
A Model Predictive Control Scheme with Ultimate Bound for Economic
Optimization

Andrea Alessandretti1 2, A. Pedro Aguiar2 3 and Colin N. Jones1

Abstract— This paper presents a Model Predictive Control
(MPC) scheme for nonlinear continuous-time systems where
an economic stage cost, which is not a measure of the distance
to a desired set point, is combined with a classic stabilizing
stage cost. The associated control strategy leads to a closed-
loop behavior that compromises, in a seamless way, between the
convergence of the closed-loop state trajectory to a given steady-
state and the minimization of the economic cost. More precisely,
we derive a set of sufficient conditions under which the closed-
loop state trajectory is ultimately bounded around the desired
steady-state, with the size of the bound being proportional to
the strength of the economic cost. Numerical results show the
effectiveness of the proposed scheme on a target estimation and
tracking control problem.

I. INTRODUCTION
In a Tracking MPC scheme, where the main goal is

to drive the state vector to a desired steady-state or state
trajectory, the performance index is chosen to penalize the
distance from the current state to the desired one. An
overview of methods that utilize the so-called terminal set
and terminal cost can be found in [22], [26]. We refer to [16]
for the terminal-set-free case, where the terminal set is not
considered and stability is guaranteed by properly choosing
a long horizon. Insightful properties of finite horizon optimal
controls are presented in [19]. For the continuous-time quasi-
infinite horizon approach we refer to [9] and [14].

In Economic MPC, the main objective is the minimization
of a given economic performance index. Since the value
function used in Tracking MPC has proved to be inadequate
for the economic case, in [11], [7], [8], [5], a dissipativity
property of the system is exploited to define a rotated value
function that, in contrast to the first, manifests the desired
monotonic decrease as the state approaches the economically
optimal steady-state of the system. This function is then
utilized to derive sufficient conditions for convergence to an
economically optimal steady-state using terminal equality,
[11], [7], and inequality, [8], [5], constraints. The termi-
nal constraints are not considered in [15] where sufficient
conditions on the horizon length are provided to guarantee
convergence to an arbitrarily small neighborhood of the opti-
mal steady-state. Convergence properties to the economically
optimal steady-state for variations of the performance index
are addressed in [13].

Other approaches that avoid the use of the dissipativity
property of the system have been presented in the literature.
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In [12], [23], the authors, in order to guarantee closed-loop
convergence to a steady-state, employ a generalized terminal
set, consisting of all reachable steady-states, and enforce
the terminal cost to not increase from one solution of the
MPC optimization problem to the other. In [17] a given CLF
defined over the whole desired region of attraction of the
MPC controller is exploited to initially constrain the closed-
loop trajectory within a bounded region, and then, at an
arbitrary given time, to enforce convergence to the desired
steady-state. In [21], essentially, the robustness margin of a
predefined steady-state it traded for the increase of economic
performance while still conserving closed loop stability.

On the same line, avoiding the use of the dissipativity
property of the system, the combination of a stabilizing stage
cost, from Tracking MPC, with an economic stage cost is
used in this paper to derive a set of sufficient conditions
for ultimate boundedness of the closed-loop state trajectories
around a desired steady-state. As main advantage, as shown
in a numerical example, by only enforcing ultimate bound-
edness, the proposed scheme allows, for instance, periodic
behaviors that naturally arise in many economic problems.
This approach is suitable for a variety practical applications
where the compromise between economic optimization and
convergence to a predefined steady-state corresponds with
the desired behaviour (see the motivating works [24], [10],
[1], [25]). Moreover, by introducing the stabilizing stage cost,
neither the assumption of the dissipativity of the system, e.g,
[13], [11], [7], [8], [15], [5], nor constraints on the decrease
of the terminal cost, [12], [23], are required. This work is on
the same line of [21], [3] where stability and convergence,
respectively, are further relaxed to ultimate boundedness for
the sake of economic optimization.

The organization of the paper is as follows. In Section II
the MPC law and the control problem are introduced. The
convergence result is presented in Section III, followed by
Section IV with an application of the proposed scheme on a
target estimation and tracking control problem.

II. PROBLEM DEFINITION

Consider the dynamical system

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ≥ 0 (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and the
input vectors at time t, respectively, and x0 is the initial
state vector. The state and input are constrained as

x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm (2)
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where we denote by X and U the state and input constraint
sets, respectively. Next, the MPC optimization problem P(z)
is defined, with z ∈ X and where for a generic trajectory
x(·), the term x([t1, t2]) denotes the trajectory considered
in the time interval [t1, t2]. Moreover, the notation x(·; z)
is used whenever we want to make explicit the dependence
of the trajectory x(·) on the optimization problem parameter
z. For the sake of simplicity, the dependence on time and
parameter is dropped whenever it is clear from the context.

Definition 1 (Open-loop MPC optimization problem):
Given a vector z ∈ Rn and an horizon length T ∈ R>0,
the open-loop MPC optimization problem P(z) consists in
finding the optimal control trajectory ū∗([0, T ]) that solves

J∗T (z) = min
ū([0,T ])

JT (z, ū([0, T ])) (3a)

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)) ∀τ ∈ [0, T ]

x̄(0) = z, x̄(T ) ∈ Xaux
(x̄(τ), ū(τ)) ∈ X × U ∀τ ∈ [0, T ]

with

JT (z, ū([0, T ])) =

∫ T

0

l(x̄(τ), ū(τ))dτ +m(x̄(T )). (3b)

The finite horizon cost JT (·) is composed of the stage
cost l : Rn × Rm → R≥0 and the terminal cost
m : Rn → R≥0, which is defined over the auxiliary
terminal set Xaux ⊆ Rn. We denote by kaux : Xaux → U
an auxiliary control law defined over the terminal set. �

In a sample-data receding horizon strategy, the control
input is computed at discrete time samples

T := {t0 = 0, t1, . . . }, (4)

where ti > tj for i > j, and the MPC control law is defined
as

u(t) = kMPC(x(t)) := ū∗(t− btc;x(btc)), (5)

where btc is the maximum sampling instant ti ∈ T smaller
than or equal to t, i.e., btc = maxi∈N≥0

{ti ∈ T : ti ≤ t}.
Since the system is not time varying, the open-loop state and
input trajectories x̄(·) and ū(·), respectively, are considered,
without loss of generality, in the interval [0, T ] and t0 is
chosen to be the time zero.

This work addresses the problem of designing an MPC
controller to minimize an economic cost while guarantee-
ing asymptotic boundedness of the closed-loop trajectories
around a given steady-state. Toward this goal, the stage cost
is defined as

l(x, u) := ls(x, u) + le(x, u). (6)

where the stabilizing stage cost ls : Rn × Rm → R≥0 de-
termines the attractiveness of the neighborhood of the given
steady-state, as will be made clear later, and the economic
stage cost le : Rn × Rm → R is an arbitrary economic
function that we wish to minimize. In the following, we
assume, without loss of generality, that the desired steady-
state pair is (0, 0), which is always satisfied performing an
appropriate change of state and input coordinates.

III. MAIN RESULT

Before stating the main result, we introduce the following
assumptions that are common in the Tracking MPC literature.

Assumption 1: The function f(·), introduced in (1), is
locally Lipschitz continuous in x and piecewise continuous
in u in the region of interest. Moreover, without loss of
generality, it satisfies f(0, 0) = 0. �

Assumption 2 (Initial feasibility): The optimization prob-
lem P(x0) admits a feasible solution. �

Assumption 3 (Stabilizing stage cost):
(i) The state constraint set X and the terminal set
Xaux ⊆ X are closed, connected, and contain the
origin. Moreover, the input constraint set U is compact
with 0 ∈ U .

(ii) The stabilizing stage cost satisfies ls(0, 0) = 0 and
there is a class-K1 function α : R≥0 → R≥0 such that
ls(x, u) ≥ α(‖x‖) for all (x, u) ∈ Rn × Rm.

(iii) The function m(·) is positive semi-definite and contin-
uously differentiable away from the origin.

(iv) There exists a feasible auxiliary control law
kaux : Xaux → U , defined over the terminal
set Xaux ⊆ Rn, such that, for the closed-loop system
(1) with u(t) = kaux(x), the state and input vectors
satisfy x(t) ∈ Xaux ⊆ X and u(t) ∈ U , respectively,
and the following condition holds:

ṁ(x) = mx(x)f(x, kaux(x)) ≤ −ls(x, kaux(x)) (7)

for all x 6= 0 and initial conditions x0 ∈ Xaux. �
The notation mx(·) denotes the partial derivatives of m(·)
with respect of the state variable x.

Remark 1: (Design methods) It is worth noticing that
setting le(·) = 0, Assumption 3 coincides with well known
sufficient conditions for convergence to the origin of the
MPC strategy, see, e.g., [9], [14]. This allows to use standard
design techniques to compute a suitable terminal set and
terminal cost. �

Since the goal is to steer the state to bounded region
around the origin, the following assumption is used to avoid
the economic stage cost le(·) to constantly dominate the
stabilizing stage cost ls(·).

Assumption 4 (Bound on the economic stage cost): The
norm of the economic stage cost function le(·), evaluated
along the closed-loop state and input trajectories, is
uniformly bounded by a strictly positive constant value, i.e.,
‖le(x(t), u(t))‖ ≤ B, ∀ t ≥ 0 with B > 0. �

Remark 2 (Design of the economic stage cost): Consider
a given generic economic stage cost l̄e : Rn × Rm → E
that we wish to minimize. For the case of bounded set E ,
Assumption 4, with le(x, u) = l̄e(x, u), is trivially satisfied.
In the general case, i.e, E = R, where Assumption 4 can
be difficult to be a priori verified, a possible approach
consists in applying a smooth saturation-like function
and design le(·) = k atan( 1

k l̄e(·)), where the constant

1A function α : R≥0 → R≥0 is said to be belong to class K, or to
be a class-K function, if it is zero at zero, strictly increasing and radially
unbounded, i.e., α(x)→∞ as x→∞.



k > 0 determines the size of the domain where the
mapping behaves almost linearly. Such smooth saturation
guarantees the stabilizing stage cost to eventually dominate
the economic cost, as ‖x‖ → +∞, with the drawback of
modifying the original economic function l̄e(·). �
The main result of this work follows:

Theorem 1 (Ultimate boundedness): Consider system (1)
in closed-loop with (5), where l(·) is decomposed as in (6),
and suppose that Assumptions 1-4 hold. Then, for every x0

that satisfy Assumption 2 the closed-loop state trajectory
• is uniformly bounded over time, i.e, ‖x(t)‖ ≤ c, with
c ∈ [0,+∞), for all t ≥ 0, and

• converges to an ultimate bound with size proportional
to the value of B from Assumption 4, i.e., there exist
a finite time T̄ ≥ 0 and a constant U > 0 such that

‖x(t)‖ ≤ U, ∀t ≥ T̄ (8)

where, for every desired value of U > 0 there exist a
bound B > 0 such that (8) holds. �

A. Proof of Theorem 1

Consider the standard value function:
Definition 2 (Value function): Consider a vector x̂ and let

the optimization problem P(x̂) admit a feasible solution. Us-
ing the minimizer ū∗(·; x̂), and the associated state trajectory
x̄∗(·; x̂), the value function is defined as

V (x̂) :=

∫ T

0

l(x̄∗, ū∗)dτ +m(x̄∗(T )). (9)

�
The proof is structured as follows: first, a bound on the

decrease of the value function is derived in Lemma 1. Then,
ultimate boundedness of a generic sampling of the closed-
loop trajectory is shown in Lemma 3. Finally, we show by
contradiction that the same ultimate boundedness applies to
the whole closed-loop trajectory, which concludes the proof.

In the following, for a generic function V (·) and a scalar
γ the term L(V, γ) denotes the γ-sublevel set of V (·), i.e.,
L(V, γ) := { x : V (x) ≤ γ }. Moreover, we denote by
B(r) a ball set of radius r defined as B(r) := {x : ‖x‖ ≤ r}.

Lemma 1: Suppose that Assumptions 3-4 hold. Then,
along the closed-loop (1) with (5) and for any t̂ ≥ 0 and
δ ≥ 0, the following cost inequality holds :

V (x(t̂+ δ)) ≤ V (x(t̂))−
∫ t̂+δ

t̂

α(‖x(τ)‖)dτ + 2δB (10)

where V (·) is the value function of Definition 2. �
Proof: This proof follows from standard arguments and

is omitted due to space constraints. See, e.g., the work [3],
where as only difference, the effect of the bounded economic
stage cost results in the additive term 2δB of (10).
Note that the Lemma 1 applies for any of δ > 0, which
is independent from the choice of the sampling instants T
in (4). Thus, for the generic sampling of the closed-loop
trajectory defined as

S := {si = x(ξi) with ξi = δi, i ∈ N≥0} (11)

we can write

V (si+1) ≤ V (si)−
∫ ξi+δ

ξi

α(‖x(τ)‖)dτ + 2δB. (12)

The following result will be needed in the proof of Lemma 3
on the ultimate boundedness of the generic sampling S .

Lemma 2: (Ultimate bound) Let Assumption 1 hold and
let φ(t; t0, x0) denote a continuous solution of (1) starting at
x0 = x(t0). Then, there exists a ∆̄ > 0 such that, for any
class-K function α(·) and scalars b and ∆ ≤ ∆̄, the set

G∆ =

{
x0 : min

τ∈[t0,t0+∆]
α(‖φ(τ ; t0, x0)‖) ≤ b

}
, (13)

which coincides with set of initial states of closed-loop state
trajectories that are driven through L(α(‖ · ‖), b) in the
interval of time [t, t+ ∆], can be made arbitrarily small by
reducing the value of ∆ > 0 and b > 0. �

Proof: Start by noticing that G∆ consists in the set of
initial conditions x0 = x(t0) that can be steered through the
set

L(α(‖ · ‖), b) = {x : α(‖x‖) ≤ b} (14)

within a finite time ∆. Then, the distance of a generic point
x0 ∈ G∆ to the origin, i.e., ‖x0‖, with x0 ∈ G∆, can be
bounded by the sum of the distance from x0 to the set (14)
plus the radius of the smallest ball containing the set (14),
i.e., rb := α−1(b), that always exists from α(·) being a class-
K function and, thus, (14) being compact.

By the locally Lipschitz property from Assumption 1
there exists a ∆̄ > 0 such that the trajectory
φ([t0 , t0 + ∆̄] ; t0 , x0) exists and has unique solution
(Theorem 3.1 of [20]). Consider ∆ < ∆̄ and let L∆ be
the length of the trajectory φ([t0 , t0 + ∆] ; t0 , x0),
i.e., the piece of trajectory φ(τ ; t0, x0), evaluated with
τ ∈ [t0, t0 + ∆]. Then, the distance from x0 ∈ G∆ to
the set (14) is clearly less than the length L∆.

Therefore, for all x0 ∈ G∆ we have ‖x0‖ ≤ rb +L∆ and,
thus, G∆ ⊆ B(rb + L∆). Moreover, note that the value of
rb can be made arbitrarily small by decreasing the value
of b and, by continuity of the solution φ(·), L∆ can be
made arbitrarily small by decreasing the value of ∆, which
concludes the proof.

Lemma 3: (Ultimate boundedness of a sampling) Con-
sider system (1) in closed-loop with (5) and suppose that
Assumptions 1-4 hold. Moreover, consider a sampling S of
the closed-loop state trajectory defined in (11) with δ < ∆.
Then, there exists a ∆̄ > 0 such that for finite constants
∆ ∈ (0, ∆̄] and B > 0

• ‖si‖ ≤ c with c ∈ [0,+∞), for all si ∈ S and
• there exist a finite time T̄ ≥ 0 and a constant U > 0

such that

‖si‖ ≤ U, ∀ξi ≥ T̄ (15)

where, for every value of U > 0 there exist a bound
B > 0, from Assumption 4, such that (15) holds. �



Proof: From (12) and for any constant θ ∈ (0, 1) we
can write

V (si+1)− V (si)

≤ −(1− θ)
∫ ξi+δ

ξi

α(‖x(τ)‖)dτ, ∀si ∈ Di

≤ −(1− θ)2δB/θ, ∀si ∈ Di (16)

with

Di :=

{
si = x(ξi) : −θ

∫ ξi+δ

ξi

α(‖x(τ)‖)dτ + 2δB ≤ 0

}
and where the last inequality follows from si ∈ Di and, thus,
2δB/θ ≤

∫ ξi+δ
ξi

α(‖x(τ)‖)dτ .
For the generic set A, let Ac denote the complement set of

A, thus Dci =
{
x(ξi) : θ

∫ ξi+δ
ξi

α(‖x(τ)‖)dτ < 2δB
}
. Note

that Dci ⊆
{
x(ξi) : θδminτ∈[ξi,ξi+δ] α(‖x(τ)‖) ≤ 2δB

}
⊆

UB∆ with

UB∆ :=

{
x0 : min

τ∈[t0,t0+∆]
α(‖x(τ)‖) ≤ 2B/θ

}
, (17)

where the first inclusion follows
from α(·) being positive and, thus,∫ ξi+δ
ξi

α(‖x(τ)‖)d ≥ δminτ∈[δi,δ(i+1)] α(‖x(τ)‖),
and the second inclusion is obtained
from definition (17) and the inequality
minτ∈[ξi,ξi+δ] α(‖x(τ)‖) ≥ minτ∈[ξi,ξi+∆] α(‖x(τ)‖)
resulting from the increase of the feasible set for τ .

Note that, choosing ∆ < ∆̄ from Lemma 2 with
b = 2B/θ, the set UB∆ is bounded.

From the boundedness of UB∆ there always exists the
bounded level set L(V, γ′), with γ′ = minγ̄:UB∆⊆L(V,γ̄),
such that UB∆ ⊆ L(V, γ′). Thus, from (16), we obtain

V (si+1)− V (si) ≤ −(1− θ)2δB/θ, ∀si /∈ L(V, γ′) (18)

which, by recursion, implies that si enters the set L(V, γ′)

in, at most, the finite number of steps k ≥ θ V (x0)−γ′
(1−θ)2δB .

Note that (18) does not describe the behavior of the value
function V (·) once si ∈ L(V, γ′), although (10) can be used
to obtain a bound on the increase of V (·) as

V (si+1)− V (si) ≤ 2δB ≤ 2∆B, ∀si ∈ L(V, γ′). (19)

Combining (18) and (19), we obtain the bound
V (si) ≤ γ := γ′ + 2∆B, ∀k ≥ θ V (s0)−γ

(1−θ)2δB and,

consequently, si ∈ L(V, γ),∀ξi = δk ≥ θ V (s0)−γ
(1−θ)2B = T̄ .

Now let B(U) be the smallest ball containing L(V, γ), that
always exists from L(V, γ) being compact, then we have
‖si‖ ≤ U,∀ξi ≥ T̄ .

Note that, using Lemma 2 and the definition of U , the
value of U can be made arbitrarily small by reducing B > 0
and ∆ > 0. Moreover, note that the samples S are always
bounded. In fact, also during the first phase, where the
sampling is converging to the ultimate bound, the Lyapunov
decrease (18) implies that si ∈ L(V, V (s0)). This concludes
the proof.

It is important to notice that, in Lemma 3, the variable
T̄ and U are independent from the chosen sampling, i.e,
it holds for any value of δ ≤ ∆. This fact is used to
proof, by contradiction, that the whole closed-loop trajectory
satisfies the same property (first the statement of Theorem 1
is negated, then we show that this leads to a contradiction).

Negating Theorem 1 results in: there exists an x0, satis-
fying Assumption 2, such that for the closed-loop trajectory
• there exist a t1 such that ‖x(t1)‖ > c for any
c ∈ [0,+∞), or

• for all time T̄ ≥ 0 and a constants U > 0 there exists
a t2 ≥ T̄ for which ‖x(t2)‖ > U .

However,
• by choosing δ small enough such that δi = t1, we

have by Lemma 3, that ‖x(t1)‖ = ‖si‖ ≤ c with
c ∈ [0,+∞), which contradicts the first point.

• Moreover, by choosing U ≥ 0 and T̄ ≥ 0
from Lemma 3, and δ small enough such that
T̄ ≤ ξi = δi = t2 for some i, implies that
‖x(t̄)‖ ≤ U , which contradicts the second point.

This concludes the proof.

IV. SIMULATION RESULTS
Consider a follower vehicle described by the unicy-

cle model ṗ =

(
v cos(θ)
v sin(θ)

)
with θ̇ = ω, where

p ∈ R2 and θ ∈ R denote the position and the head-
ing of the vehicle, and v ∈ R2 and ω ∈ R denote
its linear and angular velocity, respectively. The input
u := (v, ω)′ ∈ U , is considered to be constrained in the
set U = {(v, ω)′ : −2 ≤ v ≤ 2,−π ≤ ω ≤ π} . Moreover,
consider a target vehicle described by a single integrator
ṗt(t) = ut(t) with u̇t(t) = 0 where pt ∈ R2 and ut ∈ R2 are
the position and velocity of the target vehicle, respectively.

The position of the target vehicle is continuously observed
by an omnidirectional camera centered at the position of the
follower vehicle. Then, the perspective observation model
(see, e.g., [2]) is defined as y = pt−p

‖pt−p‖ , where y ∈ R2 is a
bearing only observation (‖y(t)‖ = 1, ∀pt 6= p).

Assuming given a trajectory-tracking controller, a common
approach to target-tracking consists in using the signals u(·)
and y(·) to estimate the position and the direction of the
target vehicle, and then to feed the estimate to the tracking
controller that derives the input signal for the follower.

Although, for the case of nonlinear observation models,
it can occur that the system is steered through unobservable
trajectories, leading to an incorrect estimate of the target and,
therefore, to the failure of the target-tracking strategy.

We address this problem by augmenting an MPC con-
troller for trajectory-tracking with an economic stage cost
used to penalizes unobservable trajectories. For the purposes
of this paper, we only consider the state feedback case, with
the known state of the target, and we refer to [6] for a the
case with general vehicle models, output feedback, and state
estimation via Extended Kalman Filter.

In the following simulations, we consider the set of
sampling instants T = {ti = 0.1i, i ∈ N≥0} and the
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Fig. 1. The solid green line denotes the trajectory of the position of
the target vehicle while the blue lines denote the closed-loop position
trajectories of the follower vehicle starting at different initial conditions. The
solid blue line highlights the trajectory associate with the initial condition
x0 = (−16,−20,−0.1)′.

horizon length T = 0.5 s. Moreover, the MPC optimization
problems are solved using the ACADO Toolkit [18].

A. MPC for Trajectory-tracking

Consider the state feedback trajectory-tracking controller
from [4] where the trajectory to be followed is defined
by a desired position, as function of time, its derivative,
and a bound on such derivative. Since in this example we
wish to track the position of the target vehicle, the target
position, its derivative, and an a priori bound on the target
velocity (which is considered to be 0.5 m/s) are used as
input of the trajectory-tracking algorithm. Using the same
notation in [4], the MPC controller parameters are chosen
to be ε = (−0.2, 0)′, K = 0.1I2×2 , O = 0.1I2×2, and
Q = 10I2×2, where I2×2 denotes an identity matrix of size
2× 2, and the resulting terminal set is Ef = {e′e ≤ 26.42}.

Fig. 1 displays the position of the system in closed-
loop with the resulting target-tracking controller for different
initial conditions.

B. The Economic Cost

In this subsection, we identify a performance index that
penalizes weakly observable trajectories using the properties
of the observability matrix:

O(x, u) =
∂

∂

(
pt
ut

)
 y(x)
ẏ(x, u)

...

 (20)

To provide an intuition of the meaning of (20), the observ-
ability matrixO(x, u), evaluated at the point (x, u), describes
the sensitivity of the output and its derivatives to variations
of (p′t, u

′
t)
′ that wish to estimate. Thus, if the matrix is not

full rank there exists a variation of (p′t, u
′
t)
′ that does not

influence the output and its derivatives, and therefore the pair
(p′t, u

′
t)
′ is locally not observable at (x, u). Whereas for the

case of linear systems it is enough to stop at the (n− 1)-th
derivative of the output, for a generic nonlinear (observable)

system, a common approach consists in stopping when there
exists at least a state and input pair that makes the matrix O
full rank. In this example we stopped at the first derivative
of the output.

Let σmin(x, u) and σmax(x, u) denote the minimum
and the maximum singular value, respectively, of the
observability matrix. The associated condition number
κ(x, u) := σmax(x, u)/σmin(x, u) provides a measure of
the “quality” of the observability. In fact, broadly speaking, if
the components of x have the same “quality” of observability,
we would have κ(O(x, u)) = 1.

In view of these observations, the economic stage cost is
designed as

le(x, u) = 10k1 atan

(
1

k1
(le1(x, u) + le2(x, u))

)
with le1(x, u) = (10−2σmin(x, u) + 10−3)−1 and
le2(x, u) = 10

(
κ(x, u)−1 − 1

)2
and k1 = 104. Note

that the cost le1(·) strongly penalizes the case where the
observability matrix loses rank, i.e., σmin(x, u) = 0, and
rewards the case of matrixes far from singularity, while
the cost le2(·) rewards observability matrices with good
condition numbers, i.e., close to 1. The economic cost le(·)
is obtained combining the two costs and saturating them
in order to meet the Assumption 4 on the bound of the
economic cost, as suggested in Remark 2.

Fig. 3 (top), shows the economic stage cost evaluated
along the closed-loop trajectories associated with the con-
troller proposed in Section IV-A. Note that, the closed-loop
trajectory are driven through poorly observable or not ob-
servable trajectories with the economic cost being saturated.
This, in the case of output feedback, would cause a bad
quality of the estimate and, thus, the failure of the output
feedback strategy, as shown in [6].

C. The Proposed Scheme

Since the MPC controller in Subsection IV-A satisfies
Assumption 1-3 and the economic stage cost computed
in Subsection IV-B satisfies Assumption 4, the proposed
scheme can be applied.

Fig. 2 displays the position trajectories of the system in
closed-loop with the target-tracking controller augmented
with the economic performance index. In this case, we obtain
the desired behavior where the follower, first approaches the
target, and then starts performing circular motions around it
in order to keep a good estimate of its position and velocity.
In fact, as effect of these maneuvers, Fig. 3 shows that, after
an initial transient behavior, the economic stage cost never
saturates, which implies the observability of the pair (p′t, u

′
t)
′.

V. CONCLUSION AND FUTURE WORKS

A sample-data state feedback MPC scheme with economic
stage function is presented together with a set of sufficient
conditions for convergence of the norm of the closed-loop
state vector to an ultimate bound. The computation of a suit-
able terminal set and terminal cost can be performed using
the standard design methods adopted in Tracking MPC and
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Fig. 2. The solid green line denotes the trajectory of the position of
the target vehicle while the blue lines denote the closed-loop position
trajectories of the follower vehicle starting at different initial conditions. The
solid blue line highlights the trajectory associate with the initial condition
x0 = (−16,−20,−0.1)′.
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Fig. 3. The economic cost computed along the closed-loop input and state
trajectories associated with the target-tracking MPC controller and target-
tracking MPC controller with additional economic cost are displayed on the
top and the bottom figure, respectively, from different initial conditions. With
solid lines, we denote the trajectories associated with the initial condition
x0 = (−16,−20,−0.1)′.

a suitable economic cost can be enforced, if needed, using
saturation-like functions. The flexibility of minimizing an
economic cost while still bounding the asymptotic behavior
of the closed-loop trajectories around a desired steady-state
gives space to many practical applications. As an example,
the proposed scheme is applied to address a target estimation
and tracking control problem.
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