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ABSTRACT

Mutual modelling, the reciprocal ability to establish a men-
tal model of the other, plays a fundamental role in human
interactions. This complex cognitive skill is however diffi-
cult to fully apprehend as it encompasses multiple neuronal,
psychological and social mechanisms that are generally not
easily turned into computational models suitable for robots.

This article presents several perspectives on mutual mod-
elling from a range of disciplines, and reflects on how these
perspectives can be beneficial to the advancement of social
cognition in robotics. We gather here both basic tools (con-
cepts, formalisms, models) and exemplary experimental set-
tings and methods that are of relevance to robotics.

This contribution is expected to consolidate the corpus
of knowledge readily available to human-robot interaction
research, and to foster interest for this fundamentally cross-
disciplinary field.

1. INTRODUCTION

Human social dynamics rely upon the ability to effectively
attribute beliefs, goals and percepts to other people. This
set of meta-representational abilities shapes what is called a
theory of mind (ToM) or the ability to mentalize, and leads
to mutual modelling: the reciprocal ability to establish a
mental model of the other. This lays at the core of hu-
man interactions: normal human social interactions depend
upon the recognition of other sensory perspectives, the un-
derstanding of other mental states, and the recognition of
complex non-verbal cues of attention and emotional state.
As such, adapting and transferring these cognitive skills to
social robots is an important research objective.

Until now, however, the human-robot interaction (HRI)
community has only scratched the surface: in [|41], Scassel-
lati gave an initial account of Leslie’s and Baron-Cohen’s
respective models of the emergence of a theory of mind (we
discuss them below) from the perspective of robotics, but
reported implementation work was limited to simple per-
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ceptual precursors (like face detection or color saliencies de-
tection). Since then, research in this field has been focused
on applications relying on Flavell’s Level 1 |20] perspective-
taking, i.e. perspective-taking that only requires perceptual
abilities (“I see (you do not see the book)”), and actually
mostly limited to visual perception (relevant work include
Breazeal [10], Trafton [47] and Ros [38]).
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Figure 1: The false belief experiment: two puppets, “Anne” and
“Sally” face each other, with two boxes between them. A child
(the subject) observes. Sally puts a ball in the beige box and
then leaves. While she is absent, Anne moves the ball to the
blue box. Sally returns. The experimenter asks the child: Where
Sally would look for the ball? Without a theory of mind, the
child is not able to ascribe false beliefs to Sally, and therefore
incorrectly answers In the blue box. Visual perspective taking
only is sufficient to pass this task.

Based on perspective taking Level 1 alone, Breazeal et
al. [11) and Warnier et al. [54] successfully tackled the clas-
sical hallmark of theory of mind, the false belief experiment
(also known as the “Sally and Anne” experiment, Figure
introduced by [55], original experimental setting by [6]).
They demonstrated complete human-robot interaction sce-
narios where robots recognize and handle false belief situa-
tions in dyadic or triadic interactions, and exhibit helping
behaviours that account for the missing/false beliefs of the
human partners.

Those are significant achievements, also reassuring as to
endow our robots with advanced socio-cognitive capabilities
(Figure [2). However, one intuitively recognizes that mutual
modelling goes indeed beyond computing what the human
sees or does not see. Perceptions translate into subjective



(a) A robot interpreting situated multi-
modal dialogue @

learning

(b) A robot changing men-
tal perspective during social

(c) False belief task, where the robot tracks
which objects are visible to which human

Figure 2: Examples of social robotics tasks benefiting from meta-cognition

representations: how can we access them? How to measure
what the other know about oneself? Many levels of recipro-
cal modelling overlap, with endless “I know that you know
that I know that...”: how to represent and manipulate them?
What about the breadth of the models we build? Local to
a given task or broader, deeper? How to tell apart mimicry
from cognitive modelling in a joint action? Those many
questions underline the complexity of a cognitive mechanism
whose study lays at the crossroad of several academic fields.
Robotics, as the science of embodied artificial intelligence,
may be a convergence point to validate our understanding
of this socio-cognitive skill.

This article contributes to this endeavour by proposing
a broad overview of mutual modelling from three differ-
ent perspectives in three different academic domains. First,
developmental psychology (and, in particular, developmen-
tal pathopsychology) provides insights on human cognition
and an extensive experimental framework that has a strong
potential in robotics. Psycho-linguistic and Collaborative
Learning, then, propose concepts and tools to apprehend the
importance and the dynamics of knowledge sharing during
social interactions. Finally, we give a look at the philoso-
phy of the mind and the logical tools of formal epistemol-
ogy: their use of modal logics to describe complex knowledge
manipulation in groups appears as a pertinent direction for
robotics to explore.

Conceptual bridges between these disciplines are numer-
ous, and our aim is here to draw a picture of the field that
can lay the bases for the further advancement of cognitive
robotics in a social environment.

Note that the main focus of this contribution is epistemic
mutual modelling: the modelling of (mostly declarative)
knowledge of and by the others. As hinted at the begin-
ning of this introduction, mutual modelling in general cov-
ers more: what are our feelings towards each other? What
are our respective goals? What are our respective moods?
etc. Those questions have also started to be explored in
robotics. Human-aware task planning , for instance,
uses symbolic task planners to plan actions not only for the
robot, but also for the interacting humans, hence trying to
predict, i.e. model, what (rational) humans may do in the
given situation. From a completely different perspective,
Fink et al. propose cognitive models of how the human
perceive robot behaviours over time. Those two very differ-
ent yet prototypical examples give an idea of the breadth of
the “mutual modelling question”.

2. MUTUAL MODELLING AND DEVEL-
OPMENTAL PSYCHOLOGY

Connections vs. representations.

In , Flavell relates perspective taking Level 1 to es-
tablishing cognitive connections (I see, I hear, I want, I like,
I fear...), in contrast to perspective taking Level 2 that re-
lates to manipulating representations. This is exemplified by
appearance-reality tasks, like the elephant mask experiment
proposed in : 3-years old children are not able to tell
that an experimenter hidden behind a large elephant mask
but who speaks normally looks like an elephant, sounds like
the experimenter, and really is the experimenter. It appears
that, while those children are able to explicitly manipulate
cognitive connections (they know for instance that these are
largely independent of each other and that they can evolve
over time) and know as well that their own connections are
independent of those of other people, they do not think that
one concept can seriously (i.e. non playfully) hold several,
possibly conflicting, representations.

This connection-representation account appears to be a
significant component of a general theory of mind (one needs
to recognize that the same object/concept may have dif-
ferent, serious, representations to then accept false beliefs
for instance). Figure [3] illustrates this difference between
cognitive connections and representations in an imaginary
human-robot interaction scenario. The visual perspective of
the baby and the mother are represented: a robot endowed
with perspective-taking level 1 is able to compute that the
baby looks at the plug and the mother looks at the baby.
Representation-level perspective taking, on the other hand,
would require the robot to represent what the socket means
to the baby (an attractive affordance), and what the baby’s
behaviour represents to the mother (a potential danger).

Developmental pathopsychology.

The false belief experiment that we have mentioned above,
was proposed by Baron-Cohen in the frame of his research
on autistic spectrum disorders (he shows that autistic chil-
dren seem to actually lack a theory of mind and suggests this
as the primary cause of their social impairments), and Frith
and Happé further note in that this specific deficit of
autism has led to a large amount of research which proved,
in turn, highly beneficial to the study of the development of
theory of mind in general. They reference in 23| eight such
tasks (Table , identified during the study of social cogni-



Figure 3: Visual perspectives allow for a first level of mutual
modelling. However, to correctly comprehend the scene (and for
the robot to adequately react, representation-level perspective
taking is required: what does the power socket means to the
baby? What does the situation means to the mother?

tion by autistic children. Each of them is proposed in two
versions: one does not require mentalizing, while the other
does require it. One of these tasks, for example, required
children to distinguish emotions, namely happy/sad faces on
one hand (situation-based emotion), and surprised faces on
the other (belief-based emotion) [8]. Another task, based on
the penny-hiding game, contrasts the two conditions in terms
of object occlusion vs. information occlusion (we detail it
hereafter). These tasks prototypically illustrate social meta-
cognition: one need to represent and reflect on someone else
representations (and not only perceptions), and they are not
addressed by today’s research on social robots.
Experimental protocols in research on autistic spectrum
disorders are often striking by their apparent straightfor-
wardness because of the careful choice of interaction modal-
ities: since autistic children frequently exhibit impairments
beyond social ones (such as motor or linguistic ones), the ex-
periments must be designed such that they require only ba-
sic cognitive skills beyond the social abilities that are tested.
The Sally and Anne task, for instance, requires the observing
child to be able to visually follow the marble, to remember
the true location of the marble, to understand simple ques-
tions (“Where will Sally look for her marble?” in Baron-
Cohen’s protocol @) and eventually to give an answer, ei-
ther verbally or with a gesture — the two first points being
actually explicitly checked through questions: “Where is the
marble really?” (reality control question) and “Where was
the marble in the beginning?” (memory control question).
Likewise, current social robots have limited cognitive skills
(no fast yet fine motor skills, limited speech production and
understanding, limited scene segmentation and object recog-
nition capabilities, etc.) and such tasks that effectively test
a single cognitive skill (in this case, mentalizing) in near iso-
lation are of high relevance for experimental social robotics.
Frith and Happé’s list (Table is in that regard es-
pecially interesting in that it mirrors pairs of task (ones
which do not require mentalizing with similar ones which
do require mentalizing), thus providing control tasks. Ob-
ject occlusion vs. Information occlusion is one example of
a (pair of) task(s) which evidence representation-level per-

No mentalizing required Mentalizing required

behavioural Ordering
pictures tures (7]
Understanding see Understanding know
Protoimperative point- Protodeclarative pointing
ing

Sabotage Deception [44]

False photographs False beliefs [29]
Recognizing happiness Recognizing surprise @

and sadness
Object occlusion
Literal expression

Ordering mentalistic  pic-

Information occlusion
Metaphorical expression [24]

Table 1: Tasks requiring or not mentalizing to pass, listed by
Frith and Happé in

spective taking through adaptive deception: during a simple
game, the experimenter adapts its strategy (deceptive/non-
deceptive behaviour) to the representation skills of its child
opponent. The experimental setting is derived from the
penny-hiding game protocol originally proposed by Oswald
and Ollendick and replicated and extended by Baron-
Cohen in , who describes it as a two-person game in which
the subject is actively involved, either as a guesser or as a
hider. The hider hides the penny in one hand or the other,
and then invites a guess. The game is repeated several time
before switching the roles. Baron-Cohen proposes a specific
index to rate the level of the players based on the idea of
information occlusion: minimally, the hider must ensure 0b-
ject occlusion (the penny must not become visible to the
guesser), while good hiders, with representation-level per-
spective taking skills, develop strategies (like random hand
switching or deictic hints at the wrong hand) to prevent
the guesser to find the penny (information occlusion). One
could imagine a similar protocol adapted to robotics: the
robot would play the role of the experimenter, adapting on-
line its behaviour to what it understands of the perspective
taking capabilities of the children, and would consequently
require second-order, representation-level perspective taking
from the robot.

Higher-order Theory of Mind.

While a great deal of research concerns itself with
first-order theory of mind, higher-order (and particularly,
second-order) ToM are also studied. Verbrugge and Mol
describe the different levels in the following terms:

To have a first-order ToM is to assume that some-
one’s beliefs, thoughts and desires influence one’s
behavior. A first-order thought could be: He
does not know that his book is on the table. In
second-order ToM it is also recognized that to
predict others’ behavior, the desires and beliefs
that they have of one’s self and the predictions
of oneself by others must be taken into account.
So, for example, you can realize that what some-
one expects you to do will affect his behavior.
For example, “(I know) he does not know that
I know his book is on the table” would be part
of my second-order ToM. To have a third-order
ToM is to assume others to have a second-order
ToM, etc.



Perner shows in [35] that 2"%-order ToM is mastered
around 8 years old, and Flobbe et al. propose in [22] a
set of three tasks (a second-order false belief task, a strate-
gic game and a sentence comprehension test) that require
second-order mentalizing to succeed. The second-order false
belief task that they propose (known as the Chocolate bar
task) effectively evidence higher-order ToM:

John and Mary are in the living room when their
mother returns home with a chocolate bar that
she bought. Mother gives the chocolate to John,
who puts it into the drawer. After John has left
the room, Mary hides the chocolate in the toy
chest. But John accidentally sees Mary putting
the chocolate into the toy chest. Crucially, Mary
does not see John. When John returns to the
living room, he wants to get his chocolate.

Flobbe then asks the subjects: “Where is the chocolate
now?” (reality control question), “Does John know that
Mary has hidden the chocolate in the toy chest?” (first-
order ignorance question), “Does Mary know that John saw
her hide the chocolate?” (linguistic control question), and
“Where does Mary think that John will look for the choco-
late?” (second-order false belief question). Besides, Flobbe
asks the participants to justify their answer (“Why does she
think that?”). In her study, 82% of a group of 40 children
(M=9 year old) successfully passed the task.

While literature on higher-order of mutual modelling is
generally scarce, agreement and common belief is another
interesting social situation: Verbrugge [52, p. 664] reports
after an experiment by Mant and Perner |32] where a child
is disappointed by his father who changed the announced
plan to go swimming. In one condition, the child and the
father had previously mutually agreed, while in the other, no
explicit agreement took place (to a child observer, it actu-
ally appears that the situation is worse if the child and the
father did not previously explicitly agree). Children before
ten do not distinguish between the two conditions, and Ver-
brugge’s proposed explanation relies on the concept of social
commitment, which implies the common belief between the
two agents that the father intends to go swimming and the
child is interested in going swimming.

Common belief (“we believe that we believe that we be-
lieve that... we agreed”) is defined in epistemic logic (see
section as an infinite recursion (“co-order” ToM), and
Verbrugge suggests that this mutual modelling mechanism is
therefore harder to master for children than 2"?-order ToM
for instance.

3. MUTUAL MODELLING IN
PSYCHOLINGUISTICS AND
COLLABORATIVE LEARNING

A support for shared understanding.

Computer Supported Collaborative Learning (CSCL) re-
searches the cognitive mechanisms and practical techniques
underpinning efficient learning in social situations. From its
very beginning, CSCL research has been following Roschelle
and Teasley’s suggestion 39| that collaborative learning has
something to do with the process of constructing and main-
taining a shared understanding of the task at hand. Build-
ing a shared/mutual understanding refers to the upper class

of collaborative learning situations, those in which students
should build upon each other’s understanding to refine their
own understanding. What is expected to produce learning
is not the mere fact that two students build the same un-
derstanding but the cognitive effort they have to engage to
build this shared understanding [43].

The construction of a shared understanding has been in-
vestigated for several years in psycholinguistics, under the
notion of groundingEI (Clark, in |15]). However, the relevance
of grounding mechanisms for explaining learning outcomes
has been questioned in learning sciences. The monitoring
and repair of misunderstanding explains for instance refer-
ential failures in short dialogue episodes but does hardly
predict conceptual change (i.e. the acquisition, acceptation
and integration of a new belief into one’s mental model)
over longer sessions [17]. The cumulative effect of ground-
ing episodes can probably be better understood from a socio-
cultural perspective:

Collaborative learning is associated with the in-
creased cognitive-interactional effort involved in
the transition from learning to understand each
other to learning to understand the meanings of
the semiotic tools that constitute the mediators of
interpersonal interaction [3|

Along this line, several scholars suggest that CSCL re-
search should go deeper in the understanding of how part-
ners engage into shared meaning making [45] or intersubjec-
tive meaning making [46].

Paradoxically, while Clark’s theory is somewhat too lin-
guistic from a conceptual change viewpoint, it is criticized
at the same time as being too cognitivist by some psycholin-
guists, i.e. as overestimating the amount of shared knowl-
edge and mutual representations actually necessary to con-
duct a dialogue. The fundamental issue, as old as philos-
ophy, is the degree of coupling between the different levels
of dialogue, mostly between the lexical/syntactical level and
the deeper semantic levels. In [37], Pickering and Garrod
argue that the mutual understanding starts mostly with a
superficial alignment at the level of the linguistic representa-
tions, due to priming mechanisms, and that this local align-
ment may — in some cases — lead to a global alignment of
the semantic level (deep grounding). For these authors, the
convergence in dialogue, and even the repair of some mis-
understandings, is explained by this mimetic behavior more
than by a monitoring of each other’s knowledge: “..inter-
locutors do not need to monitor and develop full common
ground as a regular, constant part of routine conversation,
as it would be unnecessary and far too costly. Establish-
ment of full common ground is, we argue, a specialized and
non-automatic process that is used primarily in times of dif-
ficulty (when radical misalignment becomes apparent).” |37]
This view is actually not incompatible with Clark’s ground-
ing criterion [14]: the degree of shared understanding that
peers need to reach depends upon the task they perform.
For instance, a dialogue between two surgeons might rely on
superficial alignment if they talk about their friends but has
to guarantee accurate common grounds when talking about

!'Note that the meaning of grounding — ensuring a shared
understanding of a situation during an interaction — that we
employ in this article must be distinguished from its meaning
in the context of symbol grounding as defined by Harnad [25].



which intervention will be conducted in which way on which
patient.

Deep grounding or shared meaning making requires some
cognitive load. For Clark, what is important is not the indi-
vidual effort made by the receiver of a communicative act,
but the overall least collaborative effort |15]. The cost of
producing a perfect utterance may be higher than the cost
of repairing the problems that may arise through misun-
derstandings. For instance, subjects are less careful about
adapting their utterances to their partner when they know
they can provide feedback on his/her understanding [42].
Dillenbourg et al. introduced the notion of optimal collabo-
rative effort [16] to stress that misunderstanding should not
be viewed as something to be avoided (if this was possible),
but as an opportunity to engage into verbalization, expla-
nation, negotiation, and so forth.

CSCL model of mutual modelling.

Dillenbourg proposes in [40] a model to represent mutual
modelling situations. He uses the notation M(A, B, X) to
denote “A knows that B knows X” (equivalent to the epis-
temic logic notation K4 Kpg X that we present in the next sec-
tion). This notation does not mean that A has an explicit,
monolithic representation of B: it must be understood as
an abstraction referring to possibly complex socio-cognitive
processes. Besides, he refer to the degree of accuracy of the
model as M°(4, B, X).

He parametrizes and assesses the mutual modelling effort
through 3 variables:

1. Tasks vary a lot with respect to how much they require
mutual understanding. The grounding criterion [15]
M, i refers to how important it is to mutually share
a piece of information X to succeed the task T'. It can
be computed as the probability to succeed T despite
the fact X is not grounded. M3, ;. (A, B, X) can be
estimated from the correlation between M°(A, B, X)
and the task performance.

2. Before any specific grounding action, there is usually
a non-null probability that X is mutually understood
by A and B (e.g. X is part of A’s and B’s cultures,
it is manifest to co-present subjects or simply there is
not much space for misunderstanding or disagreement
about X). He notes the theoretical accuracy of initial
grounds Mg (A, B, X).

3. The cost of grounding X refers to the physical and
cognitive effort required to perform a grounding act a:
a verbal repair (e.g. rephrasing), a deictic gesture, a
physical move to adopt one partner’s viewpoint, etc.
This cost varies according to media features [13].

These notations lead to simple representations of mutual
modelling during interactions, and Dillenbourg derives sev-
eral questions out of this model. Adapted to a human-
robot interaction situation, Figure [ represents for instance
a dyadic interaction (we use H to denote a human, while R
stands for a robot). A; illustrates what Dillenbourg calls
the symmetry question (Is the accuracy of my model related
or not to the accuracy of your model?).

With triads (two humans H; and H: and a
robot R), we may compute the accuracy of 6 mod-
els MO(H17H27X)7 MO(H27H17X)7 MO(H17R7X)7
M°(R,H1,X), M°(R,H2,X) and M°(H2, R, X).

MO (H, R, X)
4

g R

\/

M°(R, H, X)
Figure 4: Mutual modelling in a dyadic interaction, A; =

A(M°(H,R,X),M°(R, H, X))

This leads to two triangle questions relevant to HRI (Fig-
ure |p): Do H; and Hs have the same accuracy when mod-
elling the robot R? (A = A(M(H1, R, X), M(Hz2, R, X))),
and conversely, what may lead R to model more accurately
Hy or Hy? (A3 = A(M(R, 1117 X), M(R, 1127 X)))

H1 MO(H17R7X)
\
P P
|
/

H2 MO(HZaR7X)

(a)

Hy MC°(R,Hy, X)

\
|
ks
¥
H2 MO(R7H27X)

(b)

R

Figure 5: Mutual modelling in a triadic interaction

Finally, Dillenbourg also suggests a rectangle question:
how self- versus other modelling compares (A4 in Fig-
ure @? This gives an indication of meta-cognitive skills of
the agents. We can also question if the modelling skills de-
pend upon what aspects are being modeled (X or Y) which
would explain vertical differences (As in Figure @

MO(A, B, X) = > M°(A, A X)

Ay

4

M°(A,B,Y) < MO (A,A,Y)

Figure 6: Meta-cognitive skills and domain-dependent modelling

This model, designed in the context of human collabora-
tion, evidences questions that are relevant as well to human-
robot interactions.

4. FORMAL EPISTEMOLOGY

The above model of mutual modelling is meant as a prac-
tical tool to reason on knowledge dynamics in group interac-
tions and it does not look at being a formal model, whereas
formal epistemology, a subfield of the philosophy of mind,
focuses on this question.



Modal logics look at the formal representation of possible
worlds, i.e. the possibility or necessity of certain assertions
to hold, and is naturally suited to build mathematical rep-
resentations of situations such as “the robot knows [the baby
may not know what a power socket is]”.

The epistemic modal logic in particular (see |26] for an
overview and references) focuses on the formal representa-
tion of knowledge and beliefs of agents, with the operators
Kie (epistemic operator: agent ¢ knows ¢) and B;p (dox-
atic operator: agent i believes ). Every possible logical
propositions belong then to possible worlds (noted w), that
are accessible (i.e. compatible) or not to one’s beliefs and
knowledge.

Single-agent epistemic systems can naturally extend to
multi-agent systems [18| chapt. 4]: if p stands for “the power
socket is dangerous”, KmotherP A Kimother 7 Koabyp states that
the mother knows that the socket is dangerous, and also
knows that the baby is not aware of this. This provides a
formal tool to represent mutual models (the order of mutual
modelling as discussed in the context of developmental psy-
chology is here directly related to the nesting depth of the
epistemic operator).

This approach has led to applications to the represen-
tation of knowledge dynamics on concrete, albeit arguably
toy, scenarios: van Ditmarsch presents for instance in [51]
the formal description of possible Cluedo strategies based
on what players know about other players’ knowledge, and
along the same line, Verbrugge and Mol analyse mutual
modelling in a strategic game with imperfect information
(derived from Mastermind) in [53].

Amongst the several modal operators of knowledge that
have been developed, the common-knowledge operator CK
is of particular interest. If we define the shared-knowledge
operator EK as EK ¢ <+ A\, ; Kig, i.e. ¢ is shared knowledge
amongst the group J iff every agent in J knows ¢, then
CKJ(p > EKJLp A\ EKJEKJLp A\ EKJEKJEKJ@ A ..y te. @ IS
shared knowledge, and it is also shared knowledge that ¢
is shared knowledge, etc. (this presentation follows [27]).
This illustrates how epistemic logic can represent non-trivial
social knowledge situations.

Verbrugge further investigates the social aspect of epis-
temic logics in [52] and proposes a survey of epistemic logic
applications to social reasoning. He underlines both the lim-
its of epistemic logic for that purpose (common epistemic
systems assume for instance K;o — K;K;p, which reads “i
knows ¢” implies “¢ knows that ¢ knows ¢”, i.e. ¢ can always
introspect, a rather idealized model of human cognition)
and the recent advancement towards modelling human social
cognition, which implies for instance limited rationality. One
of these attempts is formalized as a dozastic epistemic logic
by van Ditmarsch and Labuschagne in [49], with an explicit
focus on modelling theory of mind mechanisms. This model
builds upon dynamic epistemic logic [50] (DEL, epistemic
logics augmented with mechanisms for knowledge changes),
and the modelling of agents’ degrees of belief through a pref-
erence accessibility relation.

The mathematical objects build from these different
modal logics are natural candidates for transposition into
representational systems and controllers for robots. Histor-
ically in robotics, the main research perspective has been
towards the action logics, and in particular the influential
situation calculus (a propositional logic initially proposed by
McCarthy, and fully axiomatized in the context of robotics

by Levesque et al. in [30]|, which led to the GoLOG logic
programming language [31]). Many other action logics have
been proposed including modal logics like PDL (Proposi-
tional Dynamic Logic).

Recent efforts have focused on bridging action logics (that
deal with ontic actions, i.e. actions which have tangible,
physical consequences) with epistemic logics (that deal with
epistemic actions, i.e. knowledge changes). Van Ditmarsch
proposes in [48] for instance a solution to embed a prac-
tical subset of situation calculus into a dynamic epistemic
logic, and Herzig provides in [27] a broader overview of the
interplay between current action and epistemic logics.

From a practical perspective however, implementations of
these logics into practical reasoners or programming lan-
guages remain rare. The development of Description Log-
ics (DL) in the knowledge representation community, along
with effective, practical tools (like reasoners) is a possible
path forward, since DL semantics overlap to some extend
with modal logics [2, chap. 4.2.2], and Description Logics
have already been successfully used in robotics (see [28] for
a review).

S. CONCLUSION: SCAFFOLDING FOR
SOCIO-COGNITIVE ROBOTICS

Several lessons can be taken out of these three perspec-
tives on mutual modelling. First, concepts and terminol-
ogy stand out and social robotics would benefit from incor-
porating them. Second, models of mutual modelling ex-
ist that would make sense in robotics as well, along with
investigation strategies and approaches that translate well
to robotics. Finally, we believe that several experimental
settings designed and successfully tested in other disciplines
shape an interesting way forward for (experimental) social
robotics.

Flavell’s distinction between cognitive connections on one
hand, and mental representations on the other hand helps
in recognizing the limits of perceptual perspective tak-
ing as currently achieved in robotics. This connection-
representation account, put into perspective with the se-
mantic expressiveness of modal logics, leads to a first in-
sight: we need to come up with an effective design for a
meta-representational system (i.e. a system that represents
representations as abstracted, manipulable entities) to inte-
grate into homogeneous objects both cognitive connections
(i.e. percepts) and representations (including suppositions,
similar to the idea of pre-supposition accommodation |33]).

The depth of mutual modelling required for effective col-
laboration is another question that is relevant to HRI. Pick-
ering and Garrod, with the idea of superficial alignment ver-
sus global alignment or deep grounding, come to the conclu-
sion that mimicking behaviours is often a more efficient way
to work together than establishing a full common ground,
which is also expressed by Clark in terms of least collab-
orative effort and Dillenbourg in terms of optimal collab-
orative effort: misunderstandings should not be viewed as
something to systematically avoid since the repair actions
they may elicit can also be viewed as a way to engage the
agents into new interactions (an idea not unrelated to the en-
tropy concept in information theory). And Clark’s concept
of grounding criterion provides a practical tool to represent
and manipulate this idea of degree of shared understanding
required by the agents to perform a given task.



These considerations lead to a second insight: the level of
mutual grounding (i.e. of mutual understanding) of a given
situation of interaction may prove to be a valuable metric
to measure the quality of human-robot interactions. Mutual
modelling certainly plays a key role here, but lower-level,
sub-cognitive strategies like one-off mimicking may be pow-
erful complements and need to be investigated in parallel.

Then, the mere discussion of mutual modelling problems
(“The robot knows that we both know that it knows that...”)
is also by itself a challenge. Formal models like the ones de-
veloped in epistemic logic, or practical tools like the ones
stemming from CSCL are valuable objects to add to the
toolset of HRI. Not only they help clarifying the prob-
lems, but they also evidence new challenges: the defini-
tion of common-knowledge as CK ;¢ <> EK;p AEK;EK ;0 A
EK;EK EK spA... for instance points at the recursive nature
of common knowledge. While “common-sense knowledge” is
a commonly-used term in the field of knowledge representa-
tion and reasoning to describe “all those facts that everyone
knows about”, it is probably important to better distinguish
in the future between shared knowledge and common knowl-
edge when a robot interact with a human.

A third insight that follows relates to the adoption of
modal logics in HRI: we believe that the current state of
the technology in robotics (with the advancements in scene
understanding, situation assessment, human activity recog-
nition, and their subsequent symbolic grounding), combined
with our current understanding of modal logics (and epis-
temic logics in particular), lay the foundations for us to now
broadly embrace formal models to implement new, complex
social mechanisms in robots.

Lastly, we hope that this article may suggest new ideas
of experimental protocols and studies to conduct in HRI.
We found experimental research in developmental psychol-
ogy to be especially inspiring in that regard: the numerous
protocols that have been designed over the years to evidence
cognitive and social skills by children (and even more, cogni-
tively impaired children) stand out as a source of inspiration
for cognitive robotics, and this article hopefully shed some
light on some of the less well-known studies and tasks that
could become new milestones for the development of human-
robot interaction.
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