
1

A Fast Hadamard Transform for Signals with
Sub-linear Sparsity in the Transform Domain

Robin Scheibler, Student Member, IEEE, Saeid Haghighatshoar, Student Member, IEEE,
Martin Vetterli, Fellow, IEEE

Abstract—In this paper, we design a new iterative low-
complexity algorithm for computing the Walsh-Hadamard trans-
form (WHT) of an N dimensional signal with a K-sparse WHT.
We suppose that N is a power of two and K = O(Nα), scales
sub-linearly in N for some α ∈ (0, 1). Assuming a random
support model for the nonzero transform-domain components,
our algorithm reconstructs the WHT of the signal with a sam-
ple complexity O(K log2(

N
K
)) and a computational complexity

O(K log2(K) log2(
N
K
)). Moreover, the algorithm succeeds with

a high probability approaching 1 for large dimension N .
Our approach is mainly based on the subsampling (aliasing)

property of the WHT, where by a carefully designed subsampling
of the time-domain signal, a suitable aliasing pattern is induced in
the transform domain. We treat the resulting aliasing patterns as
parity-check constraints and represent them by a bipartite graph.
We analyze the properties of the resulting bipartite graphs and
borrow ideas from codes defined over sparse bipartite graphs
to formulate the recovery of the nonzero spectral values as
a peeling decoding algorithm for a specific sparse-graph code
transmitted over a binary erasure channel (BEC). This enables
us to use tools from coding theory (belief-propagation analysis)
to characterize the asymptotic performance of our algorithm in
the very sparse (α ∈ (0, 1

3
]) and the less sparse (α ∈ (1

3
, 1))

regime. Comprehensive simulation results are provided to assess
the empirical performance of the proposed algorithm.

Index Terms—Walsh-Hadamard Transform, sparse FFT, sub-
linear sparsity, peeling decoder, density evolution.

I. INTRODUCTION

THE Walsh-Hadamard transform (WHT) is a well-known
signal processing tool with applications in areas as varied

as image compression and coding [1], multi-user communica-
tion in cellular networks via spreading sequences (CDMA) [2],
spectroscopy [3], and compressed sensing [4]. It also has nice
properties studied in different areas of mathematics [5]. Its
recursive structure enables a fast computation, similar to the
famous fast Fourier transform (FFT) algorithm for computing
the discrete Fourier transform (DFT) of the signal, with a

R. Scheibler, S. Haghighatshoar and Martin Vetterli are with the
School of Computer and Communication Sciences École Polytech-
nique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
{robin.scheibler,martin.vetterli}@epfl.ch, saeid.haghighatshoar@tu-berlin.de

The research of Robin Scheibler was supported by ERC Advanced In-
vestigators Grant: Sparse Sampling: Theory, Algorithms and Applications
SPARSAM no. 247006.

A short version of this paper was presented at the 51st Annual Allerton
Conference on Communication, Control, and Computing, Monticello, 2013.

The complete implementation of the algorithm described in this paper is
available online at http://lcav.github.io/SparseFHT.

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

complexity O(N log2(N)) in the dimension of the signal N
[6], [7].

A number of recent publications have addressed the problem
of computing the DFT of an N dimensional signal when it is
sparse in the frequency domain [8]–[12]. In particular, it has
been shown that the well known computational complexity
O(N log2(N)) of the FFT algorithm can be strictly improved
under the sparsity assumption. Such algorithms are generally
known as sparse FFT (sFFT) algorithms. In [13], Ghazi et
al. developed a very low-complexity algorithm for computing
the 2D-DFT of a

√
N ×

√
N signal by extending the results

of [12]. In a similar line of work, Pawar et al. [14], [15]
used the subsampling property of the DFT to develop a low-
complexity algorithm for recovering the nonzero frequency-
domain components of a signal by using ideas from sparse-
graph codes [16].

In this paper, we develop a novel algorithm for computing
the WHT of an N dimensional signal with a sub-linear
sparsity in the Hadamard domain. More precisely, we assume
that the number of nonzero Hadamard-domain components
K = O(Nα) scales sub-linearly in N for some α ∈ (0, 1).
We first develop some useful properties of the WHT, specially
the subsampling and the modulation property, which plays a
vital role in the development of the algorithm. In particular,
we show that subsampling in time domain allows to induce
a well-designed aliasing pattern over the transform-domain
components. In other words, it is possible to obtain a linear
combination of a controlled collection of transform-domain
components (aliasing), which creates interference between the
nonzero components if more than one of them are involved
in the resulting linear combination. Similar to [15] and by
borrowing ideas from sparse-graph codes, we construct a
bipartite graph by considering the nonzero values in the
transform domain as variable nodes and, by interpreting every
induced aliasing pattern as a parity check constraint over
the variables in the graph. We analyze the structure of the
resulting graph assuming a random support model for the
nonzero coefficients in the transform domain. Moreover, we
give an iterative peeling decoder to recover the nonzero
components. In short, our proposed sparse fast Hadamard
transform (SparseFHT) consists of a set of deterministic linear
hash functions (explicitly constructed) and an iterative peeling
decoder that uses the hash outputs to recover the nonzero
transform-domain variables. It recovers the K-sparse WHT of
the signal with a sample complexity (number of required time-
domain samples) O(K log2(NK)), total computational com-
plexity O(K log2(K) log2(NK)) and with a high probability

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148010064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

approaching 1 for large dimension N .
A closely related work, in spirit, to ours is the work on

one-way functions by Goldreich et al. [17], [18] in theoretical
computer science, where it was shown that the support recov-
ery of the nonzero transform-domain coefficients is reduced
to recovering the value of inner products of boolean vectors.
In particular, an efficient algorithm was developed to speed
up this computation [18]. Although our signal model and pro-
posed recovery algorithm is completely different, we believe
that our results would be of interest in these areas as well.

Notations and Preliminaries: For an integer m, the set of
all integers {0, 1, . . . ,m − 1} is denoted by [m]. We use the
small letter x for the time domain and the capital letter X
for the transform-domain signal. For an N dimensional real-
valued vector v, with N = 2n a power of two, the i-th com-
ponents of v is equivalently represented by vi or vi0,i1,...,in−1

,
where i0, i1, . . . , in−1 denotes the binary expansion of i, with
i0 and in−1 being the least and the most significant bits. Also
sometimes the real value assigned to vi is not important to us
and by vi we simply mean the binary expansion associated
to its index i; however, the distinction must be clear from the
context. F2 denotes the binary field consisting of {0, 1} with
summation and multiplication modulo 2. We also denote by Fn2
the space of all n dimensional vectors with binary components,
where the addition of two vectors is done component wise.
The inner product of two n dimensional binary vectors u, v
is defined by 〈u , v〉 =

∑n−1
t=0 utvt with arithmetic over

F2, although 〈. , .〉 is not an inner product in the exact
mathematical sense: for example, if u = [1, 1, 1, 1]T , then
〈u , u〉 = 0, but u 6= 0. We often use Σ for a matrix with
entries in F2. We denote by ΣT the transpose of the matrix
Σ. When Σ is non-singular, we use the shorthand notation
Σ−T for (ΣT)−1. The null space of a matrix Σ is denoted by
N (Σ) = {u |Σu = 0}.

For a signal X ∈ RN , the support of X is defined as
supp(X) = {i ∈ [N] : Xi 6= 0}. The signal X is called
K-sparse if | supp(X)| = K, where for a set A ⊂ [N], |A|
denotes the cardinality or the number of elements of A. For
a collection of N dimensional signals SN ⊂ RN , the sparsity
of SN is defined as KN = maxX∈SN | supp(X)|.

Definition 1. Let S be a class of signals S = ∪∞N=1SN , where
SN denotes the subclass of all N -dimensional signals. S is
said to have a sub-linear sparsity if there is some α ∈ (0, 1)
such that KN = O(Nα), where KN denotes the sparsity of
the collection SN . We call α the sparsity index of class S.

II. MAIN RESULTS

Let us first describe the main result of this work in the
following theorem.

Theorem 1. Let α ∈ (0, 1) be a fixed number. Suppose N =
2n is a power of two and assume K = Nα. Let x ∈ RN be
a time-domain signal with a WHT X ∈ RN . Assume that X
is a K-sparse signal in a class of signals with sparsity index
α whose support is selected uniformly at random among all
possible

(
N
K

)
subsets of [N] of size K. In addition, let the

magnitude of the nonzero components of X be independently

sampled from some arbitrary continuous distribution (that does
not need to be known). Then, there is an algorithm that can
compute X and has the following properties:

1) Sample complexity: The algorithm uses CK log2(NK)
time-domain samples of the signal x. C is a function of
α and C ≤ (1

α ∨
1

1−α) + 1, where for a, b ∈ R+, a ∨ b
denotes the maximum of a and b.

2) Computational complexity: The total number of op-
erations needed in order to successfully decode all the
nonzero spectral components or announce a decoding
failure is O(CK log2(K) log2(NK)).

3) Success probability: The algorithm correctly computes
the K-sparse WHT X with a very high probability
asymptotically approaching 1 as the dimension of the
signal N tends to infinity, where the probability is taken
over all random selections of the support of X . More
importantly, the algorithm can find out whether the
recovery succeeds or fails.

To prove Theorem 1, we distinguish between the very sparse
case (α ∈ (0, 1

3]) and less sparse one (α ∈ (1
3 , 1)), where we

implicitly assume that the algorithm knows the value of α,
which might not be possible in some applications.

Fortunately, there is some underlying monotonicity in our
algorithm that helps to solve this problem. More precisely,
the algorithm designed for a specific value of α = α∗ can
successfully recover all the transform domain signals with
sparsity index less that α∗. Thus, even if the value of α
is unknown, we only need to design the algorithm for the
largest possible value of α. However, the drawback is that
the resulting sample and computational complexity might get
much higher than the optimal algorithm that knows the exact
value of α.

Fortunately, this problem can also be solved to obtain an
optimal algorithm that does not need to know the value of
α. The main observation is that in the sub-linear sparsity
regime, where the number of nonzero components scales like
K = O(Nα), the resulting sample and time complexity are
on the order of O(Nα log2(N)) and O(Nα log2(N)2) respec-
tively. This implies that for α1 < α2, and for a sufficiently
large signal dimension N , the algorithm designed for α1 has
negligible sample and computational complexity compared
with the one designed for α2. Hence, we can use an adaptive
strategy. We design our algorithm for small values of α. The
algorithm will find out if the recovery was successful. If not,
we increase the value of α and run a new algorithm for the new
value of α, and we continue until the recovery is successful.
In this way, we get a sample and computational complexity
comparable with the algorithm that knows the exact value of
α. The only drawback is that, in the adaptive scheme, the
required number of time-domain samples gradually increases
as we try larger value of α, thus it might not be useful in
application in which the number of samples should be a priori
fixed.

Remark 1. In the very sparse regime (α ∈ (0, 1
3)), we prove

that for any value of α the success probability of the optimally
designed algorithm is at least 1 − O(1/N3α(C/2−1)), with

3

C = b 1
αc where for u ∈ R+, buc = max{n ∈ Z : n ≤ u}. It

is easy to show that for every value of α ∈ (0, 1
3), the success

probability can be lower bounded by 1−O(N−
3
8).

III. WALSH-HADAMARD TRANSFORM AND ITS
PROPERTIES

Let x be an N = 2n dimensional signal indexed with
elements m ∈ Fn2 . The N dimensional WHT of the signal
x is defined by

Xk =
1√
N

∑
m∈Fn2

(−1)〈k ,m〉xm, (1)

where k ∈ Fn2 denotes the corresponding binary index of
the transform domain component. Also, throughout the paper,
borrowing some terminology from the DFT, we call x the
time-domain signal and we refer to X as the transform-
domain, Hadamard-domain, frequency-domain, or spectral-
domain signal. Also, note that the WHT is invertible and its
inverse is given by the same expression as in Eq. (1) except
that the roles of xm and Xk is interchanged.

Notice that with our notation both the time-domain signal
x : Fn2 → R and the transform-domain signal X : Fn2 → R are
functions from the index set Fn2 to reals. Therefore, the WHT
given by the Eq. (1) maps the function x (time-domain signal)
onto the function X (transform-domain signal). For simplicity
of notation, we will use xm for the time-domain and Xk for
the frequency-domain functions with the convention that both
m and k belong to the index set Fn2 .

A. Basic Properties

In this section, we review some of the basic properties of
the WHT. Some of the properties are not directly used in the
paper, but we include them for the sake of completeness. They
can be of independent interest. The proofs of all the properties
are provided in Appendix A.

Property 1 (Shift/Modulation). Let Xk be the WHT of the
signal xm and let p ∈ Fn2 . Then

xm+p
WHT←→ Xk(−1)〈p , k〉.

The next property is more subtle and enables us to partially
permute the Hadamard spectrum in a specific way by applying
a corresponding permutation in the time domain. However, the
collection of all such possible permutations is limited. We give
a full characterization of all those permutations. Technically,
this property is equivalent to finding permutations π1, π2 :
[N] → [N] with corresponding permutation matrices Π1,Π2

such that
Π2HN = HNΠ1, (2)

where HN is the Hadamard matrix of order N , and where
the permutation matrix corresponding to a permutation π is
defined by (Π)i,j = 1 if and only if π(i) = j, and zero
otherwise. The identity (2) is equivalent to finding a row
permutation of HN that can be equivalently obtained by a
column permutation of HN .

Property 2. All of the permutations satisfying (2) are de-
scribed by the elements of

GL(n,F2) = {A ∈ Fn×n2 |A−1 exists},

the set of n× n non-singular matrices with entries in F2.

Remark 2. The total number of possible permutations in
Property 2, is

∏n−1
i=0 (N − 2i), which is a negligible fraction

of all N ! permutations over [N].

Property 3 (Permutation). Let Σ ∈ GL(n,F2). Assume that
Xk is the WHT of the time-domain signal xm. Then

xΣm
WHT←→ XΣ−T k.

Notice that ym = xΣm is the function given by the
composition of the function x and the index transformation
iΣ, i.e., y = x ◦ iΣ, where for m ∈ Fn2 , iΣ(m) = Σm
is the multiplication of the matrix Σ with the index vector
m. Moreover, any Σ ∈ GL(n,F2) is a bijection from Fn2 to
Fn2 , thus xΣm is simply a signal obtained by permuting the
components of the signal xm.

The final property is that of downsampling/aliasing. No-
tice that for a vector x of dimension N = 2n, we index
every component by a binary vector of length n, namely,
xm0,m1,...,mn−1

. To subsample this vector along dimension i,
we freeze the i-th component of the index to either 0 or 1. For
example, x0,m1,...,mn−1 is a 2n−1 dimensional vector obtained
by subsampling the vector xm along the first index.

Property 4 (Downsampling/Aliasing). Suppose that x is a
vector of dimension N = 2n indexed by the elements of Fn2
and assume that B = 2b, where b ∈ N and b < n. Let

Ψb =
[
0b×(n−b) Ib

]T
, (3)

be the subsampling matrix that freezes the first n− b compo-
nents in the index to 0. If Xk is the WHT of x, then

xΨbm
WHT←→

√
B

N

∑
j∈N(ΨTb)

XΨbk+j ,

where m, k ∈ Fb2 denote the corresponding binary indices of
the time and frequency components, and xΨbm is a B = 2b

dimensional signal labelled with m ∈ Fb2.

Recall that by our notation, ym = xΨbm is a function y :
Fb2 → R given by y = x ◦ iΨb , where iΨb : Fb2 → Fn2 is
the index transformation given by iΨb(m) = Ψbm. It is not
difficult to check that Ψbm, which is the multiplication of
m ∈ Fb2 with the matrix Ψb of dimension n×b, gives an index
in Fn2 which is the right argument for the function x. Also,
index Ψbk + j with j ∈ N

(
ΨT
b

)
gives the suitable index for

the function X . Notice that Property 4 can be simply applied
for any matrix Ψb that subsamples any set of indices of length
b but not necessarily the b last ones.

To give an intuitive explanation of the downsampling prop-
erty, notice that the elements of Fn2 can be visualized as
the vertices of an n-dimensional hypercube. This property
implies that downsampling along some of the dimensions in
the time domain is equivalent to summing up all the spectral

4

(0,0,0) (0,1,0)

(1,0,1)

(1,1,1)(1,1,0)(1,0,0)

(0,0,1) (0,1,1)

(0,0,0) (0,1,0)

(1,0,1) (1,1,1)

(1,1,0)
(1,0,0)

(0,0,1) (0,1,1)

WHT

Fig. 1. Illustration of the downsampling property on a hypercube forN = 23.
The two cubes represent the time-domain (left) and the Hadamard-domain
(right) signal. We decide to drop all the nodes whose third coordinate is ‘1’.
We illustrate this by adding a ‘×’ on the edges connecting those vertices
through the third coordinate. This is equivalent to summing up vertices along
the corresponding edges in the Hadamard domain.

components along the same dimensions in the spectral domain.
This is illustrated in Fig. 1 for dimension n = 3.

In a general downsampling procedure, we can replace the
frozen indices by an arbitrary but fixed binary pattern. The
only difference is that, instead of summing the aliased spectral
components, we should also take into account the suitable
{+,−} sign patterns, i.e., we have

xΨbm+p
WHT←→

√
B

N

∑
j∈N(ΨTb)

(−1)〈p , j〉XΨbk+j , (4)

where p is a binary vector of length n with b zeros at the end.
To visualize this property, consider Fig. 1, where we have a
signal over a 3-dimensional cube and we subsample it along
the third dimension, i.e., we keep only 4 variables with the
third index equal to 0. Notice that these variables lie on a
2-dimensional (square) face of the cube that corresponds to
a subsampling with p = 000. Instead, we can use p = 001
for subsampling and this value of p will select all 4 variables
on the other face of the cube corresponding to those variables
with the third index equal to 1. This face of the cube is a
square parallel to the square corresponding to p = 000.

IV. HADAMARD HASHING ALGORITHM

By applying the basic properties of the WHT, we can design
suitable hash functions in the spectral domain. The main idea
is that, to compute the output of a hash function, we do not
need to have access to the spectral components because it can
be computed by low-complexity operations that are directly
applied to the time-domain samples of the signal.

Proposition 1 (Hashing). Assume that Σ ∈ GL(n,F2) and
p ∈ Fn2 . Let N = 2n, b ∈ N, B = 2b and let m, k ∈ Fb2
denote the time and frequency indices of a B dimensional
signal and its WHT defined by

uΣ,p(m) =

√
N

B
xΣΨbm+p.

Then, the length B Hadamard transform of uΣ,p is given by

UΣ,p(k) =
∑

j∈Fn2 |Hj=k

Xj (−1)〈p , j〉, (5)

where H is the index hashing operator defined by

H = ΨT
b ΣT , (6)

where Ψb is as in (3). Note that the index of components in
the sum (5) can be explicitly written as a function of the bin
index k as follows:

j = Σ−TΨbk + q, q ∈ N (H).

The proof simply follows from the properties 1, 3, and 4.
Using Proposition 1, we give Algorithm 1 for computing

the hashed Hadamard spectrum. It chooses B bins for hashing
the spectrum, chooses B samples of the time-domain signal
according to the subsampling parameters Ψb and p, and uses
an FFT-like fast Hadamard transform (FHT) to compute the
hash output with O(B log2B) operations.

Algorithm 1 FastHadamardHashing(x,N,Σ, p, B)

Require: Signal x of dimension N = 2n, Σ and p and given
number of output bins B = 2b in a hash.

Ensure: U contains the hashed Hadamard spectrum of x.
um = xΣΨbm+p, for m ∈ Fb2.

U =
√

N
B FastHadamard(um, B).

A. Properties of Hadamard Hashing

In this part, we review some properties of the hashing
algorithm that are crucial for developing an iterative peeling
decoding algorithm that recovers the nonzero spectral values.
We mainly explain how it is possible to identify collisions
between the nonzero spectral coefficients that are hashed to
the same bin and to estimate the support of non-colliding
components.

Let us consider UΣ,p(k) for two cases: p = 0 and some
p 6= 0. It is easy to see that in the former UΣ,p(k) is obtained
by summing all the spectral variables hashed to bin k (those
whose index j satisfies hΣ(j) = Hj = k); whereas in the latter
the same variables are added together weighted by (−1)〈p , j〉.
Let us define the following ratio test

rΣ,p(k) =
UΣ,p(k)

UΣ,0(k)
.

When the sum in UΣ,p(k) contains only one nonzero compo-
nent, it is easy to see that |rΣ,p(k)| = 1 for ‘any value’ of
p. However, if there is more than one nonzero component in
the sum, and assuming that those nonzero values are jointly
sampled from a continuous distribution, we can show that
|rΣ,p(k)| 6= 1 for at least some values of p. In fact, n − b
well-chosen values of p enables us to detect whether there is
only one, or more than one nonzero component in the sum.

When there is only one Xj′ 6= 0 hashed to the bin k
(hΣ(j′) = k), the result of the ratio test is precisely 1 or
−1, depending on the value of the inner product between j′

and p. In particular, we have

〈p , j′〉 = 1{rΣ,p(k)<0}, (7)

5

Fig. 3. A block diagram of the SparseFHT algorithm in the time domain. The
downsampling plus small size low-complexity FHT blocks compute different
hash outputs. Delay blocks denote an index shift by σi before hashing. The
S/P and P/S are serial-parallel and parallel-serial blocks to emphasize that the
FHT operates on the whole signal at once. The collision detection/support
estimation block implements Proposition 2 to identify if there is a collision.
Index i is not valid when there is a collision.

where 1{t<0} = 1 if t < 0, and zero otherwise. Hence, if for
n−b well-chosen values of p, the ratio test results in 1 or −1,
implying that there is only one nonzero spectral coefficient in
the corresponding hash bin, it is even possible to identify the
position of this nonzero component. We formalize this result
in the following proposition proved in Appendix B.

Proposition 2 (Collision Detection / Support Estimation). Let
Σ ∈ GL(n,F2) and let σi, i ∈ [n] denote the columns of Σ.

1) If for all d ∈ [n − b], |rΣ,σd(k)| = 1, then almost
surely there is only one nonzero spectral value in the
bin indexed by k. Moreover, if we define

v̂d =

{
1{rΣ,σd (k)<0} d ∈ [n− b],
0 otherwise,

(8)

the index of the unique nonzero value is given by

j = Σ−T (Ψb k + v̂). (9)

2) If there exists a d ∈ [n−b] such that |rΣ,σd(k)| 6= 1, then
the bin k contains more than one nonzero coefficient.

V. SPARSE FAST HADAMARD TRANSFORM

In this section, we give a brief overview of the main
idea of Sparse Fast Hadamard Transform (SparseFHT). In
particular, we explain the peeling decoder that recovers the
nonzero spectral components, and analyze its computational
complexity.

A. Explanation of the Algorithm

In coding theory, it is common to represent a code over a
bipartite graph with variable and check nodes. There is exactly
one variable node per code bit and one check node per parity
check constraint in the code. A variable node is connected
to a check node if and only if it appears in the parity check
equation corresponding to that check node. Such a graph is
called sparse if the number of edges is in the order of the
number of nodes.

We can slightly extend the bipartite graph representation to
include the WHT. To explain this further, let us consider Eq.
(1). From the symmetry of WHT, we have

xm =
1√
N

∑
k∈Fn2

(−1)〈m, k〉Xk. (10)

Eq. (10) states that knowing any time-domain sample xm,
puts a linear constraint on the spectral-domain components
Xk. Using the terminology of coding theory, we interpret
these linear constraints as parity check constraints over Xk.
For example, for m = 0, the resulting parity check equation
implies that the sum of all the components of X must be
equal to the first time-domain sample x0 multiplied by

√
N .

We associate a bipartite graph representation as follows: we
associate variable nodes to the components of X (code bits
in coding theory), and corresponding to every known time-
domain sample, we add a check node to represent the resulting
linear constraint. In particular, if we only keep the nonzero
spectral variables, we obtain the induced bipartite graph over
these variables. With this picture in mind, we can formulate the
recovery of the nonzero spectral values as a decoding problem
over this induced bipartite graph.

It is not difficult to see that for the WHT, the induced
bipartite graph on the nonzero spectral values is a complete
(dense) bipartite graph because any variable node is connected
to all the check nodes. This has been depicted in the left part of
Fig. 2, where {X1, X8, X11} are the only nonzero variables in
the spectral domain and each check constraint corresponds to
the value of a specific time-domain sample. It is also implicitly
assumed that the support (position of nonzero variables) of
X is known, e.g., {1, 8, 11} in Fig. 2. At the moment, it is
not clear how we can obtain the position of these nonzero
variables. In the final version of the algorithm, this is done by
applying Proposition 2.

For codes on sparse bipartite graphs, there exists a collection
of low-complexity belief propagation algorithms to efficiently
recover the code bits given the value of check nodes observed
via a noisy channel [16]. Unfortunately, the graph correspond-
ing to WHT is dense, and probably not suitable for any of these
belief propagation algorithms.

As explained in Section IV, by subsampling the time-
domain components of the signal, it is possible to hash the
spectral components in different bins as depicted for the
same signal X in the right part of Fig. 2. The advantage
of the hashing must be clear from this picture. The idea is
that via hashing, we can obtain a new representation with a
sparse bipartite graph. In some sense, hashing ‘sparsifies’ the
underlying bipartite graph. It is also important to note that
in the former representation, the output value of every parity
check equation is an already known time-domain sample of
the signal, thus no extra effort is necessary to compute them.
For the latter representation obtained via hashing, the value
of parity checks (hash outputs) are not a priori known but
fortunately, they can be computed by using low-complexity
operations on a small subset of time-domain samples as
explained in Proposition 1.

We propose the following iterative algorithm to recover the
nonzero spectral variables over the bipartite graph induced by
hashing. The algorithm first tries to find a degree-one check
node. Using the terminology of [15], we call such a check
node a singleton. This singleton check is connected to only
one nonzero variable. Using Proposition 2, we can find the
position and the value of this nonzero variable. This enables
us to subtract (peel off) this variable from all the other check

6

Fig. 2. On the left, bipartite graph representation of the WHT for N = 8 and K = 3. On the right, the underlying bipartite graph after applying C = 2
different hashing produced by plugging Σ1, Σ2 in (6) with B = 4. The variable nodes (•) are the nonzero spectral values to be recovered. The white check
nodes (�) are the original time-domain samples. The colored squares are new check nodes after applying Algorithm 1.

nodes that are connected to it, thus we can remove this variable
node from the graph along with all the edges that are connected
to it. Consequently, the degree of all the check nodes that are
connected to this variable node decreases by one, thus there
is a chance that another singleton be found. Also, removing
the edges, creates an isolated (degree zero) check node that
we call a zeroton.

The algorithm proceeds to peel off one singleton at a time
until all the check nodes are zerotons (decoding succeeds) or
all the remaining check nodes have degrees greater than one
(we call them multiton) and the algorithm fails to completely
recover all the nonzero spectral values. A more detailed
pseudo-code of the proposed iterative algorithm is given in
Algorithm 2.

B. Complexity Analysis

Fig. 3 shows a full block diagram of the SparseFHT
algorithm. Using this block diagram, we prove part 1 and
2 of Theorem 1 regarding the sample and the computational
complexity of the SparseFHT algorithm. The proof of the last
part of Theorem 1, regarding the success probability of the
algorithm, is the subject of Sections VI and VII.

Computational Complexity: As we further explain in
Sections VI and VII, depending on the sparsity index of
the signal α, we use C different hash blocks, where C ≤
(1
α ∨

1
1−α) + 1, and where each hash has B = 2b different

output bins. We always select B to be equal to the number of
nonzero spectral values K. This keeps the average number
of nonzero components per each bin β = K

B equal to 1.
As computing the hash outputs via an FHT block of size
B needs O(B log2(B)) operations, selecting K = B, the
resulting computational complexity is K log2(K). Moreover,
in our algorithm, we need to compute any hash output with
n − b = log2(NB) different shifts in order to make a col-
lision detection/support estimation. Thus, the computational
cost for each hash is O(K log2(K) log2(NK)). As we need
to compute C different hash blocks, the total computational
complexity of computing hash outputs for each iteration will
be O(CK log2(K) log2(NK)).

After computing the hash outputs (output of hash bins), we
do a ratio test to find hashes with only one nonzero component.

Algorithm 2 SparseFHT(x,N,K,C,L,Σ)

Require: Input signal x of length N = 2n. Sparsity K. Hash
count C. Number of iterations of decoder L. Array Σ of C
matrices in GL(n,F2), Σc = [σc,1 | · · · |σc,n], σc,i ∈ Fn2 .

Ensure: X contains the sparse Hadamard spectrum of x.
B = O(K)
D = n− b+ 1
for c = 1, . . . , C do
Uc,0 = FastHadamardHashing(x,N,Σc, 0, B)
for d = 1, . . . , D do
Uc,d = FastHadamardHashing(x,N,Σc, σc,d, B)

end for
end for
for l = 1, . . . , L do

for c = 1, . . . , C do
for k = 0, . . . , B − 1 do

if Uc,0,k = 0 then
continue to next k

end if
v̂ ← 0
for d = 1, . . . , D do

if Uc,d,k/Uc,0,k = −1 then
v̂d−1 ← 1

else if Uc,d,k/Uc,0,k 6= 1 then
continue to next k

end if
end for
i← Σ−Tc (Ψb k + v̂)
Xi ← Uc,0,k
for c′ = 1, . . . , C do
j ← ΨT

b ΣTc′ i
Uc′,0,j ← Uc′,0,j −Xi

for d′ = 1, . . . , D do
Uc′,d′,j ← Uc′,d′,j −Xi(−1)〈σc′,d′ , i〉

end for
end for

end for
end for

end for

7

In total, we have CK log2(NK) output hash bins, thus this
step needs O(CK log2(NK)) operations. If the ratio test is
successful for a specific bin indexed with k, we compute the
binary vector v̂ for this bin according to Eq. (8). The next step
is to find the location of the nonzero component j using Eq.
(9), i.e., j = Σ−T (Ψbk + v̂). This can be split in two parts:
finding Σ−TΨbk for the bin index k, and computing Σ−T v̂ for
the binary index v̂. The former can be calculated offline for
every hash bin k, thus we focus on the latter. From Eq. (8), it is
seen that the last b entries of v̂ are zero, thus we have Σ−T v̂ =∑
i∈[n−b] v̂iσ̄i, where σ̄i, i ∈ [n] are the columns of Σ−T . This

sum can be computed using at most (n − b) multiplications
and bitwise XOR operations. During the whole runtime of the
algorithm, this calculation is done only K times corresponding
to K nonzero variables to be peeled off, thus the resulting
complexity is O(K log2(NK)) (recall that n−b = O(log2(NK)).
Hence, the total computational complexity of every iteration
is of the order O(CK log2(K) log2(NK)). We will explain in
Sections VI and VII how the algorithm terminates in a fixed
number of iterations independent of the value of α and the
dimension of the signal N . Therefore, the total computational
complexity of the algorithm is O(CK log2(K) log2(NK)).

Sample Complexity: Assuming K = B, computing each
hash with n − b different shifts needs K log2(NK) time-
domain samples. Therefore, the total sample complexity is
CK log2(NK).

VI. PERFORMANCE ANALYSIS OF THE VERY SPARSE
REGIME

In Section V-A, we explained how by applying Proposi-
tion 1, we can hash the spectral-domain components in a
collection of bins and how this can be represented by a
bipartite graph. In this section, we consider the very sparse
regime, where α ∈ (0, 1

3]. We show that by assuming a random
support model for nonzero spectral components and for a
careful design of hash functions, we obtain a random bipartite
graph that behaves similarly to the ensemble of LDPC bipartite
graphs. We also show that running the peeling decoder to
recover the nonzero spectral components is equivalent to the
belief propagation (BP) decoding for a binary erasure channel
(BEC). In particular, we prove that that the error (decoding
failure) probability can be asymptotically characterized by a
‘density evolution’ (DE) equation, thus enabling for a perfect
analysis of the peeling decoder. We use the following steps to
rigorously analyze the performance of the decoder in the very
sparse regime:

1) We explain the construction of suitable hash functions
depending on the value of α ∈ (0, 1

3].
2) We rigorously analyze the structure of the induced

bipartite graph obtained by treating the nonzero spec-
tral components as variable nodes and the output of
hash functions as check nodes. In particular, we prove
that the resulting graph is a fully-random left-regular
bipartite graph similar to the regular LDPC ensemble.
We also obtain variable- and check-degree distribution
polynomials for this graph.

3) At every stage, the peeling decoder recovers some of the
variable nodes, removing all the edges incident to those

variable nodes. We use Wormald’s method, given in [19],
to prove the concentration of the number of unpeeled
edges around its expected value, which we also charac-
terize. Wormald’s method, as exploited in [20], uses the
differential equation approach to track the evolution of
the number of edges in the underlying bipartite graph.
Specifically, it shows that the number of edges at every
step of the algorithm is very well concentrated around
the solution of the associated differential equation.

4) Wormald’s method gives a concentration bound to the
number of remaining edges, as far as their count is a
fixed ratio γ ∈ (0, 1) of the initial edges in the graph.
Another expander argument, as in [20], is necessary to
show that if the peeling decoder peels 1− γ fraction of
the edges successfully, it can continue to peel off all the
remaining edges with a very high probability.

A. Hash Construction

For the very sparse regime, α ∈ (0, 1
3], consider those values

of α that are equal to 1
C for some positive integer C ≥ 3. For

α = 1
C , we build C different hash functions as follows. Let

x be an N dimensional time-domain signal with a WHT X ,
where N = 2n and let b = n

C . We label the components of
the vector X by n dimensional binary vector from Fn2 . We
design C different subsampling operators, where the i-th one
keeps all the indices i b up to (i+ 1)b− 1 and sets the other
indices equal to zero. More precisely, using the terminology
of Proposition 1, the i-th hashing operator is given by

Hi = [0b×ib Ib 0b×(n−(i+1)b)],

where Ib is the identity matrix of order b. Let xn−1
0 ∈ Fn2 be

the binary labeling of the elements of the signal x. Equivalent
to the C different subsampling operators, we can consider
functions hi, i ∈ [C], where

hi(x
n−1
0) = (xi b, xi b+1, . . . , xi b+b−1).

Ignoring the multiplicative constants, we can see from Eq. (5)
that the spectral component labelled with Xn−1

0 is hashed to
the bin labelled with hi(Xn−1

0) ∈ Fb2 in the i-th hash.
As we explain in Section VI-C (Proposition 9), we need

at least C = 3 hashes for the peeling algorithm to work
successfully and that is the main reason this construction
works for α ≤ 1

3 . For intermediate values of α, those not
equal to 1

C for some integer C, we can construct b 1
αc hashes

with B = 2bnαc output bins and one hash with a smaller
number of output bins. Thus, the required number of hashes
is at most 1 + b 1

αc.

B. Random Bipartite Graph Construction

1) Random Support Models: In the very sparse regime, the
number of nonzero spectral components is K = O(Nα) for
some α ∈ (0, 1

3]. For a given (K,N), we define RS1(K,N)
as the class of Hadamard-domain signals whose support is
selected uniformly at random from the set of all

(
N
K

)
possible

supports of size K. Model RS1 is equivalent to selecting K
out of N objects (locations of nonzero values) at random

8

without replacement. Assuming that the indices for the support
are selected independently but with replacement, we obtain
another model that we call RS2(K,N). The size of a random
support in RS2(K,N) is itself a random variable less than or
equal to K. The following proposition, proved in Appendix
C, shows that in the sub-linear sparsity regime, RS1 and RS2
are essentially equivalent.

Proposition 3. Consider the random support model
RS2(K,N), where K = Nα for some fixed 0 < α < 1 and
let H be the random size of the support set. Asymptotically
as N tends to infinity H

K converges to 1 in probability.

2) ‘Balls and Bins’ Model G(K,B,C): Let us consider
C disjoint sets of check nodes S1, S2, . . . , SC of the same
size |Si| = B. A graph G in the ensemble G(K,B,C) is a
bipartite graph with K variable nodes on the left and C ×B
check nodes ∪Ci=1Si on the right. Each variable node v in
G, independently from other variable nodes, is connected to
check nodes {s1, s2, . . . , sC}, where every si ∈ Si is selected
uniformly at random from Si, independent of the the other
sj . Hence, every edge e in G can be labelled as (v, c), where
v ∈ [K] is a variable node and c is a check node in one of
S1, S2, . . . , SC . If two different variable nodes are connected
to exactly the same check nodes, we consider them equivalent
and we keep only one of them. By construction, all the
resulting bipartite graphs in the ensemble are left regular with
the variable degree C but the check node degree is not fixed.

3) Ensemble of Graphs Generated by Hashing: In Sec-
tion VI-A, we explained the subsampling operator and the
hash construction for the very-sparse regime. As we described
in Section V-A, we can represent the hashing operation by a
bipartite graph. In this section, our aim is to study the resulting
bipartite graph for the proposed hash construction.

Recall that, the subsampling operator hi is given by

hi(x
n−1
0) = (xi b, xi b+1, . . . , xi b+b−1),

which maps the spectral component labeled with Xn−1
0 ∈ Fn2

into the bin labelled with hi(X
n−1
0) ∈ Fb2. Notice that by

this hashing scheme there is a one-to-one relation between a
spectral element labelled with Xn−1

0 and its bin indices in
different hashes (h0(Xn−1

0), h1(Xn−1
0), . . . , hC−1(Xn−1

0)).
Now, suppose X1, X2, . . . , XK are K different binary in-

dices in Fn2 that are selected uniformly at random from the
subsets of size K, and denote the position of nonzero spectral
components. For these K variables and hash functions hi, we
can associate a bipartite graph as follows. We consider K
variable nodes corresponding to Xi, i ∈ [K], and C different
set of check nodes S0, S1, . . . , SC−1 each of size B = 2b. The
check nodes in each Si are labelled by elements of Fb2. For
each variable Xi we consider C different edges connecting
Xi to check nodes labelled with hj(Xi) ∈ Sj , j ∈ [C].

As Xi are selected at random without replacement (ac-
cording to RS1), they are not independent and the resulting
bipartite graph is not compatible with Balls and Bins model
explained in Section VI-B2. This makes the analysis difficult.
We solve this problem in two steps. First, in Proposition 4,
we prove that we can still obtain a graph compatible with
Balls and Bins model G(K,B,C) if we use RS2 instead of

RS1. This is equivalent to sampling the indices randomly and
independently but with replacement. Second, in Proposition 5,
we prove that for a large dimension N , the failure probability
of our proposed algorithm over RS1 model is upper bounded
by the failure probability over G(K(1+ε), B,C), i.e., the Balls
and Bins model with a slightly higher number of variables.

Proposition 4. Let hi : Fn2 → Fb2, i ∈ [C] be as explained
before. Let {Vj : j ∈ [K]} be a random set from the ensemble
RS2(K,N) for N = 2n. The bipartite graph associated with
variables Vj and hash functions hi is a graph from ensemble
G(K,B,C), where B = 2b.

Proof: Recall that in the bipartite graph representation,
we assign a variable node to each Vj and consider a set of
check node ∪i∈[C]Si, where Si is the set of all check nodes
corresponding to all hash outputs in hash i. As {Vj : j ∈
[K]} belong to the ensemble RS2(N,K), all the variables
Vj are independent from each other. Hence, for a fixed hash
function hi, the variables hi(Vj), j ∈ [K], are also independent
of each other. This implies that in the resulting bipartite graph,
different variable nodes select their corresponding check node
in Si independent of each other.

Now consider a specific variable node Vk. This variable
node is connected to hash bin hi(Vk) in the i-th hash. As Vk
is a uniformly distributed random variable over Fn2 , we can
represent it by a binary vector Bn−1

0 whose components Bi
are like i.i.d. unbiased bits. For the constructed hash functions,
we can see that the corresponding hash indices

h0(Bn−1
0), h1(Bn−1

0), . . . , hC−1(Bn−1
0)

are independent from one another because they depend on dis-
joint subsets of Bn−1

0 . Moreover, each hi(Bn−1
0) is uniformly

distributed over Fb2. This implies that every variable node Vk
selects its neighbor check (hash bin) in each Si, i ∈ [C]
uniformly and independently of the other Si′ , i′ 6= i. Thus,
the resulting graph belongs to G(K,B,C).

In Section V, we explained the peeling decoder for recover-
ing the nonzero spectral components. It is not difficult to see
that the performance of the algorithm always improves if we
remove some of the variable nodes from the graph because
it potentially reduces the number of colliding variables in the
graph. This helps the the peeling decoder to succeed decoding.
With this explanation, we can prove the following proposition.

Proposition 5. Let α, C, K, hi, i ∈ [C] be as explained
before. Let G1 be the ensemble of bipartite graphs induced
by the random support model RS1(K,N) and hash functions
hi. For any ε > 0 and for large dimension N , the average
failure probability of the peeling decoder over G1 is upper
bounded by its average failure probability over the ensemble
G(K(1 + ε), B,C).

Proof: Let Gε be a graph from ensemble G(K(1 +
ε), B, C). From Proposition 3, for large dimension N , the
number of variable nodes in Gε is greater than K with a very
high probability. If we drop some of the variable nodes at
random from Gε, to keep only K of them, we obtain a graph
G1 from ensemble G1. As the performance of the peeling

9

decoder improves by removing some of the variable nodes,
it performs strictly better over G1 compared with Gε.

Proposition 4 and Proposition 5 enables us to restrict the
analysis of the performance of the peeling decoder to graphs
from ensemble G(K,B,C).

4) Edge Degree Distribution Polynomial: In this sec-
tion, we restrict ourselves to the graphs from the ensemble
G(K,B,C) for the very sparse regime α ∈ (0, 1

3]. We assume
that nα ∈ N and selected b = nα. Hence, we have K = B.
We call β = K

B the average number of nonzero components
per hash bin. We design the hash functions so that β = 1. All
the graphs from the ensemble G(K,B,C) are left regular, i.e.,
all the variable nodes have degree C, whereas the degree of a
check node depends on the graph realization.

Proposition 6. Let G(K,B,C) be the random graph ensemble
as before with β = K

B fixed. Then, as N tends to infinity, the
check degree converges to a Poisson random variable with
parameter β.

Proof: The construction of the ensemble G shows that
any variable node has a probability of 1

B to be connected to a
specific check node c, independent of all other variable nodes.
Let Zi ∈ {0, 1} be a Bernoulli random variable where Zi = 1
if and only if variable i is connected to check node c. It is
easy to check that the degree of c will be Z =

∑K
i=1 Zi. The

Characteristic function of Z can be easily obtained:

ΦZ(ω) = E
[
ejωZ

]
=

K∏
i=1

E
[
ejωZi

]
=

(
1 +

1

B
(ejω − 1)

)βB
→ eβ(ejω−1),

showing the convergence of Z to a Poisson distribution with
parameter β.

For a bipartite graph, the edge degree distribution poly-
nomial is defined by ρ(α) =

∑∞
i=1 ρiα

i−1 and λ(α) =∑∞
i=1 λiα

i−1, where ρi (λi) is the ratio of all edges that are
connected to a check node (variable node) of degree i. Notice
that we have i − 1 instead of i in the formula. This choice
enables us to write analysis in a compact form.

Proposition 7. Let G be a random bipartite graph from the
ensemble G(K,B,C) with β = K

B . Then λ(α) = αC−1 and
ρ(α) converges to e−β(1−α) as N tends to infinity.

Proof: From left regularity of a graph from ensemble G,
it results that all the edges are connected to variable nodes of
degree C, thus λ(α) = αC−1. To find ρ(α), we need to find
the fraction of edges that are connected to check nodes of a
specific degree. From the symmetry of hash construction, it is
sufficient to find the edge degree-distribution polynomial for
check nodes of the first hash. The total number of edges that
are connected to the check nodes of the first hash is equal to
K. Let i ≥ 1 and let Ni be the number of check nodes in the
first hash with degree i. By definition of ρi, we obtain that

ρi =
iNi
K

=
iNi/B

K/B
.

Let Z be the random variable as in the proof of Proposition
6, denoting the degree of a specific check node. Then, as N
tends to infinity, we can show that

lim
N→∞

Ni
B

= lim
N→∞

P {Z = i} =
e−ββi

i!
a.s.

Thus, ρi converges almost surely to e−ββi−1

(i−1)! . As ρi ≤ 1, for
any α with |α| < 1 − ε, we have |ρiαi−1| ≤ (1 − ε)i−1.
Applying the dominated convergence theorem, we can prove
that ρ(α) converges to

∑∞
i=1

e−ββi−1

(i−1)! α
i−1 = e−β(1−α).

As we will explain in Section VI-C, the performance of
the peeling decoder highly depends on the parameter β; the
less β the better the performance of the peeling decoder. The
drawback is that decreasing β, via increasing B, increases
the time complexity O(B log2(B)) of computing the hash
functions. Generally, we can select B such that β ∈ [1, 2) or
at the cost of increasing the computational complexity make β
smaller, for example β ∈ [1

2 , 1), to obtain a better performance
for the peeling decoding.

C. Performance Analysis of the Peeling Decoder

Consider a random bipartite graph resulting from applying
C hashes to the signal spectrum. As we explained in Section V,
the iterative peeling algorithm starts by finding a singleton,
i.e., a check node of degree 1 that is connected to only one
variable node. The decoder peels off this variable node and
removes all the edges connected to it from the graph. The
algorithm continues by peeling off a singleton at each step
until all the check nodes are zerotons; all the nonzero variable
nodes are decoded, or all the remaining unpeeled check nodes
are multitons, in which case the algorithm fails to completely
decode all the nonzero spectral variables.

1) Wormald’s Method: In order to analyze the behavior
of the resulting random graphs under the peeling decoding, the
authors in [20] applied Wormald’s method to track the ratio
of edges in the graph connected to check nodes of degree 1
(singleton). The essence of Wormald’s method is to approx-
imate the behavior of a stochastic system (here the random
bipartite graph), after applying suitable time normalization,
by a deterministic differential equation. The idea is that as the
size of the system becomes large (thermodynamic limit), the
random state of the system is, uniformly for all times during
the run of the algorithm, well concentrated around the solution
of the differential equation. In [20], this method is applied to
analyze the performance of the peeling decoder for bipartite
graph codes over the BEC. We briefly explain the problem
setting in [20] and how it can be used in our case.

Assume that we have a bipartite graph G with K variable
nodes at the left, C K check nodes at the right and with
edge degree polynomials λ(x) and ρ(x). We can define a
channel code C(G) over this graph as follows. We assign
K independent message bits to K input variable nodes. The
output of each check node is the module 2 summation (XOR
or summation over F2) of the all the message bits that are
connected to it. Thus, the resulting code will be a systematic
code with K message bits, along with C K parity check bits.
To communicate a K bit message over the channel, we send K

10

message bits and all the check bits associated with them. While
passing through the BEC, some of the message bits or check
bits are erased independently. Consider a specific case in which
the message bits and check bits are erased independently with
probability δ and δ′, respectively. Those message bits that pass
perfectly through the channel are successfully transmitted, thus
the decoder tries to recover the erased message bits from the
redundant information received via check bits. If we consider
the induced graph after removing all variable nodes and check
nodes corresponding to the erased ones from G, we end up
with another bipartite graph G′. It is easy to see that over the
new graph G′, we can apply the peeling decoder to recover
the erased bits.

In [20], this problem was fully analyzed for the case of
δ′ = 0, where all the check bits are received perfectly but δ
ratio of the message bits are erased independently from one
another. In other words, the final graph G′ has on average kδ
variable nodes to be decoded. Therefore, the analysis can be
simply applied to our case, by assuming that δ → 1, where all
the variable nodes are erased (they are all unknown and need
to by identified). Notice that from the assumption δ′ = 0, no
check bit is erased as is the case in our problem. In particular,
we use Proposition 2 in [20], which states the following.

Proposition 2 in [20]: Let G be a bipartite graph with edge
degrees specified by λ(x) and ρ(x) and with K message bits
chosen at random. Let δ be fixed so that

ρ(1− δλ(x)) > 1− x, for x ∈ (0, 1].

For any η > 0, there is some K0 such that for all K > K0, if
the message bits of C(G) are erased independently with prob-
ability δ, then with probability at least 1−K 2

3 exp(− 3
√
k/2)

the recovery algorithm terminates with at most ηK message
bits erased.

Replacing δ = 1 in the proposition above, we obtain the
following performance guarantee for the peeling decoder in
our algorithm.

Proposition 8. Let K = O(Nα) for some α ∈ (0, 1
3] and let

G be a bipartite graph from the ensemble G(K,B,C) induced
by hashing functions hi, i ∈ [C], with β = K

B , and with
edge degree polynomials λ(x) = xC−1 and ρ(x) = e−β(1−x).
Suppose that

ρ(1− λ(x)) > 1− x, for x ∈ (0, 1].

Given any ε ∈ (0, 1), there is a K0 such that for any K > K0

with probability at least 1 − K
2
3 exp(− 3

√
K/2) the peeling

decoder terminates with at most εK unrecovered nonzero
spectral components.

Proposition 8 does not guarantee the success of the peeling
decoder. It only implies that with a very high probability, it can
peel off any fraction η ∈ (0, 1) of nonzero components, but
not necessarily all of them. Using a combinatorial argument,
however, it is possible to prove that with very high probability
any graph in the ensemble G is an expander graph, specifically,
every small enough subset of left nodes has many check
neighbors. This implies that if the peeling decoder can decode
a specific ratio of variable nodes, it can proceed to decode all

v

c

v′

c′

Fig. 4. Tree-like neighborhood of an edge e = (v, c). Dashed lines show
the edges that have been removed before iteration t. The edge e is peeled
off at iteration t because all the variable nodes v′ connected to c are already
decoded, thus c is a singleton check.

of them. A slight modification of Lemma 1 in [20] gives the
following result proved in Appendix D.

Proposition 9. Let K = O(Nα) for some α ∈ (0, 1
3] and let

G be a graph from the ensemble G(K,B,C) with C ≥ 3.
There is some η > 0 such that with probability at least
1 − O(1

N3α(C/2−1)), the recovery process restricted to the
subgraph induced by any η-fraction of the left nodes terminates
successfully.

Proof of Part 3 of Theorem 1 for α ∈ (0, 1
3]: In the very

sparse regime α ∈ (0, 1
3], we construct C = b 1

αc ≥ 3 hashes
each containing 2nα output bins. Combining Proposition 8
and Proposition 9, we obtain that the success probability of
the peeling decoder is lower bounded by 1 − O(1

N3α(C/2−1))
as mentioned in Remark 1.

2) Analysis Based on Belief Propagation over Sparse
Graphs: In this section, we give another method of analysis
and provide further intuition about the performance of the
peeling decoder and why it works very well in the very
sparse regime. This method is based on the analysis of belief-
propagation (BP) decoder over sparse locally tree-like graphs.
The analysis is very similar to the analysis of the peeling
decoder for recovering nonzero frequency components in [15].
We first need some terminology from graph theory. A walk of
size ` in graph G starting from a node v ∈ [K] is a set of `
edges e1, e2, . . . , e`, where v is one of the vertices of the edge
e1 and where consecutive edges are different, ei 6= ei+1, but
incident with each other. A directed neighborhood of an edge
e = (v, c) of depth ` is the induced subgraph in G consisting
of all edges and associated check and variable nodes in all
walks of size ` + 1 starting from v with the first edge being
e1 = (v, c). A node e is said to have a tree-like neighborhood
of depth ` if the directed neighborhood of e of depth ` is a
tree.

Let e = (v, c) be an edge in a graph from ensemble
G(K,B,C) and consider a directed neighborhood of this edge
of depth `. At the first stage, it is easy to see that this edge is
peeled off from the graph assuming that all the edges (c, v′)
connected to the check node c are peeled off, because in that
case check c will be a singleton enabling us to decode the
variable v. This is shown in Fig. 4.

11

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

pj

pj+1

β = 1

β = 2

β = 3

1

Fig. 5. Density Evolution equation for C = 3 and different values of β = K
B

.

One can proceed in this way in the directed neighborhood
to find the condition under which the variable v′ connected to
c can be peeled off, and so on. Assuming that the directed
neighborhood is a tree, all the messages that are passed
from the leaves up to the head edge e are independent from
one another. Let p` be the probability that edge e is peeled
off depending on the information received from the directed
neighborhood of depth ` assuming a tree up to depth `. A
simple analysis similar to [15], gives the following recursion

pj+1 = λ(1− ρ(1− pj)), j ∈ [`], (11)

where λ and ρ are the edge degree polynomials of the
ensemble G. This iteration shows the progress of the peeling
decoder in recovering unknown variable nodes. In [15], it is
proved that for any specific edge e, asymptotically with a
very high probability, the directed neighborhood of e up to
any fixed depth ` is a tree. Specifically, if we start from a
left regular graph G from G(K,B,C) with KC edges, after
` steps of decoding, the average number of unpeeled edges is
concentrated around KCp`. Moreover, a martingale argument
is applied in [15] to show that not only the average of unpeeled
edges is approximately KCp`, but also with a very high
probability the number of those edges is well concentrated
around KCp`.

Eq. (11) is generally known as the density evolution equa-
tion. Starting from p0 = 1, this equation fully predicts the
behavior of the peeling decoding over the ensemble G. Fig. 5
shows a typical behavior of this iterative equation for different
values of the parameter β = K

B .
For very small values of β, this equation has only a fixed

point 0, which implies that for large dimension N , the peeling
decoder can recover a fraction of variables very close to 1.
However, for large values of β, i.e., β & 2.44 for C = 3, this
equation has a fixed point greater than 0. The largest fixed
point is the place where the peeling decoder stops and cannot
proceed to decode the remaining variables. It is easy to see
that the only fixed point is 0 provided that for any p ∈ (0, 1],
p > λ(1−ρ(1−p)). As λ : [0, 1]→ [0, 1], λ(x) = xC−1 is an
increasing function of x, by change of variable x = λ−1(p),

we obtain that x > 1− ρ(1− λ(x)) or equivalently

ρ(1− λ(x)) > 1− x, for x ∈ (0, 1].

This is exactly the same result that we obtained by applying
Wormald’s method, as in [20]. In particular, this analysis
clarifies the role of x in Wormald’s method.

Similar to Wormald’s method, this analysis only guarantees
that for any ε ∈ (0, 1), asymptotically as N tends to infinity,
1−ε ratio of the variable nodes can be recovered. An expander
argument is again necessary to guarantee the full recovery of
all the remaining variables.

VII. PERFORMANCE ANALYSIS OF THE LESS SPARSE
REGIME

For the less sparse regime (α ∈ (1
3 , 1]), similar to the

very sparse case, we will first construct suitable hash func-
tions, which guarantee a low computational complexity of
order O(K log2(K) log2(NK)) for the recovery of nonzero
spectral values. Assuming a uniformly random support model
in the spectral domain, similar to the very sparse case, we
can represent the hashes by a regular bipartite graph. Over
this graph, the peeling algorithm proceeds to find singleton
checks and peel the associated variables from the graph until
no singleton remains. The recovery is successful if all the
variables are peeled off, thus all the remaining checks are
zerotons otherwise some of the nonzero spectral values are
not recovered and the perfect recovery fails.

As we explain in Section VII-B, the structure of the induced
bipartite graph in this regime is a bit different than the
very sparse one. The following steps are used to analyze the
performance of the peeling decoder:

1) Constructing suitable hash functions
2) Representing hashing of nonzero spectral values by an

equivalent bipartite graph
3) Analyzing the performance of the peeling decoder over

the resulting bipartite graph
For simplicity, we consider the case where α = 1− 1

C for some
integer C ≥ 3. We will explain how to deal with arbitrary
values of C and α, especially those in the range (1

3 ,
2
3), in

Section VII-D.

A. Hash Construction

Assume that α = 1 − 1
C for some integer C ≥ 3. Let x

be an N dimensional signal with N = 2n and let X denote
its WHT. For simplicity, we label the components of X by
a binary vector Xn−1

0 ∈ Fn2 . Let t = n
C and let us divide

the set of n binary indices Xn−1
0 into C non-intersecting

subsets r0, r1, . . . , rC−1, where ri = X
(i+1)t−1
i t . It is clear

that there is a one-to-one relation between each binary vector
Xn−1

0 ∈ Fn2 and its representation (r0, r1, . . . , rC−1). We
construct C different hash function hi, i ∈ [C] by selecting
different subsets of (r0, r1, . . . , rC−1) of size C − 1 and
appending them together. For example

h1(Xn−1
0) = (r0, r1, . . . , rC−2) = X

(C−1)t−1
0 ,

and the hash output is obtained by appending C−1 first ri, i ∈
[C]. We can simply check that hi, i ∈ [C] are linear surjective

12

functions from Fn2 to Fb2, where b = (C−1)t. In particular, the
range of each hash consists of B = 2b different elements of
Fb2. Moreover, if we denote the null space of hi by N (hi), it is
easy to show that for any i, j ∈ [C], i 6= j, N (hi)∩N (hj) =
0 ∈ Fn2 .

Using the subsampling property of the WHT and similar
to the hash construction that we had in Section VI-A, it
is seen that subsampling the time-domain signal and taking
WHT of the subsampled signal is equivalent to hashing the
spectral components of the signal. In particular, all the spectral
components Xn−1

0 with the same hi(Xn−1
0) are mapped into

the same bin in hash i, thus different bins of the hash can be
labelled with B different elements of Fb2.

It is easy to see that, with this construction, the average
number of nonzero elements per bin in every hash is kept at
β = K

B = 1 and the complexity of computing all the hashes
along with their n − b shifts, which are necessary for col-
lision detection/support estimation, is CK log2(K) log2(NK).
The sample complexity can also be easily checked to be
CK log2(NK).

B. Bipartite Graph Representation

Similarly to the very sparse regime, we can assign a bipartite
graph with the K left nodes (variable nodes) corresponding
to nonzero spectral components and with CB right nodes
corresponding to different bins of all the hashes. In particular,
we consider C different set of check nodes S1, S2, . . . , SC
each containing B nodes labelled with the elements of Fb2,
and a specific nonzero spectral component labelled with Xn−1

0

is connected to nodes si ∈ Si if and only if the binary
label assigned to si is hi(Xn−1

0). In the very sparse regime,
we showed that if the support of the signal is generated
according to the RS2(K,N), where K random positions are
selected uniformly at random independently from one another
from [N], then the resulting graph is a random left regular
bipartite graph, where each variable nodes select completely
independently its C neighbors in S1, S2, . . . , SC . However, in
the less sparse regime, the selection of the neighbor checks in
different hashes is not completely random. To explain more,
suppose α = 2

3 , thus C = 3. Also assume that for a nonzero
spectral variable labelled with Xn−1

0 , ri denotes X(i+1)t−1
i t ,

where t = n
C . In this case, this variable is connected to

bins labelled with (r0, r1), (r1, r2) and (r0, r2) in 3 different
hashes. This has been depicted in Fig. 6.

If we assume that Xn−1
0 is selected uniformly at random

from Fn2 , then the bin numbers is each hash, i.e. (r0, r1) in
the first hash, are individually selected uniformly at random
among all possible bins. However, it is easily seen that the joint
selection of bins is not completely random among different
hashes. In other words, the associated bins in different hashes
are not independent from one another. However, assuming the
random support model, where K variable V K1 are selected
independently as the position of nonzero spectral variables,
the bin association for different variables Vi is still made
independently.

(r0, r1)

(r1, r2) (r0, r2)

(r0, r1, r2)

Fig. 6. Bipartite graph representation for the less sparse case α = 2
3

, C = 3

C. Performance Analysis of the Peeling Decoder

As the resulting bipartite graph is not a completely random
graph, it is not possible to directly apply Wormald’s method
as we did for the very sparse case as in [20]. However, an
analysis based on the DE for the BP algorithm can still be
applied. In other words, setting p0 = 1 and

pj+1 = λ(1− ρ(1− pj)), j ∈ [`],

as in (11) with λ and ρ being the edge degree polynomials of
the underlying bipartite graph, it is still possible to show that
after ` steps of decoding the average number of unpeeled edges
is approximately KCp`. A martingale argument similar to [15]
can be applied to show that the number of remaining edges
is also well concentrated around its average. Similar to the
very sparse case, this argument asymptotically guarantees the
recovery of any ratio of the variables between 0 and 1. Another
argument is necessary to show that if the peeling decoder
decodes a majority of the variables, it can proceed to decode
all of them with very high probability. To formulate this, we
use the concept of trapping sets for the peeling decoder.

Definition 2. Let α = 1 − 1
C for some integer C ≥ 3 and

let hi, i ∈ [C] be a set of hash functions as explained before.
A subset of variables T ⊂ Fn2 is called a trapping set for the
peeling decoder if for any v ∈ T and for any i ∈ [C], there
is another vi ∈ T , v 6= vi such that hi(v) = hi(vi), thus
colliding with v in the i-th hash.

Notice that a trapping set cannot be decoded because all
its neighbor check nodes are multitons. We first analyze the
structure of the trapping set and find the probability that a
specific set of variables build a trapping set. Let X be a
spectral variable in the trapping set with the corresponding
binary representation Xn−1

0 and assume that C = 3. We can
equivalently represent this variable with (r0, r1, r2), where
ri = X

(i+1)t−1
it with t = n

C . We can consider a three
dimensional lattice whose i-th axis is labelled by all possible
values of ri. In this space, there is a simple interpretation for
a set T to be a trapping set, namely, for any (r0, r1, r2) ∈ T
there are three other elements (r′0, r1, r2), (r0, r

′
1, r2) and

(r0, r1, r
′
2) in T that can be reached from (r0, r1, r2) by

moving along exactly one axis. Notice that in this case each
hash is equivalent to projecting (r0, r1, r2) onto two dimen-
sional planes spanned by different coordinates, for example,

13

h1(r0, r1, r2) = (r0, r1) is a projection on the plane spanned
by the first and second coordinate axes of the lattice. A similar
argument holds for other values of C > 3, thus larger values
of α.

For C ≥ 3, the set of all C-tuples (r0, r1, . . . , rC−1) is
a C-dimensional lattice. We denote this lattice by L. The
intersection of this lattice by the hyperplane Ri = ri is a
(C − 1) dimensional lattice defined by

L(Ri = ri) = {(r0, . . . , ri−1, ri+1, . . . , rC−1) :

(r0, r1, . . . , ri−1, ri, ri+1, . . . , rC−1) ∈ L}.

Similarly for S ⊂ L, we have the following definition

S(Ri = ri) = {(r0, . . . , ri−1, ri+1, . . . , rC−1) :

(r0, r1, . . . , ri−1, ri, ri+1, . . . , rC−1) ∈ S}.

Obviously, S(Ri = ri) ⊂ L(Ri = ri). We have the following
proposition whose proof simply follows from the definition of
the trapping set.

Proposition 10. Assume that T is a trapping set for the C
dimensional lattice representation L of the nonzero spectral-
domain variables as explained before. Then for any ri on the
i-th axis, T (Ri = ri) is either empty or a trapping set for the
(C − 1) dimensional lattice L(Ri = ri).

Proposition 11. The size of the trapping set for a C dimen-
sional lattice is at least 2C .

Proof: We use a simple proof by using the induction
on C. For C = 1, we have a one-dimensional lattice along
a line labelled with r0. In this case, there must be at least
two variables on the line to build a trapping set. Consider a
trapping set T of dimension C. There are at least two points
(r0, r1, . . . , rC−1) and (r′0, r1, . . . , rC−1) in T . By Proposition
10, T (R0 = r0) and T (R0 = r′0) are two (C−1) dimensional
trapping sets each consisting of at least 2C−1 elements by
induction hypothesis. Thus, T has at least 2C elements.

Remark 3. The bound |T | ≥ 2C on the size of the trapping
set is actually tight. For example, for i ∈ [C] consider ri, r′i
where ri 6= r′i and let

T = {(a0, a1, . . . , aC−1) : ai ∈ {ri, r′i}, i ∈ [C]}.

It is easy to see that T is a trapping set with 2C elements
corresponding to the vertices of a C dimensional cube.

We now prove the following proposition that implies that if
the peeling decoder can decode all the variable nodes except a
fixed number of them, with a high probability it can continue
to decode all of them.

Proposition 12. Let s be a fixed positive integer. Assume
that α = 1 − 1

C for some integer C ≥ 3 and consider a
hash structure with C different hashes. If the peeling decoder
decodes all except a set of variables of size s, it can decode
all the variables with very high probability.

Proof: The proof is very similar to [15]. Let T be a
trapping set of size s. By Proposition 11, we have s ≥ 2C .
Let pi be the number of distinct values taken by elements of

T along the Ri axis and let pmax = maxi∈[C] pi. Without
loss of generality, let us assume that the R0 axis is the one
having the maximum pi. Consider T (R0 = r0) for those
pmax values of r0 along the R0 axis. Proposition 10 implies
that each T (R0 = r0) is a trapping set that has at least
2C−1 elements according to Proposition 11. This implies that
s ≥ 2C−1pmax or pmax ≤ s

2C−1 . Moreover, T being the
trapping set implies that there are subsets Ti consisting of
elements from axes Ri and all the elements of T are restricted
to take their i-th coordinate values along Ri from the set
Ti. Considering the way that we generate the position of
nonzero variables Xn−1

0 with the equivalent representation
(r0, r1, . . . , rC−1), the coordinate of any variable is selected
uniformly and completely independently from one another and
from the coordinates of the other variables. This implies that

P {Fs} ≤ P {For any variables in T , ri ∈ Ti, i ∈ [C]}

≤
C−1∏
i=0

(
Pi
pi

)
(
pi
Pi

)s ≤
C−1∏
i=0

(
Pi

s/2C−1

)
(

s

2C−1Pi
)s,

where Fs is the event that the peeling decoder fails to decode
a specific subset of variables of size s and where Pi denotes
the number of all possible values for the i-th coordinate of a
variable. By our construction all Pi are equal to P = 2n/C =
2n(1−α) = N (1−α), thus we obtain that

P {Fs} ≤
(

P

s/2C−1

)C (s

2C−1P

)sC
≤
(

2C−1Pe

s

)sC/2C−1 (s

2C−1P

)sC
≤

(
se1/(2C−1−1)

2C−1P

)sC(1−1/2C−1)

.

Taking the union bound over all
(
K
s

)
possible ways of selection

of s variables out of K variables, we obtain that

P {F} ≤
(
K

s

)
P {Fs}

≤
(
ePC−1

s

)s(
se1/(2C−1−1)

2C−1P

)sC(1−1/2C−1)

= O(1/P
s(1− C

2C−1))

≤ O(1/P (2C−2C)) = O(1/N
2C

C −2).

For C ≥ 3, this gives an upper bound of O(N−
2
3).

D. Generalized Hash Construction

The hash construction for the less sparse regime that we
explained in Section VII-A only covers values of α = 1− 1

C
for C ≥ 3, which belongs to the region α ∈ [2

3 , 1). In this
section, we explain a hash construction that fills the gap for
α ∈ (1

3 ,
2
3), and extends to any value of α ∈ (0, 1) that is not

necessarily of the form 1
C (less sparse) or 1− 1

C (very sparse).
In the very sparse regime α = 1

3 , we have C = 3 different
hashes and for a nonzero spectral variable X with the binary
index Xn−1

0 = (r0, r1, r2), the i-th hash output is hi(Xn−1
0) =

14

0 1
3

2
3 1

3

12

9

6

0

0.2

0.4

0.6

0.8

1

α = 1− 1
Cα = 1

C

α

C

Psuccess

Fig. 7. Probability of success of the algorithm as a function of α and C
for deterministic hash construction. The dimension of the signal is N = 222.
The black line corresponds to α = 1

C
and α = 1 − 1

C
in the very sparse

and less sparse regimes respectively. We fix β = 1. The hashing matrices are
chosen deterministically as described in Section VII-D.

ri, i ∈ {0, 1, 2}, thus the output of different hashes depend on
non-overlapping parts of the binary index of X; whereas for
α = 2

3 the hash outputs are (r0, r1), (r1, r2) and (r0, r2),
which overlap on a portion of binary indices of length n

3 .
Intuitively, it is clear that in order to construct different hashes
for α ∈ (1

3 ,
2
3), we should start increasing the overlapping

size of different hashes from 0 for α = 1
3 to n

3 for α = 2
3 .

Generally, let C be the desired number of hashes. We give the
following construction for the hash functions

hi(X
n−1
0) = Xi t+b−1

i t , i ∈ [C],

where b = nα and t = n
C , and where the values of the indices

are computed modulo n, for example Xn = X0. Furthermore,
the required number of hashes is given by C = (1

α ∨
1

1−α).
It is clear that each hash is a surjective map from Fn2 into

Fb2. Moreover, for this choice of b (b = nα), the number of
output bins in each hash is B = 2nα = Nα = K, thus the
average number of nonzero variables per bin in every hash is
equal to β = K

B = 1. Also, for the intermediate values of
α ∈ (1

3 ,
2
3), we expect the performance of the peeling decoder

for this regime to be between the very sparse regime α = 1
3

and the less sparse one α = 2
3 .

VIII. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the performance of
the SparseFHT algorithm for a variety of design parameters.
The simulations are implemented in C programming language
and the success probability of the algorithm is estimated via
a sufficient number of trials. We also provide a comparison
of the run time of our algorithm and the standard Hadamard
transform. In all experiments, the input signal has support
uniformly drawn at random without replacement. The nonzero
components are drawn from a zero-mean normal distribu-
tion with variance σ2 = 100. In the spirit of reproducible
research, all the material (C and Matlab code) needed to
reproduce the results of this paper is available online at
http://lcav.github.io/SparseFHT/.
• Experiment 1: We fix the signal size to N = 222 and

run the algorithm 1000 times to estimate the success

0 1
3

2
3

0

0.2

0.4

0.6

0.8

112

9

6

3

C

α = 1
C

α = 1− 1
C

α

Psuccess

Fig. 8. Probability of success of the algorithm as a function of α and C
for random hash construction. The dimension of the signal is N = 222. The
black line corresponds to α = 1

C
and α = 1− 1

C
in the very sparse and less

sparse regimes respectively. We fix β = 1. The hashing matrices are picked
uniformly at random for every trial.

1 2 3 4
0

0.2

0.4

0.6

0.8

1

β

Probability of success in the less sparse regime

Fig. 9. Probability of success of the algorithm in the less sparse regime as
a function of β = K/B. We fix N = 222, B = 217, C = 4, and vary α in
the range 0.7 to 0.9.

probability for α ∈ (0, 1
3] and 1 ≤ C ≤ 12. The

hashing scheme used is as described in Section VII-D.
Fig. 7 shows the simulation result. Albeit the asymptotic
behavior of the error probability is only guaranteed for
C = (1

α ∨
1

1−α), we observe much better results in
practice. Indeed, C = 4 already gives a probability of
success very close to one over a large range of α, and
only up to C = 6 seems to be required for the largest
values of α.

• Experiment 2: We repeat here experiment 1, but instead of
deterministic hashing matrices, we now pick Σi, i ∈ [C],
uniformly at random from GL(n,F2). The result is shown
in Fig. 8. We observer that this scheme performs at least
as well as the deterministic one.

• Experiment 3: In this experiment, we investigate the
sensitivity of the algorithm to the value of the parameter
β = K/B; the average number of nonzero coefficients
per bin. In our design for hash function, we always use
β ≈ 1 throughout the paper. However, using larger values
of β is appealing from a computational complexity point
of view. For the simulation, we fix N = 222, B = 217,
C = 4, and vary α between 0.7 and 0.9, thus changing
K and as a result β. Fig. 9 show the simulation results.

15

1
3

2
3α

0

0.5

1

1.5
Runtime in [ms] for N = 215

WHT

SFHT

1

Fig. 10. Comparison of the median runtime in ms of the SFHT and
conventional WHT for N = 215 and for different values of α.

6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

α?

α? = maxα∈(0,1){α : TWHT(n) ≥ TSFHT(α, n)}

n

Fig. 11. In this figure, we change the value of n = log2N and plot α∗, the
largest value of α such that SFHT runs faster than the conventional WHT.
When WHT is always faster, we simply set α∗ = 0.

For β ≈ 0.324, the algorithm succeeds with probability
very close to one. Moreover, for values of β larger than
3, the success probability sharply goes to 0.

• Runtime measurement: We compare the runtime of the
SparseFHT algorithm with a straightforward implemen-
tation of the fast Hadamard transform. The result is shown
in Fig. 10 for N = 215. SparseFHT performs much faster
for 0 < α < 2/3.
It is also interesting to identify the range of α for which
SparseFHT has a lower runtime than the conventional
FHT. We define α∗, the largest value of α such that
SparseFHT is faster than FHT for any lower value of
α. That is

α∗ = sup
α∈(0,1)

{α : ∀α′ ≤ α, TFHT (n) > TSFHT (α′, n)},

where TFHT and TSFHT are the runtimes of the conven-
tional FHT and SparseFHT, respectively. We plot α∗ as
a function of n = log2N in Fig. 11.

IX. CONCLUSION

We presented a new algorithm for computing the Hadamard
transform of a signal of length N that is K-sparse in the
Hadamard domain with K = O(Nα) scaling sub-linearly with

N for some α ∈ (0, 1). Our algorithm computes the K-sparse
Hadamard transform of the signal with a computational com-
plexity O(K log2K log2

N
K), and only requires O(K log2

N
K)

time-domain samples of the signal. We have shown that the
algorithm correctly reconstructs the Hadamard transform of
the signal with a very high probability approaching 1 for a
sufficiently large dimension N .

We evaluated empirically the performance of our algorithm
through numerical simulations, and compare its speed with
that of the conventional fast Hadamard transform. We observe
that our algorithm is much faster, even for moderate signal
lengths (e.g. N = 210) and reasonable sparsity.

In our algorithm, we considered a noiseless case, where
there is no measurement noise in the time-domain samples.
This assumption was necessary in Proposition 2 in order to
make a collision detection/support estimation. Hence, a more
robust variant of Proposition 2 is necessary for the noisy case.
We were informed of a recent publication addressing this issue
during the review process [21].

REFERENCES

[1] W. Pratt, J. Kane, and H. C. Andrews, “Hadamard Transform Image
Coding,” in Proc. IEEE, 1969, pp. 58–68.

[2] 3GPP TS 25.213 V11.4.0 Release 11, “Spreading and modulation (fdd),”
2013.

[3] E. D. Fredman and M. L. Nelson, “Hadamard Spectroscopy,” J. Opt.
Soc. Am., vol. 60, no. 12, pp. 1664–1669, Dec. 1970.

[4] S. Haghighatshoar and E. Abbe, “Polarization of the Rényi information
dimension for single and multi terminal analog compression,” arXiv
preprint arXiv:1301.6388, 2013.

[5] A. Hedayat and W. Wallis, “Hadamard matrices and their applications,”
Ann. Stat., pp. 1184–1238, 1978.

[6] M. H. Lee and M. Kaveh, “Fast Hadamard Transform Based on a Simple
Matrix Factorization,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 34, no. 6, pp. 1666–1667, 1986.

[7] J. R. Johnson and M. Pueschel, “In Search of the Optimal Walsh-
Hadamard Transform,” in Proc. IEEE ICASSP, Istanbul, 2000, pp. 3347–
3350.

[8] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss,
“Near-Optimal Sparse Fourier Representations via Sampling,” in
STOC’02, 2002, pp. 152–161.

[9] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A Tutorial on Fast Fourier
Sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 57–66, 2008.

[10] D. Lawlor, Y. Wang, and A. Christlieb, “Adaptive Sub-Linear Fourier
Algorithms,” Adv. Adapt. Data Anal., vol. 05, no. 01, p. 1350003, 2013.

[11] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and Practical
Algorithm for Sparse Fourier Transform,” SODA’12, pp. 1183–1194,
2012.

[12] ——, “Nearly Optimal Sparse Fourier Transform,” STOC’12, pp. 563–
578, 2012.

[13] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi,
“Sample-Optimal Average-Case Sparse Fourier Transform in Two Di-
mensions,” in Allerton, Oct 2013, pp. 1258–1265.

[14] S. Pawar and K. Ramchandran, “A Hybrid DFT-LDPC Framework for
Fast, Efficient and Robust Compressive Sensing,” in Allerton, 2012, pp.
1943–1950.

[15] ——, “Computing a k-sparse n-length Discrete Fourier Transform using
at most 4k Samples and O(k log k) Complexity,” in Proc. ISIT, Istanbul,
2013, pp. 464–468.

[16] T. Richardson and R. L. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[17] O. Goldreich and L. A. Levin, “A Hard-Core Predicate for All One-Way
Functions,” in STOC’89, Feb. 1989.

[18] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness. Springer Science & Business Media, 1999.

[19] N. C. Wormald, “Differential Equations for Random Processes and
Random Graphs,” Ann. Prob., vol. 5, no. 4, pp. 1217–1235, Nov. 1995.

[20] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient Erasure Correcting Codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, 2001.

16

[21] X. Li, J. K. Bradley, S. Pawar, and K. Ramchandran, “The SPRIGHT
Algorithm for Robust Sparse Hadamard Transforms,” in Proc. ISIT,
Honolulu, 2014, pp. 1857–1861.

APPENDIX A
PROOF OF THE PROPERTIES OF THE WHT

A. Proof of Property 1

∑
m∈Fn2

(−1)〈k ,m〉xm+p =
∑
m∈Fn2

(−1)〈k ,m+p〉xm.

And the proof follows by taking (−1)〈k , p〉 out of the sum and
recognizing the Hadamard transform of xm. �

B. Proof of Property 2

As we explained, it is possible to assign an N ×N matrix
Π to the permutation π as follows

(Π)i,j =

{
1 if j = π(i)⇔ i = π−1(j)

0 otherwise.
.

Let π1 and π2 be the permutations associated with Π1 and Π2.
As (HN)i,j = (−1)〈i , j〉, the identity (2) implies that

(−1)〈π2(i) , j〉 = (−1)〈i , π
−1
1 (j)〉.

Therefore, for any i, j ∈ Fn2 , π1, π2 must satisfy 〈π2(i) , j〉 =〈
i , π−1

1 (j)
〉
. By linearity of the inner product, we obtain

〈π2(i+ k) , j〉 =
〈
i+ k , π−1

1 (j)
〉

=
〈
i , π−1

1 (j)
〉

+
〈
k , π−1

1 (j)
〉

= 〈π2(i) , j〉+ 〈π2(k) , j〉 .

As i, j ∈ Fn2 are arbitrary, this implies that π2, and by
symmetry π1, are both linear operators. Hence, all the permu-
tations satisfying (2) are in one-to-one correspondence with
the elements of GL(n,F2). �

C. Proof of Property 3

As Σ is non-singular, Σ−1 exists, and from the definition
of the WHT, it follows that∑

m∈Fn2

(−1)〈k ,m〉xΣm =
∑
m∈Fn2

(−1)〈k ,Σ
−1m〉xm

=
∑
m∈Fn2

(−1)〈Σ
−T k ,m〉xm.

This completes the proof. �

D. Proof of Property 4

Note that m ∈ Fb2, and xΨbm is a signal of dimension B =
2b. Let X̃k denote its WHT, where k ∈ Fb2. From the definition

of WHT, we have

X̃k =
1√
B

∑
m∈Fb2

(−1)〈k ,m〉xΨbm

(a)
=

1√
BN

∑
m∈Fb2

(−1)〈k ,m〉
∑
u∈Fn2

(−1)〈Ψbm,u〉Xu

(b)
=

1√
BN

∑
u∈Fn2

Xu

∑
m∈Fb2

(−1)〈m, k+ΨTb u〉

(c)
=

B√
BN

∑
u∈Fn2

Xu1{k+ΨTb u=0},

where in (a), we used the inverse of the WHT for the N
dimensional signal x (N = 2n) and its transform-domain
signal X , in (b), we used 〈Ψbm, u〉 =

〈
m, ΨT

b u
〉
, and in

(c), we used the following identity for s ∈ Fb2,∑
m∈Fb2

(−1)〈m, s〉 = B1{s=0}.

We can check that k + ΨT
b u = 0 holds if and only if u =

Ψbk+j with j ∈ N (ΨT
b). Hence, we obtain the desired result

X̃k =
√

B
N

∑
j∈N(ΨTb)XΨbk+j . �

APPENDIX B
PROOF OF PROPOSITION 2

We first show that if multiple coefficients fall in the same
bin, it is very unlikely that 1) is fulfilled. Let Ik = {j |Hj =
k} be the set of variable indices that are hashed to bin k.
This set is finite and its elements can be enumerated as Ik =
{j1, . . . , jN

B
}. In particular, Ik is an n− b dimensional affine

subspace of Fn2 . We show that a set {Xj}j∈Ik is very unlikely,
unless it contains only one nonzero element. Without loss of
generality, we consider

∑
j∈Ik Xj = 1. Such {Xj}j∈Ik is a

solution of

1 · · · 1

(−1)〈σ1 , j1〉 · · · (−1)

〈
σ1 , jN

B

〉
...

. . .
...

(−1)〈σn−b , j1〉 · · · (−1)

〈
σn−b , jN

B

〉

Xj1

...

XjN
B

 =

1

±1
...

±1

 ,

where σi, i ∈ {1, . . . , n} denotes the i-th column of the
matrix Σ. The left-hand side matrix in the expression above, is
(n− b+ 1)×2n−b. As σ1, . . . , σn−b are linearly independent,
all the columns are different and are (omitting the top row)
the exhaustive list of all 2n−b possible ±1 vectors. Thus the
right-hand side vector is always one of the columns of the
matrix and there is a unique solution with only one nonzero
component (1-sparse solution) to this system whose support
can be uniquely identified. Adding any vector from the null
space of the matrix to this solution yields another solution.
However, we show that this matrix is full rank (its null space
has dimension 2n−b − n+ b− 1), and assuming a continuous
distribution for the nonzero components Xj , the probability
that {Xj}j∈Ik falls in this null space is zero.

17

To prove that the matrix is indeed full rank, let us first
focus on the sub-matrix obtained by removing the first row.
Let us call this matrix A. Also, let M = −2I + 11T , where
I is the identity matrix of order n − b and 1 is the all-one
vector of dimension (n − b). We can simply check that all
the components of M are ±1. Hence, the columns of M
are contained among the columns of the submatrix A. It is
not difficult to check that M is a symmetric matrix, thus by
spectral decomposition, it has n− b orthogonal eigen-vectors
vi, i ∈ [n − b]. It is also easy to see that the normalized
all-one vector v0 = 1√

n−b of dimension n − b is an eigen-
vector of M with eigen-value λ0 = n − b − 2. Moreover, as
the eigen-vectors are orthogonal to each other, we obtain that
vTi Mvi = λi = −2, where we used vTi 1 = vTi v0 = 0 for
i 6= 0. Thus, for n − b 6= 2 all the eigen-vlaues are nonzero
and M is invertible, which implies that the sub-matrix A is
full rank. In the case where n− b = 2, one can notice that the
Hadamard matrix of size 2 will be contained as a submatrix,
and thus the matrix will be full rank.

Now it remains to prove that initial matrix is also full rank
with a rank of n−b+1. Assume that the columns of the matrix
are arranged in the lexicographical order such that neglecting
the first row, the first and the last column are all 1 and all −1.
If we consider any linear combination of the rows except the
first one, it is easy to see that the first and the last element in
the resulting row vector have identical magnitudes but opposite
signs. This implies that the all-one row cannot be written as a
linear combination of the other rows of the matrix. Therefore,
the rank of the matrix must be n− b+ 1.

To prove (9), let ΣL and ΣR be the matrices containing the
first n− b and the last b columns of Σ respectively, such that
Σ = [ΣL ΣR]. If there is only one coefficient in the bin, then
(7) implies that v̂ = [(jTΣL) 0]T . Using definitions (3) and
(6), we obtain that ΨbHj = [0 (jTΣR)]T . We observe that
they sum to ΣT j and the proof follows. �

APPENDIX C
PROOF OF PROPOSITION 3

For t ∈ [K], let Ht denote the size of the random set
obtained by picking t objects from [N] independently and
uniformly at random with replacement. Let at and vt denote
the average and the variance of Ht for t ∈ [K]. It is not
difficult to see that {Ht}t∈[K] is a Markov process. Moreover,

E [Ht+1 −Ht|Ht] = (1−Ht/N), (12)

because the size of the random set increases by one if an
only if we choose an element from [N] that has not been
selected until time t, and conditioned on Ht, this happens
with probability 1 − Ht

N . This implies that at+1 = 1 + γat,
where γ = 1 − 1

N . Solving this equation, with initialization
a0 = 1, we obtain that

at =

t∑
r=0

γr =
1− γt+1

1− γ
= N(1− γt+1). (13)

In particular, aK = N(1− (1− 1
N)K), which implies that

E
[
HK

K

]
=
N

K
(1− (1− 1

N
)K)

≥ N

K

(
1− (1− K

N
+
K(K − 1)

2N2
)
)

≥ 1−O(
K

N
).

We can see that for K = Nα, α ∈ (0, 1), as N tends to
infinity, E

[
HK
K

]
converges to 1. To find the variance of Ht,

we use the formula

Var(Ht+1) = E [Var(Ht+1|Ht)] + Var(E [Ht+1|Ht]). (14)

Using Eq. (12), we obtain that

Var(E [Ht+1|Ht]) = Var(1 + γHt) = γ2vt, (15)

where vt denotes the variance of Ht. Moreover, for the first
term in Eq. (14), we have

E [Var(Ht+1|Ht)] = EHt{Var(Ht+1|Ht = ht)}
= EHt{Var(Ht+1 −Ht|Ht = ht)}
(a)
= E

[
Ht

N

(
1− Ht

N

)]
=
at
N

+
a2
t + vt
N2

, (16)

where in (a), we used the fact that given Ht, Ht+1 − Ht is
a Bernoulli random variable that is zero with probability Ht

N ,
thus its variance in equal to Ht

N (1− Ht
N). Combining (15) and

(16), we obtain

vt+1 =

(
γ2 +

1

N2

)
vt +

at
N

(
1 +

at
N

)
. (17)

From (13), it is easy to see that at is an increasing function
of t. Moreover, from (17) it is seen that vt+1 is an increasing
function of at, thus if we consider the following recursion

wt+1 =

(
γ2 +

1

N2

)
wt +

aK
N

(
1 +

aK
N

)
,

then for any t ∈ [K], vt ≤ wt. We can also check that wt,
starting with the initialization w0 = 0, is also an increasing
sequence of t, thus we have

vK ≤ wK ≤ w∞ =
aK
N

(
1 +

aK
N

)
/

(
1− γ2 − 1

N2

)
=
aK
2

(
1 +

aK
N

)
/

(
1− 1

N

)
.

Using Chebyshev’s inequality, we obtain that for any ε > 0

P
{
HK

K
≥ (1 + ε)

}
≤ vK
K2(ε+ 1− aK

K)2
= O

(
1

ε2K

)
.

Obviously, HKK ≤ 1, thus HK
K converges to 1 in probability as

N , and as a result K, tends to infinity. �

18

APPENDIX D
PROOF OF PROPOSITION 9

Let S be any subset of unrecovered variable nodes of size
at most ηK, where we will choose η later. Let Ni(S), i ∈ [C],
be the check neighbors of S in hash i. If for at least one of
the hashes i ∈ [C], |Ni(S)| > |S|

2 , there must be at least
one check node of degree 1 (a singleton) among the check
neighbors Ni(S), thus the peeling decoder can still proceed
to decode further variable nodes.

Let E is denote the event that a specific subset A of size s
of variable nodes has at most s

2 check neighbors in hash i.
Also let Es = ∩Ci=1E is. By the construction of the ensemble
G, it is easy to see that P {Es} =

∏C
i=1 P

{
E is
}

. Let T be any
subset of check nodes in hash i of size s

2 . The probability
that all the neighbors of A in hash i belong to a specific set
T of size s

2 is equal to (s
2B)s, where B is the total number

of output hash bins. Taking the union bound over
(
B
s/2

)
of all

such sets, it is seen that P
{
E is
}
≤
(
B
s/2

)
(s

2B)s, which implies

that P {Es} ≤
((

B
s/2

)
(s

2B)s
)C

. Taking the union bound over
all possible subsets of size s of variables, we obtain that

P {Fs} ≤
(
K

s

)
P {Es} ≤

(
K

s

)((
B

s/2

)(s

2B

)s)C
≤
(
eK

s

)s(
2eB

s

)sC/2 (s

2B

)sC
≤ usss(C/2−1)

Ks(C/2−1)
,

where u = eC/2+1(β2)C/2 and where Fs denotes the event that
the peeling decoder fail to decode a set of variables of size
s. We also used the fact that for n ≥ m,

(
n
m

)
≤ (n em)m.

Moreover, P {F1} = P {F2} = 0 because the number of
hashes C is always more than or equal to three. Selecting
η = 1

2u2/(C−2) and applying the union bound, we obtain that

P {F} ≤
ηK∑
s=1

P {Fs} =

ηK∑
s=3

P {Fs} =

ηK∑
s=3

usss(C/2−1)

Ks(C/2−1)

= O

(
1

K3(C/2−1)

)
+

ηK∑
s=4

(
1

2

)s
= O

(
1

K3(C/2−1)

)
,

where F is the event that the peeling decoder fails to decode
all the variables. This completes the proof. �

Robin Scheibler (S’07) Robin Scheibler received the B.Sc. and M.Sc. in
Communications Systems from École Polytechnique Fédérale de Lausanne,
Switzerland in 2006 and 2009, respectively. From 2009 to 2010, he was with
IBM Research – Zürich. After this, he was with the NEC Media Information
Processing group in Kawasaki, Japan from 2011 to 2012. He then returned
to EPFL where he is working towards the Ph.D. degree at the Laboratory for
Audiovisual Communications. His research interests lie in algorithmic signal
processing, speech processing, and acoustic beamforming.

Saeid Haghighatshoar (S’12) Saeid Haghighatshoar received the B.Sc.
degree in electrical engineering in 2007 in Electronics and the M.Sc. degree
in electrical engineering in 2009 in Communication Systems both from
Sharif University of Technology, Tehran, Iran, and the Ph.D. degree in
Computer and Communication Sciences from École Polytechnique Fédérale
de Lausanne (EPFL), Switzerland. His research interests lie in Information
theory, Communication systems, Graphical models and Compressed sensing.

Martin Vetterli (S’86-M’86-SM’90-F’95) Martin Vetterli received the Dipl.
El.-Ing. degree from Eidgenössische Technische Hochschule (ETHZ) in 1981,
the Master of Science degree from Stanford University in 1982, and the
Doctorat ès Sciences degree from École Polytechnique Fédérale de Lausanne
(EPFL) in 1986.

After his dissertation, he was an Assistant and Associate Professor in
Electrical Engineering at Columbia University in New York, and in 1993,
he became an Associate and then Full Professor at the Department of
Electrical Engineering and Computer Sciences at the University of California
at Berkeley. In 1995, he joined the EPFL as a Full Professor. He held
several positions at EPFL, including Chair of Communication Systems and
founding director of the National Competence Center in Research on Mobile
Information and Communication systems (NCCR-MICS). From 2004 to 2011
he was Vice President of EPFL for international affairs, and from 2011 to
2012, he was the Dean of the School of Computer and Communications
Sciences. Since January 2013 he is President of the National Research Council
of the Swiss National Science Foundation.

He works in the areas of electrical engineering, computer sciences and
applied mathematics. His work covers wavelet theory and applications, image
and video compression, self-organized communications systems and sensor
networks, as well as fast algorithms, and has led to about 150 journals
papers, as well as about 30 patents that led to technology transfer to high-tech
companies and the creation of several start-ups.

He is the co-author of three textbooks, “Wavelets and Subband Coding”
(with J. Kovacevic, Prentice-Hall, 1995), “Signal Processing for Commu-
nications” (P. Prandoni, EPFL Press, 2008) and “Foundations of Signal
Processing” (with J. Kovacevic and V. Goyal, Cambridge University Press,
2014). These books are available in open access, and his research group
follows the reproducible research philosophy.

His work won him numerous prizes, like best paper awards from EURASIP
in 1984 and of the IEEE Signal Processing Society in 1991, 1996 and 2006,
the Swiss National Latsis Prize in 1996, the SPIE Presidential award in 1999,
the IEEE Signal Processing Technical Achievement Award in 2001 and the
IEEE Signal Processing Society Award in 2010. He is a Fellow of IEEE, of
ACM and EURASIP, was a member of the Swiss Council on Science and
Technology (2000-2004), and is a ISI highly cited researcher in engineering.

