
Tractability of Interpretability via Selection of
Group-Sparse Models

Nirav Bhan
LIONS, EPFL, Switzerland

Luca Baldassarre
LIONS, EPFL, Switzerland

Volkan Cevher
LIONS, EPFL, Switzerland

Abstract—Group-based sparsity models are proven instru-
mental in linear regression problems for recovering signals from
much fewer measurements than standard compressive sensing. A
promise of these models is to lead to “interpretable” signals for
which we identify its constituent groups, however we show that,
in general, claims of correctly identifying the groups with convex
relaxations would lead to polynomial time solution algorithms
for an NP-hard problem. Instead, leveraging a graph-based
understanding of group models, we describe group structures
which enable correct model identification in polynomial time via
dynamic programming. We also show that group structures that
lead to totally unimodular constraints have tractable relaxations.
Finally, we highlight the non-convexity of the Pareto frontier of
group-sparse approximations and what it means for tractability.

Index Terms—Signal Approximation, Structured Sparsity,
Interpretability, Tractability, Dynamic Programming.

I. INTRODUCTION

Recent extensions of compressive sensing move beyond

the simple sparsity model to consider more sophisticated

structured sparsity models, that allow to reduce the number

of required measurements for perfect recovery in the noiseless

case from O(K logN/K) down to O(K) [1]–[4], where N is

the ambient dimension and K is the sparsity level. The core

intuition behind these achievements is that of customizing the

geometry of the ensuing optimization problem to that of the

class of signals we are interested in recovering.

Most of the structured sparsity models are based on groups

of variables that should either be selected or discarded together

[4]–[7]. These structures naturally arise in applications such as

neuroimaging [8], [9], gene expression data [6], bioinformatics

[10] and computer vision [3], [11]. While in signal processing

we are mostly concerned with recovering a signal leveraging

prior information, often in machine learning applications it is

more important to discover the set of groups that constitute

the signal support, in order to make inferences about possible

underlying processes and causes. In fact, in many applica-

tions the groups have specific meanings and it is relevant to

understand which groups are active and which are inactive.

For example, in cancer research, the groups might represent

genetic pathways that describe cellular processes. Identifying

which processes lead to the development of a tumor can allow

biologists to directly target certain groups of genes instead

of others. Incorrect identification of the active/inactive groups

This work was supported in part by the European Commission under Grant
MIRG-268398, ERC Future Proof, and SNF 200021-132548.

can thus seriously affect the speed at which therapies are

developed.

In this paper, we show that finding a group-sparse approx-

imation of a signal, when the groups can overlap arbitrarily,

is in general an intractable problem. Our results stem from

the reformulation of the signal approximation problem as the

Weighted Maximum Coverage (WMC) integer optimization

problem, which is a well-known combinatorial problem that

is NP-hard. By leveraging a graph-based representation of

the groups, we present characterizations of group structures

that lead to tractable cases. For loopless pairwise overlapping

groups, we develop a dynamical programming algorithm that

solves the integer problem in polynomial time. We also show

that, if the group structure satisfies a totally unimodular

constraint, we can relax the integer problem into a binary linear

program that can be solved in polynomial time.

We then extend our model to incorporate sparsity con-

straints, leading to a generalization of the WMC problem. We

show that the generalized model can be solved in polynomial

time by a dynamic program for loopless pairwise overlapping

groups and hierarchical group structures. Furthermore, by

relaxing the constraints on the number of groups and on the

sparsity, we obtain a binary linear program that can be solved

in polynomial time if the constraints imposed by the group

structure are totally unimodular.

Finally, we illustrate the non-convexity of the Pareto

frontier of group-sparse approximations in a simple signal

approximation problem using hierarchical constraints. Totally

unimodular discrete relaxations and convex relaxations can

only obtain solutions on the convex hull of the Pareto frontier,

potentially leading to erroneous interpretations of the signal.

Indeed, if the relaxations were able to yield all possible

solutions, they would provide polynomial-time algorithms for

solving an NP-hard problem. Given space limitations, proofs

of our results can be found in [14].

II. BASIC DEFINITIONS

Let x ∈ R
N be a vector and N = {1, . . . , N} be the

ground set of its indices. We use |S| to denote the cardinality

of an index set S . We use B
N to represent the space of N -

dimensional binary vectors and define ι : RN → B
N to be

the indicator function of the nonzero components of a vector

in R
N , i.e. ι(x)i = 1 if xi �= 0 and ι(x)i = 0 otherwise. We

let 1N to be the N -dimensional vector of all ones and IN the

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

1037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148010029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1
variables

2 3 4 5 6 7 8

G1
groups

G2 G3 G4 G5 G6
Fig. 1. Example of bipartite graph between variables and groups induced by
the group structure G1, see text for details.

G1

G2
G3

G4

G5
G6

{2} {3, 5} {7}

{1} {4} {6}

Fig. 2. Bipartite group graph with loops induced by the group structure G1,
where on each edge we report the elements of the intersection.

N × N identity matrix. The support of x is defined by the

set-valued function supp(x) = {i ∈ N : xi �= 0}.
Definition II.1. A group structure G = {G1, . . . ,GM} is
a collection of index sets, named groups, with Gj ⊆ N and
|Gj | = gj for 1 ≤ j ≤M and

⋃
G∈G G = N .

We can represent a group structure G as a bipartite graph,

where on one side we have the N variables nodes and on

the other the M group nodes. An edge connects a variable

node i to a group node j if i ∈ Gj . The incidence matrix

AG ∈ B
N×M of the bipartite graph encodes the group

structure: AG
ij = 1 if i ∈ Gj and AG

ij = 0 otherwise.

Another useful representation of a group structure is via a

group graph (V,E) where the nodes V are the groups G ∈ G
and the edge set E contains eij if Gi∩Gj �= ∅, that is an edge

connects two groups that overlap. A sequence of connected

nodes v1, v2, . . . , vn, is a loop if v1 = vn.

In order to illustrate these concepts, consider the group

structure G1 defined by the following groups, G1 = {1}, G2 =
{2}, G3 = {1, 2, 3, 4, 5}, G4 = {4, 6}, G5 = {3, 5, 7} and

G6 = {6, 7, 8}. G1 can be represented by the variables-groups

bipartite graph of Fig. 1 or by the group graph of Fig. 2, which

is bipartite and contains loops.

An important group structure is given by loopless pairwise
overlapping groups. This group structure consists of groups

such that each element of the ground set occurs in at most

two groups and the induced graph does not contain loops.

We anchor our analysis on covering arguments.

Definition II.2. A group cover S(x) for a signal x ∈ R
N is

a collection of groups such that supp(x) ⊆ ⋃G∈S(x) G:

S(x) = {Gj ∈ G : ω ∈ B
M , ωj = 1, AGω ≥ ι(x)} .

The binary vector ω indicates which groups are active and

the constraint AGω ≥ ι(x) makes sure that for every non-zero

component of x at least a group that covers it is active. We

also say that S(x) covers x since supp(x) ⊆ ⋃G∈S(x) G. Note

that the group cover is often not unique and S(x) = G is a

group cover for any signal x. This observation leads us to

consider more restrictive definitions of group cover.

Definition II.3. A G-group cover SG(x) ⊆ G is a group
cover for x with at most G elements.

It is not guaranteed that a G-group cover always exists

for any value of G. Finding the smallest G-group cover lead

to the following definitions.

Definition II.4. The group �0-“norm” is defined as

‖x‖G,0 := min
ω∈BM

⎧
⎨
⎩

M∑
j=1

ωj : A
Gω ≥ ι(x)

⎫
⎬
⎭ . (1)

Definition II.5. A minimal group cover for a signal x ∈ R
N

is defined as M(x) = {Gj ∈ G | ω̂(x)j = 1}, where ω̂ is a
minimizer for (1).

A minimal group cover M(x) is a group cover for x
with minimal cardinality. Note that there exist pathological

cases where for the same group �0-“norm”, we have different

minimal group cover models.

Definition II.6. A signal x is G-group sparse with respect to
a group structure G if ‖x‖G,0 ≤ G.

III. TRACTABILITY OF INTERPRETATIONS

In this paper, we address the problem of finding group-

based interpretations of a signal x. We first define the G-group

sparse approximation x̂ and then show that it it can be easily

obtained from its G-group cover SG(x̂). In many applications,

the group cover SG of an approximation is more important

than the actual coefficients, because it allows to “interpret”

the solution: by indicating the active groups of variables, we

can take actions, such as targeting specific pathways for cancer

diagnosis or treatment.

Problem 1 (Signal approximation). Given a signal x ∈ R
N ,

a best G-group sparse approximation x̂ is

x̂ ∈ argmin
z∈RN

{‖x− z‖22 : ‖z‖G,0 ≤ G
}

(2)

Problem 2 (Model selection). Given a signal x ∈ R
N , a G-

group cover model for its G-group sparse approximation is

SG(x̂) ∈ argmax
S ⊆ G
|S| ≤ G

{∑
i∈I

x2
i : I =

⋃
G∈S

G
}

(3)

Given SG(x̂), we can obtain x̂ as x̂I = xI and x̂Ic = 0,

where I =
⋃

G∈SG(x̂) G and Ic = N \ I .

The following reformulation of Problem 2 as a binary

problem allows us to characterize its tractability.

Lemma 1. Given x ∈ R
N and a group structure G, we have

2013 IEEE International Symposium on Information Theory

1038

that SG(x̂) = {Gj ∈ G | ωG
j = 1}, where (ωG, yG) solves

max
ω∈BM , y∈BN

⎧
⎨
⎩

N∑
i=1

yix
2
i : AGω ≥ y,

M∑
j=1

ωj ≤ G

⎫
⎬
⎭ (4)

Problem (4) can produce all instanced of the Weighted

Maximum Coverage problem (WMC), which is known to

be NP-hard. Given Lemma 1, the tractability of (3) is a

consequence of the hardness of (4).

Proposition III.1. The model selection problem (3) is in
general NP-hard.

It is possible to approximate the solution of (4) using the

greedy WMC algorithm [12]. At each iteration, the algorithm

selects the group that covers new variables with maximum

combined weight until G groups have been selected.

Our main result (see Appendix) is an algorithm for solving

(4) exactly for loopless pairwise overlapping groups structures.

Proposition III.2. Given a loopless pairwise overlapping
group structure G, there exists a polynomial time dynamic
programming algorithm that solves (4).

IV. DISCRETE RELAXATIONS

If we relax the constraint on the number of groups in (4)

into a regularization term with parameter λ > 0, we obtain

the following binary linear program

(ωλ, yλ) ∈ argmax
ω∈BM ,y∈BN

{
w�u : u� = [y� ω�], Cu ≤ 0

}

(5)

where w� = [x2
1, . . . , x

2
N ,−λ1�

M] and C = [IN , −AG].

In general, (5) is NP-hard to solve exactly, however, it

is well known [13] that if the constraint matrix C is Totally

Unimodular (TU) then there exist polynomial-time algorithms

for solving it. Due to its structure, C is TU if AG is TU [13].

Group structures that can be represented by a bipartite

graph and admit only pairwise overlaps, such as the one in

Fig.2 lead to constraint matrices A that are TU [13].

Lemma 2. Loopless pairwise overlapping groups lead to
totally unimodular constraints.

Even though for this group structure we can use the DP

algorithm of Prop.III.2, for very large problems it may be

computationally faster to solve the binary linear program.

The next proposition establishes when the regularized solution

coincides with the solution of (4).

Proposition IV.1. If the value of the regularization parameter
λ is such that the solution (ωλ, yλ) of (5) satisfies

∑
j ω

λ
j =

G, then (ωλ, yλ) is also a solution for (4).

However, as we show in Sect.VIII, given a value of G it is

not always possible to find a value of λ such that the solution

of (5) is also a solution for (4). More specifically, we can only

obtain the solutions that lie on the convex hull of the Pareto

frontier of (4), which is the set of points {G, (f(G))}MG=1,

where f(G) =
∑N

i=1 y
G
i x

2
i [14].

V. CONVEX RELAXATIONS

For tractability and analysis, a convex proxies of the group

�0-norm have been introduced [15] for finding a group-sparse

approximation of a signal. Given a group structure G, an

example generalization is defined as

‖x‖G,{1,p} := inf
v1, . . . ,vM ∈ R

N

∀j, supp(vj) = Gj

⎧
⎨
⎩

M∑
j=1

dj‖vj‖p :

M∑
j=1

vj = x

⎫
⎬
⎭

(6)

where ‖x‖p =
(∑N

i=1 x
p
i

)1/p
and dj are positive weights that

can be designed to favor certain groups over others [6]. This

norm can be seen a weighted generalization of the atomic

norm described in [4], where they characterize its properties

for signal recovery, but not for model selection. We can use

(6) to find a group-sparse approximation

x̂ = argmin
z∈RN

{‖x− z‖22 : ‖z‖G,{1,p} ≤ λ
}

(7)

where λ > 0 controls the trade-off between approximation

accuracy and group-sparsity. However, solving (7) does not

yield a group-support for x̂: even though we can recover one

through the decomposition {vj} used to compute ‖x̂‖G,{1,p},

it may not be unique as observed in [6] for p = 2. In order

to characterize the group-support for x induced by (6), [6]

define two group-supports for p = 2. The strong group-
support S̆(x) contains the groups that constitute the supports

of each decomposition used for computing (6). The weak
group-support S(x) is defined using a dual-characterization

of the group norm (6). If S̆(x) = S(x), the group-support is

uniquely defined. However, [6] observed that for some group

structures and signals x, even when S̆(x) = S(x), the group-

support does not capture the minimal group-cover of x.

VI. DISCRETE VS. CONVEX INTERPRETABILITY

The following stylized example illustrates situations that

can potentially be encountered in practice. In these cases,

the group-support obtained by the convex relaxation will not

coincide with the discrete definition of group-cover, while the

dynamical programming algorithm of Prop. III.2 is able to

recover the correct group-cover.

Let N = {1, . . . , 11} and let G = {G1 =
{1, . . . , 5}, G2 = {4, . . . , 8}, G3 = {7, . . . , 11}} be a loopless

pairwise overlapping groups structure with 3 groups. Consider

the 2-group sparse signal x = [0 0 1 1 1 0 1 1 1 0 0]�, with

minimal group-cover M(x) = {G1,G3}.
The dynamic program of Prop.III.2, with group budget

G = 2, correctly identifies the groups G1 and G3. The TU

linear program (5), with 0 < λ ≤ 2, also yields the correct

group-cover. Conversely, the decomposition obtained via (6)

with unitary weights is unique, but is not group sparse. In fact,

we have S(x) = S̆(x) = G. We can only obtain the correct

2013 IEEE International Symposium on Information Theory

1039

group-cover if we use the weights [1 d 1] with d > 2√
3

, that

is knowing beforehand that G2 might be irrelevant.

Remark 1. Indeed, if the convex relaxation always recovered
the correct minimal group-cover, it would be possible to solve
the discrete NP-hard problem in polynomial time.

VII. GENERALIZATIONS

We can generalize (4) by introducing a sparsity constraint

K and allowing to individually select variables within a group.

The generalized integer problem then becomes

max
ω∈BM , y∈BN

⎧
⎨
⎩

N∑
i=1

yix
2
i : AGω ≥ y,

N∑
i=1

yi ≤ K,

M∑
j=1

ωj ≤ G

⎫
⎬
⎭ .

(8)

We can modify the dynamic programming algorithm of

Prop.III.2, in order to solve (8) (see proof in the Appendix).

Proposition VII.1. Given a loopless pairwise overlapping
groups structure G, there exists a polynomial time dynamic
programming algorithm that solves (8).

The generalized model allows to deal with hierarchical

structures, such as regular trees, frequently encountered in

image processing (e.g. denoising using wavelet trees). In such

cases, we often require to find K-sparse approximations such

that the selected variables form a rooted connected sub-tree of

the original tree. This type of constraint can be represented by

a group structure, where for each node in the tree we define

a group consisting of that node and all its ancestors. When

a group is selected, we also require that all its elements are

selected as well and impose a sparsity constraint K, but not

a group constraint G. For this particular problem, for which

convex approximations have been proposed [16], we present

an exact dynamic program that runs in polynomial time.

Proposition VII.2. Given a hierarchical group structure G,
there exists a polynomial time dynamic programming algo-
rithm that solves (8).

By relaxing both the group budget and the sparsity budget

in (8) into regularization terms, we obtain a binary linear pro-

gram, which can be solved in polynomial time if the constraint

matrix is TU. We already established TU for loopless pairwise

overlapping groups. TU also holds for hierarchical groups.

Proposition VII.3. Hierarchical group structures lead to to
totally unimodular constraints.

VIII. PARETO FRONTIER EXAMPLE

The purpose of this numerical simulation is to illustrate the

limitations of relaxations for correctly estimating the G-group

cover of an approximation. We consider the problem of finding

a K-sparse approximation of a signal imposing hierarchical

constraints. We generate a piecewise constant signal of length

N = 64, to which we apply the Haar wavelet transformation,

1 3 5 7 9 11 13 15 17 19 21 23 25
0

1

2

3

4

5

6

7

8

9

Sparsity K

A
pp

ro
xi

m
at

io
n

E
rr

or

Signal Approximation on Wavelet Tree

0

1

2

3

3 3

4

4
5

5
6 5 3 2 2 0

DP
TU Relax
Latent GL [4]
Hier GL [16]

Fig. 3. Signal approximation on a binary tree. The original signal is 25-sparse
and satisfies hierarchical constraints. The numbers next to the Latent Group
Lasso solutions indicate the number of constraint violations.

yielding a 25-sparse vector of coefficients x that satisfies

hierarchical constraints on a binary tree of depth 5.

We compare the DP to the regularized TU approach and

two convex relaxations that use group-based norms. The first

[4] uses the latent group lasso penalty (7) with groups defined

as all father-child relations in the tree. This formulation will

not enforce all hierarchical constraints to be satisfied, but will

only ‘favor’ them. Therefore, we also report the number of

hierarchical constraint violations. The second [16] considers

a hierarchy of groups where Gj contains node j and all

its descendants. Hierarchical constraints are enforced by the

group lasso penalty ΩGL(x) =
∑

G∈G ‖xG‖2, where xG is

the restriction of x to G. Once we determine the support of

the solution, we assign to the components in the support the

values of the corresponding components of the original signal.

In Fig.3, we show the approximation error ‖x − x̂‖22
as a function of the solution sparsity K for the methods.

The values of the DP solutions form a discrete and non-

convex Pareto frontier of the optimization problem controlled

by the parameter K. With the TU relaxation we are only

able to observe the solutions that lie in the boundary of

the convex hull of the Pareto frontier, while the Hierarchical

Group Lasso also misses K = 21 and K = 23. The Latent

Group Lasso approach achieves more levels of sparsity (but

still missing the solutions for K = 2, 13 and 15), although

at the price of violating some of the hierarchical constraints.

These observations lead us to conclude that, in some cases,

relaxations of the original discrete problem might lead to

erroneous identification of the underlying sparsity model.

IX. CONCLUSIONS

We show that finding a group-based interpretation of a sig-

nal is an integer optimization problem, which is in general NP-

hard. Leveraging a graph representation, we characterize group

structures for which a dynamical programming algorithm

yields a solution in polynomial time. We also present discrete

relaxations that lead to binary linear programs with totally

2013 IEEE International Symposium on Information Theory

1040

unimodular constraints, that can be solved in polynomial time.

Our examples and numerical simulations show the defi-

ciencies of relaxations and especially of convex methods that

rely on atomic norm minimization. In fact, these methods can

only recover group-covers that lie in the convex hull of the

Pareto frontier determined by the solutions of the original

integer problem for different values of the group budget G
(and sparsity budget K for the general case). This, in turn,

implies that convex and non-convex relaxations might lead to

erroneous group-based interpretations of signals.

APPENDIX

DYNAMICAL PROGRAMMING FOR SOLVING (8)

Here, we give a sketch of the proof of Prop.VII.2. Full

details can be found in [14].

Proof: The proof consists in describing the algorithm

and showing it is polynomial time. The algorithm gradually

explores every node in the group-graph, storing the optimal

solution among the visited nodes and it is defined by two

rules: the Node Picking Rule controls how the graph must

be explored in order to minimize the number of values to

store; the Value Update Rule describes how the stored values

are updated when a new node is considered. Due to the

looplessness constraint, the graph can be represented as a tree.

Choose an arbitrary node and call it the root node.

Suppose we have explored m out of the total M nodes. We

store the best possible value that can be obtained by choosing

at most g nodes and at most k elements from the currently

explored set of nodes, for 1 ≤ g ≤ G and 1 ≤ k ≤ K.

We expand the set of explored nodes one new node at a time

and recompute the set of stored values. Define a boundary
node as an explored node adjacent to an unexplored node. We

must store all values separately for each possible selection of

boundary nodes. The value update rule is divided into 3 cases.

1) New node is rejected. All optimal values for k and g
remain the same. The added node is treated as a new

boundary node and the values correspond to rejecting it.

2) New node is accepted, no overlap with any explored node.

Since the new node is selected, we can choose at most

g − 1 explored nodes. The new optimal value for each g
and k is given by taking the maximum over 1 ≤ � ≤ k of

the sum of the optimal value for choosing best � elements

from the new node and the optimal value for choosing

k − � elements from g − 1 explored nodes.

3) New node is accepted, overlaps with some explored
nodes. The update rule is the same as for case 2, but the

elements in the region of overlap between the new node

and the selected explored nodes must not be considered

as being part of the new node.

After these steps, the number of stored values will be (at

most) doubled. We can reduce them: for each boundary node

which has fallen into the interior of the explored nodes, we

combine the optimal values for it being picked or unpicked,

into a single value by taking the larger of the 2 values.

Let B be the maximum number of boundary nodes

encountered by the algorithm, then the number of steps is

bounded by O(2BK2GM). We now give an algorithm to

explore the graph so that B is logarithmic in M , establishing

polynomial complexity.

We first order all rooted subtrees with an index called the

D-value, so that D1 ≥ · · · ≥ DR for subtrees T1, T2, . . . , TR.

We then pick the subtrees in the order {T1, root, T2, . . . , TR}
and recurse until the explored subtree has only one node.

The procedure for computing D-values is also recursive.

Let the subtrees at a node Q have values D1 ≥ . . . ≥ DR.

Then, D(Q) = max(D1, D2 + 1). In case there is no 2nd

subtree, D2 = 0. If the graph has only one node, D = 1.

The following theorem establishes polynomial complexity

of the algorithm (see [14] for the proof).

Theorem 1. The maximum number of boundary nodes at any
step of the algorithm is logarithmic in the number of nodes,
i.e. B = O(logM).

REFERENCES

[1] Y. Eldar and M. Mishali, “Robust recovery of signals from a structured
union of subspaces,” Information Theory, IEEE Transactions on, vol. 55,
no. 11, pp. 5302–5316, 2009.

[2] T. Blumensath and M. Davies, “Sampling theorems for signals from the
union of finite-dimensional linear subspaces,” Information Theory, IEEE
Transactions on, vol. 55, no. 4, pp. 1872–1882, 2009.

[3] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based com-
pressive sensing,” Information Theory, IEEE Transactions on, vol. 56,
no. 4, pp. 1982–2001, 2010.

[4] N. Rao, B. Recht, and R. Nowak, “Signal recovery in unions of
subspaces with applications to compressive imaging,” arXiv preprint
arXiv:1209.3079, 2012.

[5] R. Jenatton, J.-Y. Audibert, and F. Bach, “Structured variable selection
with sparsity-inducing norms,” Journal of Machine Learning Research,
vol. 12, pp. 2777–2824, 2011.

[6] G. Obozinski, L. Jacob, and J. Vert, “Group lasso with overlaps: The
latent group lasso approach,” arXiv preprint arXiv:1110.0413, 2011.

[7] N. Rao, R. Nowak, S. Wright, and N. Kingsbury, “Convex approaches
to model wavelet sparsity patterns,” in Image Processing (ICIP), 2011
18th IEEE International Conference on, 2011, pp. 1917–1920.

[8] A. Gramfort and M. Kowalski, “Improving m/eeg source localization-
with an inter-condition sparse prior,” in IEEE International Symposium
on Biomedical Imaging, 2009.

[9] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and
B. Thirion, “Multi-scale mining of fmri data with hierarchical structured
sparsity,” in Pattern Recognition in NeuroImaging (PRNI), 2011.

[10] F. Rapaport, E. Barillot, and J. Vert, “Classification of arraycgh data
using fused svm,” Bioinformatics, vol. 24, no. 13, pp. i375–i382, 2008.

[11] V. Cevher, C. Hegde, M. Duarte, and R. Baraniuk, “Sparse signal
recovery using markov random fields,” in NIPS, 2009.

[12] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functionsi,” Mathematical Programming,
vol. 14, no. 1, pp. 265–294, 1978.

[13] L. Wolsey and G. Nemhauser, Integer and Combinatorial Optimization.
Wiley, 1999.

[14] L. Baldassarre, N. Bhan, V. Cevher, and A. Kyrillidis, “Group-
sparse model selection: Hardness and relaxations,” arXiv preprint
arXiv:1303.3207, 2013.

[15] L. Jacob, G. Obozinski, and J. Vert, “Group lasso with overlap and graph
lasso,” in International Conference on Machine Learning, 2009.

[16] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods
for hierarchical sparse coding,” Journal of Machine Learning Reasearch,
vol. 12, pp. 2297–2334, 2011.

2013 IEEE International Symposium on Information Theory

1041

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

