
Macros in sbt: Problem solved!

Martin Duhem, Eugene Burmako

Technical Report

January 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148009936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 2

1.1 What problems do macros bring? 2

1.1.1 The problems we addressed in our previous project . . 2

1.1.2 New problems that have been tackled 4

2 How does sbt’s incremental compiler work? 6

3 Improvements for dependency management 7

4 Details of our solutions 10

4.1 Registering dependencies on auxiliary files 10

4.2 Transitive dependencies of macro implementations 12

4.3 Supporting Macrotracker in sbt 14

5 Conclusion 15

1

1 Introduction

Between February and June 2014, we described [1] how incremental compila-

tion was made more complicated when macro-enabled programs are involved,

and we implemented the foundations of the support for metaprograms in sbt,

a build tool and incremental compiler for Scala.

From June to September 2014, we worked on improving the internal rep-

resentation of dependency relationships between files in sbt, to make it easier

to extend sbt and to define new relationships.

Starting in September 2014, we benefited of this new infrastructure to fix

all the remaining problems that sbt had with macros: how should we handle

their transitive dependencies? How can we know what they inspect during

their expansion? Are there other means by which macros could introduce

dependencies? How should we use these informations?

In this report we will expose the new techniques that have been proposed

and implemented to offer a complete support for metaprograms along with

all their dependencies in sbt, and explain the most relevant parts of their

implementation.

1.1 What problems do macros bring?

In our previous report [1], we presented some of the reasons why incremental

compilation is hard to perform correctly when metaprograms are involved,

along with our solutions to overcome these problems. Some of the problems

that were left for future work, have been addressed now.

1.1.1 The problems we addressed in our previous project

As a reminder, let us present briefly the most challenging problems that are

brought by macros, those that we have already solved during our previous

project, and the solutions that we proposed at that time.

Dependencies of macro applications When a macro is expanded, its

application is completely replaced by its expansion. However, the macro ap-

plication may have dependencies (for instance, if the macro application takes

2

parameters). Since sbt couldn’t see the macro before its expansion, these de-

pendencies were lost and this led to inconsistencies. For instance, a macro

client could give a macro an argument Foo.bar. If Foo.bar is modified, we

should obviously recompile the macro application, even if Foo.bar does not

appear at all in the expansion.

The solution to this problem is to use a special attachment that comes

with the macro after its expansion: This attachment contains the macro

application before expansion, that is, the original tree. By inspecting this

attachment, we were able to determine what are the dependencies of the

macro application, and then to register them.

Macros can create dependencies on arbitrary symbols Since metapro-

grams have access to the reflection API, they can inspect any part of the pro-

gram, and thus introduce new dependencies. For instance, a metaprogram

could look up the list of methods defined by a class, format it as a string and

output it. From the expansion of the macro, which would simply be a string,

sbt couldn’t know that, whenever a new method is added or removed from

the inspected class, it has to recompile all the expansions of this macro.

The solution that we proposed to this problem takes the shape of a com-

piler plugin, called Macrotracker [2], that will attach to the expanded macro

the reference of all symbols that have been inspected in order to produce a

given expansion.

This plugin simply acts as a proxy for the reflection API and registers

all calls made and the results that are returned. When the macro expansion

is finished, the plugin attaches to the expansion the list of touched symbols

to the expanded macro. Then, sbt can extract these symbols and, whenever

one of them is modified, it recompiles the macro client.

Even if the compiler plugin is ready since May 2014, sbt doesn’t support

it yet, because sbt’s internal infrastructure needed some improvements that

were not yet implemented at that time. Now that the relevant parts of sbt’s

infrastructure have been improved, we’ve proposed an implementation in sbt

that is being reviewed as of December 2014, and whose details are explained

in section 4.3. We will give more details regarding the refactoring that we

3

object Provider {
def getConfig(file: String): String = macro impl

def impl(c: Context)(file: c.Tree): c.Tree = {
import c.universe.

file match {
case q”${name: String}” =>

val content = scala.io.Source.fromFile(name).mkString

q”$content”

case => c.abort(file.pos, ”Not a literal string”)

}
}
}

Listing 1: A macro that loads a value from a file.

undertook in section 3.

1.1.2 New problems that have been tackled

Now that the kind of challenges brought by macros are clear in our minds,

let’s present the new problems that we worked on fixing.

Allow macro clients to depend on auxiliary (non-scala) files As a

compile-time facility, macros are particularly well suited for code generation.

However, code generation may very well rely on external resources, such as

files whose content is not Scala code.

For instance, the macro presented in Listing 1 could be used to load the

configuration of an object at compile time (it may very well load an API

key for some service from an external text file). Obviously, whenever one

of the external files that are used in this fashion is modified, we need to

recompile all the macro clients that make use out of it. How can we extract

this information? How can we tell sbt that a Scala source depends on an

external, non-scala file?

4

object Provider {
def hello: String = macro impl

def impl(c: Context): c.Tree = {
import c.universe.

val res = Helper.sayHello

q”$res”

}
}

object Helper {
def sayHello = ”Hello ” + Signs.BANG

}

object Signs {
val BANG = ”!”

}

Listing 2: Transitive dependencies of macro implementations

Account for the transitive dependencies of macro implementations

Since macro applications get completely replaced by their expansion during

compilation, the transitive dependencies of the macro implementations must

all be considered to know whether a macro expansion is outdated or not.

For instance, consider the very simple macro presented in Listing 2. If

a change was made to Helper.sayHello, we would have to recompile all

expansions of this macro. This is easy to see, because object Provider

explicitly references Helper.sayHello. However, we would also have to re-

compile all expansions if value BANG in object Signs was to be changed,

because the expansions would not match anymore what a fresh compilation

could give us.

To solve this problem, we have to review the way we think about depen-

dencies and invalidations: usually, when we change the body of a function,

we are only interested in recompiling the file that defines it, and not the

other files that use it. Unfortunately, sbt’s incremental compiler has been

developed with this idea, since macros didn’t exist in Scala at this time.

Our solution to this much more complex problem is presented in sec-

tion 4.2.

5

2 How does sbt’s incremental compiler work?

Rather than explaining again the classification of dependencies that sbt oper-

ates while traversing the compiled trees like we did in our previous report [1],

let us get in more details regarding the internals of sbt’s incremental compiler.

During the compilation of each file of a project, sbt collects informations

about it: its dependencies, the symbols it defines, their APIs, and a times-

tamp that sbt will use to know whether the file has been modified or not

since the last time it has seen it. This timestamp correspond either to the

last time that the file has been modified, or to a hash of the file.

To collect these informations, sbt adds three new phases in the Scala

compilation pipeline. After the typer phase, sbt injects a new phase called

API. The goal of this phase is to create a representation of the public API

of each class. This representation is then stored in an instance of an object

called AnalysisCallback, which is essentially a buffer that contains all the

information collected during a compilation.

Right after the API phase comes another phase added by sbt that is called

the Dependency phase. The goal of this phase is to walk the trees and collect

all symbols that are used in every file. These symbols are then mapped to

their definition file, and sbt can register the dependencies between files.

At this point, sbt separates dependencies between files in the same sub-

project (internal dependencies) from cross-project dependencies (external

dependencies). Whenever sbt encounters an external dependency, it re-

trieves the API of the file depended on at this moment and stores it in

the AnalysisCallback.

Once the compilation is finished, the AnalysisCallback contains all the

information that was extracted during the compilation. Sbt then takes this

information and creates an Analysis with it. This object contains all the

information that sbt needs to know about a project to do its job:

1. All the sources it contains and their APIs

2. All the dependency relations

3. A timestamp for every file (called Stamp)

6

4. The APIs of every external dependency

Now, each time that the user issues the compile command in sbt, sbt

will compute the set of files that it needs to recompile. First, it will look

for source files and JARs that have been modified by comparing the previous

value of their Stamp with a freshly computed Stamp. If a source file has been

modified, it will be recompiled. If a binary dependency has been changed,

then all the files that use it will be recompiled.

After an internal source file has been recompiled, sbt will check whether

its new API is different from the API it previously computed. In which

case, it will recur and invalidate more files based on the changes to the API

and the invalidation algorithm that is used. For external dependencies, the

story is not different. Sbt compares the last known API of every external

dependency with its current API, and performs invalidation based on these

changes and the invalidation algorithm.

Note that the distinction between internal and external dependencies is

not the only classification of dependencies that sbt performs. Sbt also groups

dependencies by their context. The context of introduction of a dependency

represents the kind of dependency relationship that exists between the two

files, and allows us to perform a more finely grained invalidation based on a

set of changes. The two major dependency contexts that exist in sbt are the

dependencies by member reference, and those by inheritance.

In the next section, we’ll present the work that we’ve done to make this

second dependency classification more easily extensible.

3 Improvements for dependency management

Developing a new and improved way to store dependency relations between

files in sbt allowed us to produce new and exciting prototypes that could

handle new kinds of dependencies without applying further changes to the

public API of sbt’s dependency tracking system.

Prior to our work, the interface that permitted to register new depen-

dency relations was closely tied to the only two dependency relations that

sbt considered: dependencies by member reference or inheritance.

7

object Provider {
def hello: String = macro impl

def impl(c: Context): c.Tree = {
import c.universe.

val h = Helper.hello

q”$h”

}
}

object Helper {
val hello = ”Hello”

}

Listing 3: Provider.scala depends on Helper by member reference.

These only two kinds of dependency relations don’t fit the needs of macro-

aware incremental compilation: sbt’s incremental compiler has been designed

to perform just as many invalidations as required to provide a consistent

binary form of a program.

However, when macros are involved, we may need to perform invalida-

tions that wouldn’t be necessary with classic programs. For instance, let us

consider the macro presented in Listing 3.

In this example, object Provider references the member value hello

of object Helper. If the value Helper.hello is modified, we should re-

compile all the expansions of the macro sayHello. However, a classic Scala

program that uses this value shouldn’t be invalidated. It becomes clear that

we need to differentiate between dependencies that are introduced in a macro

implementation from other dependencies1.

Another example is dependencies that are collected by the Macrotracker

compiler plugin. Consider the macro presented in Listing 4. By looking at

the code of the macro implementation, we quickly understand that we won’t

be able to tell what members of the inspected type have been referenced

to produce a given expansion. Still, whenever a type is modified, we will

need to recompile all macro clients that inspect it using this macro. This

1Our solution to this problem, known as the transitive dependencies of macro imple-

mentations, is presented in section 4.2

8

object Provider {
def members[T]: String = macro impl[T]

def impl[T: c.WeakTypeTag](c: Context): c.Tree = {
import c.universe.

val T = weakTypeOf[T]

val m = T.members.sorted.mkString(”, ”)

q”$m”

}
}

Listing 4: Macro listing the members of its type argument.

means that, if members that didn’t even exist at this time are added to the

inspected time, we will need to perform invalidations. Since this requirement

wasn’t necessary in Listing 3, we may consider this kind of dependency as a

new one2.

Our solution to make it easier to add new dependency kinds in sbt re-

lies on an abstraction over the dependency kinds and is threefold: first, we

implemented it for the actual representation of relations in sbt, then for the

part that is in charge of persisting the relations to disk, and finally to the

interface between the Scala compiler and sbt.

This work has been implemented with the goal of making it quick and

easy to add new dependency kinds in sbt. To add a new dependency kind,

we now only have to define the new dependency context, register the new

relation and implement the extraction and invalidation logic. Persisting the

new relation will work out of the box, and sbt will automatically sort the

results of the analysis based on the informations that have been extracted

during compilation.

The improvements that this refactoring brought allowed us to produce

rapidly new prototypes without having to change many public APIs and

thus breaking binary compatibility, which in turn made it both easier and

2The details of our implementation to solve this problem can be found in section 4.3

9

faster for the result of our experiments to reach production quality.

The discussion that accompanied the refactoring along with comments

about the code that has been produced can be found in [3], [4] and [5].

4 Details of our solutions

Thanks to the improvements described in the previous section, sbt can easily

support new kinds of dependency relations between files. Let us now explain

the details of the implementations that we worked on, and how they solved

the problems that we presented earlier.

4.1 Registering dependencies on auxiliary files

As we’ve seen, a macro implementation may very well use some external files

to produce its expansion, and the clients of this macro should therefore be

recompiled whenever an auxiliary file that has been used in such fashion is

modified. The idea for this addition came from a discussion on the scala-

internals mailing list [6].

An incremental compiler is originally built to deal with code, not with

arbitrary files whose content may be completely unintelligible to it, so how

can we make sbt handle auxiliary files?

There is already a mechanism in sbt that is in charge of detecting changes

to various files. Remember that whenever sbt encounters a new file, it com-

putes a Stamp that corresponds either to the hash of the file or to the last

time the file has been modified. Using this information, sbt is able to detect

whether or not a file has been modified.

However, making sbt handle dependencies on auxiliary files is not quite

as simple as that, because we do not know in advance where these auxiliary

files will be: the auxiliary files that have been used in a compilation unit

must be explicitly given to sbt.

Sbt won’t actively look for these auxiliary files, because they may be

anywhere on disk. Therefore, if an auxiliary file is no longer advertised, sbt

would normally consider it deleted even though the file is still present and

10

def impl(c: Context)(file: c.Tree): c.Tree = { import c.universe. , compat.

file match {
case q”${name: String}” =>

val file = new java.io.File(name)

val content = scala.io.Source.fromFile(name).mkString

val map = new java.util.HashMap[String, Any]

map.put(”touchedFiles”, file :: Nil)

val res = q”$content”

res.updateAttachment(map)

case => c.abort(file.pos, ”Not a literal string”)

}
}

Listing 5: Improving Listing 1 by attaching the list of touched files

unchanged. To overcome this problem, we had to make sbt copy all the

Stamps it has regarding auxiliary files between compilation runs.

Finally, how does sbt know that a particular expansion uses an auxiliary

file? Currently, our implementation requires the macro author to attach to

the expansion a java.util.HashMap[String, Any] that contains a map-

ping from "touchedFiles" to a List[File]. This list must contain all the

files that have been used to produce this expansion. An example of macro

that attaches the list of touched files to its expansion is showed in Listing 5.

Attaching the list of touched files to the expansion of the macro is a

burden that is currently left to the programmer. However, having a stan-

dardized API to access external files3 from macro implementations, we could

easily leave this to the Macrotracker compiler plugin. Support for dependen-

cies on auxiliary files by sbt would then be completely invisible to the macro

authors.

Once sbt encounters a tree that contains this attachment, it simply ex-

tracts it and registers the list of external files along with the other depen-

3The resources API will be in charge of this in scala.meta in the future.

11

dencies.

Obviously, the invalidation logic for this kind of dependency is very sim-

ple, since we cannot really reason about the content of the file. Whenever

a file that is used as an auxiliary dependency is modified, all the files that

depend on it are recompiled.

We have proposed to integrate this work in sbt. Even though sbt develop-

ers and the community seemed enthusiastic about this change, its integration

will unfortunately have to wait until binary compatibility between versions

of sbt can be broken, because this change requires a modification of a few

public APIs. This discussion can be found in [7].

4.2 Transitive dependencies of macro implementations

As we said before, macro expansions are very fragile because the result of a

macro expansion gets inlined and completely replaces the macro application:

a small change to a part of a program that may seem unrelated may lead to

a completely different expansion.

Therefore, we need to track all the transitive dependencies of macro im-

plementations, and make sure that whenever any of these dependencies gets

modified, we recompile all the clients that use this macro.

We need to be able to differentiate between dependencies introduced in

the body of a macro implementation and the dependencies introduced any-

where else in a Scala program. Luckily, we can now easily define a new

dependency relation, that we called DependencyFromMacroImpl. We also

need a way to determine whether a method declaration may be used as a

macro implementation. There are two different situations in which a method

can be used as a macro implementation:

1. The method must have an argument that can be used as a Context, or

2. The method must be part of a macro bundle4.

4We detect macro bundles by checking whether the primary class constructor has a

parameter that can be used as a Context.

12

This heuristic might give rise to false positive, but unfortunately we can-

not simply collect the methods that are used with the macro keyword and

register their dependencies, because a method that may be used as a macro

implementation could be used as such by a different object, in a different file

or project: we would miss many macro implementations.

Being able to detect macro implementations and classic Scala functions,

we can now collect all the dependencies that are introduced from within a

macro implementation, using the same techniques that sbt currently does for

other kinds of dependencies (traversing the compiled trees). This relation

will be used as the basis to determine whether clients of a macro provider

should be invalidated given a set of changes. Here’s how we will proceed

to compute the set of macro providers that are impacted by a given set of

changes:

1. Let M be the set of files that implement macros.

2. Let Dm
D be the set of files that macro implementation m depends on

by DependencyFromMacroImpl.

3. Let Df be the set of files depending (directly or transitively) on file f :

Df = {x : x depends on f ∨ x depends on f ′, f ′ ∈ Df}

4. Given a set C = {c1, . . . , cn} of files that have been changed, we know

what macros are impacted:

IM = {m : m ∈M ∧ |Dm
D ∩ ∪

f∈C
Df | ≥ 1}

5. We can now invalidate all macro providers that are impacted by the

set of changes.

This algorithm seems very simple in theory. However, applying it to sbt’s

incremental compiler is slightly more complicated because of the separation

of internal and external dependencies.

The result of this separation is that we cannot compute the set Df for

every file f so easily: if this file has external dependencies, then we will need

13

to retrieve the corresponding Analysis that contains informations about this

file and its dependencies. This makes the algorithm slightly more complex,

but it shouldn’t be hard to implement5.

Since we didn’t know how to fetch the Analysis corresponding to a given

file during our experiments, we implemented a temporary solution that mod-

ified the results that sbt provides when detecting changes to an API: If a file,

or anything it depends on, has been recompiled, then we made sbt consider

all relevant macro providers for invalidation.

Unfortunately, a shortcut mechanism that is used to speed up the invali-

dation made everything more complicated and we had to actually recompile

all transitive dependencies of macro implementations to be able to issue all

signals saying that a file has been recompiled but its API has not changed.

Therefore, our solution performed many unnecessary invalidations, but was

able to recompile macro implementations whenever needed.

Now that we have a solution to load the required Analysis, we will be able

to implement a solution that won’t require all these invalidations. However,

this implementation is left for future work, and should be implemented very

soon.

4.3 Supporting Macrotracker in sbt

Bringing support for Macrotracker in sbt was the original reason why we

started refactoring sbt’s dependency tracking system. Once the refactoring

was finished, we were finally able to implement a short and elegant solution

to make sbt account for dependencies introduced by calls to the reflection

API.

In order to implement support for Macrotracker, we needed first to extract

the information that Macrotracker gives us from the compiled trees. This was

done by creating a new traverser that walks the trees and collects the results

of Macrotracker’s work, a Map that contains a mapping from touchedSymbols

to the list of symbols that have been inspected during the expansion, when-

ever it encounters it. The dependency between the macro client and the

5This solution has not been implemented at the time of writing.

14

symbols that are inspected is called DependencyByMacroExpansion.

Then, we had to implement the complete invalidation logic, so that the

macro applications are recompiled whenever an inspected symbol is modified.

The invalidation logic works as follows:

• Whenever an internal source is changed, we invalidate all the files that

have a DependencyByMacroExpansion on it. If a file depends by macro

expansion on another file, then it means that it inspected one of the

symbols it defined.

• Whenever an external source is changed, we get the set of internal

source files that have a DependencyByMacroExpansion on this file, and

invalidate them.

The support for Macrotracker has not been merged yet in sbt. However,

its integration is currently in discussion [8].

5 Conclusion

This semester project has been an opportunity for us to address all the

problems that were left at the end of our previous project.

First, we finished the refactoring that we started during our previous

semester project. Refactoring sbt’s internal representation of dependency

relations really provided us with a very modular version of sbt that allowed

us to rapidly produce new prototypes that suited our needs. We are convinced

that the improvements brought by this refactoring will benefit other projects

that could create new kinds of dependencies.

Then we invested our efforts in making sbt support auxiliary dependencies

on external files, an idea that emerged from the scala-internals mailing list.

Being able to depend on auxiliary files is an interesting idea for many projects

that require generating Scala trees from external files. For instance, Scalatex

[9] is a programmable document generator in Scala that could benefit from

this addition, as soon as it gets merged.

15

We also implemented support for Macrotracker in sbt, which will hope-

fully be merged soon in sbt’s codebase. The refactoring that we brought to

sbt allowed us to provide a concise implementation.

Finally, we worked on making sbt account for the complete transitive

dependencies of macro implementations. This problem pushed us to imple-

menting new invalidation techniques and to performing many experimenta-

tions. At the time of writing, we do not have a complete implementation of

the solution proposed in section 4.2, but we already have a prototype that

works as expected.

Even if our modifications have not been distributed yet in an official

release of sbt, they have been well received by the sbt team which suggests

a possible integration of our contributions in a future release of sbt.

Once our work gets released in an upcoming version of sbt, metaprogram-

ming aficionados will be able to enjoy full-fledged support for macro-enabled

programs in sbt.

16

References

[1] Martin Nicolas Duhem and Eugene Burmako. Making sbt Macro-Aware.

Technical report, 2014.

[2] Martin Nicolas Duhem and Eugene Burmako. MacroTracker. https://

github.com/scalamacros/macrotracker, 2014.

[3] Abstract over dependency kind in Analysis. https://github.com/sbt/sbt/

pull/1340, 2014.

[4] Don’t hardcode existing relations in TextAnalysisFormat. https://github.

com/sbt/sbt/pull/1572, 2014.

[5] Abstract over dependency kind in Compile. https://github.com/sbt/sbt/

pull/1736, 2014.

[6] Best way to provide extra trees to the compiler? https://groups.google.

com/forum/#!topic/scala-internals/LcwD6SVuqms.

[7] Registering dependencies on auxiliary (non-scala) files. https://github.

com/sbt/sbt/pull/1757, 2014.

[8] MacroTracker support. https://github.com/sbt/sbt/pull/1778, 2014.

[9] Li Haoyi. Scalatex - Programmable documents in Scala. http://lihaoyi.

github.io/Scalatex, 2014.

17

https://github.com/scalamacros/macrotracker
https://github.com/scalamacros/macrotracker
https://github.com/sbt/sbt/pull/1340
https://github.com/sbt/sbt/pull/1340
https://github.com/sbt/sbt/pull/1572
https://github.com/sbt/sbt/pull/1572
https://github.com/sbt/sbt/pull/1736
https://github.com/sbt/sbt/pull/1736
https://groups.google.com/forum/#!topic/scala-internals/LcwD6SVuqms
https://groups.google.com/forum/#!topic/scala-internals/LcwD6SVuqms
https://github.com/sbt/sbt/pull/1757
https://github.com/sbt/sbt/pull/1757
https://github.com/sbt/sbt/pull/1778
http://lihaoyi.github.io/Scalatex
http://lihaoyi.github.io/Scalatex

	Introduction
	What problems do macros bring?
	The problems we addressed in our previous project
	New problems that have been tackled

	How does sbt's incremental compiler work?
	Improvements for dependency management
	Details of our solutions
	Registering dependencies on auxiliary files
	Transitive dependencies of macro implementations
	Supporting Macrotracker in sbt

	Conclusion

