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ABSTRACT
We propose a new framework, called Filtered Variation (FV), for de-
noising and sparse signal processing applications. These problems
are inherently ill-posed. Hence, we provide regularization to over-
come this challenge by using discrete time filters that are widely
used in signal processing. We mathematically define the FV prob-
lem, and solve it using alternating projections in space and transform
domains. We provide a globally convergent algorithm based on the
projections onto convex sets approach. We apply to our algorithm
to real denoising problems and compare it with the total variation
recovery.

Index Terms— Filtered variation, total variation, regularization,
projection onto convex sets

1. INTRODUCTION

We introduce a new framework called Filtered Variation (FV) for
denoising, compressive sensing (CS) and sparse signal processing
applications. In this article, we use denoising as a running example
to highlight the salient features of our approach. We first link the
discrete time filtering with the optimization through the FV frame-
work. We then solve the denoising problem using the proposed FV
approach.In many denoising problems, we have access to a noisy
version y = [y1, . . . , yn] of the original signal x = [x1 . . . xn] that
can be represented as follows:

y = x+ u (1)

where u is the noise.
Total Variation (TV) based solutions are quite popular for de-

noising applications [1]-[8]. In discrete TV functional, the differ-
ence between neighboring samples are computed and the �1or �2-
norm of the difference vector is minimized. Hence, the TV method
inherently assumes that the signal (or image) is low-pass signal and
tries to minimize the high-pass energy. In signal processing, we have
decades of experience on high-pass filter design. Therefore, instead
of computing the difference between the samples we can filter the
signal using an appropriate high-pass filter and minimize the �1 or
�2 energy of the output. Furthermore, in image and video processing,
it is possible to use diagonal and other directional high-pass filters in
image denoising applications.

In FV based denoising, our goal is to find a solution to the fol-
lowing optimization problem:

min FVp(x) (2)

s.t. ‖Lx − y‖ ≤ δ (3)
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where FV stands for the filtered variation and it is defined as follows:

FVp(x) = ‖HDx‖
p
, p = 1, 2 (4)

where X,D and H represent the signal, the signal transform (e.g.,
DCT, DHT, DFT) and the discrete-time filter in the transform do-
main, respectively and p denotes which �p-norm is used. In (3) and
(4) the norm can be selected as �1 or �2 norms, which correspond to
anisotropic and isotropic FV, respectively.

In our approach, denoising is achieved by minimizing the high-
frequency energy of the observations, subject to the constraint given
in (3). In (2)-(4) we posed the problem in frequency domain because
for any given fixed transform, noise is typically in coherent with the
transform, therefore it is spread out. By means of a proper filtering
operation in the transform domain, one can exploit this fact to effec-
tively denoise the signal. Besides, it is possible to solve the problem
completely in time (or space) domain as well.

In article we solve this regularized signal denoising problem by
applying several different time (space) and frequency domain con-
straints on filtered versions of the signal x. This approach is similar
to the methodology described in [9, 10, 11]. Since the FV cost func-
tion is convex it is also possible to solve FV based problems using
convex programming. We provide a solution using the Projections
onto Convex Sets (POCS) method. The following FV based con-
straints correspond to a class of convex sets:

Cp
i = FVp(x) =

{
‖HDx‖

p
≤ ε

}
, p = 1, 2 and i = 1, . . . ,M.

(5)
where p = 1, 2 corresponds to �1 and �2-norms respectively. Other
closed and convex sets, described in Section 3 can be also imposed
on the desired signal x. The solution of the denoising problem is
assumed to lie in the intersection of M different constraint sets as
follows:

x ∈ C =
M⋂
i=1

Ci, (6)

where the constraint sets (Ci) are defined by the convex constraints
as given at (5). Therefore, it is possible to reconstruct the origi-
nal signal by performing successive orthogonal projections onto the
closed and convex sets Ci [12, 13]. The POCS based iterative algo-
rithm consists of making successive operations in time (or space) and
transform domains, and it converges to a solution in the intersection
of constraint sets Ci.

Extension to 2-D or higher dimensional signals is straightfor-
ward. Instead of a 1-D high-pass filter, 2-D or higher dimensional
high-pass filters can be used in (6).

Organization of this paper is a follows. Section 2 explores the
relationship between FV and TV models. Section 3 describes a class
of useful filtering operations that can be used as constraints. Results
are given in Section 4 followed by conclusions in Section 5.
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2. FILTERED VARIATION BASED REGULARIZATION

In this section, we first review the TV approach and motivate FV for
sparse signal recovery by using a high-pass filtering example.

TV functional was first introduced to signal and image process-
ing problems by Rudin, Osher and Fatemi in 1990’s [1]-[8]. For a
1-D signal x of length N, the discretized TV functional of x is de-
fined as,

TV (x) =
N∑

n=1

√
(x[n]− x[n+ 1])2 (7)

where a discrete-gradient of the signal is the key component of the
TV functional.

We note that the discrete gradient operation v[n] = x[n]−x[n+
1] in Equation (7) is a rough high-pass filtered version of x. This fil-
ter is the high-pass filter used in Haar wavelet transform. Therefore,
the relation between the signals x and v can be represented via con-
volution denoted by the operator ∗ as follows:

v[n] = h[n] ∗ x[n] (8)

where h[n] = {−1, 1} is the impulse response of Haar high-pass
filter. In the DFT domain the same relationship can be represented
by a multiplication operation as follows:

V [k] = H [k]X[k], k = 1, 2, ..., N. (9)

In 9, X[k], H [k], V [k] are the N -point DFT of the desired signal
x[n], high-pass filter h[n] and the output v[n], respectively. The TV
cost function is equivalent to filtering the signal with a Haar high-
pass filter and computing the �1 or �2 energy of the filtered output
signal corresponding to anisotropic or isotropic cases, respectively.

The Haar filter has an ideal normalized angular cut-off frequency
of π

2
. It is possible to apply other high-pass filters and compute the

output energy or it is possible to use the Parseval’s relation and other
Fourier domain relations to impose sparsity conditions on the desired
signal. It is well-known [14] that:√∑

n

|v[n]|2 =

√∑
k

1

N
|V [k]|2 ≤ max

k
|V [k]| ≤

∑
n

|v[n]| .

(10)
In Section 3, based on the above relations, we define both time
(space) and frequency domain FV constraints, which correspond to
closed and convex sets for the CS problem.

It is also possible to define constraint sets on other transform
domain representations, such as wavelets, but we focus on DFT and
DCT domain in this article. The filtered output in transform domain
V [k] = H [k]X[k] is basically specified by the filter H, which can
be selected according to a given bandwidth specified by the user.
In 2-D or higher dimensions, one is not restricted to horizontal or
vertical high-pass filters. It is also possible to use directional high-
pass filters.

3. FILTERED VARIATION ALGORITHM AND
TRANSFORM DOMAIN CONSTRAINTS

In this section, we list six closed and convex constraints that can be
used for image denoising. Each constraint qualifies different prop-
erties of the estimated signal such as; �1 or �2 energy of the high
frequency band of the signal, local variations in the signal, the mean
of the signal and the bit depth of the image. As in [3], all the con-
straints can be used at the same time, or any combination of these
can be used together depending on the nature of the signal (or im-
age) and the noise type.

Constraint-I - �1 FV Bound: The first constraint is based on
the �1 energy of high frequency coefficients:

C1 =

{
x :

N−1∑
k=0

|H [k]X[k]| ≤ ε1

}
. (11)

It is possible to perform orthogonal projections onto this set in Dis-
crete Time domain as described in [9]. Since, the DFT is a complex
transform, it is easier to work with a real transform such as DCT or
DHT. In this case the boundary hyperplanes of the region specified
by the constraint set are real. The projection operation is essentially
equivalent to making orthogonal projections onto hyperplanes form-
ing the boundary, and it is similar to projection onto an �1 ball but it
is on the transform domain and only high-frequency coefficients are
updated. Since we perform projections onto an �1 ball type region,
the solution that we obtain turns out to be sparse.

Constraint-II - Time and Space Domain Local Variational
Bounds: The second constraint is based on the change in intensity
between the consecutive samples of a signal (pixels of the image). In
real-life, there is strong correlations between the samples of discrete-
time signals (or images), and there is very little correlation between
different parts of the signals (or images). Therefore, it is possible to
remove the summation operator in TV or FV and consider regional
TV or FV constraints on the signal. This leads to a high-pass con-
straint set for each sample of the signal (or pixel of the image):

C2,n =

{∣∣∣∣∣
l∑

i=−l

h[i]x[n− i]

∣∣∣∣∣ ≤ P

}
, (12)

where h[i] is a high-pass filter with support length 2l + 1 and P is
a user defined bound. Projection onto hyperslabs C2,n do not corre-
spond to low-pass filtering, because projections are essentially non-
linear operations. If the current iterate does not satisfy the bound, it
is projected onto the hyperslab given in (12).

In practice, we cannot select a small bound value, unless we do
not have a clear idea about the low-pass nature of the signal. The
local FV constraint is especially useful to remove impulsive noise.

In image processing experiments we selected a very large bound
(P = 128) for the high-pass filter h = {−1

4
, 1

2
, −1

4
} to avoid dis-

torting the edges of the desired image. When there is an impulse
within the analysis window of the filter, the filter output will be high
and the samples within that window are modified by the projection.
For example, the C2,n family of sets turn out to be useful for Lapla-
cian noise. In image processing examples that we studied in the next
section, it is also possible to apply filters in vertical and diagonal
directions depending of the nature of the original image.

Constraint-III - Bound on High Frequency Energy: The fol-
lowing anisotropic constraint on high-frequency energy of the signal
x is a closed and convex set:

C3a =

⎧⎨
⎩x :

N−k0∑
k=k0

|X[k]|2 ≤ ε3a

⎫⎬
⎭ (13)

where ε is an upper bound. This corresponds to filtering the signal
x with a high-pass filter whose cut-off frequency index is k0 in the
DFT domain:

H [k] =

{
0, for k < k0 or k > N − k0
1, for k0 ≤ k ≤ N − k0

(14)

where N is the size of the DFT. Although this filter suffers from
the Gibbs phenomenon in time-domain, it is possible to use it in
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denoising problems. The index k0 is equal to N

4
for the normalized

angular cut-off frequency of π

2
, but any 0 < k0 < N

2
can be selected

for a desired smoothness level. The set given in Eq. (13) is a convex
set and it is easy to perform orthogonal projections onto this set.
Let so[n] be an arbitrary signal and S0[k] be its DFT. Sp[k] of the
projection sp[n] is given by

Sp[k]=

⎧⎪⎨
⎪⎩
√

ε

εo
S0[k] , if

∑N−k0

k=k0
|S0[k]|

2 ≥ ε, ko≤k≤N − ko

S0[k], otherwise,

(15)

where
∑N−k0

k=k0
|So[k]|

2 = εo.
We can also use a DCT domain high-pass energy constraint on

the desired signal using the following set

C3b =

⎧⎨
⎩x :

N−1∑
k=k0

(XDCT [k])
2 ≤ ε3b

⎫⎬
⎭ , (16)

which is also a convex set. In (16), XDCT represents the DCT of the
signal x. It is straightforward to make orthogonal projections onto
the DCT domain set C3b as in Equation (15).

Constraint-IV - User Designed High-pass Filter: In this case,
we do not assume a specific cut-off frequency but use the frequency
response of a given high-pass filter:

C4 =

{
x :

N−1∑
k=0

|H [k]X[k]|2 ≤ ε4

}
. (17)

The set C4 is also a closed and convex set. Orthogonal projection
onto this set is not as easy as Condition-I, because the set is a closed
ellipsoid. It can be implemented using numerical methods, [15, 16].

Constraint-V - The Mean Constraint: The fifth constraint is
actually proposed in [3]. It is based on the mean of the original sig-
nal. Typically this information can be estimated from a pool of sim-
ilar types of images (e.g. satellite images, images of hand-writing,
faces etc.) A constraint based on the mean information can be de-
fined as follows:

C5 =

{
x :

N∑
n=1

x[n]

N
= μx

}
(18)

where N is the number of the pixels in the image and μx is the mean
of the original image.

Constraint-VI: Image bit-depth constraint In general, the
users know the color (bit) depth of the original image. Due to this
fact, it is possible to define a constraint on the bit depth of the
reconstructed image as follows:

0 ≤ x[i, j] ≤ (2M − 1) (19)

where M is the number of the bit planes used in the original repre-
sentation. This constraint is also proposed in [3].

4. EXPERIMENTAL RESULTS

We first present a denoising example from [3]. Combettes and Pes-
quet used the image shown in Fig.1-(a) in [3], to test their TV based
denoising algorithm. They added i.i.d. Laplacian noise to the orig-
inal 128x128 grayscale image. The signal-to-noise ratio is 1dB. To
compare the FV algorithm to the TV denoising, we cropped the orig-
inal image (Fig. 1-(a)) from their paper and added Laplacian noise
to the image. In [3] the pixel range was [-261,460]. In our case the
pixel range turns out to be [-391,511].

As shown in Fig. 1 the characters in the image that are recovered

(a) (b)

(c) (d)

(e)

Fig. 1. (a) Original image. (b) noisy image. (c) �p denoising with
bounded total variation and additional constraints [3] (Fig. 15 from
[3]) (p=1.1). (d) �p denoising without the total variation constraint
[3] (Fig. 16 from [3]). (e) Denoised image using the FV method
using C2, C4 and C5.

by our algorithm (Fig.1-(e)) are visually sharper compared to Fig.1-
(c) and the impulsive noise is significantly reduced compared to �1
denoising.

The progress of the decrease in Normalized Root Mean Square
Error (NRMSE), which is defined as ||x − xo||/||xo|| in [3], is
shown in Fig. 2. Our algorithm converges to an NRMSE level of
-9 dB in 10-to-12 iterations. On the other hand the time-domain TV
algorithm takes around 100 iterations to converge as shown in Fig.
18 in [3]

We also performed an experiment about estimating �1 and �2
high-frequency energy bounds ε1 and ε3, respectively. In this exper-
iment, we try to estimate these bounds from the noisy image. Bounds
are selected as 80% of �1 (ε1a), 60% of �1 (ε1b) and 80% of the �2
(ε3a) energies of the noisy image, respectively. ε1o corresponds to
the �1 energy of the original image. Experimental results indicate
that estimating ε1 and ε3 are possible from flat portions of the image
and the FV algorithm is not sensitive to the ε1 and ε3 values. As
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Fig. 2. NRMSE vs. iteration curves for FV denoising the image
shown in Fig. 1. ε1o and ε3o correspond to the �1 and �2 energy
of the original image. Bounds are selected ε1a = 0.8ε1o, ε1b =
0.6ε1o, and ε3a = 0.8ε3o

shown in Fig. 2, in all cases restored images are very close to each
other. Convergence graphs closely overlap with each other as shown
in Fig.1

(a) (b)

(c) (d)

Fig. 3. (a) Original fingerprint image, (b) fingerprint image with 15
db AWGN. (c) Image Restored by TV constraint ( SNR=7.45dB).
(d) Image restored by the proposed algorithm using C2, C4 and C5

(SNR=12.75 dB)

We also conduct an experiment with an image of a fingerprint
as shown in Fig.3-(a). We added white Gaussian Noise to the orig-
inal signal and obtained the noisy image shown in Fig. 3-(b) with
SNR=4.9dB. Using FV constraints we obtained a reconstructed ver-
sion of the signal whose SNR=12.75 dB (Fig. 3-(d)). On the other
hand, TV constraint leads to an image with SNR=7.45dB (Fig. 3-
(c)).

5. CONCLUSION

Filtered variations framework is developed for denoising and sparse
signal processing applications. In this method, regularization is
achieved by using discrete-time high-pass filters instead of taking
the difference of neighboring signal samples as in the TV method.
The FV based denoising problem is solved by making alternating
projections in space and transform domains. It is experimentally
observed FV approach provides better denoising results compared
to the TV approach. If some prior knowledge about the original

signal exists, it is possible to design high-pass filters according to
the signal and incorporate it to the FV framework.
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