applications in Privacy Protection

In this section, we present two privacy-enhancing applications where a one-to-n scrip

system can help improve fairness and efficiency: (i) anonymity networks [56, 51, 68, 143],

and (ii) privacy-preserving data aggregation in participatory sensing [149]. Of course,

our one-to-n scrip system could also apply to other privacy-enhancing systems where

cooperation is needed, such as mix zones [37, 69] or collaborative sharing of informa-

tion [151, 146] in location privacy. We focus on the two aforementioned examples be-

cause (i) anonymity networks are currently used by hundred of thousands of people to

communicate and browse the Web anonymously, and (ii) participatory sensing could pro-

vide great benefits to society if there are enough mobile users participating in it, which

would be possible only if the privacy of participants is ensured. In both examples, the

more users involved in the privacy-preserving system, the higher privacy level the system

reaches. Thus, it is absolutely crucial to have as many users as possible. Moreover, it

is of the utmost importance that users help each other, i.e. volunteer for each other, in

order to preserve the participants’ privacy.

6.5.1 Anonymity Networks

Anonymity networks intend to prevent the Internet traffic of individuals from being

tracked by governments or websites. As Tor [56] is the most popular anonymity network,

we will focus on it for the rest of this section, even though the one-to-n scrip system can

be applied to any other anonymity system.

The Tor network is based on onion routing, a design that creates a private network

pathway by incrementally building a circuit of encrypted connections through relays

(onion routers) on the network. Data packets are repeatedly encrypted (using the relays’

public keys) and sent through multiple relays. Then, each relay removes a layer of

encryption using its private key (it peels one layer of the onion) to uncover the address of

the next relay on the path, and sends the packet to this relay where the same operation

is repeated. In this way, no relay ever knows the complete path that a packet has taken.

In order to prevent traffic linkability, users must renew their circuits over time. The
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Tor project website states that, currently, one circuit can be used for ten minutes [16].

The circuit’s path length, i.e. the number of relays in the circuit, is a key parameter

in Tor’s deployment. As suggested in [56], using one or two hops only would allow for

colluding relays to know too easily both the source and destination packets. Thus, the

authors recommend to always choose at least three relays per circuit. In the current

implementation, Tor selects exactly three relays for each circuit [16].

The lack of relays remains one of the main challenges in anonymity networks [57].

There are currently (December 2014) around 10,500 Tor relays (including bridges) for

2.25 million clients [15]. The corresponding client-to-relay ratio is not likely to decrease

if the Tor network does not provide incentives for users to relay others’ traffic. Acquisti

et al. were the first to formalize the economics of anonymity and propose incentives to

encourage users to serve for others [20]. The original Tor proposal already mentioned the

need of incentives for a long-term scalable development of such an anonymity system [56].

In the last few years, various incentive mechanisms have been proposed. The first cate-

gory of incentives is based on differentiated service for Tor users running a relay [136, 98].

The second category proposes to foster participation in traffic relaying by rewarding vol-

unteers with anonymous micropayments [48, 27, 98]. Our idea is that users should reward

their Tor relays with the micropayments earned when relaying others’ traffic, everybody

being involved in the relaying work such as in a P2P anonymity network [143, 68]. In

this way, the anonymity workload will be shared among all the users benefiting from the

system, thus ensuring fairness and preventing free-riding. Figueiredo et al. provided an

anonymous payment-based incentive for such networks [65]. Note that all of the afore-

mentioned micropayment-based incentive mechanisms proposed techniques to distribute

coins (scrip) in an anonymous way, in order that privacy gains provided by anonymity

networks are not jeopardized. Figure 6.3 depicts an example of this approach. It would

ideally reduce the client-to-relay ratio to 1:1, i.e. all Tor clients would eventually run a

relay.6 In order to analyze and evaluate optimal incentives to provide to the anonymity

network, we can rely on the one-to-n scrip system.

In current implementation of Tor, n is equal to 3 . This means that, in our scrip

model, a Tor user will have to pay $3 whenever he wants to create a new circuit in the

Tor network. It is difficult to evaluate whether the anonymity benefit would increase

with a larger n. We know that, with n = 1 or 2, the system would be too vulnerable to

insider attacks. However, would the level of privacy really increase with n greater than

3? We will consider bt constant for n ≥ 3. Different types of benefits can encompass the

fact that some users value anonymity more than others. The cost ct of traffic relaying

represents the bandwidth and power consumption used to forward Tor traffic. Different

costs can represent various bandwidth or power capabilities of the relays. Assuming that

all relays are of type t, the total cost of one request is equal to nct. We notice that

the cost induced by one anonymity service request is increasing linearly with n, whereas

the anonymity benefit remains more or less constant as soon as it reaches an acceptable

value for n. Hence, the system designer should keep n small to keep the relays’ costs

acceptable, and thus optimize social welfare. It is certainly a reason why Tor designers

have chosen to set n = 3.

Concerning the other scrip system parameters, αt, βt, γt, they can model different

6In order to not discriminate Tor clients that cannot run a relay due to censorship, such as in
China [18], we will make some exceptions and let such users benefit from Tor service for free. Indeed,
denying anonymity to clients in censored regions would go against Tor’s praiseworthy aim.
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Figure 6.3: Example of an anonymity network with 3 circuits (AGEJB, EIHAF and
CGHID) and 3 relays per circuit. Each user includes $3 for each circuit he wants to
build for anonymous communication. Then, each peer that accepts to relay traffic is
rewarded with $1 and can use it for his own relay requests.

behaviors and characteristics of the Tor users. First, αt represents the request rate.

Users surfing the Web more often in an anonymous way will request more service from

Tor relays, thus αt will increase. Second, a Tor agent might not be able to satisfy a

traffic relaying request, which is encompassed in the value βt. Finally, some Tor relays

can have higher bandwidth than others, thus a higher quality of service when relaying

traffic, or be well-known and more used than others. This could be represented by γt,

which is the likelihood that an agent is chosen when he volunteers.

We have run simulations of an anonymity network with N = 300, 000, n = 3 and

the same homogenous population used in Figure 6.1, i.e. bt = 1, ct = 0.05, δt = 0.95,

and αt = βt = γt = 1. Apart from N and n, the simulation parameters are not easy to

determine and we plan to further investigate these in future work. Under these settings,

the social welfare is maximized at m = 10 < m∗3. With this average amount of money,

there is only 2.5% of agents who cannot afford a service (i.e., with less than $3). We

conclude that a system designer should allocate m · N = 3 million dollars within an

anonymity networks of 300,000 users in order to optimize its efficiency.7

6.5.2 Privacy in Participatory Sensing

Participatory sensing is an example of novel mobile systems that leverage new capabilities

in computation, communication, storage and sensing of mobile devices [43]. In participa-

tory sensing, mobile users share sensing information, possibly including personal and/or

location data, with service providers. However, the emergence of such people-centric

systems leads to many issues, among which privacy is one of the most critical. Mobile

7Figure 6.2 provides more results on the social welfare for different values of n and m.
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users would certainly be willing to share sensing data, e.g. to help monitoring urban air

pollution [87], but not at any cost to their privacy.

Shi et al. have recently proposed a concrete privacy-preserving data aggregation

scheme for participatory sensing [149]. In this privacy-preserving mechanism, mobile

nodes rely on their nearby peers to “hide” their data from the aggregation server (or

service provider) that could be malicious (or at least curious), thus requiring cooperation

from mobile nodes in their vicinity. Figure 6.4 depicts an example of this privacy-

preserving scheme. First, each sensing node8 slices its data into n + 1 pieces, sends n

encrypted pieces to neighbor nodes and retains the last piece. Second, the mobile nodes

receiving pieces of data from other nodes aggregate all received pieces of data before

transmitting them towards the aggregation server. Assuming that a fraction R of mobile

nodes are malicious and can collude with the aggregation server, the normalized level of

privacy is proportional to

P = max{1−Rn −R|S|−1, 0} (6.25)

where |S| is the number of sensing nodes, which is equal to N if we assume that all

users participating in the privacy-preserving scheme are also sensing nodes. Thus, the

level of privacy increases with N , but also with n. However, this privacy-enhancing tech-

nique induces significant communication and computation overhead that also increases

with n. As battery consumption is, with privacy, one of the main concerns of mobile

users in participatory sensing, these communication and computation costs might pre-

vent participants from volunteering to cover other nodes’ data, thus threatening the

whole privacy-preserving system. In order to foster cooperation and prevent free-riding,

we propose to reward with scrip the mobile nodes that volunteer, and to rely on the

one-to-n scrip system to optimize the efficiency of the monetary incentive.

First, contrarily to Tor networks, the value n is not at all defined in the initial proposal

[149]. The system designer can tune this value to increase the privacy level provided by

the mechanism, at the cost of communication overhead. Therefore, we do not attach any

fixed value to n. Note that n should remain reasonably small with respect to the number

of mobile nodes in the system in order for our theoretical results to apply. This will

certainly be the case as the sensing nodes requesting help from others also suffer from

too high communication overhead when they send their slices to too many neighbors.

Thus, they will cap the number of “cover nodes” by themselves.

The benefit bt that a sensing node (of type t) gains when a request is satisfied is

related to the privacy utility it gains. As Equation (6.25) shows, bt is dependent on n.

Furthermore, as R is smaller or equal than one, bt(n) ∝ P increases with n. Moreover,

different types of benefits can encompass the fact that some agents are more privacy

cautious and sensitive than others. The cost of volunteering is equal to ct for all nodes of

type t. This cost represents the communication and computation overheads that lead to

higher battery consumption. The type of ct can represent the fact that some users are less

willing to consume their battery or merely that their battery has a shorter lifetime. In

conclusion, we clearly notice that the cost of one privacy-preserving request is increasing

linearly with n, whereas the privacy benefit is increasing with n, but less than linearly.

Hence, even if the requester gets higher payoff if he can send more data slices to more

neighbors, the overall utility of the system, social welfare, is decreased.

8A sensing node refers to any agent who uses his mobile device to sense his environment and submits
sensing data.
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Figure 6.4: Example of privacy-preserving data aggregation in participatory sensing.
Each mobile node sends data slices to neighbors in order to mix them. For encouraging
cooperation, each node includes a fixed amount of scrip in all data slices.

The sensing nodes can have different amount of sensing data to submit to the aggre-

gation server. This can be well described by the request rate αt. Indeed, if nodes are

collecting and submitting more data, they will request help of nearby peers more often.

Furthermore, an agent might be unable to satisfy a request. For instance, its device can

run out of battery or he can have a call at the same time. This can be encompassed in

βt. Finally, a node can be asked for covering others’ data slices more often than others.

For example, an agent can spend more time than another in a neighborhood with higher

density of mobile sensing nodes. This difference can be represented by the likelihood that

an agent is chosen when he volunteers, γt. As a concluding remark, we must mention

that the number of data slices n a sensing node can send is also dependent on the density

of the nodes in its vicinity. Thus, the optimal choice of n does not only depend on the

nodes’ privacy sensitivity, but also on the network density constraints.

We have also run experiments for participatory sensing systems, with various values

of N and n. For N = 1000 and n = 6 and the same type of agents than for the previous

application, social welfare is maximized with m = 16. This value is very close to m∗6
over which the system crashes. This average amount of scrip counterbalances the large

value of n very well. It leads to almost the same percentage of agents who cannot afford

a service (agents with less than $6) than in Tor example with n = 3 (around 2.5%).

Hence, in this scenario, a system designer should allocate m ·N = 16, 000 dollars within

the system to optimize its efficiency.
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6.6 Summary

In this chapter, we have proposed the first scrip system model that is able to tackle eco-

nomic systems where one agent needs multiple volunteers simultaneously in order to have

his request satisfied. For the novel one-to-n scrip system, we have proved that decisions

agents make, based on threshold strategies, lead to ε-Nash equilibrium. Assuming that

all agents of the system use threshold strategies, we have shown that the limit distribu-

tion towards which our scrip system will converge highly depends on n. Simulations of

the one-to-n scrip system confirm this convergence. We have studied the effect of n on

all results, notably on the agents’ strategies, on the social welfare and on the maximum

amount of scrip that the system can handle before crashing. We have proved that, at

equilibrium, the agents increase their thresholds if n increases. However, in this case,

social welfare decreases, which can be partially resolved by adding more scrip in the

system. This is possible because the maximum average amount of scrip that the system

can bear before it crashes increases with n. Finally, we have shown that our upgraded

scrip system can help improve fairness and efficiency in two privacy-enhancing applica-

tions where cooperative volunteers are required. We have notably evaluated the average

amount of scrip per agent that should be allocated into the Tor network to optimize its

performance and fairness.

In future work, it would be interesting to investigate agents’ possible strategies other

than thresholds. Furthermore, non-standard behaviors such as altruism or hoarding

could be studied. These behaviors should not necessarily be considered as irrational:

(i) altruists can benefit from providing help to others, and (ii) hoarders may get some

utility from owning more scrip. Finally, newcomers and their effect on the amount of

scrip in circulation could be evaluated. As a consequence, variable prices could also be

considered in the model.
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Conclusion

In this thesis, we have studied the impact on privacy of one of the fundamental character-

istics of humanity: interdependence between individuals. We evaluate how other people

can compromise our privacy, in both the social and biological dimensions of our identity.

We complete this thesis by studying scenarios where others can play a beneficial role in

privacy. This is typically the case in today’s most popular privacy-enhancing tool, Tor,

used by millions of people around the world.

In Part I, we have shown that an external adversary can efficiently find most users in

an OSN by exploiting information publicly disclosed by other OSN users. Our navigation

attack discovers two thirds of the targeted users in Facebook, and 59% of targeted users

in Google+, in a median number of crawled users smaller than 400, respectively 300. This

suggests that it is almost impossible for any participant in an online social network to

“hide in the crowd” by excluding his name from the central directory. One main reason

for failed cases is the privacy behaviors of the targets’ friends: the fewer friends who have

public attributes and public social links, the less likely the target is to be found. This

demonstrates the crucial role of social ties for privacy in OSNs. Another finding of our

research is that OSN-membership privacy cannot be ensured because of other people’s

weak privacy settings.

In Part II, we first formally quantify genomic privacy of individuals in a family by

relying upon Bayesian inference. In order to efficiently compute the posterior distribu-

tions resulting from the observation of some genomic data, we make use of probabilistic

graphical models and belief propagation. In order to express genomic privacy, we propose

different metrics widely used and recognized by the privacy research community that rep-

resent: (i) the (in)correctness of the adversary’s estimation, and (ii) the (un)certainty

in the adversary’s estimation. In order to obtain more tangible metrics, we go one step

further by quantifying health privacy of individuals. We evaluate our quantification

framework on real genomic data, and show the scale of the threat by matching genomic

profiles with OSN profiles publicly available online. Our results notably show that, by

disclosing only 10% of its genomic data, a family can lose more than 50% of its global ge-

nomic privacy. We evaluate the interplay between family members with non-cooperative

behaviors regarding the privacy of their genomic data. We derive closed-form expressions

to measure genomic privacy, as well as closed-form expressions of the Nash equilibria, in

the two-player context. We rely upon multi-agent influence diagrams in order to tackle
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the computational complexity of finding a Nash equilibrium in the more general n-player

setting. Our results notably show that misaligned perceived benefits in genome sharing

can create externalities that negatively affect genomic privacy. In the n-player scenario,

we notice that, when the perceived benefits do not clearly outweigh the genomic-privacy

losses, some players with similar sharing benefits might end up with different strategies

at equilibrium. Moreover, we have demonstrated that, although altruism tends to reduce

the indirect genomic-privacy losses at equilibrium, it can lead to a social outcome worse

than with a purely selfish behavior for specific values of sharing benefits. Finally, we have

proposed, in Chapter 5, an obfuscation mechanism for balancing the utility of genome

sharing with the privacy expectations of family members. Our privacy-preserving mech-

anism takes into account the fact that different parts of the genome can have different

utilities, and different levels of sensitivity for individuals.

In Part III, we have studied cooperative privacy-enhancing technologies where other

users are actually needed to provide any privacy provision, thus showing that interde-

pendence can also be beneficial for privacy. In particular, we have shown how monetary

incentives can be used and their amount optimized in order to foster cooperation between

users and to improve fairness and efficiency of the privacy-enhancing systems. We have

proved that decisions based on threshold strategies lead to a stable equilibrium. We have

also derived the maximum amount of money that the system can bear before crashing,

which happens to be the optimal amount of money for maximizing the efficiency of the

system. We have studied the impact of various parameters on our analytical results,

notably the effect of the number of cooperative agents needed in order to achieve privacy

for others. Finally, we have demonstrated the practical utility of our findings by deriving

the average amount of money that should be allocated into the Tor network in order to

optimize its performance and fairness.

In conclusion, we have clearly established the negative effect of interdependence on

privacy at both social and biological levels. This demonstrates that privacy is almost

impossible to achieve individually and independently of other people. We hope this thesis

will help raise awareness about interdependent privacy risks and encourage people to take

more into account other people’s privacy needs when making their own privacy decisions.

This is probably the only way privacy can be enhanced for the time being. We also

propose countermeasures and mechanisms for mitigating the negative impact of others’

behavior on privacy. We emphasize, however, that these privacy-preserving mechanisms

require some degree of cooperation between interdependent individuals. As cooperation

is a strong assumption in a society where self-interest has been raised to the status

of way of life, we should consider that online privacy is vanishing, and urgently begin

designing new mechanisms for the upcoming post-privacy era. Such mechanisms should,

in particular, prevent the misuse of personal data and enforce fair decision-making, in

order to eventually build a more equitable society.
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